
DOI: 10.1111/cgf.12406 COMPUTER GRAPHICS forum
Volume 33 (2014), number 8 pp. 132–144

Managing Spatial Selections With Contextual Snapshots

P. Mindek1, M. E. Gröller1,2 and S. Bruckner3

1Vienna University of Technology, Austria
{mindek, groeller}@cg.tuwien.ac.at

2VRV is Research Center, Austria
3University of Bergen, Norway

stefan.bruckner@uib.no

Abstract
Spatial selections are a ubiquitous concept in visualization. By localizing particular features, they can be analysed and compared
in different views. However, the semantics of such selections often depend on specific parameter settings and it can be difficult
to reconstruct them without additional information. In this paper, we present the concept of contextual snapshots as an effective
means for managing spatial selections in visualized data. The selections are automatically associated with the context in which
they have been created. Contextual snapshots can also be used as the basis for interactive integrated and linked views, which
enable in-place investigation and comparison of multiple visual representations of data. Our approach is implemented as a
flexible toolkit with well-defined interfaces for integration into existing systems. We demonstrate the power and generality of our
techniques by applying them to several distinct scenarios such as the visualization of simulation data, the analysis of historical
documents and the display of anatomical data.

Keywords: interaction, visual analytics, spatial selections, annotations

ACM CCS: I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing algorithms; I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction techniques

1. Introduction

Visual analysis of large data sets often requires displaying of vari-
ous subsets of the examined data using different visualization tech-
niques. For this purpose, linked views and integrated views are
commonly employed. The investigation of multivariate or other-
wise complex data may require a specification of spatial regions
which are to be examined individually using integrated or linked
views. Creating spatial selections, or brushing, is a widely used
method for specifying such regions. Brushing techniques are also
often employed to specify a degree of interest (DOI) function for fo-
cus + context visualization as described by Furnas [Fur86]. Smooth
brushing concerns the specification of a non-binary DOI function,
which defines a continuous transition between focus and context
data.

Another aspect of visualizing complex data sets is a frequent need
for creating annotations in the rendered images. The annotations as-
sign semantics to parts of the image. They are useful for providing
additional insight into the data, or for keeping provenance infor-
mation. The annotations are related to the spatial selections, since

they refer to particular spatially bounded image regions. The an-
notations are also bound to the current parameter settings of the
visualization. For instance, if a structure is annotated in a volume
data set, the annotation loses its meaning when the transfer function,
the viewing angle or other parameters change in such a way that the
structure in question is no longer visible. In such cases, it is nec-
essary to keep track of the visualization settings together with the
annotations.

We propose a method for managing arbitrary selections in the
image space of the visualizations. We define several terms for the
purpose of describing the proposed method. A selection is a non-
binary DOI function in image space. A visualization snapshot is
a set of parameter values describing the state of the visualization
system at a particular point in time. Finally, we introduce the concept
of contextual snapshots. A contextual snapshot is an entity which
holds multiple selections together with a visualization snapshot. The
visualization snapshot provides context for the associated selections.
By keeping the selections in contextual snapshots, it is possible to
recover the states of the visualization system in which the selections
have been created. The contextual snapshots allow us to work with

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30907452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots 133

multiple selections created in different states of the visualization
system.

To demonstrate the proposed concept, we implemented the con-
textual snapshots in three scenarios, one of which is a volume vi-
sualization application. The application displays a multivariate 4D
hurricane data set. The user can create selections in image space by
using a lasso metaphor. The selected data can be further analysed
using linked views. We use this example to introduce the parts of
which the contextual snapshots consist, and explain how they work
together.

In applications such as 4D data visualization, it is sometimes
necessary to select and annotate the visualized data multiple times
while the visualization parameters are changing. Contextual snap-
shots provide a basis for keeping track of these interactions. In cur-
rent systems, selections made in image space have to be processed
before the image changes. Otherwise the selections will become in-
valid with the new parameter settings, which we refer to as context.
Contextual snapshots record the selection together with the context,
so that it can be processed even after the context has changed.

This paper is based on our previous work [MBG13]. It contains
an extended description of the concept of contextual snapshots for
managing multiple spatial selections in different steps during the
visualization session. We extended the description of our imple-
mentation of the contextual snapshots. We include details on imple-
mentation efforts needed to use contextual snapshots in an existing
visualization system. The library can be downloaded from our web-
site [csl]. There is also a detailed tutorial which explains on a simple
example how to integrate contextual snapshots into an existing appli-
cation. We extended the implementation with new, customizable an-
chors, which serve as abstract previews of the contextual snapshots.
We added a possibility to use custom matching functions which
define when individual contextual snapshots are active. Finally, we
provide a new use case, which shows contextual snapshots applied
to the visualization of 3D geometry data.

2. Related Work

We propose a method for managing spatial selections in image
space. There are various scenarios where multiple selections are
made in order to achieve a certain goal. The goal might be to se-
lect subsets or features of a data set. Furnas [Fur86] presents DOI
functions for the specification of focus data. Doleisch and Hauser
[DH02] use a DOI function obtained by smooth brushing to modify
the visualization mapping in 3D flow visualization. Doleisch et al.
[DGH03] present a framework for the specification of data features
visualized in several linked views. Ulinski et al. [UZW*07] propose
two-handed methods for creating selections in volume rendering.
Unger et al. [UMDS08] use smooth brushing in the visualization
of statistical characteristics for subsets of large data sets. Various
methods for increasing the usefulness of 3D scatterplots incorpo-
rating brushing have been developed [KSH04], [PKH04]. Streit
et al. [SSL*12] propose a model-driven design process for explor-
ing multiple linked data sets. Yu et al. [YEII12] discuss methods
for selecting data in large 3D point clouds by screen–space interac-
tion. In visualization applications which employ brushing or similar
techniques, the user interaction is typically limited to the common

context. Contextual snapshots remove this limitation by providing
means for keeping the context for each individual interaction in-
stance.

Gerl et al. [GRIG12] incorporate brushing on renderings of data
attributes for the specification of semantics in volume visualization.
Guo et al. [GMY11] introduce a sketch-based interface for direct
volume rendering which replaces the traditional way of transfer
function design. Wei et al. [WWYM10] propose a sketch-based
interface for an interactive 3D vector field exploration. The concept
of contextual snapshots is designed in such a way that the spatial
selections could be employed to handle the just mentioned types
of user interaction. Contextual snapshots increase the scalability of
such interaction methods. They allow the system to manage multiple
interaction instances simultaneously, while each instance can be
meaningful in a different context.

