
Inductive operators on resolvable structures 

by 

ANDERS M, NYBERG. 

1, Introducti0n. 

The relationship between inductive definability and admiss

ible sets is at present well understood and accounted for several 

places such as in [BGN], Barwise [2], [3], [Gandy] and ~1oscho

vakis [8], We shall concentrate on a few basic facts, so assume 

A = (A,E) is an admissible set, then: 

a) Every ~ 1 positive inductive operator on A has a ~ 1 
least fixed point. 

b) The length of every ~ 1 positive inductive definition 

on A does not exceed the ordinal o(A) of A , 

(o(A) =An Ord.) 

As immediate corollaries of a) and b) we mention the apparently 

weaker a') and b'): 

a') There exists a realtion on A which is first order 

inductive but not ~ 1 inductive. 

b') There exists a first order inductive definition on A 

of length strictly greater than any ~ 1 inductive 

definition on A • 

By an unpublished result of J, Stavi it turns out that there is 

a transitive (in fact prim, ~eo. closed) set A satisfying a) 

and b) which is not admissible. On the other )land if A = La. for 

some infinite ordinal a then Barwise (unpublished) has shown 
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that even the properties a') and b') each imply that A is 

admissible. 

In this paper we show that on resolvable structures each of 

tne four properties are equivalent to admissibility. Our main 

purpose is, however, not so much to obtain these results as to 

point out that they really are absolute versions of some properties 

related to invariant definability. 

In the last section we discuss the possibility of 

similar results on the relationship between 1 s- n1 and 

obtaining 
1 

monotone inductive definability on one hand and the 

n1 ' 
1 

s- n1 re-

flection principle on the other. We are able to give some answers, 

but this area seems to lead to interesting problems for further 

research. 

2, Preliminaries. 

We will have to assume familiarity with the basic notions 

from the theory of positive inductive definability as presented 

in Moschowakis [8]. Thus we shall by inductive operators, inductive 

definitions etc. always refer to positive induction. For notions 
1 1 relating to definability, like s- n1 , s-t:~ 1 s.i.i.d. etc., 

the reader should consult Barwise [2] and Kunen [7]. Just note 

that we will always allow parameters to occure in defining formulas. 
1 For example if Ol := (A, E) is a structure, s- n1 denotes the 

1 class of relations definable over 0(. by s- n1 formulas allowing 

parameters from A • 

In the following Ct "' (A, E ,R1 , , • , ,Rk) will be some fixed 

structure with A a transitive set and E the membership relation 

restricted to A • 
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2,1, Definition. Let Ot be as above,· A function ·r: OrdnA->A 

with A= U.range(T) is called a resolution of A, We call ()L 
1 

~1 resolvable (resolvable) if there is a resolution T of A 

which is 1 
s- l\1 definable (ll1 definable) on Ot. 

Barwise [2] shows that s- n~ and s,i,i.d, coincides on 

structures Or. , at least if A is closed under ordinary set 

theoretic pairing, Thus it is easily seen that such structures 
1 will be s- l\1 resolvable if and only if they have an i.i.d, 

hierarchy in the sense of Barwise (2]. This means 

that theorem 5.4 of that paper applies directly to 

in particular 
1 s- t1 1 resol v-

able sets, 

Kunen [6] shows that when a structure ~ is self definable 

then s.i.i.d. and coincide on Of.. , We shall not use the 

notion self definability later in this paper, just use the men

tioned result of Kunen together with theorem 5.4 of Barwise [2] 

to make the following observation: 

2. 2 Theorem, Assume ()L = (A, E ,R1 , , •• ,Rk) when A is transitive 

and closed under pairing and OC is s- l\~ resolvable. 

If there is a relation R which is but not 

on Ot then Ot satisfies the reflection principle. 

Proof: Since s, i, i. d, and s - n~ coincide on Ol we must under 

the assumption of the theorem have that not every n~ relation 

on ()(. is s. i. i. d. Hence by Kunen Is result ex can not be self 

definable, but the theorem of Barwise just mentioned yields that 

then must satisfy the reflection principle, -1 

We end this list of preliminaries by quoting a special case 

of a theorem of Aczel [1]. 
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2, 3, Theorem, Assume Ot is countable with A closed under 

pairing, Then every s- TI~ relation on Ct is E1 inductively 

definable. 

3. E1 induction and admissibilit~. 

The key to the results of this section is contained in the 

following lemma. 

3.1. Lemma. Let Ol= (A,E,R1 , ••• ,Rk) be. a resolvable structure 

with A transitive and closed under pairing, If there is a 

relation R on CJt which is inductive but not E1 inductive 

then ~ must satisfy the E reflection principle. 

