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The effect of hydrodynamic dispersion on the onset of thermal 

convection in flows_through anisotropic porous media is studied 

theoretically. The porous layer is homogeneous and bounded by~two 

infinite, perfectly conducting, impermeable horizontal planes kept 

at constant temperatures. Horizontal.isotropy with respect to 

permeability and thermal diffusivity is assumed. A pressure-driven 

basic flow is considered in the limits of small and large Peclet 

numbers. The analysis shows that the onset of convection in both 

cases is independent of longitudinal dispersion, while dispersion 

in lateral directions has stabilizing effects. The preferred mode 

of disturbance consists of stationary rolls with axes aligned in 

the direction of the basic flm-1. 
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INTRODUCTION 

Free convection in porous media is of considerable geo­

physical interest. This phenomenon may affect groundwater motions 

in areas with geothermal activity (Wooding, 1957). It has also 

important technical applications, since the occurrence of convec­

tion in porous insulation of buildings increases the loss of heat. 

Hydrodynamic dispersion in porous media is important in the 

theory of miscible fluids. The same phenomenon can give interesting 

effects in buoyancy-driven convection, see Rubin (1974), Weber (1975) 

and Neischloss & Dagan (1975). The occurrence of a bas1c flow has 

been shown to have a stabilizing effect on the onset of convection 

in isotropic media. 

The relative magnitude of hydrodynamic dispersion to mole­

cular diffusivity in the fluid is an increasing function of the 

Peclet number. This is true for isotropic as well as anisotropic 

media with horizontal isotropy. The latter case is considered in 

this paper. 

The stability problem for horizontally isotropic media has 

been studied by Castinel & Combarnous (1975)and Epherre §1975). In 

this paper the additional effect of hydrodynamic dispersion caused 

by a uniform basic flow is taken into account. This has geophysi­

cal relevance to groundwater flows in sediments, which usually have 

this type of anisotropy. Measurements show that the permeability 

along the plane of sedimentation is usually greater than the cross­

wise permeability. but the opposite can also be the case, see Bear 

(1972). 
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GOVERNING EQUATIONS 

Consider a fluid saturated homogeneous porous medium bounded 

by two infinite, perfectly heat conducting, impermeable horizontal 

planes kept at constant temperatures. The planes are separated by 

a distance h and have a constant temperature difference 6T 

where the lower plane is the warmer. The horizontal xy-plane is 

placed in the middle of the porous layer, and the z-axis is directed 
+ + + 

upwards. The unit vectors are denoted by i, j and k in positive 

x-, y- and z-directions, respectively. The basic flow is in the 
+ 
i-direction. The saturated porous medium is assumed to have one 

permeability KH and one thermal diffusi vi ty KmH horizont·ally, 

and another permeability Kv and thermal diffusivity KmV vertically. 

By choosing the units of dimensionless length, time t, 

velocity v = {u,v,w), temperature T and pressure p as 

{1) 

respectively, the governing equations may be written in dimen­

sionless form as 

+ 'Ill + 
v + .N • ( Vp -RaT k) = 0 (2) 

+ 
V•V = 0 (3) 

aT + r.11 at+ V•VT : V•(;u •VT) (4) 

by utilizing Darcy's law, the Boussinesq approximation and assuming 

that the density is a linear function of the temperature. As for 

the derivation of the equations, we refer to Bear {1972) and Katto 

& Masuoka (1967). 
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The Rayleigh number is defined with respect to vertical 

quantities 

Kvga ATh 
Ra = 

'"'mv 
(5) 

In equations (1) - (5) cp is the specific heat at constant 

pressure, p the density, Po a standard density, AmV the 

effective vertical thermal conductivity, v the kinematic viscosity, 

X the dimensionless permeability tensor, !lJ the dimensionless 

dispersion tensor, g the acceleration of gravity ·and a the 

coefficient of thermal volume expansion. The subscripts H and V 

refer to horizontal and vertical quantities respectively, f to 

the fluid, and m ~o the mixture of solid and fluid. The dimen-

sionless permeability tensor introduced in (2) may be written 

.,) ++ ++ ++ 
JV= ~(ii + jj) + kk (6) 

where 
(7) 

In equation (2) is applied Darcy's law which requires that the grain 

Reynolds number 

Vt Re =­v (8) 

is of order 1 or less. V is a characteristic dimensional fluid 

velocity and 1 a characteristic pore diameter. 

The part of the dispersion tensor which is due to molecular 
++ ++ ++ 

diffusion may be written n(ii + jj) + kk where we introduce 

the ratio 

(9) 
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The dispersion tensor ~ is generally a function of the fluid 

velocity, the geometry of the medium and properties of the fluid. 