In addition to the concept of contextual snapshots, we propose
a method for combining them with various views of the visualized
data. The integration and linking of multiple views has been exten-
sively explored [Bal10], [Tor04]. Bier et al. [BSP*93] propose a
see-through interface as a natural way of displaying additional data.
Balabanian et al. [BVMG08] introduce a framework for the spec-
ification of visualization parameters for time-varying data. Rungta
et al. [RSD*13] present ManyVis—a framework for easy integration
of existing applications to create custom visualization tools. Santos
et al. [SLA*09] propose VisMashup, a framework for simplifying
the creation of custom visualization applications. The authors of
VisMashup combine various visualization pipelines to create a new
visualization application. In our work, we aim at extending existing
visualization pipelines with interaction possibilities.

Contextual snapshots can also be used for preserving user-created
provenance information for a visualization. Bavoil et al. [BCC*05]
propose VisTrails. It is a system for creating and maintaining vi-
sualization pipelines with the possibility to execute them and to
record their provenance information. Our method differs form Vis-
Trails in that the user can create spatial selections of the explored
data in a specific context and annotate them to store the visualiza-
tion provenance information. This provides a strong link between
the provenance information and the underlying data. Heer et al.
[HMSA08] present a design space analysis of history keeping sys-
tems. Kreuseler et al. [KNS04] propose an approach to include
a history mechanism into a visual data mining framework. Groth
and Streefkerk [GS06] present a method for capturing the history
of the knowledge discovery process using a visualization system
with an ability to create annotations for provenance information.
Ellkvist et al. [EKF*09] discuss an architecture for provenance
inter-operability between multiple sources. In contrast to these sys-
tems, contextual snapshots provide means to insert annotations
to particular spatial data at a particular stage of the visualization
session. As the annotations are automatically linked with the cur-
rent context, they store provenance information besides their actual
content.

3. Overview of Contextual Snapshots

Many visualization systems use brushing, selections and linked
views to provide means for the exploration of complex data sets.

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



134 P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots

There are various tools for specifying the selections and they usu-
ally serve only one specific purpose. The idea of contextual snap-
shots is to harness a single mechanism of 2D spatial selections for
different tasks, such as data selection and manipulation, data anno-
tation or specification of DOI functions. In contextual snapshots,
this is achieved by the following concepts: multiple selections can
be stored and each of them can be created in a different context
(i.e. parameter settings of the visualization system); an algorithm of
transforming the user input to the DOI functions of the selections
is interchangeable; each selection can be linked with a number of
additional views which we refer to as embedded visualizations. It
is possible to display, that is, embed them, directly in the visualiza-
tion image. Embedded visualizations are interactive and they can
display arbitrary graphical user interface elements or visualize data
specified by a corresponding selection.

In the example application, the selections can specify a spatial re-
gion in image space of a volume visualization. An embedded view
which displays the histogram of the volume data in the specified
region is linked with each selection. Contextual snapshots calculate
a histogram of the selected voxels and provide it to the embed-
ded visualization. How these data are used depends on the im-
plementation of individual embedded visualizations. Another em-
bedded visualization is a simple text field. It does not display the
selected data region, but it allows users to type in arbitrary text-
based annotations. Such an embedded visualization is linked with
every selection, thus providing a possibility to annotate selected data
subsets.

3.1. Concept of contextual snapshots

A visualization system may apply various parameters to modify the
visual mapping. With respect to contextual snapshots, the values of a
chosen subset of said parameters, the visualization snapshot, define
a state of the visualization system. For any state of the system, a user
can create several selections in the rendered images. A contextual
snapshot stores a visualization snapshot together with all selections
created when the state of the visualization system corresponded to
this visualization snapshot.

In the hurricane visualization application, we use the position and
the orientation of the virtual 3D camera as the parameters stored
within the visualization snapshot. Therefore, each image–space se-
lection is bound to one 3D camera view. The selection is valid only
if the volume is rendered using this camera view. Other parame-
ters, such as current timestep, are not stored in the visualization
snapshots. Changing these parameters does not make the selections
invalid. This is application-specific and in the given case, it allows
users to explore how the hurricane data change over time in speci-
fied spatial regions. When contextual snapshots are integrated with
a visualization system, the system integrator has to choose the set of
parameters which appropriately define the context for the selections.

In this work, a selection is a function f : R
2 → [0, 1] which

specifies a DOI for each pixel. The contextual snapshots do not
assume any particular definition of this function. Therefore, arbitrary
types of image–space selections can be used. This is demonstrated
in Sections 5 and 6.

A contextual snapshot ci is defined as:

ci = (vi, si , ti), (1)

vi = {(p0, x0), ..., (pn−1, xn−1)} is a visualization snapshot contain-
ing n parameters of the visualization system, describing its state at
one instant. The visualization snapshot consists of n pairs (pj , xj ),
where pj is a parameter name and xj is its value; p0, ..., pn−1

are the same for all contextual snapshots, while the parameter
values x0, ..., xn−1 are specific for each visualization snapshot;
si = {f0, ..., fmi

} is the set of all selections created at the state,
or context, described by vi . f0, ..., fmi

are the user-defined, real-
valued selections as described. Finally, ti is a thumbnail image of
the visualization in the state described by vi .

The idea of contextual snapshots is based on the fact that the
semantics of the user-made selections depend on what is currently
displayed. When the user selects a particular feature in the image,
the selection is meaningful only until the way how the feature is
displayed changes. Therefore, we extract a visualization snapshot
every time a new selection is created. The visualization snapshot is
linked to the selection to create a contextual snapshot. The contex-
tual snapshot then provides a reproducible spatial selection related
to what was displayed when the selection was made. It stores the
appropriate visualization context in the form of the values of the
visualization-system parameters. All selections with the same visu-
alization snapshot are stored together within one contextual snap-
shot.

The strength of contextual snapshots is that they can maintain
multiple selections created in different states of the visualization
system. The information stored within a contextual snapshot can be
used to restore the given state, so that the selections can be displayed
and actively used. By restoring the state of the visualization system
according to the individual contextual snapshots, it is possible to
browse all selections created within a visualization session.

