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1. Introduction

In this note we will discuss the non-standard version of
Peano's existence proof for solutions of the equation y' = f(y,t)
with initial condition y(0) = a . Without loss of much generality
we will assume that f£:RxR » R" is continuous and that
[£¢y,D| €1 for all (y,t) € R"xRR. We will mainly be interested in
solutions over the interval te[0,1] . \

We will deal with the Euler-Cauchy-method for obtaining solutions
to these equations, but our approach will clearly work for alternative
methods too.

Bebbouchi [2] and [3] discuss problems of the .same nature as

we do.

We will assume familiarity with the elementary parts of non-
standard analysis, see e.g. Robinson [8], Keisler [5] or Albeverio,
Fenstad and Hgegh-Krohn [1]. Throughout the note we will let N be

a fixed non-standard natural number.

Definitions

a) Y:{k € *N; k =N} » #*R" is an Euler-Cauchy-vector for f 1if

Y is internal and Y satisfies the equation

Y(kt1) = Y() + 3 *E(Y(K), ) for k<N

We write E-C-vector for Euler-Cauchy-vector.




b) An E-C~~vector Y is near-standard if Y{(0) 1is near-standard.

c) If Y is a near-standard E-C-vector for f , let y = Yy be

defined by

y(st<§-)) = st(Y(K)) for 0sksN.

d) A solution for f 1is a (standard or internal) function

y:[0,1]1 » Rr" (y:%[0,1] ~» #R™ ) satisfying the equation

y'(t) = £f(y(t),t)

for all te€fo0,1] (*[0,1]).

Remark
As in definition d) we will from now on omit some #'s when

there may be no confusion.
By a standard non-standard argument we may show

Theorem 1
If Y is a near-standard E-C-vector for f then y =y, is

a standard solution for f with y(0) = st(Y(0)).
Theorem 1 gives us Peano's existence theoremn.

The solutions are not always unique. The equation

y(0) 0

has the solutions
0 if tst,

y(t) ={
(t-t,)°® if tzt,

for all t, in [0,1].
In Hartman [4] pp. 18-20 there is an example where the set of

solutions is very complex.



Remark

In examples we will sometimes violate the assumptions on f,
but only those assumptions that do not restrict the generality of
our arguments.

Our problem will be how to represent the set of solutions via
E-C-vectors. The motivation is that a nice representation gives an
easy access to the properties of this set.

P. Montel [7] showed that the Euler-Cauchy method gives all
solutions if one solves the difference equation over intervals of
non-constant lengths. Here we will only deal with intervals of

%. First we will show under a special assumption on f that

all solutions may be represented by E-C-vectors for f. The example

length

above, together with all equations

y' = Kly
y(0)

1]
(en}

for O0<a<1, will satisfy this special assumption.

Then we will show in general that all solutions for f may be
represented by a E-~C-vector for some g infinitesimally close to f .
Finally we will use this to give a simple proof of a theorem of

Kneser [6].

2. Backward Solutions

An E-C-vector Y for f 1is obviously uniquely determined by
the initial value Y(0).

Let F: R" + #RD

be defined by
F(Y(0)) = Y(N) .

Lemma 1

F is #-continuous and surjective.



Proof
Continuity is evident.

In order to show that F 1is surjective it is sufficient to show

that Fk(Y(k)) g Y(k+1) 4is surjective. For this we use Brouwer's

fixed-point theorem: Let k and Y(k+1) be given. The function
1
N
Y(k+1) and radius % into itself. So for some a in that ball

a ~Y(k+1) - f(a,%) is continuous and maps the ball with center

k

a = Y(k+1) -%—f(a,ﬁ) 5

Let Y(k) be one such a. Then Y(k+1) = Fk(Y(k)).

Lemma 2

For given a € R", the set

Ca = {b&cR; 3Y (Y is an E-C-vector for f,

Y(0)~a and Y(N) ~Db}

. Ld n
1s compact and connected in R’ .

Proof

Let Y range over the E-C-vectors for f.

