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Abstract

The onset of thermohaline convection in a horizontal porous
layer is investigated theoretically. The layer 1s homogeneous,
anisotropic and of infinite horizontal extent. Horizontal isotropy
with respect to permeability, thermal diffusivity and solute diffu-
sivity is assumed. For porous media with thermally insulating solid
matrices, the stability diagram has the same shape as in the case of
isotropy. The critical wave number is constant and equal to that of
the one-component case. For thermally conducting matrices new features
may occur: The locus of the direct mode in the stability diagram‘may
not be a straight line, and the corresponding wave number may be non-
constant. The initiation of salt fingers is studied by linear theory.
It seems that the width of salt fingers is influenced by anisotropy in
the diffusivities. Anisotropy may or may not favour salt fingers, de-
pending on a dimensionless diffusion parameter D being greater than

or less than 1.



INTRODUCTION

This paper 1s concerned with thermohaline convection in porous
media (Nield, 1968; Taunton et.al., 1972). It 1s relevant in connec-
tion with groundwater pollution when the contaminant influences water
density and temperature gradlients are present. Temperature gradients
may arise from geothermal heating, solar heating of saturated soil or

discharge of warm waste water.

The case of warm, salt water overlying cold, fresh water is of
special interest as it may cause a type of motion termed salt fingers
(Taunton et.al. 1972; Turner, 1974), Salt fingers may develop if the
fluid is unstable to convection but still statically stable. The con-
vection 1s then driven by release of potential energy in the solute
distribution. Salt fingers transport solute very efficiently verti-

cally and may be responsible for contamination of groundwater reservoirs.

The literature on groundwater pollution often ignores buoyancy-
driven convection (Fried, 1975). This may be Justified as far as
large-scale horizontal spreading of pollution is considered. Concerning
the vertical transport, however, buoyancy effects must be taken into

account.

The previous theories on thermohaline convection in porous media
are concerned with isotropic materials. Natural porous media are in

general anisotropic and inhomogeneous. In this paper anisotropic

media are considered. Sediments usually have smallest permeability
normally to the plane of sedimentation, see Davis (1969) and Bear
(1972, p.124), Layered media may also be considered as anisotropic,

with respect to motions having length scale considerably larger than



the distance between the layers. See Bear (1972, p.156) and

Moranville et.al. (1977).

A saturated porous medium with anisotropic permeability will
also have anisotropic diffusion properties. The relation between
these two types of anisotropy has been analyzed theoretically by Neale
(1977). He showed that anisotropy in permeability is the more impor-
tant type when the solid matrix is insulating, i.e. diffusion taking

place in the fluid phase alone.

Convection in anisotropic porous media is a relatively new field
of research, see Castinel & Combarnous (1975) and Kvernvold & Tyvand
(1979). The present paper is concerned with the onseé of thermohaline
convection in a homogeneous, anisotropic porous layer. The effects of
anisotropy on marginal stability and on the initiation of salt fingers

are studied.

GOVERNING EQUATIONS

A fluid saturated porous layer of infinite horizontal extent is
considered. It is bounded by two horizontal planes separated by a
distance h. The differences in temperature and solute concentration
between the lower and upper plane are AT and AS, respectively. The
fluid density p 1s assumed to be a linear function of temperature T

and solute concentration S :
p = py(1+8(5-5)) - y(T-T)) (1)

pPgs T, and S0 are reference values of density, temperature and con-

centration. B8 and vy are expansion coefficients.



A cartesian frame of reference is chosen, with x- and y-axes
at the lower boundary plane. The z-axis is directed upwards in the
gravity field. The permeability, effective thermal diffusivity and

solute diffusivity in horizontal directions are denoted by K(l),

1 1
KéT) and Kés), respectively. Horizontal isotropy is hereby assumed.
k(3 Ké;) and Kég) denote the permeability and effective diffusivi-

ties in z-~direction.

