On Banach space valued extensions from split faces.

Tage Bai Andersen

This work was in part supported by the Danish Science Council, J. No. 511-630.

The aim of this note is to prove the following theorem: Suppose a is a continuous affine map from a closed split face F of a compact convex set K with values in a Banach space B enjoying the approximation property. Suppose also that p is a strictly positive lower semi-continuous concave function on K such that $\|a(k)\| \leq p(k)$ for all k in F. Then a admits a continuous affine extension $\mathfrak A$ to K into B such that $\|\widetilde a(k)\| \leq p(k)$ for all k in K.

We shall use the methods of tensor products of compact convex sets as developed by Semadeni [12], Lazar [9], Namioka and Phelps [10] and Behrends and Wittstock [6] to reduce the problem to the case $B = \mathbb{R}$, and in this case the result follows from the work of Alfsen and Hirsberg [3] and the present author [4].

The author wants to thank E. Alfsen for helpful comments.

We shall be concerned with compact convex sets K_1 and K_2 in locally convex spaces E_1 and E_2 respectively. By $A(K_1)$ we shall denote the continuous real affine functions on K_1 for i=1,2. We let $BA(K_1\times K_2)$ be the Banach space of continuous biaffine functions on $K_1\times K_2$. We observe that $1\in BA(K_1\times K_2)$ and that $BA(K_1\times K_2)$ separates points of $K_1\times K_2$. As usual we define the projective tensor product of K_1 and K_2 , $K_1\otimes K_2$, to be the state space of $BA(K_1\times K_2)$ equipped with the w*-topology. Then $K_1\otimes K_2$ is a compact convex set, and we have a homeomorphic embedding $w_{K_1\times K_2}$ (called w, when no confusion can arise) from $K_1\times K_2$ into $K_1\otimes K_2$ defined by the following

rule: For all a in BA($K_1 \times K_2$) and all (x_1, x_2) in $K_1 \times K_2$ $\omega(x_1, x_2)(a) = a(x_1, x_2)$

We notice that ω is a biaffine map. It was proved in [10; Prop. 1.3, Th. 2.3] and [6; Satz 1.1.3] that $\partial_e(K_1 \otimes K_2) = \omega(\partial_e K_1 \times \partial_e K_2)$, where in general we denote the extreme points of a convex set K by $\partial_e K$.

For a in $A(K_1)$ and b in $A(K_2)$ we define the continuous biaffine function a \otimes b by

$$\mathbf{a} \otimes \mathbf{b}(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{a}(\mathbf{x}_1)\mathbf{b}(\mathbf{x}_2)$$
, all $(\mathbf{x}_1, \mathbf{x}_2) \in \mathbf{K}_1 \times \mathbf{K}_2$

We let $A(K_1) \otimes A(K_2)$ be the real vector space

$$A(K_1) \otimes A(K_2) = \{ \sum_{i=1}^{n} a_i \otimes b_i \mid a_i \in A(K_1), b_i \in A(K_2) \}$$

which is a copy of the algebraic tensor product of $A(K_1)$ and $A(K_2)$. We denote by $A(K_1)\otimes_\varepsilon A(K_2)$ the uniform closure of $A(K_1)\otimes A(K_2)$ in $BA(K_1\times K_2)$.

We recall that a Banach space B is said to have the approximation property if for each compact convex subset C of B and each $\varepsilon > 0$ there is a continuous linear map T: B \rightarrow B such that T(B) is finite dimensional and such that $\|Tx - x\| < \varepsilon$ for all $x \in C$. It is proved in [10; Lem. 2.5] that if $A(K_1)$ (or $A(K_2)$) has the approximation property then $BA(K_1 \times K_2) = A(K_1) \otimes_{\varepsilon} A(K_2)$.

Following Lazar [9] we define T $_1$ and T $_2$ as the natural embeddings of A(K $_1$) and A(K $_2$) into BA(K $_1$ x K $_2$) , i.e.

$$T_1a = a \otimes 11$$
, all $a \in A(K_1)$

$$T_2b = 1 \otimes b$$
, all $b \in A(K_2)$.