For every n € N the set

. 1
By ¢ (YAD3{[¥(0)-all< )
is connected in *R" .
Let Ca,m = {st(b);t>EBa,m}
Ca,m 1s closed since Ba,m 1s 1internal. Ca,m is clearly bounded.

If 0, and 0, are two disjoint sets separating C.nm into two
’ 2

e

disjoint nonempty sets it is easily seen that *0, and %0, will

separate Ba,m .
<o
C . It follows that Ca = ncC is

Moreover C c
a,m+l = “a,m m=q1 2>m

compact and connected.



Now we know that the set of E-C-solutions y , i.e. those
solutions obtained from an E-C=-vector, with y(0) = a, cut out a
compact connected set of each hyperplane "t =const’. But we are
unable to prove without further restrictions on f that we get all

solutions this way.

Theorem 2

Assume that the solutions of f are unique to the left; i.e.
that y(t) for t<1 is determined by vy(1). Then all standard

solutions are of the form vy = Yy -

Remark
If the standard solutions are unique to the left, then by trans-
fer all solutions are unique to the left. The equations y' = ky®,

y(0)=20 for O0>a>1 are all covered by this theorem.

Proof
Let y be a standard solution. Then y(1) = Y(N) for some

E-C-vector Y for f . By uniqueness to the left we have y = Yy -

Definition

Let S(a,t) = {y(t); y(0) =a and y is a solution for f}.

Theorem 3
Assume that the solutions for f are unique to the left. Then

S(a,1) 1is compact, connceted and R"~S(a,1) is path-connected.

Proof
In this case S(a,1) = Ca from Lemma 2, so we are left with
showiﬁg that IRn‘ss(a,l) is path-connected.
Let b,,b, Elwi\S(a,l) . We will show that there is a non-stan-

dard path from b, to b, avoiding #%S(a,1) and then use the




transfer principle "backwards". Let y, and y, be solutions of f
with y,(1) = b, y,(1) = b,. Let a, = y,(0) and a, = y,(0). Let
o Dbe a standard path from a, to a, avoiding a.
Let Y  be the E-C-vector for f with Yu(O) = o(u) and let
a(u) = Yu(N).‘ Then & 1is a non-standard path from c = Y (N) to
c, = Y, (N) and c,=b , c,=b,. If for some u g(u) € #5(a,1)

then the unique solution y with y(1) = st(o'(u)) will satisfy

y(0) = a, so o¢(u) =2 a contradicting the choice of ¢ . Also any

infinitesimal ball around b, or b, will be disjoint from #%S(a,1)
So the path o may be extended to a path from b, to b, avoiding

*S(a,1).

3. A special case

We will now consider the one-dimensional example

gt = ay2/3

over [-1,1] with initial condition y(-1) = -1 . This case is not
covered by theorems 2 and 3 but the conclusions are still valid.

The E-C-vectors will here map [-N,N]Nn#*N into *R with
Y(-N) =~ -1. Through a sequence of claims we will see that every solu-~
tion may be obtained from one of these vectors. We only give hints

of the proofs.

Claim 1
{Y(0): Y is an E-C-vector and Y(-N)x~-1} contains all non-

-positive infinitesimals.

Proof
If Y(-N) 2z -1 +then Y() =2z 0

If Y(-N) < ~1-¢ for some €>0 in R then Y(0) is negative

o

and not an infinitesimal. As Y(0) is a #*-continuous map of Y(-N)

the claim follows by standard analysis.



Claim 2

Y(1) can take any value £ ﬁ% with Y{0) = 0.

Proof

Standard calculus.

Claim 3
If ¥(1) = =5 then Y(N) = 1.
Proof
—_— 5 3
- 3 - -3 2 ™ - _n
Let a, =1, a’,1 ° an-+3an . Then Y(n) = e and
aN3 an -
Y(N) = —5 so Y(N) « lim —-~ as a standard limit.
N n-+e I
Clearly
a =+ ® as n > =
n
and a1 < a +1.