Contextual snapshots are represented by icons which we refer
to as anchors. The anchors are embedded in the original visualiza-
tion as interactive graphical elements. They constitute abstract pre-
views of the corresponding contextual snapshots. For instance, in the
hurricane visualization application, the anchors are positioned in 3D
space to represent the camera positions when the respective contex-
tual snapshots have been recorded. An anchor can also display a
thumbnail of how the visualization looked like when the respective
contextual snapshots have been created. The anchors are interac-
tive and they are used to restore the visualization-system state to
the respective contextual snapshot. They serve as a user interface
for browsing through the contextual snapshots created during the
visualization session. Figure 1 shows the graphical representation
of anchors.

The visualization-system parameters used as context for the se-
lections vary in different applications. The graphical representation
of anchors can be customized to convey the information stored in
the contextual snapshot, as demonstrated in Section 6. The default
implementation uses the viewing–transformation matrix of the cam-
era to position the anchors in 3D space. In this case, the position
of the anchor conveys the position of the camera at the time when

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots 135

(a) (b) (c)

Figure 1: Interactive anchors (white circles) representing individ-
ual contextual snapshots. For better 3D orientation, the anchors are
connected with the coordinate origin by a thin line; (a) shows how
the thumbnail of an anchor can be displayed; (b) and (c) show the
anchors from different camera views.

the contextual snapshot has been recorded. This is only suitable for
visualizations using a 3D camera. For other use cases, we allow pro-
grammers to set an arbitrary screen–space position for each anchor.
This way, the anchors can be positioned with respect to a feature of
the visualization to potentially reveal the semantics or content of the
contextual snapshot. This is demonstrated in the use case described
in Section 5.

3.2. Embedded visualizations as linked views

To broaden the possibilities of using context-aware selections, we
provide a method for linking interactive embedded visualizations
for each selection. The additional visualizations can show different
aspects of the selected data, or they can display comparisons of vari-
ous selected areas. To demonstrate different ways how the selections
can be used, we implemented the following embedded visualizations
for the hurricane visualization application: a histogram of selected
data values, a text-based annotation widget and a variable picker.

The embedded visualization displaying the histogram of selected
data values can be linked to multiple selections at once. It shows
histograms for individual selections in overlays so that they can be
easily compared. A separate text-based annotation widget is linked
to each selection. It provides the user with the possibility to type in
a short description of the selected data subset. The variable picker
is a graphical user interface element which displays a list of all
variables present in the data set. The chosen variable is displayed
in those parts of the image, where the selection has been created.
Figure 2 shows how the picked variable is integrated with the rest
of the visualization by a smooth transition. The smooth transition is
due to the non-binary DOI function of the selection.

In our method, each image–space selection can be linked with
multiple embedded visualizations. Each embedded visualization has
access to the data subsets specified by the selections to which they
are linked. A single embedded visualization can be used to display
and compare aspects of different subsets of the explored data by
simply linking it with multiple spatial selections.

For the purpose of displaying the embedded visualizations, we
propose a mechanism for activating individual selections. One or

(a) (b)

Figure 2: (a) A selection (marked with the red circle). (b) An inte-
grated view of two variables using the selection after its activation.
Histograms are shown for both variables as embedded visualiza-
tions. The third embedded visualization is a variable picker—a list
of the data variables, where the user can choose which one is dis-
played.

multiple selections can be activated by the user at once. In this case,
only those embedded visualizations are displayed which are linked
with every activated selection. The rationale for this mechanism is
that the embedded visualizations can show different aspects of the
data specified by multiple selections at once. This way, the selections
and their embedded visualizations can be used to compare several
data subsets.

A sketch-based interface is used for activating selections. The
user activates selections by painting a stroke in image space. The
selections which are crossed by the stroke are activated and sub-
sequently their linked embedded visualizations are displayed. The
embedded visualizations are grouped together in a sliding bar, which
is displayed either at the top, the bottom, the left or the right side of
the visualization image. The position of the sliding bar is determined
by the direction at the end of the stroke which was used to activate
the selections. The interaction method of using a stroke was chosen
so that an arbitrary subset of the selections can be activated, which
might be difficult with various standard selection mechanisms.

The sliding bar is capable of showing several embedded visual-
izations at once. In case there are more embedded visualizations for
the activated selections than actually fit on the screen, the sliding
bar enables scrolling of its content. The scrolling is executed by
an animated transition, so that the users have a visual feedback on
the direction of the scrolling. The sliding bar fades to the original
visualization on both sides for better integration. A gradual blurring
filter was used on both sides of the sliding bar, so that the attention of
the users is guided to the embedded visualizations currently shown
in the middle of the bar.

Displaying several embedded visualizations at once provides
users with an overview of the additional data depicted for the ac-
tivated selections. However, to facilitate interaction it might some-
times be necessary to enlarge individual embedded visualizations.
For this purpose, the embedded visualization displayed in the mid-
dle of the sliding bar can be switched to a so-called maximized view.
If the view is maximized, the embedded visualization is displayed
on the whole screen rather than just in the sliding bar.

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



136 P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots

Figure 3: Overview of the system. The black arrows represent the
data flow between the visualization system, the embedded visualiza-
tions and the Contextual Snapshot Library (CSL). The grey arrow
denotes the transition from the original rendering to the rendering
with the enhanced visualization.

4. Contextual Snapshot Architecture

Contextual snapshots are meant to be used in existing visualization
systems. We have implemented contextual snapshots as a library
which can be integrated with an underlying visualization system
on the source-code level. We call it Contextual Snapshot Library
(CSL). The CSL is responsible for rendering the anchors, the selec-
tions and the embedded visualizations into the original visualization
image. Additionally, it provides an interface for the data transfer be-
tween the selections and the embedded visualizations. It also handles
user input so that the anchors and embedded visualizations are in-
teractive. Contextual snapshots integrate the visualization and the
graphical elements for interactive data exploration and annotation.
This approach is particularly well suited for the rapidly growing
area of mobile devices such as tablets where the display also serves
as the input device.

Figure 3 shows the data flow between the visualization system,
the embedded visualizations and the CSL. The visualization system
gathers user input and transmits it to the CSL. The CSL stores
contextual snapshots generated from the user input. Additionally, it
renders the selections, the anchors and the embedded visualizations
into the original visualization image. The result is an enhanced
visualization system.