Let P_i be the adjoint map of T_i for i = 1,2.

Then P_{i} is an affine and continuous map of $\text{K}_1 \otimes \text{K}_2$ onto K_{i} (= state space of $\text{A}(\text{K}_{\text{i}}))$, and

$$P_{i} \omega(k_{1},k_{2}) = k_{i}$$
, $i = 1,2$.

The first part of the following proposition was proved by Lazar in the case where K_1 and K_2 are simplexes, but the proof holds in general. The last part was proved by Lazar in the simplex case by means of the Stone-Weierstrass Theorem for simplexes.

<u>Proposition 1.</u> Let \mathbb{F}_1 and \mathbb{F}_2 be closed faces of compact convex sets \mathbb{K}_1 and \mathbb{K}_2 resp. Let $\mathbb{F} = \mathbb{P}_1^{-1}(\mathbb{F}_1) \cap \mathbb{P}_2^{-1}(\mathbb{F}_2)$

- (i) Then F is a closed face in $K_1 \otimes K_2$ and $F = \overline{co}(\omega(F_1 \times F_2))$
- (ii) If $A(F_1)$ or $A(F_2)$ has the approximation property then $F_1 \,\otimes\, F_2 \quad \text{is affinely homeomorphic to} \quad F \ .$

<u>Proof:</u> Since P_i is continuous and affine it is immediate that $P_i^{-1}(F_i)$ is a closed face of $K_1 \otimes K_2$, and hence F is a closed face.

Now let $p = \omega(k_1, k_2) \in \omega(F_1 \times F_2)$. Then $P_1 p = k_1 \in F_1$, and hence $p \in P_1^{-1}(F_1) \cap P_2^{-1}(F_2) = F$. By the Krein Milman Theorem: $\overline{co}(a(F_1 \times F_2)) \subseteq F$.

Conversely, let $p \in \partial_e F$. Since F is a closed face we get $p \in \partial_e F = F \cap \partial_e (K_1 \otimes K_2) = F \cap \omega (\partial_e K_1 \times \partial_e K_2)$

Hence $p = \omega(x_1, x_2)$, $x_i \in \delta_e K_i$. Then $P_i p = x_i$ belongs to

 F_1 by the definition of F . Hence $p\in \omega(F_1\times F_2)$, and again by the Krein Milman Theorem $F\subseteq \overline{co}(\omega(F_1\times F_2))$, and (i) is proved.

Now we shall prove (ii) under the assumption that $A(F_1)$ has the approximation property. We shall define a continuous affine map $T\colon F_1\otimes F_2\to K_1\otimes K_2$ by

$$(\mathbb{T}\varphi)(b) = \varphi(b|_{\mathbb{F}_1 \times \mathbb{F}_2}), \varphi \in \mathbb{F}_1 \otimes \mathbb{F}_2, b \in BA(K_1 \times K_2)$$

Then $T(F_1\otimes F_2)$ is compact and convex in $K_1\otimes K_2$. If $\phi\in \partial_e(F_1\otimes F_2)$ then $\phi=\omega_{F_1\times F_2}(x_1,x_2)$, where $x_i\in \partial_eF_i$, i=1,2. But then

$$(T\phi)(b) = b(x_1, x_2) = \omega_{K_1 \times K_2}(x_1, x_2)(b)$$
, all $b \in BA(K_1 \times K_2)$.

Hence $\text{T}\phi = \omega_{\text{K}_1 \times \text{K}_2}(\text{x}_1,\text{x}_2) \in \overline{\text{co}}(\omega_{\text{K}_1 \times \text{K}_2}(\text{F}_1 \times \text{F}_2)) = \text{F}$. By the Krein Milman Theorem we conclude that $\text{T}(\text{F}_1 \otimes \text{F}_2) \subseteq \text{F}$.

