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Abstract 

Subjective memory impairment (SMI) is a common risk factor for Alzheimer´s disease, with 

few established options for treatment. Here we investigate the effects of two months episodic 

memory training on regional brain atrophy in 19 memory clinic patients with SMI. We used a 

sensitive longitudinal magnetic resonance imaging protocol and compared the patients with 

42 matched healthy volunteers randomly assigned to a group performing the same training, or 

a no-training control group.   

Following intervention, the SMI sample exhibited structural gray matter volume 

increases in brain regions encompassing the episodic memory network, with cortical volume 

expansion of comparable extent as healthy training participants. Further, we found significant 

hippocampal volume increases in the healthy training group but not in the SMI group. Still, 

individual differences in left hippocampal volume change in the patient group were related to 

verbal recall improvement following training. The present results reinforce earlier studies 

indicating intact brain plasticity in aging, and further suggest that training-related brain 

changes can be evident also in the earliest form of cognitive impairment.  

Keywords  
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Introduction 

Subjective memory impairment (SMI) is common in the elderly [1]. In the memory clinic, a 

diagnosis of SMI is used for patients who feel that their cognitive capacity is reduced, but for 

whom neuropsychological tests are within normal range [2]. SMI patients are at increased risk 

of depression [3] and dementia [4-7]; the finding of an increased risk of Alzheimer’s disease 

(AD) is likely independent of depressive symptoms [8].  

Multi-modal neuroimaging indicates early AD pathology in SMI [for a recent review, 

see 9]. Erk and colleagues assessed memory clinic outpatients with SMI on functional 

magnetic resonance imaging (MRI)-estimates of neuronal activity during episodic memory 

retrieval [10]. Despite similar recall performance, the SMI subjects showed reduced activation 

in the hippocampus and right dorsolateral prefrontal over-activation, compared with adults 

without memory problems. SMI-subjects are further prone to accelerated hippocampal 

atrophy [11-14]; but see [15].  

Interestingly, physical and navigation training have recently been shown to reduce 

hippocampal atrophy [16, 17], and memory training has been associated with increased 

cortical thickness in healthy elderly [18]. These findings indicate potential for training-related 

structural remediation, at least in healthy elderly, in a manner that contrasts the reductions 

associated with SMI and early-AD like pathology.  

Cognitive intervention is emerging as a putative prevention technique for individuals 

at increased risk of AD [19], and memory clinic attendees with SMI [20], as well as mild 

cognitive impairment [MCI; 21] show cognitive test-improvements following memory 

training. SMI-subjects represent a very interesting group for treatment in this regard: These 

individuals are probably more responsive to cognitive interventions compared with patients 
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with more severe cognitive impairment and established dementia where neurodegenerative 

processes are far more advanced.  

In two previous publications we documented effects on cognitive test-performance 

and brain macro- and microstructure of an eight-week episodic memory-training program for 

healthy older adults [18, 22], and also characteristics predictive of cognitive training effects in 

patients with memory complaints [23]. However, longitudinal training effects on brain 

characteristics in SMI have not been studied. The extent to which structural plasticity in 

response to memory training previously reported in healthy adults generalizes to clinical 

samples is unknown. Increased knowledge about the capacity for structural change in the 

brains of at-risk individuals is essential for evaluating therapeutic potential. 

Therefore, the main objective of the present study was to investigate whether memory 

training in SMI patients is accompanied by gray matter alterations using structural MRI. To 

this end, we scanned a group of 19 SMI patients, as well as a matched healthy control sample 

before and after participation in an intensive eight-weeks memory-training scheme. We 

estimated regional gray matter volume changes within the brain by means of a highly 

sensitive registration algorithm [Quarc; 24, 25].  

First, we hypothesized that SMI-subjects would exhibit regional increases in cortical 

gray matter volume following training – in a manner comparable to healthy subjects 

undergoing the same training regimen. We tested training-related gray matter volume change 

across the cortical surface, providing an unbiased estimate of cortical changes across the 

mantle. The two intervention groups were compared with no-contact controls, allowing us to 

model the effects of group on change. 

The hippocampi are not included in the presently employed surface models (c.fr. 

http://surfer.nmr.mgh.harvard.edu/). Thus, we tested the hypothesis that memory training 

impacts structural changes in the hippocampus by using a region of interest (ROI) analysis.  
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As discussed above, some SMI subjects are prone to both reduced hippocampal 

volumes and activity. Yet, it is not known whether SMI selectively targets structural plasticity 

in the hippocampus. Thus, we finally tested the hypothesis that memory training has a 

differential impact on neocortical gray matter changes as compared with hippocampal change 

in SMI.  