The CSL renders all of the graphical elements (anchors, selec-
tions, embedded visualizations, as illustrated in Figures 1 and 2)
into the original visualization and provides the result as a texture.
The underlying visualization system can be modified to display this
texture so that the graphical elements of the contextual snapshots
are visible.

Figure 4 shows the overall architecture of an existing visual-
ization system using the CSL. The library itself is split into two

Figure 4: Architecture of the visualization system integrating the
CSL. The arrows denote the data flow.

parts. The part responsible for managing the contextual snapshots,
interaction and rendering of the graphical elements, is called Pre-
sentation (PRS). To exploit the capabilities of modern GPUs, the
PRS uses several shaders to render all the graphical elements. The
selection mask shader transforms user input into the DOI function
of the selection. The selection display shader renders the selection
on the screen. The embedded visualizations display shader renders
the sliding bar. Each of these shaders can be exchanged to modify
how selections are treated.

The functionality of the PRS can be extended by the Shader
Enhancer (SE). The SE is an auxiliary tool for the data transfer
between individual modules of the visualization system. It stores
data specific to individual selections of the contextual snapshots in
the GPU memory so that it can be used in different visualization
pipelines of the system. The SE simplifies the utilization of the
selections in the visualization system by providing access to all
data subsets specified through the corresponding DOI functions.
The motivation of storing the data in the GPU memory is that GPU
implementations of visualization algorithms can access the data
without having to transfer them to CPU memory.

The CSL is implemented in C++, using the Qt library. It uses
OpenGL for rendering of the graphical elements and for the data
exchange with the visualization system via textures. The specifica-
tions of contextual snapshots can be stored on the hard drive in XML
format. The selection masks and the thumbnails are stored as PNG
files. The CSL also provides functionality to load this information
and recreate all the contextual snapshots for the currently visualized
data.

4.1. Contextual snapshots

When the parameters of the visualization system are set so that
their values match the values stored in visualization snapshot
vi (as described in Section 3.1), the contextual snapshot ci is
activated. The default implementation requires that each pair of
corresponding values are equal in order to activate the respective
contextual snapshot. However, it is possible to provide custom
matching functions for each parameter data-type or even for
individual parameters. The custom implementation of the matching

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots 137

functions can treat parameter values, whose difference lies in a
certain range, as a match. This way, the contextual snapshot ci

is activated even if the parameter values set in the visualization
system are not exactly equal to those stored in vi , but the values of
the corresponding parameters are similar enough.

Another possibility to activate contextual snapshots is by using
anchors. The visualization system can request the CSL to select
an anchor which is displayed at a certain position in image space
(e.g. on mouse click). The contextual snapshot represented by the
selected anchor becomes active. The state of the visualization system
is changed so that it corresponds to the active contextual snapshot.
All selections belonging to this contextual snapshot can now be
displayed.

The activation of the contextual snapshot is accompanied by an
animated transition from the values of the parameters it stores to
the current values in the present state of the visualization system.
For individual parameters, different transition functions can be used
in order to achieve an appropriate interpolation for a specific data
type (e.g. Slerp for rotation matrices). This enables smooth tran-
sitions between system states while switching between them. In
the hurricane visualization application, the state of the visualization
system is defined by the camera position and orientation. Therefore,
the activation of a contextual snapshot causes the visualization sys-
tem to smoothly change the 3D camera to the view with which the
contextual snapshot was recorded.

Internally, parameter values are represented by Qt’s QVariant
class, so that any parameter type can be used. However, transition
and matching functions have to be implemented for every type. The
CSL provides implementation of these functions for several com-
mon types (e.g. integer and real numbers, transformation matrices,
2D and 3D vectors). These can be modified to meet specific require-
ments from individual applications. New transition and matching
functions can be added by the system integrator to extend the CSL
with new parameter types.

4.2. Selections

Selections are created by calling functions of the CSL’s API. If
the contextual snapshot ci is active, the newly created selection is
automatically assigned to it, that is, it is added to si (Equation 1).
Otherwise a new contextual snapshot is created from the current
values of the visualization-system parameters and the selection is
assigned to it. This mechanism enables multiple selections created
in the same context to be assigned to a single contextual snapshot.

The process of creating a selection consists of three steps: record-
ing of the user input, transforming the input to a DOI function in
image space, displaying the DOI function on screen to represent the
selection. In our approach, we made a clear separation between these
steps. Each of them is implemented as a stand alone shader program
with clearly defined input and output. Because of this separation, it
is possible to customize the process of creating selections for vari-
ous applications. Examples are selections using the lasso metaphor
or rectangular selections. In both cases, the only component of the
CSL that is exchanged is the shader realizing the transformation of
the user input to the DOI function.

(a) (b)

(c) (d)

Figure 5: Two different selection mask shaders generate selection
masks (black means fully selected, white means not selected at all)
for the same selection stroke (in red): (a) and (b) illustrate sequences
of creating the stroke, while the selection mask is continuously gen-
erated at every step; (c) and (d) illustrate the final selection masks
for the given stroke. The gradual change in the level of selection
enables smooth brushing.

If a user interacts with the visualization system to create an image–
space selection, a series of points in the image space is recorded. We
refer to this series as a selection stroke. The selection stroke can be
created by mouse, graphics tablet or a similar input device. The CSL
transforms the selection stroke to a grey-scale mask representing the
non-binary DOI function. Pixel luminosity encodes the DOI in the
respective point. This selection mask is generated by a selection
mask shader. The input of the shader program is the selection stroke
encoded in a 1D texture. The output of the shader program is the
selection mask.

Depending on the shader program used to generate the selection
masks, the selections may enable the visualization system to realize
smooth brushing. We provide several different shader programs for
generating the selection masks. Figure 5 shows how the selection
masks generated by two different shaders look like for the same
selection stroke. The shader illustrated in Figure 5(c) creates a sim-
ple rectangle based on the first and the last point of the stroke.
This is a common way to create a rectangular selection. The shader
shown in Figure 5(d) uses the so-called lasso metaphor. The stroke
defines a closed polygon whose interior is filled. We enhance the
lasso metaphor to account for selection uncertainty by introducing
a smoothing of the edges. The smoothing between the first and the
last point of the stroke is stronger if these two points are farther
away. The other edges are smoothed by a constant factor. This en-
ables users to control the amount of smoothing as well as its spatial
location. The motivation for such an approach is that if a user does
not fully enclose the selected region, the selection status of the area
between the beginning and the end of the stroke remains uncertain.