Conversely, if $\psi \in \mathfrak{d}_e F$ then as F is a closed face, we get by Milman's theorem

 $\psi \in \omega_{K_1 \times K_2}(F_1 \times F_2) \cap \omega_{K_1 \times K_2}(\partial_e K_1 \times \partial_e K_2) = \omega_{K_1 \times K_2}(\partial_e F_1 \times \partial_e F_2).$ If $\psi = \omega_{K_1 \times K_2}(x_1, x_2), x_1 \in \partial_e F_1, \text{ then } \omega_{F_1 \times F_2}(x_1, x_2) \in \partial_e (F_1 \otimes F_2),$ and as above $\psi = T(\omega_{F_1 \times F_2}(x_1, x_2)).$ By the Klein Milman Theorem we get $F \subseteq T(F_1 \otimes F_2), \text{ and so } T \text{ is surjective.}$

We proceed to show that T is injective. This is the case if $BA(K_1 \times K_2)|_{F_1 \times F_2}$ is dense in $BA(F_1 \times F_2)$. We show that $A(K_1) \otimes A(K_2)|_{F_1 \times F_2}$ is dense in $BA(F_1 \times F_2)$. Hence let $c \in BA(F_1 \times F_2)$ and c > 0. Since $A(F_1)$ has the approximation property, we have that $A(F_1) \otimes_c A(F_2) = BA(F_1 \otimes F_2)$, so there exist $a_1, \ldots, a_n \in A(F_1)$, $b_1, \ldots, b_n \in A(F_2)$ such that

$$\|\mathbf{c} - \sum_{i=1}^{n} \mathbf{a}_{i} \otimes \mathbf{b}_{i}\|_{\mathbf{F}_{1} \times \mathbf{F}_{2}} < \frac{\varepsilon}{2}.$$

Now $A(K_i)|_{F_i}$ is dense in $A(F_i)$, so we can choose $a_i' \in A(K_1)$, $b_i' \in A(K_2)$, $i=1,\ldots,n$, such that

$$\|\sum_{i=1}^{n} a_{i} \otimes b_{i} - \sum_{i=1}^{n} a'_{i} \otimes b'_{i}\|_{F_{1} \times F_{2}} < \frac{\varepsilon}{2}.$$

Then $\|c - \sum_{i=1}^{n} a_i' \otimes b_i'\|_{F_1 \times F_2} < \epsilon$, and the claim follows.

The next step is to prove that $\overline{co}(\omega(\mathbb{F}_1\times\mathbb{F}_2))$ is a closed split face of $K_1\otimes K_2$ provided \mathbb{F}_i is a closed split face of K_i for i=1,2, and f.ex. $\mathbb{A}(\mathbb{F}_1)$ has the approximation property.

We shall remind the reader of the following definitions and F is a closed face of a compact convex K , then the complementary o-face F' is the union of all faces disjoint from F. It is always true that $K = co(F \cup F')$. F a split face if F' is a face and each point in $K\setminus (F\cup F')$ can be decomposed uniquely as convex combination of a point in F and a point in F'. It follows from a slight modification of the proof of [2; Th. 3.5] that a closed face is a split face if and only if each non-negative u.s.c. affine function on F an u.s.c. affine extension to K, which is equal to 0 This characterization is sometimes inconvenient because of the "nonsymmetric" properties of the affine functions involved. Using the above characterization we shall give a new one involving the space $A_s(K)$ which is the smallest uniformly closed subspace of the bounded functions on K containing the bounded This space has been used f.ex. by Krause [8] and Behrends and Wittstock [6] in simplex theory and by Combes [7] in C*-algebra theory. We shall state some of the known properties of $A_s(K)$.

Lemma 2.

- (i) If $a \in A_s(K)$ and $a \ge 0$ on $\delta_e K$ then $a \ge 0$ on K.
- (ii) If $a \in A_s(K)$ then $\|a\|_K = \|a\|_{\partial_{e_s}K}$.
- (iii) If a \in A_s(K) then a satisfies the barycentric calculus.