Materials and Methods 

Participants 

The sample included 19 subjects with SMI undergoing memory training (SMI-training), and 

42 healthy controls (HC) without memory complaints. HC were randomly divided into one 

group receiving the same training program as those with SMI (HC training), and one group 

serving as a no-contact controls (HC no-training). Table 1 describes baseline characteristics of 

the three groups. Of note, the present study includes novel analyses on two previously 

published datasets, combining the participants in [SMI; 23] and [HC; 18] to directly address 

possible differences in neuroplastic potential.  

Briefly, HC were recruited from newspaper ads, and denied experiencing any memory 

worsening or concerns. Subjects with SMI were recruited from two Oslo-area memory 

clinics. SMI-subjects were referred to the memory clinic by their general practitioner or a 

specialist in neurology for assessment of suspected memory impairment. The subjective 

memory problems were in most cases confirmed by close relatives or spouses, which are 

invited to the clinic as part of the routine exam. Onset of perceived memory impairment was 

less than 10 years prior to inclusion. The examining memory clinic physician screened all 

SMI-subjects for dementia based on ICD-10 criteria before entering the study. We employed 

the following exclusion criteria based on neuropsychological test results: Mini-Mental State 

Examination [MMSE; 26] score < 26; pre-training scores lower than 1.5 standard deviations 
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(SD) below age- and sex- standardized population norms on California Verbal Learning Test 

(CVLT-II) short and long-delay free recall [27]; and intelligent quotient (IQ) scores < 85, 

estimated from the vocabulary and matrices sub-tests in the Wechsler Abbreviated Scale of 

Intelligence (WASI) [28]. We did not set any upper-limit on any of the test results. One 

healthy participant was excluded on the basis of the CVLT-scores immediately following 

screening; one patient discontinued the intervention during the second week of the program. 

The CVLT scores obtained at screening were also used as pre-training scores to evaluate 

training efficacy (see the Cognitive outcome measure section). Finally, we used the Rey 

Complex Figure Test (RCFT; see Table 1) [29] to provide a measure of pre-training visual 

memory function without specifying any cut-off criterion for exclusion. The Eastern Norway 

ethical committee for medical research, and the Data protection official for research at Oslo 

university hospital, Ullevål approved the study. Informed consent was obtained from all 

subjects. 

Quantitiative assessment of subjective memory and depressive symptoms 

We quantified subjective memory problems and depressive symptoms according to the 

Everyday Memory Questionnaire [EMQ; 30] and the Geriatric depression scale [GDS; 31], 

respectively. In addition, the Short-Form 36 Mental Health Inventory [32] was used for 

screening of depression. Two participants in the SMI-group scored above validated cut-offs 

for clinical depression. Since both subjects denied chronic depression or any anti-depressant 

use they were not excluded from the study. We tested for effects of depressive symptoms 

(GDS) and subjective memory load (EMQ) on brain volume changes by means of analysis of 

covariance (See Statistical analyses).  

Memory training 

Memory training was administered during eight weekly class-sessions of about 90 minutes 

each. In addition to the class sessions supervised by a trained instructor, participants were 
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given five weekly homework assignments to complete on five of the six subsequent weekdays 

throughout the program. The program has been shown to improve memory in subjects with 

SMI and healthy older adults [18, 23]. SMI-subjects spent 27.3 minutes (SD=9.6) on each of 

the 32 homework assignments while the HC subjects spent 25.0 minutes (SD=10.1); this 

group difference was not significant (independent samples t-test, t = .75, P = .46). 

For a more comprehensive description of the program, see [18, 23]. The main aim of 

the program was to improve verbal recall memory by method of loci (MoL) training [33]. 

MoL is a mental framework that facilitates verbal recall; the technique enables the participant 

to associate to-be-remembered material with visuospatial routes from long-term memory.  

We used the exact same training content, including program curriculum and practice 

material for both HC and SMI. For motivational purposes, however, the instructor kept the 

overall focus of the sessions for the SMI group more towards remediation and support: The 

training program provided SMI-participants experiencing memory problems tools and 

knowledge for improving episodic memory and at the same time offered an arena to meet and 

discuss with others experiencing similar memory concerns.  