The selections are displayed on the screen using the selec-
tion display shader. The way how the selections are displayed is
important for specific applications. Figure 6 shows two different
choices how the selections can be displayed. In Figure 6(a), an ex-
ample of outline drawing is shown. The red colour marks borders
between selected and unselected areas. The thickness of the border
denotes the uncertainty of the selection in that particular area. In

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



138 P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots

(a) (b)

Figure 6: Two different selection display shaders. Both shaders are
able to show the fuzziness of the selection.

Figure 6(b), the selection is displayed using an overlay texture. This
method shows the selected area in a clear way, but it also partially
occludes displayed data underneath.

4.3. Data transfer

The selection masks are stored in the GPU memory as a texture
array so that the visualization system can access them at all times
and employ them in the visual mapping. We used this ability in
the hurricane visualization application to create a smooth transition
between the two visualized variables.

The SE can be used to further increase possibilities of the selec-
tions. It allows the visualization algorithm to extract processed data
samples to the GPU memory. The activated selections specify the
DOI, which is used to automatically weight every extracted data
sample. The extracted data can then be accessed in the embedded
visualizations.

Currently, we provide an implementation of the SE for GLSL
shaders. The SE inserts GLSL code for the extraction of data sam-
ples and their weighting by the selections’ DOI functions in the
visualization shader before it is compiled. The inserted code uses
atomic operations and the GL_EXT_shader_image_load_store ex-
tension to output desired data. After the extraction, the data are
available to the embedded visualizations as a texture stored in the
GPU memory. It is possible to extend the SE for other languages as
well.

5. Application Example: Historical Document Analysis

In addition to the example application introduced in Section 1, we
present two more use cases of contextual snapshots. In the first one,
we take a simple book reader application. A page spread consisting
of two pages of a manuscript is displayed. A bar showing the cur-
rent page within the manuscript is located below the pages. For a
better user experience, a simple page turning animation is realized
whenever the current page changes.

We combine our method with the described book reader appli-
cation in order to add functionality enabling the users to employ
it as an advanced manuscript analysis tool. We used the CSL to
implement spatial selections on the displayed pages. The CSL au-

tomatically binds every new selection to the current page, so many
selections on different pages can be created.

In this example, we demonstrate how the selections can be incor-
porated into an existing system, how anchors can be positioned on
the screen to serve as bookmarks for individual selections, and how
the data specified by the selections can be displayed in the embed-
ded visualizations. This example also demonstrates the possibility
to compare data from multiple selections in the same embedded vi-
sualization. The embedded visualization can further contain various
interactive elements, such as JavaScript-enabled web pages.

5.1. Manuscript visualization

The data set taken in this example consists of 723 high-resolution
photographs of pages of the Venetus A, a 10th century (AD)
manuscript of the Iliad catalogued as Marcianus Graecus Z. 454,
now 822. In addition to natural light photographs, some of the pages
were recorded using UV photography as well. The UV light pho-
tographs were taken in order to reveal some details of the manuscript
which were hardly visible with natural light. Together with the pho-
tographs, the transcript of the Iliad in ancient Greek was available
as well.

For demonstration purposes, we manually pre-processed the ac-
quired data. Some of the UV photographs were registered with the
natural light photographs so that they could be easily used in the ap-
plication. Additionally, appropriate passages of the transcript were
matched with some of the photographed pages.

The described book reader application is only capable of display-
ing the natural light photographs. The book reader shows an icon
for those pages where the UV data are available. The goal in this
example is to use the CSL to display parts of the UV photographs on
selected regions of interest. The regions of interest are rectangular
areas specified for the pages with UV data available.

5.2. Manuscript visualization enhancement

Figure 7(a) shows the book reading application without the enhance-
ments. Figure 7(b) depicts the application enhanced by using the
CSL. The contextual snapshots were used to manage the selections.
The selections are employed to show parts of the UV photograph of
the page. The transcript of the page as well as colour histograms of
the selected parts of the natural light and UV photographs are dis-
played on the left side of the image. These additional visualizations
are linked with the activated selections. The activated selections are
concurrently used to display parts of the registered UV photograph
of the selected page. Any of the additional visualizations can be
maximized, as shown in Figure 7(c).

The only parameter with an impact on the manuscript visualiza-
tion is the index of the current page. This parameter determines
which pages of the manuscript are displayed. As the turning of the
pages is animated, we allow the current page index to be a real
number. The fractional part of the index is used for the animation
of the page turning.

Parts of the displayed pages can be selected. The selection is
meaningful only for the page in which it was created. The current

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots 139

(a) (b) (c)

Figure 7: (a) The book reader application displaying the Venetus A manuscript. The icon (violet circle) on the top right corner indicates the
availability of UV light data for this particular page. (b) The book reader application enhanced with the CSL to show additional data. An
anchor of a contextual snapshot, selections and embedded visualizations are displayed. (c) The transcript of the displayed pages with the tag
cloud in the maximized view. A word selected in the tag cloud is highlighted in yellow.

(a) (b)

Figure 8: (a) A 3D model of a human heart displayed in Vol-
umeShop. (b) The model is displayed with a lower opacity to reveal
the internal structures.

page index constitutes the visualization snapshot for this application,
because it alone fully describes the context for the selections. The
current page index is visualized by the book reader as a slider
displayed below the pages. The anchor of each contextual snapshot
is placed on the slider according to the current page index. The
anchor therefore visually represents the position of the displayed
page spread and can be used as a bookmark.

The rectangular selections support the visual analysis of interest-
ing parts of the photographs. By clicking the UV icon, displaying
of the UV light photographs in the selections can be enabled or dis-
abled. As the UV and natural light photographs are co-registered,
the selections create a comprehensible integrated view.

We have implemented three web views which give web pages as
embedded visualizations. With the web pages, we demonstrate that
the embedded visualizations managed by the CSL are interactive and
that they can contain arbitrary content. The first web view contains
colour histograms from the selections. As multiple selections can be
activated, we employed the JavaScript library D3 [BOH11] capable
of displaying multiple histograms at once. For each selection, a

colour histogram is displayed. For the pages where the UV data are
available, the histograms from the UV photographs are displayed
as well. As all of the histograms are given in one view, they can be
easily compared.