Proof: It suffices to prove the lemma for countable structures 

because if it is true for all countable OL we can just use an 

absoluteness argument of the type, so successfully employed by 

Barwise in several contexts, to get the general result, (See for 

instance Barwise (3].) To sketch the absoluteness argument ob

serve that the statement ":!I:Ot( OL satisfies the hypothesis of the 

lemma but not the conclusion)" is a E~F statement and hence if 

true, it must hold in (H(w1),E) • But the consepts "inductive", 

"E1-inductive" and "E-reflection" are absolute so this would 

produce a countable structure 0L which does not satisfy. the E 

reflection principle, but satisfies the hypothesis of the lemma. 

Assume now that 0L is countable and that R is a relation 

which is inductive but not E1 inductive on ot • Then R is not 
1 Ol by theorem 2,3. s - n1 on Since all inductive relations are 

n1 
1 we can then conclude that R is n1 

1 but not 1 s ~ n1 on Ol 

and hence by theorem 2,2 Ot must satisfy the s- n1 
1 reflection 

principle and in particular the E reflection principle. ~ 
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We should now be ready to prove the main theorem of this section. 

3. 2. Theorem. Let Ol be as in lemma 3.1 and assume in addition 

that OL satisfies !\
0 
-separation. The following are then equi

valent: 

i) Oi. is admissible. 

ii) Every ~ 1 inductive operator on Of.. has a ~ 1 definable 

least fixed point. 

iii) Not every inductive relation is ~ 1 inductive on (}( • 

iv) The length of ~ 1 induction on C( does not exceed 

the ordinal of Ol . 

v) There exists a first order inductive definition on 

of length strictly greater than any ~ 1 induction 

on Ot. 

Proof: i) => ii) and i) => iv) are both due to Gandy, see for 

instance theorem 2,4.2 of Gandy (5]. That ii) implies iii) follows 

from the fact that not all inductive relations are first order 

definable, hence certainly not ~1 definable, on acceptable struc

tures. 'rhat iv) implies v) is equally obvious by the fact that 

the length of first order induction on acceptable structures is 

the ordinal of the "next" admissible set. 

That v) implies iii) is a little more subtle and needs the obser

vation that v) implies that every ~ 1 inductive set on Ol is 

hyperelementary on Gt. (See Moschovakis (8].) Since then exists 

inductive relations which are not hyperelementary on ~ we can 

conclude iii): 

To complete the proof we can now appeal to lemma 3.1 which 

yields that iii) implies i). 
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This theorem will, as mentioned in the introduction, apply 

to structures Ol of the form (La., E) • \'le find it also striking 

that for "almost" all structures of the form Ol= (Va. 1 E,P,n1 ... ,Rk) 

we will have that ~ 1 -induction and first order induction coincide, 

va. is the set of sets of rank less that the limit ordinal a and 

c;p is the graph on the power set relation on Va. • R1 , • • • 'Rk is 

an arbitrary list of relations on va. • (We have to include P 
in order to make OL resolvable and not just 1 

s - !.11 resolvable,) 

Our excuse for using the term "almost" is that the exceptions 

will require Ol to be admissible so that a. would at least have 

to be a strong limit cardinal, in fact a fixed point for the beth 

hierarchy (i.e. · a. = :La.) • · 

4. induction and s- IT~ reflection. 

Theorem 3.2 is really a result on the correspondence between 

~ 1 induction and the ~ reflection principle. In this section 

we show that, at least with respect 

similar relationship between s- rr~ 

to the lengths, there is a 
1 induction and the s- rr1 re-

flection principle. The main result reads as follows. 

4,1. Theorem. Let Ol= (A,E,R1 , ... ,Rk) where A is a transi-

tive set closed under pairing, If 0!. satisfies the reflec-

tion principle then the length of 1 s- rr1 induction does not exceed 

the ordinal of Ol • If in a·ddi tion Ol is 1 
s- !.11 resolvable then 

the converse holds. 

Proof: That s- IT~ reflection yields the restriction on the length 

of s- TI~ induction is due to Barwise and mentioned in Barwise [2], 

Since, however, no proof of this has been published, this seems 
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to be the right place to give at least an outline of a proof, 
1 be a s- n1 formula 

with S n-ary and occurring positively in ~ • Let 

IJ?' (x,xn+1 ,s•) <'Del':;- IJ?(x,(yi:!Io.<xn+1(y,a.) E S'}) where s• is 

n+1-ary. 