Dimensionless variables are introduced by taking

n, 02/x{ 2, « {3 /m, a1, 08, 0,ve {20 K0 (2)

as units of length, time t, velocity Vv (=(u,v,w)), temperature, solute
concentration and pressure p. According to Bear (1972, p.652), the

governing equations may be written

v +JY-(Vp-Ra Tk + TRs SE) =0 (3)
VeV = 0 | (4)
%§-+ Vevs = TV°(QDS°VS) (5)
c %T- + VeVT = V(S p°VT) (6)

Ra 1s the thermal Rayleigh number:

(3)
_ K gaATh
Ra = ©) (7

VK
mT

and Rs the solute Rayleigh number:

(3)
Rs = 5...5%%%& | (8)

VK
mS



g 1s the gravitational acceleration, v the kinematic viscosity and
c = (pcp)m/(pcp)f (Katto and Masuoka, 1967). cp denotes the heat
capacity at constant pressure. The subscripts m and f refer to

the mixture of solid and fluid and to the fluid alone, respectively.

In (3) and (U4) the Boussinesqg approximation and parcy's law are

->
applied, and the small inertial terms %% and VeVV are neglected.
In eq. (5) the solid matrix is assumed non-adsorbing, and the Soret

effect 1s neglected (Bear, 1972; p.86).

Hydrodynamic dispersion is a quadratic function of the velocity
at small velocities (Poreh, 1965). Accordingly it vanishes within our
linear stability theory when the basic state is motionless. Dispersion

effects on thermohaline convection have been studied by Rubin (1976).

The dimensionless tensors of permeabllity, solute diffusivity and

thermal diffusivity will be written

Y o= @I+ ThH + Rk (9)
g = ng(il + I + kk (10)
Dy o= ng(i + 35) + kk (11)

respectively. The following ratios have been introduced :

E = K(l)/K(a), ng = Kég)/Kég), U Ké;)/Ké;) (12)

The ratio between the diffusivities of solute and heat in z-direction
is denoted by

= ((3),.(3)

T = Kms mT . (13)




LINEAR. STABILITY ANALYSIS

The static state of conduction is given by
-
T=S=-z, v=0, p=pyz) (14)

Small disturbances are added to this basic solution :

T = -z + 6(x,y,z,t)
f = ;z + S(x,y,2z,t) (15)
v = v(x,y,z,t)
P = pylz) + w(x,y,z,t)
The boundary conditions are taken to be
w=862z=3s8=0 at z = 0,1 (16)

Both planes are thus assumed to be impermeable and perfect conductors
of heat and solute. These conditions are chosen for mathematical

simplicity, without qualitatively important physical effect belng lost.
Eliminating the pressure from (3) yields

2 24 = 2 1 23_
Rav;26 - tRsVy%s = (v,2 + ¢ —5)w (17)

Omitting nonlinear terms, (5) and (6) may be written

32 d
2
- 2 4 9% _ . 3_
W o= (ngv,2 + — - ¢ =x) 6 (19)

s and 6 are eliminated from the set of equations (17) - (19), and

an equation in w is obtained
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2 2 1 32
2 4+ .a———_.a_. 2+_3_____ _3__( 2+_§___
[(Tnsvl T 322 Bt)(nTyl sz2 - St )\V1" T ¥ 22

(20)
( 2 82 __ 3 2 2492 .3 \gd -
+ Ra.\'rﬂsv1 + T azz—a—t- \71 - T Rs n.I,V1 + - 22 fcatvl w=20
The boundary conditions (16) can be expressed as
aftw _ 32%w _ .
% T gz c W T 0 at z = 0,1 (21)

A solution satisfying the boundary conditions may be written :

w = sinnnz e;(RX+ly)+°t (22)

n 1s an integer, k and 1 are dimensionless wave numbers, and o

is the (complex) growth rate

o= 0, + ici (23)

The most unstable mode corresponds to n = 1. The growth rate is

determined by the characteristic polynomial

g2 + Bo + C =0 (24)
where ™
- 2 4.2 242 2 ciRs-Ra
B = t(nga® +72) + (npa®+n2)/c + a (aZF1Z/E )
> (25)
(n.a2+12)Rs-(n.a2+12)Ra
C = l[(nsa2+ﬂ2)(nToL2+n2) + a2 T S ]
(6] d2+'ﬂ'2/E -
We have introduced the overall wave number (dimensionless)
1
a = (k2+12)2 (26)

Small disturbances of the static state will grow when oL > 0 and

decay when o, < 0. We will first investigate marginal stability,




defined by ,
o =0 (27)

.2 =C , 6,;B =0 (28)