The second web view shows the Greek transcript of the displayed
pages. Contextual information of the selections, that is, the current
page index, is used to load the appropriate pages from the transcript.
A tag cloud of the most frequent words generated by the JavaScript
is displayed below the text.

The third web view contains a web page of the Perseus Word
Study Tool [Mah01]. This web application provides an English
translation of a specified Greek word, as well as further informa-
tion. We have connected this view with the Greek transcript of the
displayed pages. The user can double-click on any word in the tran-
script to automatically display its definition with the Perseus Word
Study Tool.

The application of the CSL in the book reader example demon-
strates various ways how the contextual snapshots integrate dif-
ferent views of the visualized data. This use case contains several
types of annotations which can be helpful in analysing the histor-
ical manuscript. It shows that the integration of vastly differing
visualization techniques including online content and GPU-based
rendering is easily possible with our approach.

6. Application Example: Heart Visualization

In order to illustrate the possibilities of the CSL and the contextual
snapshots in general, we apply it to extend an existing visualization
system. We choose VolumeShop [BG05], a powerful visualization
system with a modular architecture. We extend a VolumeShop plug-
in for rendering 3D meshes with contextual snapshots to create
an application where it is possible to easily add annotations for
individual parts of the geometric model.

In this example, we demonstrate how user input can be trans-
formed to different types of selections and how anchors can be

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



140 P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots

customized to provide abstract previews of stored contextual snap-
shots. Additionally, we show how the stored selections can be used
in the visualization mapping. Finally, we demonstrate how the em-
bedded visualizations can be employed as informative annotations
of the selected data.

6.1. Heart visualization

In our example, a VolumeShop application displays a 3D model
of a human heart. The model is composed of 32 parts representing
individual anatomical structures. It is possible to freely rotate, zoom
and pan the model to look at it from different viewpoints. The
rendering algorithm also allows us to specify the opacity of the
displayed model parts to reveal occluded structures. Figure 8 shows
how the heart model is displayed in VolumeShop.

6.2. Anatomical annotations

In this example, our goal is to allow domain experts to anno-
tate individual parts of the displayed 3D model. The application
can be presented to non-expert users who can interactively ex-
plore the model and learn the names of the individual constituting
parts.

The CSL extends the interaction possibilities of the VolumeShop
plug-in. The basis for the annotations are spatial selections created
in the image-space of the 3D model visualization. The context of the
selections consists of the camera viewpoint and the opacity value
used for the rendering. If either of these parameters changes, the
selections might not encompass the desired structures any more, and
therefore they disappear. Each selection is assigned to a contextual
snapshot, which stores the respective camera viewpoint and the
opacity value.

For each created selection, a list of all objects visible within
the selection is composed. The users indicate which of these ob-
jects did they intend to highlight with the selection. They can also
specify a caption which will be paired with this selection. After-
wards, a rendering is created where all structures of the 3D model
are semi-transparent. It is overlaid with the user-selected objects
rendered in full opacity. The specified caption is displayed under-
neath. This rendering is then depicted in an embedded visualization
assigned to the selection. This way it is possible to annotate in-
dividual objects or groups of objects, which are then given in the
context of the original 3D model. This process is illustrated in
Figure 9.

We implemented the object selection through the stencil buffer
and occlusion queries. After creating a selection, each object is
displayed separately with the selection rendered in the stencil buffer.
Using occlusion queries, we determine whether any of the pixels
were rendered to the framebuffer. If so, the given object intersects
the selection and it is listed as one of the selected items. The user
can decide which of these objects were meant to be selected, since
the selection might also intersect objects which are not of interest.
This demonstrates how individual selections can be used within the
host system to implement new functionality.

6.3. Anchors

The anchors are placed in the 3D space so that they convey the
viewpoints associated with the respective contextual snapshots. The
context also contains an opacity value. In case only the opacity value
changes but not the viewpoint, several anchors representing different
contextual snapshots can be placed at the same 3D position.

To alleviate the occlusion problem, we offer the possibility to
customize how the anchors are rendered. If two or more anchors are
placed at 3D positions which are projected to similar image–space
positions, they are grouped together and are displayed on a circle
around the centre of the group, as shown in Figure 10(a). This way,
occlusion of anchors is avoided and it is possible to interact with
all of them. For detecting anchors on similar positions, we use the
DBSCAN clustering algorithm [EKSX96].

Additionally, we enhanced the customized rendering of the an-
chors by conveying the opacity value stored within the respective
contextual snapshots. The difference between the stored opacity
value and the opacity value of the current system state is mapped to
the anchor’s size and colour. Black means the anchor was created
with the same opacity value as given in the current system’s state.
White means the current opacity value is largely different from the
one stored within the contextual snapshot. The darker colours of the
anchors are also emphasized by larger sizes of the anchors.

6.4. Selections

A default behaviour of the CSL is to show a thumbnail of the
visualization if the user hovers the mouse pointer over an anchor.
This functionality enables users to quickly browse through recorded
contextual snapshots and choose relevant ones for the data explo-
ration. We extended this functionality to ease the exploration of the
contextual snapshots. If the current viewport of the visualization
system is very close to one stored within a contextual snapshot,
hovering the mouse pointer over its anchor will not simply show
the thumbnail. The selections of the contextual snapshot are ren-
dered, and the selected areas are overlaid with the rendering of
the model with the opacity value stored in the contextual snapshot.
This creates a meaningful integrated view of the current rendering
and the rendering of the contextual snapshot, because both view-
points are very similar or equal. This functionality is illustrated in
Figure 10(b).

As the application in this example deals with annotating anatom-
ical structures, the circular selection might not always be suitable.
Therefore, we implemented three different types of spatial selec-
tions: circular, rectangular and free-hand lasso ones. The user can
choose the type of selection before its creation. This functionality
also demonstrates the extensibility of the CSL. Different types of
selections can be specified using simple external shader programs,
which can be easily interchanged at run-time. All three types of
selections are illustrated in Figure 11.