Cognitive outcome measure 

We assessed verbal memory performance using CVLT-II approximately one week before and 

after training [27]. The pre-training CVLT scores were both used as part of the outcome 

measure and for screening prior to inclusion. We used scores on the 5- and 20- minutes 

delayed free recall trials from the original and alternate versions of the test as cognitive 

outcome measures.  

MR data acquisition 

MRI data were collected at two time-points, on average 65 days apart (SD = 8.7), using a 12 

channel head coil on a 1.5 Tesla Siemens Avanto scanner (Siemens Medical Solutions, 
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Erlangen, Germany) at Oslo University Hospital. We used the same scanner software and 

software version at both time-points. The pulse sequence was a 3D T1-weighted MP-RAGE 

with the following parameters: TR/TE/TI/FA = 2400 ms/3.61 ms/1000 ms/8°, matrix 192 × 

192, field of view = 240, 160 sagittal slices, voxel size 1.25 × 1.25 × 1.20 mm. The sequence 

was repeated twice in each session and the two acquisitions were averaged during processing 

to increase the signal-to-noise ratio (SNR). Each scan took 7 min 42 s.  

In addition, a T2-weighted fluid-attenuated inversion recovery (FLAIR) sequence was 

used to aid neuroradiological examination. A senior neuroradiologist (P.D.T.) evaluated all 

MRI scans for any significant injuries or conditions (e.g., signs of brain tumors or stroke). 

None of the participants were excluded on the basis of this. 

Processing and data analysis  

FreeSurfer version 5.1 (http://surfer. nmr.mgh.harvard.edu) was used to segment baseline 

cortical and subcortical gray matter structures [34-39]. We used baseline FreeSurfer-

generated cerebral cortical surfaces and estimated hippocampal formation volumes to evaluate 

any group differences before training. We quantified rates of volumetric gray matter change 

using Quarc [24, 25, 40]. Methodological bias in image registration can artifactually elevate 

effect sizes, constituting a concern in neuroimaging studies [41]. Quarc uses an explicit 

inverse-consistent approach [24] that essentially eliminates potential bias by combining 

forward and reverse image registrations and has been favorably compared with other methods 

[25].  

Briefly, for each participant, dual 3-D follow-up structural scans were rigid-body 

aligned, averaged, and affine aligned to the participant’s baseline. A deformation field was 

calculated from a nonlinear registration [24]. The images are heavily blurred (smoothed), 

making them almost identical, and a merit or potential function was calculated. This merit 
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function expresses the intensity difference between the images at each voxel and depends on 

the displacement field for the voxel centers of the image being transformed. The merit 

function by design will have a minimum when the displacement field induces a good match 

between the images. Having found a displacement field for the heavily blurred pair of images, 

the blurring is reduced and the procedure is repeated, thus iteratively building up a better 

displacement field. The final displacement field is added to the image being transformed and 

the resultant image nonlinearly registered to the same target and finally traced back through 

the displacement field thus calculated to find the net displacement field. This enables very 

precise registration, even at small spatial scales with low boundary contrast. Nonphysical 

deformations are precluded because, at each level of blurring, the image undergoing 

deformation is restricted to conform to the target. The resulting deformation field was used to 

align scans at the subvoxel level.  

The aligned change image for each participant underwent skull stripping and 

hippocampal segmentation with labels applied from the FreeSurfer-processed baseline scan. 

Also, voxel-wise estimates of longitudinal volumetric gray matter change were mapped onto 

individual brain surfaces generated using FreeSurfer, yielding a continuous mapping of 

volumetric change along the cortical surface. Volumetric gray matter change was sampled at a 

relative distance of 35% from the white boundary into the gray matter. Individual cortical 

gray matter change surfaces were resampled, mapped to a common surface, smoothed with 

176 iterations and submitted to statistical analyses.  

Statistical analyses 

In the present study we compare two intervention groups and a HC no-training group. Note 

that a 2x2 design including also a SMI no-training group would have been more ideal, but we 

were not able to recruit enough patients to allow two reasonably sized SMI groups. The 

present design thus allows comparing effects of intervention across groups of patients and 
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healthy elderly, but precludes direct testing of whether the intervention could have, e.g., 

atrophy-reducing effects in the patient group compared to no-training patients. 

We analyzed volumetric group-differences before training and longitudinal regional 

gray matter changes across the cortical surface using general linear models (GLM) within the 

FreeSurfer suite. We used IBM SPSS Statistics 20 (IBM Corp.) for other analyses.  