Sketch of proof: If s and t are u.s.c. affine functions on K and $s \le t$ on $\partial_e K$ it follows by [5; Lem. 1] that $s \le t$ on K. Hence (i) follows by a limit argument. Now (ii) follows by (i), since on $\partial_e K$: $-\|a\|_{\partial_e K} \le a \le \|a\|_{\partial_e K}$. Hence the same inequality holds on K, and so $\|a\|_K \le \|a\|_{\partial_e K}$. The converse inequality is trivial. Finally (iii) follows from Lebesgue's theorem on dominated convergence, since the barycentric calculus holds for (differences of) u.s.c. bounded affine functions, cf. [1; Cor. I.1.4].

<u>Proposition 3.</u> Let F be a closed face of a compact convex set K. Then F is a split face if and only if each $a \in A_s(F)$ (or $A_s(F)^+$, A(F), $A(F)^+$, A(F;K), $A(F;K)^+$) has an extension $\widetilde{a} \in A_s(K)$ such that $\widetilde{a} = 0$ on F'. If such an extension exists then it is unique.

<u>Proof</u>: The uniqueness statement follows from Lemma 2 (ii), since $\partial_{\rho}K\subseteq F\cup F'$.

Assume F is a split face and let $a \in A_s(F)$. If a is u.s.c. affine and non-negative a has as noted above an u.s.c. affine extension \widetilde{a} with $\widetilde{a}=0$ on F'. Hence the result follows if a is the difference of two non-negative u.s.c. affine functions on K. In general there are b_n , c_n u.s.c. affine and non-negative, $a_n = b_n - c_n$, such that $\|a_n - a\|_{F} \xrightarrow{n \to \infty} 0$. We

use Lemma 2 (ii) and the fact that $\partial_e K \subseteq F \cup F'$ to conclude that

$$\|\widetilde{\mathbf{a}}_{\mathbf{n}} - \widetilde{\mathbf{a}}_{\mathbf{m}}\| = \|\widetilde{\mathbf{a}}_{\mathbf{n}} - \widetilde{\mathbf{a}}_{\mathbf{m}}\|_{\mathbf{a}_{\mathbf{e}}K} = \|\mathbf{a}_{\mathbf{n}} - \mathbf{a}_{\mathbf{m}}\|_{\mathbf{a}_{\mathbf{e}}F} = \|\mathbf{a}_{\mathbf{n}} - \mathbf{a}_{\mathbf{m}}\|_{F}$$

Hence $\{\widetilde{a}_n\}_1^\infty$ is Cauchy in $A_s(K)$. Then $\widetilde{a}=\lim \widetilde{a}_n\in A_s(K)$ will be an extension of a with $\widetilde{a}=0$ on F'.

Conversely, assume that each a \in A(F;K)⁺ has an extension $\widetilde{a} \in$ A_S(K) such that $\widetilde{a} = 0$ on F'. Let $x \in$ K\(F\) F'), $x = \lambda y + (1 - \lambda)z$, where $y \in$ F , $z \in$ F' and $0 < \lambda < 1$. Then $\lambda = \widetilde{\mathbb{I}}(x)$, and since λ is uniquely determined, $\widetilde{\chi}_F$ is affine, and hence F' = $\chi_F^{\lambda - 1}(0)$ is a face, cf. [2; Prop. 1.1, Cor.1.2]. Now the uniqueness of F,F' components is easy, since A(F;K)⁺ separates points of F.

The following lemma can be derived from [6; Formula (1), p.263, Satz 2.1.3]. For the readers convenience we shall give a proof.

Lemma 4. Let K_1 and K_2 be compact convex sets and $a \in A_s^-(K_1)$, $b \in A_s^-(K_2)$. Then there is a function $c \in A_s^-(K_1 \otimes K_2)$, denoted by $a \otimes b$, such that

$$c(\omega(x_1,x_2)) = a(x_1)b(x_2)$$
, all $(x_1,x_2) \in K_1 \times K_2$.

<u>Proof:</u> First we shall consider the case where a and b are non-negative u.s.c. and affine. Then there exist nets $\{a_{\alpha}\}\subseteq A(K_1)^+$, $\{b_{\beta}\}\subseteq A(K_2)^+$ such that $a_{\alpha}\setminus a$, $b_{\beta}\setminus b$, pointwise. Then $\{a_{\alpha}\otimes b_{\beta}\}$ is a decreasing net in $BA(K_1\times K_2)^+$, and therefore there is an u.s.c. affine function c on $K_1\otimes K_2$ such that

$$c(\phi) = \inf_{\alpha, \beta} \phi(a_{\alpha} \otimes b_{\beta})$$
, all $\phi \in K_1 \otimes K_2$.