7. Integrating the CSL with Existing Visualization Systems

Our implementation of the CSL uses the Qt library. It is necessary to
link Qt together with the CSL to the host system. In our examples,

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots 141

(a) (b)

(c) (d)

Figure 9: (a) The user creates a circular selection and provides a caption for it. (b) When the selection is activated, an embedded visualization
of the selected object in the context of the original model is shown with the specified caption at the bottom. (c) Multiple selections in the same
context (viewpoint and opacity value) can be created. All of their embedded visualizations are shown at once in the sliding bar. The one in the
middle is highlighted, as well as its associated selection (bold yellow circle). (d) The highlighted embedded visualization is maximized for a
better view. The embedded visualizations can be browsed in the sliding bar or in the maximized view.

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



142 P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots

(a) (b)

Figure 10: Custom usage of graphical elements of the CSL in the
heart example: (a) Two groups of otherwise overlying anchors are
displayed in a circular layout around the groups’ centres. (b) Hov-
ering the mouse pointer over an anchor shows the selections from
the respective contextual snapshots in an integrated view.

Figure 11: Different types of selections available in the heart appli-
cation: circular (1), rectangular (2), free-hand lasso (3) selections.

the Qt library was already part of the host visualization systems,
therefore there were no additional dependencies.

The CSL provides functions for creating and accessing the
selections, activating them and adding embedded visualizations.
However, there are no functionality for handling user input. It is
necessary to implement handling of keyboard and mouse events,
and call-relevant functions from the CSL in the respective event
handlers.

It is necessary to modify the rendering pipeline of the visualiza-
tion system in such a way that the output is rendered to a texture,
which is provided to the CSL as input. The CSL then renders all
visual elements (anchors, selections and embedded visualizations)
with the input texture as background into an output texture. The
output texture is sent back to the visualization system. The ren-
dering pipeline of the visualization system should be extended by
displaying the output texture of the CSL on the screen instead of
its original output. This is usually fairly easy to achieve by taking
a framebuffer object as a rendering target. Afterwards, a quad is
rendered which covers the whole screen and which is textured with
the output texture of the CSL.

In the heart visualization example, the rendering of the anchors
is customized. This is done by subclassing a CSL class responsible
for the rendering of the visual elements, and overriding the function
for rendering of the anchors. The subclass also implements handlers
which react to events from the CSL, such as requests to update in
case visual elements of the CSL need to be repainted. If the host
visualization system uses Qt, an alternative way for this would be
to use Qt’s signal/slot mechanism.

8. Discussion

The goal of our work is to introduce a general concept for han-
dling spatial selections created in changing contexts during a vi-
sualization session. Instead of realizing a new standalone system,
we implemented this concept as a flexible toolkit, that is, the CSL.
The presented examples demonstrate that the CSL is ready to be
integrated with different existing visualization systems. Section 7
describes the implementation efforts needed for the integration of
the CSL in the provided examples.

In Sections 5 and 6, we give examples how the concept of con-
textual snapshots can be employed. State-of-the-art visualization
systems usually treat selections in such a way that it is necessary
to use several linked views to work with multiple selections si-
multaneously. To employ selections as interactive annotations, each
selection would have to be assigned a separate view, possibly in a
separate window. Contextual snapshots allow us to realize multiple
selections in the same view while the changes of the visualization
are automatically tracked. Our method does not provide a guidance
for finding appropriate views or means for selecting the data au-
tomatically. It extends the common possibilities of data selections
to act as data annotations, to convey and to communicate users’
findings. In this way, the contextual snapshots support users in the
data exploration process.

By employing the CSL to render the selections, the anchors
and the embedded visualizations, the performance of the rendering
dropped from 60 FPS to 30 FPS in the historical document anal-
ysis example. The performance drop of the whole system mainly
depends on the temporal requirements of the embedded visualiza-
tions. This aspect can be improved in the future by parallelizing the
rendering of individual embedded visualizations. In the heart vi-
sualization example, there is no significant performance drop after
integrating the CSL, since the embedded visualizations only show
static images.

We encourage the usage of the CSL, since contextual snapshots
can be beneficial for a wide variety of applications. Therefore, we
made the CSL available [csl]. There a detailed tutorial explains
with a simple application case how to ingrate the CSL into existing
visualization systems.

9. Conclusion

In this work, we proposed a method for managing image–space se-
lections which can be used for various tasks, such as highlighting
of interesting regions in visualizations, displaying additional views
for selected data or comparing different spatial regions. We demon-
strated the utility of the method by applying it to three distinct use

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots 143

cases, namely analysis of a historical manuscript, analysis of mul-
tivariate weather simulation data and annotation of the geometrical
model of a human heart.

Our method is meant to be applied to visualization systems where
the state changes over the duration of a visualization session. Most
of the interactive systems fulfil this characteristic. In our method, the
user-made selections in image space are linked with all necessary
contextual information so that they remain meaningful during the
whole session.

Acknowledgements

The presented work has been partially supported by the ViMaL
project (FWF - Austrian Research Fund, no. P21695) and by the
Aktion OE/CZ grant number 64p11. The Venetus A data set is
courtesy of The Homer Multitext Project. The hurricane Isabel data
set is produced by the Weather Research and Forecast (WRF) model,
courtesy of NCAR and the U.S. National Science Foundation (NSF).

References

[Bal10] BALABANIAN J.-P.: Multi-Aspect Visualization: Going from
Linked Views to Integrated Views. PhD thesis, Department of
Informatics, University of Bergen, Norway, 2010.

[BCC*05] BAVOIL L., CALLAHAN S. P., CROSSNO P. J., FREIRE J., VO H.
T.: Vistrails: Enabling interactive multiple-view visualizations. In
IEEE Visualization 2005 (2005), pp. 135–142.

[BG05] BRUCKNER S., GRÖLLER M. E.: Volumeshop: An interactive
system for direct volume illustration. In Proceedings of IEEE
Visualization 2005 (Oct. 2005), C. T. Silva, E. Gröller and H.
Rushmeier (Eds.), pp. 671–678.

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-driven
documents. IEEE Transactions on Visualization and Computer
Graphics 17, 12 (2011), 2301–2309.

[BSP*93] BIER E. A., STONE M. C., PIER K., BUXTON W., DEROSE

T. D.: Toolglass and magic lenses: The see-through interface. In
Proceedings of the 20th Annual Conference on Computer Graph-
ics and Interactive Techniques (New York, NY, USA, 1993),
SIGGRAPH ’93, ACM, pp. 73–80.