We performed paired samples t-tests to estimate recall improvements (post-training – 

pre-training) within each group. We reported effect sizes for recall change as following: First, 

we reported t-values of paired samples t-test in Table 2. Second, we calculated improvement 

in raw recall scores as percent change ((time-point2 – time-point1) / time-point1) for each 

group (Table 2). Third, we estimated Cohen´s d as a standardized effect size measure by 

comparing the mean differences in recall scores of HC-training and SMI-training with the HC 

no-training group. We used analysis of variance (ANOVA) to test group differences in both 

the demographic and cognitive data.  

To assess regional volumetric differences between any of the groups at baseline, we 

first ran one-way ANOVAs with each surface vertex as dependent variables, modeling effects 

of group on baseline cortical volume. For longitudinal analysis of gray matter changes we 

first assessed whether average change in the two training groups differed from change in no-

training HC, modeling effects of group at each vertex. All surface models were corrected for 

multiple comparisons across the surface by means of Monte Carlo simulations: Data were 

tested against an empirical null distribution of maximum cluster size across 10,000 iterations 

using Z Monte Carlo simulations synthesized with a cluster-forming threshold of P < 0.05 

(two-sided) as implemented in FreeSurfer [42, 43]. Corrected p-value maps were thresholded 

at P < 0.05. To model effects of individual differences in baseline regional brain volumes, 

subjective memory score and depressive symptoms, we extracted average change data from 
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significant clusters and tested for these variables by means of analysis of co-variance 

(ANCOVA).  

The hippocampal formation is not included in the FreeSurfer-based cortical surface 

models. Thus, we first extracted average left and right hippocampal volumes from the 

FreeSurfer-generated subcortical segmentations at baseline. Then, we tested for any group 

differences in the hippocampus by including the left and right hippocampal baseline volumes 

as dependent variables in separate ANCOVAs with group as fixed factor and total brain 

volume (TBV) as a covariate to account for differences in head size and global atrophy. Next, 

to test the hypothesis that memory training impacts hippocampal volume change, we 

extracted average Quarc-estimated change within FreeSurfer segmentations of the left and 

right hippocampi. Finally, we introduced these hippocampal change estimates in ANCOVAs 

to model effects of group on hippocampal change, and to test for effects of baseline 

hippocampal volumes, subjective memory and depressive symptoms. We applied post-hoc 

tests to assess differences in volume change between the three groups. 

Next, we assessed whether differential effects of memory training across groups (HC 

training, SMI training) would occur in cortical as compared with hippocampal ROIs. We 

extracted change estimates from the cortical cluster showing the strongest training effect as 

well as from the hippocampus, and entered the data in an ANOVA with two training groups 

(HC training, SMI training) and two ROIs (cortical, hippocampal). 

We examined relationships between brain and cognitive change measures using partial 

correlations. We included the relevant baseline brain volume, pre-training cognitive 

performance, as well age as covariates. For partial correlation analyses with cortical surface 

volumes, we used average baseline and change data from within each significant cluster 
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resulting from the surface analysis reported above and controlled for baseline volumes, 

performance and age.  

Results 

Clinical and cognitive results 

Table 1 summarizes demographical and clinical characteristics. A significant main effect of 

group on EMQ (F = 14.7, P < .0001) and GDS (F = 25.0, P < .0001) indicated poorer 

subjective memory and more depressive symptoms in SMI subjects. The remainder of the 

variables in Table 1 was of comparable magnitude (ANOVA, between-group Fs < 1.1, Ps > 

0.33). 

Table 2 shows verbal recall performance for the three groups at baseline and follow-

up. A two groups × two delayed recall intervals (5-min, 20 min) × two time-points (baseline, 

follow-up) ANOVA revealed a significant group (training; no-training) × time interaction (F 

= 4.7, P = 0.034), indicating greater recall increases in the two training groups as compared 

with no-training HC.  

We proceeded to compare the differences between the two training groups using a two 

groups (HC-training, SMI training) × two recall intervals × two time-points ANOVA. The 

results revealed a significant main effect of time (F = 57.2, P < .0001), as both training groups 

(SMI- and HC-training) improved their recall performance at follow-up (see Table 2). There 

was no significant recall interval × time interaction effect, suggesting that the improvements 

in 5-minute and 20-minute delayed recall were comparable between the two training groups. 