I) Direct (stationary) mode of marginal stability 1s defined

by o, = 0. Eq. (28) then implies C = 0, which may be written as

2
Re = ( Bs .1 - + 1>(n a2+w2) (29)
n.a2+g2 5o T .
S
The onset of convection sets in at a wave number which makes Ra an
absolute minimum, The wave number corresponding to this minimum,

critical value 1s determined by the polynomial

Q¥ + a4Q% + 2,Q2 + 2,Q + a;, = 0 (30)
where
‘W
Q = a?%/n2
- -1
ag = 2nS
no=n
a, =ng 2+ B2 LS (g7t (31)
2 S 12 non.2
TS
-1
a, = - 2(EnTnS)

)-1

2
ag = -(&ng ng

—r

Only positive, real roots for @ have physical sense. In the appendix
it 1s shown that there is one positive, real root. ©So there is always

Just one direct mode of marginal stability.
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II) Oscillatory (overstable) mode of marginal stability is
defined by o, # 0. Eq. (21) then implies B = 0, which may be

written as

) .
Ra = ctRs + (1+ E_Z)[“T“2+"2+ cr(nsa2+n2)] (32)
Ea

Ra attains 1ts minimum at the wave number

1
_ 1+ct 1y -
. = H[E(HT,(msj] (33)

determining the critical thermal Rayleigh number for the oscillatory

mode. The oscillatory frequency is given by

oy = C15 (34)

We have chosen to determine critical values for Ra when Rs

is fixed. An opposite procedure would have given identical results.

PRESENTATION OF RESULTS

a) Media with thermally insulating matrices.

Figure 1 shows the stability diagram in the Rs, Ra plane with
respect to porous media with thermally insulating solid matrices. This

class of media is characterized by

np = Mg (35)

because the diffusion processes of heat and solute differ solely by

having different time scales. The subscripts of n will be dropped
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here. The fluid layer is unstable with respect to small disturbances
in the unshaded part of the Rs, Ra plane (Fig.1). The coordinates

have been modified in a way that allows arbitrary values of & and n.

The critical Rayleigh number for the direct mode is found from

(29)

Rag = 7o + w2[(n/e) # 1] (36)

and for the oscillatory mode from (32)

1 2
2
Ra, = ctRs + nz{(n/g) +1] (1+ct) (37)
In both cases the critical wave number 1is given by
-1/u
o = m(&n) (38)

being the same as in one-component convection (Epherre,1975).

*
For solute Rayleigh number below a certaln value Rs , a direct

mode of disturbance is the most unstable one:

Re = 122 v [(we) 1] (39)

1-ct

When Rs >Rs*, an oscillatory mode is the most unstable mode of dis-
turbance. The dotted curve in fig. 1 represents the supercritical
transition from overstable to direct motion. Linear theory is assumed
valid and the wave number is assumed to retain its critical value
given by (33). This transition 1s given by

B2 = IC (40)
These results are in accordance with the results of isotropy, see

Weber (1975).
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b) Media with thermally conducting matrices.

Equation (35) may still be satisfied if the solid matrix is a
heat conductor. But usually this is not the case. Principally there
i1s no correlation between ng and &, The relatlion between Nrp and £ 1is
not unique, either, but some kind of correlation does exist. The theory
by Neale (1977) only deals with simple geometric models. We note that

his results satisfy the restriction

(ng - &) (ng =1) < 0 (41)

It 1s hereby stated that permeability is more strongly anisotropic
than solute diffusivity. Unfortunately, we have no experimental
support for this, because measurements of anisotropic diffusivity

are lacking.

The critical wave number at the direct mode of marginal stabi-
lity is given by a fourth degree algebraic equation (30). It is
solved numerically by a Newton-Raphson iteration procedure. The

corresponding critical Rayleigh number is found from (29).

Some results are displayed in figure 2(a) - (d). The unshaded
part of the diagrams correspond to the fluid layer being unstable
with respect to small disturbances. Fig. 3 shows the wave number
of the most unstable mode of disturbance as a function of Rs, for
the same choices of (E,ns,nT) as fig. 2, In fig. 2-3 we have chosen

c =1and t = 0,01 for simplicity.

Fig. 2(a) represents a case which may be present in nature:

%* *
(g, nS,nT) = (10,5,1). Rs /72 = 0.035 where Rs = Rs 1s the
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value above which the oscillatory mode takes over as the most

unstable one.

Fig. 2 (b) is the "inverse" of the previous case: (E,ns,nT)

(0.1, 0.2, 1). Rs*/n2 = 0.068.