We then have

2 2y - 3 3 _ a.2
- + + - (e
(an+1 an)(an+1 an+1an an) an+1 ~ %n an
so
3a;
a - = £ 1
n+l” “n a’ . +a_ . ,a_+a’
n+l "n+l™n n
2
3an
But an_l_l--an 2 5 + 1 as n » «.
(a_+1)+ (a_+1)a_+a
n n n n
an
So 1lim (a -a =1 and 1lim — = 1.
( +1 n) n

n->e n+®

4. Perturbations of f

Let us now again work in the generality of the introduction.

Definition

Let 6§>0 be in *R . Let X6= {g; g is internal, *-continuous

and |lf-gl|_ < 61, (Il |I, is the sup-norm).




Lemma 3
Let 6>0 be infinitesimal, g€Xs and Y a near-standard

E-C-vector for g. Then vy, is a solution for f.
The proof is like the proof of Theorem 1.

Lemma U4
Let a€R" be given. Let y be an internal solution for £

with y(0) = a. Then there is an infinitesimal 6>0 and a gEEX6

such that the E-C-vector Y for g with Y(0) a will satisfy

Vk sN (Y(k) =y(§>) .

Proof

Ky _ k+1, _ (kK
N) = N(Y(T) Y(N)) .

Let gy,
Then Y(k) = y(k) is an E-C-vector for g.

So far we have defined g at a hyperfinite set of points. We
will show that for each of these points the distance to f is infi-
nitesimal. Then the maximal distance will be infinitesimal and g
may be extended to an element of some X6 . We prove this for each

coordinate is=n, f and y; denote the i'th coordinate of

i> &i
f, g, y resp.

ky k k, k
|fi(y(ﬁ),ﬁ)-gi(y(ﬁ),ﬁ)l

kK, k k+1 ki

£ ,5 -y | for some  x € [X,5H

1]

4 i k
£, (o) ~ £y (x),x) | = 0

since f 1is uniformly continuous within the interesting area and

y is Lipschitz-continuous with constant 1 .
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Theorem 4

There is an infinitesimal & >0 such that for all standard
solutions y for f there is a gGEX6 and an E-C-vector Y

for g such that

i) y =Yy
ii) y(0) = Y(0)
iii)  y(1) = Y(N)

Proof

For each near-standard a , let Ga be the supremum of those
infinitesimals needed in Lemma 3 for internal solutions y with
y(0) = a. The set of internal solutions is an internal set so
this supremum exists and is infinitesimal. 8 will exist for a's

that are not near-standard too, but will not necessarily be infi-

nitesimal.

But M = {a;da <W%W} is internal, contains all near-standard
points and the 6a's are all infinitesimals. Let & = sup{§_s;a€M}.

Then 6 will satisfy Theorem 4.

Bgmark

The & we have constructed is dependent of f . In the standard
ultraproduct model for non-standard analysis there is no infinitesi-
mal & that works for all £ . Using the saturation-principle we may

find a 6 >0 that works uniformly for all standard f .

5. Applications

As the proof of Theorem 4 is rather simple it may be justified

to use the theorem to obtain classically known results.




Corollary ( Kneser {61)

Let S(a,t) be as above, where a€ R". S(a,t) is a compact,

connected set.

Proof
Let t = 1 without loosing generality. In Lemma 2 we showed

that if an internal set A is bounded and connected in the non-

-standard sense, then {st(b);b €A} 1is compact and connected.

Let Z = {Yg(N):g(EXa} where Yg is the E-C-vector g with

Yg(O) =a. X, 1is a connected space in the I| || ,-~topology and

g*w*Yg(N) is continuous. By Theorem 4 S(a,1) = {st(b);b€Z} .

Then S(a,1) is compact since Z is bounded and S(a,1) 1is

connected since Z 1s connected in the non-standard sense.

Remark
In general, S(a,t) will not be simply-connected, see Hartmann
[4, P.17, exerc. 4,3] . But under the additional assumption of left

uniqueness, it is, by Theorem 3.
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