[BVMG08] BALABANIAN J.-P., VIOLA I., MÖLLER T., GRÖLLER E.:
Temporal styles for time-varying volume data. In Proceedings
of 3DPVT’08: The Fourth International Symposium on 3D Data
Processing, Visualization and Transmission (Atlanta, GA, USA
June 2008), S. Gumhold, J. Kosecka and O. Staadt (Eds.), Georgia
Institute of Technology, pp. 81–89.

[csl] Contextual snapshot library. http://cg.tuwien.ac.at/downloads/
csl/. Accessed: April 2014.

[DGH03] DOLEISCH H., GASSER M., HAUSER H.: Interactive feature
specification for focus+context visualization of complex sim-
ulation data. In Proceedings of the Symposium on Data Visu-

alisation 2003 (Aire-la-Ville, Switzerland, 2003),VISSYM ’03,
Eurographics Association, pp. 239–248.

[DH02] DOLEISCH H., HAUSER H.: Smooth brushing for
focus+context visualization of simulation data in 3D. Journal
of WSCG 10 (2002), 147–154.

[EKF*09] ELLKVIST T., KOOP D., FREIRE J., SILVA C., STRÖMBÄCK

L.: Using mediation to achieve provenance interoperability. In
Proceedings of the IEEE International Workshop on Scientific
Workflows, 2009 (Washington, DC, USA, 2009), IEEE Computer
Society, pp. 291–298.

[EKSX96] ESTER M., KRIEGEL H. P., SANDER J., XU X.: A Density-
based algorithm for discovering clusters in large spatial databases
with noise. In Second International Conference on Knowledge
Discovery and Data Mining (Portland, OR, USA, 1996), E.
Simoudis, J. Han and U. Fayyad (Eds.), AAAI Press, pp. 226–
231.

[Fur86] FURNAS G. W.: Generalized fisheye views. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 1986), CHI ’86, ACM, pp. 16–23.

[GMY11] GUO H., MAO N., YUAN X.: Wysiwyg (what you
see is what you get) volume visualization. IEEE Transac-
tions on Visualization and Computer Graphics 17 (2011),
2106–2114.

[GRIG12] GERL M., RAUTEK P., ISENBERG T., GRÖLLER E.: Semantics
by analogy for illustrative volume visualization. Computers &
Graphics 36, 3 (2012), 201–213.

[GS06] GROTH D. P., STREEFKERK K.: Provenance and annota-
tion for visual exploration systems. IEEE Transactions on
Visualization and Computer Graphics 12, 6 (Nov. 2006),
1500–1510.

[HMSA08] HEER J., MACKINLAY J., STOLTE C., AGRAWALA M.: Graph-
ical histories for visualization: Supporting analysis, communica-
tion, and evaluation. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (Nov. 2008), 1189–1196.

[KNS04] KREUSELER M., NOCKE T., SCHUMANN H.: A history mech-
anism for visual data mining. In Proceedings of the IEEE Sym-
posium on Information Visualization (Washington, DC, USA,
2004), InfoVis ’04, IEEE Computer Society, pp. 49–56.

[KSH04] KOSARA R., SAHLING G. N., HAUSER H.: Linking sci-
entific and information visualization with interactive 3D scat-
terplots. In Proceedings of the 12th International Conference
in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG) (Pilsen, Czech Republic, 2004), pp.
133–140.

[Mah01] MAHONEY A.: Studying the word study tool. New England
Classical Journal 28, 3 (2001), 181–183.

[MBG13] MINDEK P., BRUCKNER S., GRÖLLER M. E.: Contex-
tual snapshots: Enriched visualization with interactive spatial

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



144 P. Mindek et al. / Managing Spatial Selections With Contextual Snapshots

annotations. In Spring Conference on Computer Graphics (New
York, NY, USA, 2013), SCCG ’13, ACM, pp. 49–56.

[PKH04] PIRINGER H., KOSARA R., HAUSER H.: Interactive
focus+context visualization with linked 2D/3D scatterplots. In
Proceedings of the Second International Conference on Coordi-
nated & Multiple Views in Exploratory Visualization (Washing-
ton, DC, USA, 2004), CMV ’04, IEEE Computer Society, pp.
49–60.

[RSD*13] RUNGTA A., SUMMA B., DEMIR D., BREMER P.-T., PASCUCCI

V.: Manyvis: Multiple applications in an integrated visualization
environment. IEEE Transactions on Visualization and Computer
Graphics 19, 12 (2013), 2878–2885.

[SLA*09] SANTOS E., LINS L., AHRENS J., FREIRE J., SILVA C.: Vis-
mashup: Streamlining the creation of custom visualization ap-
plications. IEEE Transactions on Visualization and Computer
Graphics 15 (2009), 1539–1546.

[SSL*12] STREIT M., SCHULZ H.-J., LEX A., SCHMALSTIEG D., SCHU-
MANN H.: Model-driven design for the visual analysis of hetero-
geneous data. IEEE Transactions on Visualization and Computer
Graphics 18 (2012), 998–1010.

[Tor04] TORY M.: Combining Two-Dimensional and Three-
Dimensional Views for Visualization of Spatial Data. PhD thesis,
Burnaby, BC, Canada, 2004.

[UMDS08] UNGER A., MUIGG P., DOLEISCH H., SCHUMANN H.: Vi-
sualizing statistical properties of smoothly brushed data subsets.
In Proceedings of the 12th International Conference Informa-
tion Visualization (London, UK, 2008), IEEE Computer Society,
pp. 233–239.

[UZW*07] ULINSKI A. C., ZANBAKA C. A., WARTELL Z., GOOLKASIAN

P., HODGES L. F.: Two handed selection techniques for volumetric
data. In IEEE Symposium on 3D User Interfaces (Charlotte, NC,
USA,2007), p. 26.

[WWYM10] WEI J., WANG C., YU H., MA K.-L.: A sketch-based in-
terface for classifying and visualizing vector fields. In PacificVis
(2010), IEEE, pp. 129–136.

[YEII12] YU L., EFSTATHIOU K., ISENBERG P., ISENBERG T.: Effi-
cient structure-aware selection techniques for 3D point cloud
visualizations with 2DOF input. IEEE Transactions on Vi-
sualization and Computer Graphics 18, 12 (2012), 2245–
2254.

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Video S1

c© 2014 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.