Fig. 2 (c) and (d) represent experimental situations where metal
threads are introduced into an isotropic medium. They constitute an
anisotropic thermal diffusivity without influencing permeability or
solute diffusivity. (Fig. 2 (c): (&,ng,ng) = (1,1,10). Rs*/n2 = 0.055.

Fig. (d) : (&yng,ng) = (1,1,0.1). Rs*/72 = 0.058.

At Rs = Rs*, there are small discontinuities in the wave numbers,

displayed in Fig. 3. Rs* is always positive, provided ct << 1,

When Ng # Mo it turns out that the wave number of the direct
mode of marginal stability is a function of Rs. The corresponding
locus in the Rs, Ra plane is not a straight line. But the locus of
the overstable mode of marginal stability 1s a straight line with a
constant wave number. The dotted curve in Fig. 2 (a) - (d) represents
the supercritical transition from oscillatory to direct motion as in

Fig. 1. Its locus is a hyperbola.

Analytically, we will find asymptotic expressions for the slope

%%%%% of the direct mode curves and the corresponding wave number a,
represented by Q = a2/w2.

Case (1) : Assume Q << 1 when |Rs| >> n2. Then from (32)
and (33)

1

-2
0= (B (pangd] ¥ ome™) (42)
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The slope 1s given by

ﬁg(gg) = 1+ 0(Rs™?) (43)

This case is relevant when Rs(nT-nS) > 0.

Case (ii) : Assume Q >> 1 when |Rs| >> w2. Then it follows
that
ng=nqp 1-2
Q = {Bg _§__2—] + 0(Rs?) (44)
T nnng?
TS

with the corresponding slope

d(Ra) _ 7 -1
a(Rs) = ng + 0(Rs %) (45)

This case is relevant when Rs(nT-nS) < 0.

Case (1i1) : Assume that Q is of order one when |Rs| >> =2.

This implies = ng, a case which has been discussed separately.

N
We have obtained a general knowledge of the asymptotic behaviour

of the direct mode curve. Its intersections with the coordinate axes

are also known :

! 2 1

Rs = 0, Ra = nz[(—gT-)z + 1} , o = w(EnT) " (46)
Nay2 2 L

Rs = - .,TZ'I:(__ES__) + 1} , Ra =0, a-= w(gns) L (47)

Thereby the direct mode curve may be sketched in the general case.
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INITIATION OF SALT FINGERS

Salt fingers may occur in the domain of the Rs, Ra plane where
the fluid layer is unstable with respect to direct modes of disturbance

but still statically stable (Turner, 1974). Then
Ra < 0, Rs < 0 , Ra - tRs < O (48)

Salt fingers are a highly nonlinear phenomenon which has not yet
been adequately described theoretically. However, it is possible that
linear theory may reveal the essential effects of anisotropy. We will
study maximum growth rates at large absolute values of the Rayleigh
numbers

|Ra| >> n2 , |Rs| >> =2 (49)

The ratio between the Rayleigh numbers is denoted by

r = Ra/Rs
From the previous chapter we conclude that a necessary condition for
instability is

r < max (D,1) ‘ (50)

where we have introduced a dimensionless diffusion parameter

LD (3 ()

N m

D = — = T mS = 1 mT (51)
s K:3: K:1] K{i}
mT mS mS
Salt fingers are characterized by a large wave number
a? >> 72 (52)

The fastestgrowing salt fingers indicated by linear theory are given by

- dB
° " d<a2)/ 3CaZ) (53)
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from eq. (24), Equation (24), (25) and (54) subject to the conditions

above determine the maximum growth rate

2

“max - T|R3|{1 + (PD)%] (54)

occurring at the wave number given by

.
1 2 2
o = |Rs|2[( L ) - l] (55)

From the last equation it is indicated that the growth of salt

fingers is possible only if
r <D (56)

Compared with (50), it is seen that only a part of the unstable regilon
in the third quadrant may give rise to salt fingers when D < 1,

Compared with isotropy, the appearance of salt fingers is disfavoured.

When D > 1, however, the conditions (50) and (56) are coincident.
This indicates a region of salt fingers which is larger than in the case

of isotropy.
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CONCLUSIONS

A theoretical investigation of thermohaline instability in
anisotropic porous media has been performed. Important aspects of
the problem is characterized by a dimensionless diffusion parameter
D. D =1 when the solid matrix is thermally insulating, and usually

D # 1 when it is thermally conducting.