Notably, there was no significant training group × time interaction, suggesting that the two 

training groups did not differ significantly in improvements in recall performance.  Although 

the two training groups did not differ significantly in recall improvements, effect size 

calculations nevertheless indicate numerically greater increases in the SMI-group: Cohen´s d, 
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comparing change in HC-training with HC no-training, was 0.37 and 0.54 and for 5-minute 

and 20-minute delayed recall, respectively. Cohen´s d for SMI-training compared with HC 

no-training, was 0.61 and 0.81 for 5-minute and 20-minute delayed recall, respectively.  

 

Training-related regional change in cortical volume 

We found no significant group differences in regional cortical baseline volume, using a 

corrected P-value threshold of < .05. Figure 1a shows the results from vertex-wise GLMs 

testing differences in longitudinal cortical gray matter change between the two training groups 

and HC no-training. The results suggest volume increases in the two training groups 

compared with controls. The significant clusters encompassed the lateral temporal lobes 

bilaterally, the supramarginal and entorhinal gyri of the left hemisphere, and the inferior 

frontal and lateral orbitofrontal cortices of the right. Group averages as well as individual 

change estimates from the analysis in Figure 1a are plotted for each group in Figure 1b. The 

strongest effects of training were found in the right prefrontal cortex (Figure 1b, rightmost 

plot; Talaraich coordinates of max vertex: X=43.1,Y=36.1, Z=–0.7; Brodmann area 47). We 

found no significant differences in cortical gray matter changes between the SMI- and HC-

training groups (independent samples t-tests, df = 39, ts < 1.1, Ps > .27), indicating that the 

increases were of comparable magnitude. We found no significant effects of baseline 

volumes, subjective memory score or depressive symptoms on volume change (ANCOVA, Fs 

< 2.7. Ps > .11). 

--- Insert Figure 1 about here --- 

Training-related change in hippocampal volume 

There were no effects of group on left (F = 0.08, P = .9) or right (F = 0.6, P = .5) 

hippocampal volumes at baseline, respectively. We found a significant group effect for left––
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but not right––hippocampal volume change (left: F = 4.9, P = .011; right: F = 1.8, P = .17). 

Student-Newman-Keuls corrected post-hoc tests suggested significant increases in left 

hippocampal volume in HC training compared with HC no-training (absolute change 

difference = 0.52 %, q = 3.8, P < 0.05). HC training also exhibited more positive left 

hippocampal volume change compared with SMI training (absolute change difference = 0.40 

%, q = 2.9, P < .05). SMI showed slightly more positive relative change in left hippocampal 

volume compared with no-training HC, but this group difference failed to reach statistical 

significance (q = 0.82, n.s.). Figure 2a shows average left hippocampal volume change for 

each group. There was no effect of baseline hippocampal volume, subjective memory score, 

or depressive symptoms on left hippocampal change (Fs < .91, Ps > .34).  

We compared hippocampal volume change with change in the cluster encompassing 

the right inferior frontal gyrus and lateral orbitofrontal cortex to assess training-group 

differences in change between cortical and hippocampal brain regions. A two ROIs × two 

groups ANOVA revealed a significant ROI (frontal cortex; hippocampus) by group (HC-

training, SMI-training) interaction (F(1,39) = 4.4, P < .05), indicating comparable cortical, 

but not hippocampal plasticity between the training groups, as HC-training showed more 

positive change in the hippocampus. Figure 2b shows mean volume changes in the two brain 

regions for the SMI and HC-training samples.  

Finally, we assessed relationships between brain and behavioral change using partial 

correlations with baseline volumes and performance, and age as covariates. For the whole 

sample, left hippocampal volume change correlated with 5-min delay free recall change (r = 

.28, P = .03). When running the analyses for each group separately, we found a significant 

relationship for the SMI-training group only (r = .52, P = .044). Figure 2c shows a scatterplot 

of the verbal recall and hippocampal volume change residuals for all participants. No 

significant relationships between cortical and verbal recall change were found.  
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--- Insert Figure 2 about here --- 

Discussion 

We found gray matter volume increases in cerebral association cortices in SMI patients 

following two-months episodic memory training. Training-related cortical increases were of 

similar extent as those of a healthy training group. The HC-training group further showed 

increased left hippocampal volume following training, compared with no-training controls. 

The SMI-training group showed no significant group change in the hippocampus, although 

individual differences in hippocampal change were related to greater memory improvement 

following training. Overall, the present study provides initial neuroanatomical support for the 

putative benefits of cognitive intervention in SMI [20, 44].  