Poreh (1965) has derived a general expression for ~ by imposing 

restrictions based on symmetry considerations. This general 

expression reduces to relatively simple forms in the cases of small 

and large Peclet numbers, and these two cases will be considered 

explicitly in the next sections. The Peclet number should be de­

fined as 

Vt Pe = 
Kf 

where Kf is the thermal diffusivity of the fluid. 

THE STABILITY OF UNIFORM FLOW 

a) Small Peclet numbers. 

(10) 

Poreh (1965) has obtained a dimensional expression for the 

dispersion tensor which, when Pe << 1, reduces to 

+ <a +s 4 5 

(11) 

Here B 
1,2 

represent molecular diffusion and 

are dispersion coefficients. 

8i (i = 3,4,5,6) 

~ is the unit tensor and ~ is 

introduced as the unit vector along the symmetry axis in a hori­

zontally isotropic medium. We rewrite (11) in a dimensionless 

form and introduce new dispersion coefficients yi (i = 1,2,3,4}. 

~ = ( n + Y 2 1 v 12 } t + ( Y 1 -y 2 )~ 

(12) 
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The relations between the old and the new dispersion coefficients 

are 

(13) 

Our choice of dispersion coefficients proves convenient for the 

case or uniform flow 
+ + 
vs = Ui • 

fb s 

The dispersion coefficients 

functions of the angle between 

flow. 

+ 
v 

Then 

(14) 

are functions of t beside being 
+ 

and k. y 4 is zero for uniform 

In an isotropic madium the dispersion coefficients, y 1 y 2 and 

y 3 are always positive, see Bear (1969). A change from isotropy 

to anisotropy must be continuous. Thea y1 , y2 , y3 must all be 

positive when the medium has permeability in all directions 

(0 ~ t < ~>. If not, the dispersion would vanish in certain 

directions for certain values of t, which is physically unacceptable. 

Consider the basic state (subscript s·) 

+ + 
V = u i s 

T = T -z s 0 

( 15) 

{ihere U is constant.~ 
and T0 Is a given temperature. Assume that "mv 1 Pe = U---- << 1. 

"f h 

The basic flow is driven by a uniform pressure gradient. The 

total velocity is written 
+ + + 
v = U i + v' (16) 
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where is a small perturbation. The cosine to the angle 
+ between v and the vertical may be written 

+ + w' cos(v,k) = 0 (17) 

valid to the first order. According to Poreh (1965) and 
+ + 

y 3 are even functions of cos(v,k). Consequently they enter our 

linear theory as constants. y 4 , however, is an odd function of 
+,. 

cos(v,k) 

w' 
y =A-

4 u 

valid to the first order. Here A = A(t) and A(1) = 0. 

We further write for the temperature and pressure 

T = T + e' s 

p = p + p' s 

where e' and p' are small perturbations. 

(18) 

(19) 

Simila.r to the isotropic case, it is easily shown that the 

velocity is a poloidal vector (Weber, 1975). The perturbation 

velocity can be expressed by a single scalar function ~: 

or 

;, = V x (V x k ~) (20) 

(u',v',w') = {·•·' ·•·' v2~.) "xz'"yz'- 1" 
(21) 

where v{ is the two-dimensional Laplacian. From (2) we then 

obtain 

(22) 
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By introducing this into the heat equation (4) and utilizing (12) 

we finally obtain 

a a a2 a2 a2 1 a2 (-+U--c1--c2 --c -)(v2+--)tll 
at ax ax2 ay2 3 az2 1 t az2 

(23) 

where 

C - ft + y U2 c2 -- ft + y2U2. 1 - •• 1 ' •• , c = 1 + y U2 
3 3 

(24) 

The requirements of impermeable, perfectly conducting boundaries 

lead to the boundary conditions 

• : (V 2 + ! !!_)til = 0 
1 t az2 

for z = * i 

We seek solutions of (23) in the form 

til= F(z) ei(kx+ . .ty)+at 

(25) 

(26) 

where a may be complex. The boundary conditions for F become 

(27) 

It is easily seen that the most unstable mode is 

F(z) = cos,.. z (28) 

The Rayleigh number for the onset of convection is 

(29) 

The preferred mode of disturbance is the one which makes Ra an 

absolute minimum. Minimizing (29) with respect to the wave number 

k and ·t, we get two alternatives~ depending on the relative 
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magnitude of or equivalently, y 1 to Unfortunately 

no numerical values of the dispersion coefficients are known in 

the case of anisotropy. For isotropy the longitudinal dispersion 

is always considerably greater than the lateral dispersion, see 

Bear (1969) or Fried & Combarnous (1971). In the present case y 1 

represents the longitudinal and y2 the horizontal lateral dis-

persian. It seems very plausible that the ratio of y1 to · y is 
2 

not significantly affected by the vertical anisotropy. We therefore 

assume y1 > y2 and get the critical Rayleigh number 

Rae= n2[/·n+tzu2 +/1+y3U2 )2 (30) 

It is seen from this that the dispersion caused by the basic flow 

in y- and z-direction gives an increase in the critical Rayleigh 

number. In the discussion above it is assumed that yl, y and 
2 

in (29) can be interpreted in the way that they enter !/)S (14). 