Especially, for all
$$(x_1,x_2) \in K_1 \times K_2$$

$$c(\omega(x_1,x_2)) = \inf a_{\alpha}(x_1)b_{\beta}(x_2) = a(x_1)b(x_2).$$

Ιſ

$$(*)$$
 $a = a_1 - a_2$, $b = b_1 - b_2$

where a_i is u.s.c. non-negative and affine on K_1 , b_i is u.s.c. non-negative and affine on K_2 , then (x_1,x_2) - $a(x_1)b(x_2)$ is linear combination of four terms of the kind considered in the first part of the proof, and we can choose c as the corresponding linear combination of elements from $A_s(K_1 \otimes K_2)$.

If $a \in A_s(K_1)$, $b \in A_s(K_2)$ are arbitrary then we can find a_n' , b_n' of the type (*), such that $\|b-b_n'\|_{K_2} < \frac{1}{n}$, $\|a-a_n'\|_{K_1} < \frac{1}{n}$ and $c_n \in A_s(K_1 \otimes K_2)$ such that

(**)
$$c_n(\omega(x_1,x_2)) = a_n(x_1)b_n(x_2)$$
, all $(x_1,x_2) \in K_1 \times K_2$.

Then for all $(x_1, x_2) \in \partial_e K_2$

$$|a(x_1)b(x_2) - c_n(\omega(x_1,x_2))| < \frac{1}{n^2} + \frac{1}{n}(\|a\|_{K_1} + \|b\|_{K_2})$$
.

From this it follows that $\{c_n\}_{\partial_e(K_1\otimes K_2)}\}$ is Cauchy, and hence $\{c_n\}$ is Cauchy on $K_1\otimes K_2$ by Lemma 2 (ii). Let $c=\lim c_n\in A_s(K_1\otimes K_2)$. Then it is obvious from (**) that c satisfies the requirement.

Theorem 5. Let K_1 and K_2 be compact convex sets, and F_1 and F_2 closed faces of K_1 and K_2 respectively. Let F be the face $\overline{\text{co}}(\omega(F_1 \times F_2))$ in $K_1 \otimes K_2$. Then the following holds

- (i) If F is a split face of ${\rm K}_1 \otimes {\rm K}_2$ then F $_1$ and F $_2$ are split faces of K $_1$ and K $_2$.
- (ii) If either $A(F_1)$ or $A(F_2)$ has the approximation property,

and F_1 and F_2 are split faces of K_1 and K_2 , then F is a split face of $\text{K}_1 \otimes \text{K}_2$.

Proof: To prove (i) we assume that F is a split face. As noted before $\partial_e F = \omega(\partial_e F_1 \times \partial_e F_2)$. Let $a \in A(K_1)$ such that $a \geq 0$ on F_1 , i.e. $a|_{F_1} \in A(F_1; K_1)^+$. By Proposition 3 it will suffice to show that $(a \cdot \chi_{F_1})^{\wedge}$ is affine on K_1 . We know that $((a \otimes 1) \cdot \chi_F)^{\wedge}$ is u.s.c. and affine on $K_1 \otimes K_2$, since $a \otimes 1$ is non-negative on $\omega(E_1 \times F_2)$ and hence on F. Now we fix $x_2 \in \partial_e F_2$. Then the function $g(x_2): x \to ((a \otimes 1) \cdot \chi_F)^{\wedge}(\omega(x, x_2))$ is u.s.c. and affine on K_1 . On F_1 $g(x_2)$ agrees with a, and since $\omega(\partial_e F_1' \times \partial_e F_2) \subseteq F'$, we have that $g(x_2) = 0$ on $\partial_e F_1'$.