Cortical gray matter increases following training 

The finding of increased cortical gray matter volume in two independent intervention 

groups (HC, SMI) supports the idea that training-related structural plasticity extends into 

middle- and old age [45]. The present results are among the first to suggest that structural 

plasticity may not be restricted to healthy aging – as memory clinic outpatients with SMI 

showed a similar structural response to memory training in the cortex. The pattern of 

increased gray matter volume following intervention is compatible with results reported in 

other studies of healthy older adults [16, 46-48].  

The regional volume increases reported in the present study resemble our previous 

findings of training effects on cortical thickness in the healthy control group using different 

processing and analysis tools [18]. In the previous study, we found effects of training in the 

right anterior insular and orbitofrontal cortices, partly overlapping the present results, in 

addition to non-overlapping effects in the left orbitofrontal cortex and in the right fusiform 

gyrus. When correcting for multiple comparisons by means of Monte Carlo simulations, the 
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present cortical volume changes were more widespread and stronger than our previously 

reported thickness results. Importantly, while we previously reported change in cortical 

thickness as a function of training, we now measure change in all directions relative to the 

reconstructed surface, and the change measure will thus be affected by changes in both 

thickness and area, i.e., effectively reflecting a measure of volumetric change. Also, a recent 

comparative MRI-study [25] indicated that the presently employed analysis stream, Quarc 

might be more sensitive to detect change in any direction as compared with the method used 

on cortical thickness change in our previous publication [18]. 

Mechanisms underlying cortical volume changes in response to training are poorly 

understood. Roughly, dendrites (30%), axon collaterals (29%), neuronal somas (7.8%) and 

synapses (6%) make up bulk gray volume composition [c.fr. 49]. Thus, these compartments 

represent candidates mediating training-related change in a manner detectable by macroscopic 

MR-estimates. Accordingly, work on animals has identified axonal remodeling, dendritic 

spine growth and synapse turnover as structural mechanisms for experience-dependent 

plasticity in adult cortex [50].  

The cortical volume changes reported in the present study did not correlate with verbal 

recall performance, and could be due to non-specific neuronal responses to cognitive training. 

The current training program offered prolonged cognitive demands which could trigger 

changes in existing neuronal supplies [51], but not necessarily in a manner that co-vary 

significantly with change in clinical neuropsychological tests. In contrast to this hypothesis, 

however, is our finding of a correlation between free recall improvements and left 

hippocampal volume change. As discussed below, greater inter-individual differences in this 

structure due to preclinical neurodegenerative process are not unlikely, and might explain the 

closer proximity to cognitive measures for this structure. 
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The strongest training effects on volume change were found in the right prefrontal 

cortex (peak voxel corresponding to Brodmann area 47). Right prefrontal cortex is activated 

during contextual monitoring and episodic memory retrieval [52]. Right prefrontal over-

activation in SMI compared with controls during verbal recall has been interpreted in terms of 

neuronal compensation [10]. Whether compensatory mechanisms are mediating training-

related structural adaption needs to be tested. 

In no-training controls, we found volume reductions in agreement with previous 

longitudinal reports on brain structure in elderly samples; mean hippocampal volume change 

in the HC no-training group was -0.23% (SE=0.14), corresponding to a six-month change of 

nearly -0.6%. Using the same technique, Fjell et al. [53] reported hippocampal volume change 

corresponding to -0.42% in six-months in healthy elderly [c.fr. also 54]. Whereas these latter 

studies support longitudinal volume loss in healthy adults, discrepancies in magnitude 

between studies may stem from differences in MR-scanners, sample populations, and 

recruitment criteria.  

Training-related hippocampal plasticity and SMI 

Increased hippocampal volume was found in healthy training subjects following intervention. 

The result is supported by other intervention studies indicating that both physical and mental 

exercise protect the hippocampus from age-related deterioration [16, 17]. The SMI-subjects 

showed numerically less decrease in hippocampal volume compared with no-training 

controls, but this finding failed to reach significance. Whether SMI is associated with 

disrupted hippocampal plasticity, or whether training halts otherwise accelerated hippocampal 

shrinkage in SMI [13] compared with no-training SMI-controls is not known. Functional 

imaging results of memory training in MCI by Belleville and colleagues [55] are, however, in 

agreement with such a view: The authors showed that following 2-months of episodic 

memory-training, MCI patients exhibited increased activation in several cortical regions 



18 
 

during encoding and retrieval, but not in the hippocampus. The hypothesis of disrupted 

structural hippocampal plasticity in SMI needs to be addressed in future studies including a 

SMI non-training control group, and ideally diagnostic follow-up examinations for years.  