When D = 1 the stability diagram (Fig.1 ) is congruent to the
case of 1isotropy. When D # 1, however, the direct mode of instability
will show new features: A non-constant’'wave number and a locus of
marginal stability in the Rs, Ra plane not in the form of a straight
line. Linear theory suggests that salt fingers are disfavoured when

D < 1 and favoured when D > 1 , compared with isotropy (D = 1).

A layered medium represented as anisotropic will always have
£ > 1, see proof by Bear (1972, p.794). The most frequent situation
in aquifers is actually & > 1 (Bear,1972, p.124) and probably ng > 1
(Neale,1977):nT should be close t. 1 due to heat conduction in the solid

phase.Accordingly D< 1,and salt fingers should be disfavoured compared

with isotropy. This indicates that anisotropy and stratification tend

to reduce the danger of pollution penetrating into aquifers from above.
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APPENDIX

It will be shown that equation (32) has always just one positive,

real root. The roots are denoted by Q (1 =1,2,3,4).

Because ¢, N and ng are positive and finite, the following

inequalities are easily deduced from (32) and (33)

Q +Q, +Q +Q, <0 (A1)
Q,Q5Q, *+ 9,Q;Q, + 9;Q,Q, * Q1Q,Q3 > 0 (4 2)
Q,9,Q,Q, < O (A 3)

Because the coefficients in (32) are real, the roots are pairs of com-
plex conjugates unless they are real, There are only two cases which
satisfy (A 3) : One or three positive, real roots. In pboth cases
there is one negative, real root (say Ql) and at least one positive,

real root (say Q,). Then we derive from (A 1) and (A 2)

Q *+Q, <0 (A 4)

implying just one posltive, real root.
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coefficients defined in (31).

coefficient defined in (25).

= (pcp)m/(pcp)f'

coefficient defined in (25).

dimensionless diffusion parameter nT/nS.
dimensionless tensor of solute diffusivity.
dimensionless tensor of thermal diffusivity.
gravity acceleration.

depth of porous layer.

imaginary unit.

unit vectors in x- y- and z- direction
dimensionless wave numbers.

permeabilities horizontally and vertically.
dimensionless permeability tensor.
dimensionless pressure.

0I.2/‘n‘2.

Ra/Rs.
thermal Rayleigh number defined in (7).
solute Rayleigh number defined in (8).
dimensionless solute concentration.
dimensionless time.
dimensionless temperature.

> - -»>
dimensionless velocity (=ui + vj + wk)

dimensionless wave number.
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thermal and haline expansion coefficients.

difference in solute concentration between lower

and upper plane.

difference in temperature between lower and upper

plane.

(1) (3)

haline anisotropy parameter (= Kms )

(1 (3)

thermal anisotropy parameter (= KT /¥mT
dimensionless temperature perturbation.

molecular diffusivity of solute and heat horizontally.
molecular diffusivity of solute and heat vertically.

kinematic viscosity.

permeability anisotropy parameter (= K(1%/K(3)).
dimensionless pressure perturbation.

density.

standard density.

growth rate of disturbance.

<3>/ (3),

ratio between vertical diffusivities (= «
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Figure legends:

Figure 1

Figure 2

Figure 3

Stability diagram in the (modified) Rs,Ra plane
for media with thermally insulating matrices.

, direct mode of marginal stability;
- - - -, overstable mode of marginal stability;

J
cecoooe, trangition from overstable to direct motion.

Stability diagrams in the Rs, Ra plane for some
cases of media with thermally conducting matrices.
The meaning of solid, broken and dotted curves 1s
given in fig. 1.

(a) E = 10’ nS = 5, nT = 1.

(b) E = 0.1, ng = 0.2 Np = 1.
(e) £
(a) &
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1
-
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=
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o
L]

The dimensionless wave number o of the most
unstable mode as a function of Rs.

tototot £ = 1, ng= 1 ,np= 1 ,(isotropy);

_______ » £=10 , ng = 5 , np = 1 ,(see fig.2(a))
—ememe- £ = 0.1, ng = 0.2, np = 1 y(see fig.2(b))
coceses £ = 1 ,ng= 1 , np =10 ,(see fig.2(c))

1
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S & - , ng = 1 np = 0.1,(see fig.2(d))
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