Since $g(x_2)$ and $(a \cdot \chi_{F_1})^{\wedge}$ agree on $\mathfrak{d}_e K_1$, and $g(x_2)$ is u.s.c. affine, while $(a \cdot \chi_{F_1})^{\wedge}$ is u.s.c. concave it follows from Bauers principle [5; Lem.1] that $g(x_2) \leq (a \cdot \chi_{F_1})^{\wedge}$. Moreover $g(x_2) \geq a \cdot \chi_{F_1}$, and since $(a \cdot \chi_{F_1})^{\wedge}$ is the smallest u.s.c. concave majorant of $a \cdot \chi_{F_1}$, we have $g(x_2) \geq (a \cdot \chi_{F_1})^{\wedge}$, and (i) follows.

To prove (ii) we shall assume that F_1 and F_2 are split faces, and that $A(F_1)$ has the approximation property. By Proposition 3 we have to show that if $a \in A(F)^+$ then a admits an extension $\widetilde{a} \in A_s(K_1 \otimes K_2)$ such that $\widetilde{a} = 0$ on F'. Now $a \circ (\omega_{K_1} \times K_2 \mid_{F_1 \times F_2})$ belongs to $BA(F_1 \times F_2) = A(F_1) \otimes_{\varepsilon} A(F_2)$. If $\varepsilon > 0$ is arbitrary we can choose $a_1, \ldots, a_n \in A(F_1)$ and $b_1, \ldots, b_n \in A(F_2)$ such that

$$\|\mathbf{a} \cdot \mathbf{w}_{\mathbf{K}_{1} \times \mathbf{K}_{2}} - \sum_{i=1}^{n} \mathbf{a}_{i} \otimes \mathbf{b}_{i}\|_{\mathbf{F}_{1} \times \mathbf{F}_{2}} < \epsilon$$
.

By Proposition 3 we can choose $\widetilde{a}_i \in A_s(K_1)$, $\widetilde{b}_i \in A_s(K_2)$ such that $\widetilde{a}_i = a_i$ on F_1 and $\widetilde{a}_i = 0$ on F_1' , while $\widetilde{b}_i = b_i$

on F_2 and $\tilde{b}_i = 0$ on F_2' .

By Lemma 4 $\overset{n}{\underset{i=1}{\Sigma}}\widetilde{a}_{i}\otimes\widetilde{b}_{i}\in A_{s}(K_{1}\otimes K_{2})$ and on $\omega(F_{1}\times F_{2})$ it equals $\overset{n}{\underset{i=1}{\Sigma}}a_{i}\otimes b_{i}$, while $\overset{n}{\underset{i=1}{\Sigma}}\widetilde{a}_{i}\otimes\widetilde{b}_{i}=0$ on $\delta_{e}(K_{1}\otimes K_{2})\setminus\delta_{e}F$.

As $A_s(K_1 \otimes K_2)$ is complete in $\| \|_{\partial_e(K_1 \otimes K_2)}$ and the norm of $\sum\limits_{i=1}^n \widetilde{a}_i \otimes \widetilde{b}_i$ is obtained at $\omega(F_1 \times F_2)$, this argument leads to the existence of $\widetilde{a} \in A_s(K_1 \otimes K_2)$ such that $\widetilde{a} = a$ on $\omega(F_1 \times F_2)$, and $\widetilde{a} = 0$ on $\partial_e F' = \partial_e(K_1 \otimes K_2) \setminus F$. It remains to show that $\widetilde{a} = a$ on F and $\widetilde{a} = 0$ on F'.

Now let $x \in F$ and represent x by a probability measure on $\omega(F_1 \times F_2)$. Since \widetilde{a} satisfies the barycentric calculus we get

$$\widetilde{a}(x) = \int \widetilde{a} d\mu = \int \widetilde{a} d\mu = \int a d\mu = a(x)$$

$$K_1 \otimes K_2 \qquad \omega(F_1 \times F_2) \qquad F$$

and so $\tilde{a} = a$ on F.