Hippocampus is the structure most vulnerable to early Alzheimer disease in terms of 

atrophy [56], and increased rate of decline is seen before clinical symptoms are manifest [57]. 

In a recent study of the SMI-training group only, we showed that individual differences in 

sub-regional volumes of the left hippocampal formation predicted cognitive improvements 

following training [23]. In the present study, we did not include analyses of hippocampal 

subregions, but tested whether total hippocampal baseline volumes in SMI differed from HC. 

We failed to find any significant group-differences in the hippocampus before training. 

However, rate of hippocampal change differed significantly between SMI- and HC-training 

groups, making us speculate that structural training-response or plasticity could be a more 

sensitive marker of early impairment than mere static baseline measures. It could be that some 

of the SMI participants experience very early AD-related atrophy explaining the present 

findings of subtle volume shrinkage despite memory training and also contribute to the 

correlation between functional gains and volumetric change. Of note, naturally occurring 

longitudinal hippocampal volume reductions have been shown to be related to memory 

change in healthy elderly [58-60], even those at very low risk of AD [61]. Thus, it is 

conceivable that memory intervention could impact memory function both through induction 

of hippocampal volume increase and through reduced atrophy, and it is not yet known how 

such processes may relate to early AD-related events. 

 Also of note, we found training-related increases in a cluster encompassing the left 

entorhinal cortex in the SMI group (Fig. 1a). The entorhinal cortex is often regarded as part of 

the hippocampal formation itself, and is susceptible to AD-like neurodegeneration 

comparable to that of the hippocampus proper [62, 63]. The finding of increased entorhinal 
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volume in SMI-subjects suggests that some of these individuals are not prone to reduced 

medial temporal lobe plasticity, and is probably rooted in the heterogeneity among individuals 

included in the rather crude SMI entity.  

Effects of memory training on cognitive measures 

Cognitive effects of the current training program was documented for the HC-training sample 

previously [18], and similar programs have shown to be effective in SMI [20, 44], as well as 

for MCI [21, 55]. In the present study, both the training groups and the HC no-training control 

group showed significant increases in CVLT-II free verbal recall scores at follow-up, where 

the latter likely represents test-retest effects [64]. Importantly, analysis of variance indicated 

greater recall increases in the two training groups compared with the control improvements, 

pointing to an effect of the present intervention itself. It should be stressed that the behavioral 

effects reported here are for cognitive test-performance only, as we did not include measures 

of transfer. A recent meta-analysis indicated that most studies to date have failed to show 

consistent transfer effects on, e.g., measures of activities of daily living [65].  

Limitations  

This study has limitations: First, we did not include a SMI no-training group, but instead 

compared SMI-subjects with healthy controls. The lack of an active control group prevents us 

from dissecting direct effects of memory training per se from additional, intervention-related 

factors, such as social interaction. Further, as SMI-controls might show greater hippocampal 

atrophy than do HC-controls [13], the lack of a SMI-control group could have masked a true 

effect of the present intervention in halting hippocampal atrophy; this hypothesis remain to be 

tested in future controlled trials.  

Other limitations include the short observational period, which does not allow 

inference about long-term effects of training. Also, the present study did not include 
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cerebrospinal fluid or genetic biomarkers. Assessment of genetic variation may broaden our 

understanding of plasticity in aging [66-68], and need to be applied to future SMI trials. 

Increased depressive symptom load in SMI has been reported previously [e.g., 8, 10, 

12]. SMI subjects in the present study reported more depressive symptoms compared with 

HC, but no subjects reported chronic depression or antidepressant use, and the symptoms are 

likely to be temporary. In the present training program, SMI subjects got some opportunity to 

express their memory concerns and meet peers with similar worries in the group-sessions. 

Yet, the psychosocial impact of the present training, particularly for the SMI-group, remains 

untested. In follow-up trials we will need to measure depressive symptoms longitudinally, and 

study how relevant mental health changes relate to the neurocognitive measures.  