This is easily justified by writing ~ =i.J +~' s and checking 

that fb' gives no contribution to (29). 

The values of the wave numbers corresponding to (30) are 

1 

k = 0 , .tc = [~aU2 )4 (31) c n f;(n+y U2 ) 
2 

y3 

The preferred mode consists of rolls with axes aligned in the direc~ 

tion of the basic flow (longituqinal rolls). The dispersion 

coefficients have opposite effects in (31); y2 reduces the criti­

cal wave number while y3 increases it. This is in contrast to 

the isotropic case, where the dispersion coefficients do not influ­

ence the width of the convection cells, see Weber (1975). 

For the case of isotropy: i.e. t = n = 1, formula (30) 
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reduces to the formula given by Weber (1975, eq. 20). 

Our results also yield the critical Rayleigh number for fluid 

at rest (U = 0) in an anisotropic medium 

( 32) 

for the overall wave number 

(33) 

(a2: k2+£2). These results have been obtained by Epherre (1975). 

b) Large Peclet numbers 

We now examine the stability of uniform flow when Pe >> 1. 

The relevant dlmensional form of the dispersion tensor is found 

along the lines of Poreh (1965). The only requirement needed is 

that molecular diffusion is negligible compared to hydrodynamic 

dispersion. Then 

CL ~ ++ +++-+ + = e 1 ~ + £ 2 + e 3kk + e,,(vk+kv)/lvl 
I ~12 "P 

(34) 

Our analysis is restricted to Darcian flows, which implies that ei 

in (34) are independent of the Reynolds number. 

We rewrite (34) in a dimensionless form which is relevant to 

our problem 

( 35) 

The relations between the old and the new dispersion coefficients are 

(36) 
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Our dispersion coefficients al, a2 and a3 are even functions 
+ + 

and a4 an odd function of cos (v ,k). The dispersion coefficients 

ai are also functions of ~- The velocity is now written 

where 

; = u 1 + ~' 

... , 
v is a small perturbation. Now 

the tensor form (35) is valid. a 1 , a 2 

Pe = U 

and a 3 

our linear theory, while a4 may be written 

w' 
a - BU...,...-4 -

(37) 

Kmv .t 
--- - >> 1 so that 
KF h 

are constant in 

{38) 

where B = B( ~ ) and B( 1) = 0. The dispersion tensor for tmiform 

flow (~s = Uf) is 

...,+ ++ ++ 
Wb s = ( a 1 i i + a 2 j j + a 3 kk ) I U I (39) 

In the same way a~ for the small Peclet number case,we may now 

argue that a 1 > a 2 • 

The conditions for neglecting molecular diffusion may be 

expressed as 

(40) 

being more precise than the statement Pe >> 1 • 

A perturbation analysis may be performed by assuming the tensor 

form {35). The procedure is similar to that of section a) and 

yields a critical Rayleigh number 

( 41) 

for the wave numbers 



1 = c 
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(42) 

The preferred mode consists of longitudinal rolls. Comparing (41) 

and (40) with (32), we see that the dispersion provides an effective 

delay of the onset of convection in the case of large Peclet numbers. 

SUMMARY AND CONCLUDING REMARKS 

We have shown that the dispersion caused by a uniform basic 

flow U acts stabilizing as it delays the onset of thermal convec­

tion in an anisotropic porous medium with horizontal isotropy. The 

qualitative results are the same for small and large Peclet numbers~ 

but the stabilizing· effect is much stronger in the latter case. In 

both cases the most unstable mode consists of stationary rolls with 

axes aligned in the direction of the basic flow. It is only the 

dispersion in directions normal to the basic flow that influences 

the stability. The dispersion caused by U also affects the size. 

of the .convection cells. In the case of large Peclet numbers, whicq 

gives largest effect, the width of a roll is increased if 

KmHIKmV < a2 /a 3 and reduced if KmH/KmV > a 2 /a 3 , compared to con­

vection without basic flow. 

For heat dispersion in water, which is the most relevant geo~ 

physical example, the Peclet number will always be srnall for Darcian 

flows. Accordingly dispersion effects will be very small. For con­

vection driven by a solute gradient, however, which may be relevant 

in connection with waste or fertilizer migrations in soils, disper­

sion effects will be much more significant even at low Reynolds 

numbers. This is due to the much smaller molecular diffusivities 

and thereby much larger Peclet numbers involved in these problems. 

The formulation of a stability problem is quite analogous to the 

present one, and leads to the same results. 
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