To show that $\widetilde{a}=0$ on F' we let $b\in A(K_1\otimes K_2)$ with b>0 on $K_1\otimes K_2$ and b>a on F. Then $b\geq \widetilde{a}$ on $\partial_e(K\otimes K_2)$, and by Lemma 2 (i), $b\geq \widetilde{a}$ on $K_1\otimes K_2$. For $\rho\in K_1\otimes K_2$ we have

 $(a\cdot\chi_F)^\wedge(\rho)=\inf\{b(\rho)\mid b\in A(K_1\otimes K_2), b>a\cdot\chi_F\}\geq \widetilde{a}(\rho)\geq 0\ .$ Since $(a\cdot\chi_F)^\wedge=0\ \ \text{on}\ \ F'\ ,\ \text{we get}\ \ \widetilde{a}=0\ \ \text{on}\ \ F'\ ,\ \text{and the proof}$ is complete.

Remark: It is easy to see from Lemma 4 that the embedding of the product of two parallel faces F_1 and F_2 in the sense of [11] gives rise to a parallel face F without the assumption of the presence of the approximation property in $A(F_1)$. In fact, $\stackrel{\wedge}{\chi}_F = \stackrel{\wedge}{\chi}_{F_1} \otimes \stackrel{\wedge}{\chi}_{F_2}$ is affine.

<u>Theorem 6.</u> Let F be a closed split face of a compact convex set K. Let B be a real Banach space having the approximation property. Let p be a concave l.s.c. strictly positive real function on K. Let $a: F \to B$ be an affine continuous map such that

$$\|a(k)\| \le p(k)$$
, all $k \in F$.

Then a has an extension to a continuous affine map $\widetilde{a}: K \to B \quad \text{such that}$

$$\|\widetilde{a}(k)\| \le p(k)$$
, all $k \in K$.

<u>Proof:</u> Let C be the unit ball of B* with w*-topology. B x \mathbb{R} is normed by $\|(\mathbf{x},\mathbf{r})\| = \|\mathbf{x}\| + \|\mathbf{r}\|$. It was observed in [10] that $(\mathbf{x},\mathbf{r}) \to (\cdot)(\mathbf{x}) + \mathbf{r}$ is an isometric isomorphism of B x \mathbb{R} onto A(C). Hence if B has the approximation property then A(C) has. We define a biaffine continuous function b on F x C by

$$b(x,x^*) = x^*(a(x))$$
, all $x \in F$, $x^* \in C$

By Proposition 1 (ii) there is an affine homeomorphism between F \otimes C and $\overline{co}(\omega_{K \times C}(F \times C))$ defined by

$$T(\rho)(d) = \rho(d|_{F \times C})$$
 for $d \in BA(K \times C)$.

Since b is naturally a continuous affine function on $F\otimes C$ there is a continuous affine function b₁ on $\overline{co}(\omega_{K\times C}(F\times C))$ such that

$$b_1(T \omega_{F \times C}(x,x^*)) = x^*(a(x))$$
, all $(x,x^*) \in F \times C$.

Moreover $\rho \to p(P_1(\rho))$ is concave, strictly positive and l.s.c. on $K \otimes C$. For $\rho \in \partial_e(\overline{co}(\omega_{K \times C}(F \times C))) = \omega_{K \times C}(\partial_e F \times \partial_e C)$ we have $\rho = \omega_{K \times C}(x,x^*)$ with $(x,x^*) \in \partial_e F \times \partial_e C$ and hence

$$|b_1(\rho)| = |x*(a(x))| \le ||a(x)|| \le p(x) = p(P_1(\rho))$$
.

Since $\rho \to |b_1(\rho)|$ is convex and continuous and $\rho \to p(P_1(\rho))$ is concave and l.s.c., it follows from Bauers principle [5;Lem.1] that $|b_1| \le p \circ P_1$ on $\overline{co}(\omega_{K \times C}(F \times C))$.

Now it follows from Theorem 5 that $\overline{co}(\omega_{K\times C}(F\times C))$ is a split face of $K\otimes C$. By [1; Th.II.6.12] and [3; Th.2.2 and Th.4.5] it follows that there is a function $c\in A(K\otimes C)$ such that c extends b_1 and

$$|c(\rho)| \le p(P_1(\rho))$$
, all $\rho \in K \otimes C$.