The fixed point Ill?, 

tion 'I' 1 thus 

of IJ? I can be given a defini-

(x,o.) E I~, <-> oz_l= 'l'[x,a.J • 

A straight forward induction on a. now shows that 

(1) x E I~ <-> (x,a.) E I'li' , 

Assume now x E I; where r = o(A) • 

Then by ( 1) Oll= i (x; CY: I :!I a. 'I' (y ,a.)}) • 

By s- n~ reflection there exists a transitive w E A such that 

OUw I= i!?(x,fyi:!Ia.'l' (y,a.)}) and since s- n1 formulas persist under 

end-extensions we can conclude that 

Ot.l= IJ?(x.tY:I:!Ia. <&'I' <Y:,a.)J) where & = wn On • 

Again by ( 1 ) this yields that x E I 0 
IJ? 

and hence the closure 

ordinal 11~11 of the induction given by ~ must satisfy IIi!! II < 

We now turn to the proof of the converse, An alternative 

proof of this has been obtained independently by Grant (6]. 

Let IJ? be a s- n 1 
1 sentence and assume Ot I=<!! • Let us 

also assume that i!? can be written as VT:!Ixcp \'Jhere cp is "'o 

Let 'I' be the 1 definition of the resolution of A s- n1 r • 

We define an inductive operator r on A as follows: 

r 

• 

• 
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/ \fz E x2 :;rz• E x1 ( ( z 1 
1 z) E SA 'l' (x1' x2 )) v 

= \ 
( VT:3:v:;rw((w,v) E S A:;J:xE wq:>(x,T) A x1 = x2 = (o,o)) • 

r is clearly with S occurring positively. I>1oreover 

for v < o(A) a straight forward induction shows that 

(1) (x,y) EI~ <-> (yEOrdnAAy,::;yAr(y)=x) v (x=y= (o,o)) 

Since A = U range r we have that I'T :3:x :3:v(x E r(v) A<:p(x,S)) is 

true on Ol, so by (1) the second clause of the definition of r 

will s.pply and hence ((o,o),(o,o)) E Ir • 

does not exceed the Assume now that the length of r 

ordinal of A • That is Ir = r( U I~) = 
v<o(A) 

((o,o),(o,o)) E I~ for some v < o(A) • 

U Iv r ' 
v<o(A) 

Let 

and hence 

be the least 

such ordinal, Then, by the definition of r we get: 

YT:3:v:!Iw((v,w) E U IfMI.xEw'fl(x,T)) 

~<Vo 

which by (1) implies that VT :3:x E r(v
0

)q:>(x,T) • If we take w 

as the transitive closure of r(v
0

)U [parameters 

that Ol[' w I= VT :!Ixq:>(x,T) , Thus if the length of 

of q:>} 
1 s- n1 

it follows 

induction 

on ~ does not exceed the ordinal of ~ we can conclude that C~ 

must satisfy the s- n~ reflection principle. --1 

4.2. Corollary, JJet A = (A,E) be an admissible set satisfying 

the 1 s- n1 reflection principle and let \). be the ordinal of 

Then the structure L = (L\.l 1 E) is admissible and satisfy the \.l 
s- n~ reflection principle. 

Proof: That L\.l is admissible follows just 

is admissible. To see that L satisfy the 
1.1 

from the fact that 
1 s- rr1 reflection 

A • 

A 
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principle assume the converse. Then by theorem 4.1 there must be 

a s- II~ inductive operator r on L\.1 of length 1r1 > i.l. since 

Li.l. is resolvable. 

This r will also be s- II~ definable on (A,E) , using that the 

predicate "x E L\.1" is E1 definable on 

ever, contradict theorem 4.1 since (A,E) 

reflection principle and hence lrl < ~ • 

(A,E) • This will, how-
1 satisfies the s- II 1 

-1 

This corollary has been known to experts, the reason we have 

mentioned it here is not only because this is the simplest proof 

we know of this result, but also because we will use it as a base 

for further discussion. 

One of the direct consequences of this corollary is that it 

enables us to talk about the "next s- II~ reflecting admissible set" 

in analogy with the "next admissible set". When concerned with 

inductive definability it seems reasonable to ask how far this 

analogy would work. 
1 At last for a s- t~ 1 resolvable structure (A,E) , theorem 4.1 

tells us that if (A,E) does not satisfy the s- II~ reflection 

principle the closure ordinal Is- II~ I of s - II~ induction exceeds 

the ordinal of A • In fact one can prove along the same lines 

as in theorem 3,2 that in this case the ordinal of II~ monotone 

induction I II~ I must satisfy I II~ I = Is- II~ I • Hence s- II~ induc

tion will take us at least up to the ordinal of the next admissible 

set. It is tempting 

ordinal of the next 

1 to conjecture that Js- II1 J would be the 

s- n~ reflection admissible set. Except that 

we know this is true when ,\ is countable, we don't know very 

much about what the situation is like in general, 

We feel that results on questions in this direction should 

make it possible to pin down some of the more recursion theoretic 

properties of invariant definability. 
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