(Actually, it follows from [1; Cor.I.5.2] that a concave l.s.c. function on a compact convex set is A(K)-superharmonic in the sense of [3]. Moreover it should be remarked that the theorems 2.2 and 4.5 of [3] are stated for complex spaces, but the proofs hold almost unchanged for the real case.)

Now we can define a continuous affine map $c_1: K \to A(C)$ by

$$c_1(k)(\cdot) = c(\omega(k, \cdot))$$

Then for $k \in K$

$$\|c_1(k)\| = \sup_{x^* \in C} \|c(\omega(k, x^*))\| \le \sup_{x^* \in C} p(P_1(\omega(k, x^*))) = p(k)$$

By composing the isometry S between A(C) and B×R with the canonical projection Q from B×R to B, which has norm 1, we get an affine continuous map $\widetilde{a}(=Q \circ S \circ c_1)$ of K into B such that

$$\|\widetilde{a}(k)\| = \|(Q \circ S \circ c_1)(k)\| \le \|c_1(k)\| \le p(k)$$

for all $k \in K$. Moreover, for $k \in F$, $x^* \in C$ $x^*(\widetilde{a}(k)) = x^*((Q \circ S \circ c_1)(k)) = c_1(k)(x^*)$ $= c(\omega(k,x^*)) = b_1(\omega(k,x^*)) = x^*(a(k))$

Hence for $k \in F$: $\tilde{a}(k) = a(k)$.

Q.E.D.

Corollary. Let F be a closed split face of a compact convex set K. Let B be a real Banach space having the approximation property. Let a: F \rightarrow B be a continuous affine map. Then a admits an extension to a continuous affine function $\widetilde{a}: K \rightarrow B$ such that $\max_{k \in F} \|a(k)\| = \max_{k \in K} \|\widetilde{a}(k)\|$.

Remark: Conclusions similar to those of Theorem 6 and the Corollary hold with no assumptions on B, if instead we know that A(F) has the approximation property. This is f.ex. the case, if K is a simplex.

References

- [1] E.M. Alfsen, <u>Compact convex sets and boundary integrals</u>, Ergebnisse der Mathematik, Springer Verlag, Germany, 1971.
- [2] E.M. Alfsen and T.B. Andersen, Split faces of compact convex sets, Proc. London Math. Soc. 21 (1970), 415-442.
- [3] E.M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of $C_{\mathbb{C}}(X)$, (to appear in Pacific Journal of Math.)
- [4] T.B. Andersen, On dominated extension of continuous affine functions on split faces, (to appear in Math. Scand.)
- [5] H. Bauer, <u>Kennzeichnung kompakter Simplexe mit abgeschloss</u>ener <u>Extremalpunktmenge</u>, Archiv der Mathematik 14 (1963), 415-421.
- [6] E. Behrends and G. Wittstock, <u>Tensorprodukte kompakter kon-</u>vexer Mengen, Inventiones Math. 10 (1970), 251-266.
- [7] F. Combes, Quelques propriétés des C*-algèbres, Bull.Sc.Math. 94 (1970), 165-192.
- [8] U. Krause, <u>Der Satz von Choquet als ein abstrakter Spektral</u>-satz und vice versa, Math.Ann. 184 (1970), 275-296.
- [9] A Lazar, Affine products of simplexes, Math.Scand. 22 (1968), 165-175.
- [10] I. Namioka and R.R. Phelps, <u>Tensor products of compact convex</u> sets, Pacific J. Math. 31 (1969), 469-480.
- [11] M. Rogalski, Topologies faciales dans les convexes compacts, calcul fonctionnel et decomposition spectrale dans le centre d'un espace A(X), Seminaire Choquet 1969-70, No.4.
- [12] Z. Semadeni, <u>Categorical methods in convexity</u>, Proc. Colloq. on Convexity, Copenhagen 1965, 281-307.

University of Oslo Oslo, Norway

and

University of Århus Århus, Denmark