Conclusion  

Implementing preventive interventions for individuals experiencing memory problems seems 

crucial in face of the aging population. Yet, neuroanatomical support for cognitive training 

effects has been lacking. In the present study we report initial findings suggesting that 

training-related structural brain plasticity remains in the earliest form of cognitive 

impairment. 
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Table 1 

 

Clinical characteristics of subjects with SMI, and healthy controls (HC), mean (SD) 

  

SMI, training 

 

HC, training 

 

HC, no training 

Age 60.9 (10.4) 61.3 (9.4) 60.3 (9.1) 

Sex 9F/10M 12F/10M 11F/9M 

Education 15.0 (2.4) 15.1 (1.9) 15.6 (1.8) 

IQ 119.3 (10.7) 118.0 (8.9) 118.8 (9.2) 

MMSE 29.1 (0.9) 29.0 (1.0)  29.1 (0.9) 

Rey-O, recall  22.2 (7.7) 19.1 (6.7) 21.1 (5.7) 

CVLT, 5-min delay 

recall 

11.0 (2.7) 11.5 (3.1) 11.7 (2.6) 

CVLT, 20-min delay 

recall 

11.3 (3.1) 12.1 (2.2) 12.4 (3.0) 

Re-test interval 65.5 (10.3) 65.3 (6.7) 65.3 (9.5) 

EMQ* 100.8 (35.9) 69.7 (24.2) 57.2 (18.6) 

GDS*  9.2 (6.2) 1.8 (2.0) 1.5 (2.2) 

SF-36, Mental health* 70.3 (19.4) 88.0 (8.2) 85.0 (10.6) 
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Table 1 footnote: * P < 0.05, significant main effect of group. IQ = intelligence quotient 

derived from Wechsler Abbreviated Scale of Intelligence (WASI) matrices and vocabulary 

sub tests. MMSE = Mini Mental State Exam. GDS = Geriatric Depression Scale; higher score 

indicates more depressive symptoms. SF-36, Mental health = the five-item mental health 

inventory of the Short-form 36 form; higher score indicates less depressive symptoms. Rey-O 

= 30 minutes delayed recall score of the Rey-Osterreith complex figure test. CVLT, 5- and 

20-minutes delay recall = raw scores from the free recall trials of the California Verbal 

Learning Test II. Re-test interval denotes days between 1st and 2nd MRI scanning session. 

Missing data: One subject lacked IQ and Rey-O data.  
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Table 2 

CVLT-II, delayed free verbal recall performance at baseline and follow-up, mean (SD) 

 SMI, training HC, training HC, no training 

 Basel

ine 

Follo

w-up 

t-

value 

%-

chan

ge 

Basel

ine 

Follo

w-up 

 t-

value 

%-

chan

ge 

Basel

ine 

Follo

w-up 

t-

value 

%-

chan

ge 

Reca

ll, 5-

min 

delay 

10.95 

(2.74

) 

14.05 

(2.86

) 

5.5 32 

(28) 

11.68 

(2.56

) 

14.36 

(2.34

) 

4.2 29 

(36) 

11.45 

(3.14

) 

13.05 

(2.34

) 

3.7 21 

(28) 

Reca

ll, 

20-

min 

delay 

11.32 

(3.07

) 

14.11 

(2.62

) 

5.0 37 

(57) 

12.09 

(2.20

) 

14.36 

(2.30

) 

4.3 22 

(26) 

12.35 

(3.03

) 

13.37 

(2.31

) 

3.4 13 

(20) 

Table 2 footnote: Missing CVLT-II data at follow-up for one HC no-training subject. Effect 

sizes are t-values from paired samples t-tests and percent change (SD) for each group for each 

test; all test results were significant at p < 0.01, indicating that each group performed better at 

re-test for both short- and long delayed recall.  
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Figures and figure legends 

 

Figure 1. a) Longitudinal increases in cortical volume in SMI- and HC-training groups 

following training. The GLM-analysis yielded four significant clusters, two in each 

hemisphere (cluster-wise P < .05, two-tailed, fully corrected for multiple comparisons across 

space). P-value maps from the GLM-analysis are color-coded in red-yellow gradient and 

overlaid template cortical surfaces for visualization purposes. Average volume change within 

each cluster is plotted for each participant together with group means (±1 standard error of the 

mean; c.fr. lower row figure legend) in b). 
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Figure 2. a) Memory training is associated with increased hippocampal volume in HC-

training group. The bar plot shows group averages (± 1 standard error of the mean (SE)) of 

left hippocampal volume change. b) Differential effects of memory training on frontal cortical 

and hippocampal plasticity in SMI (two-way ANOVA; ROI × training group interaction 

indicating comparable cortical plasticity, but significantly lower hippocampal plasticity in 

SMI compared with HC-training, c.fr. Results). The plot shows average (± 1 SE) gray matter 

volume change for HC (blue) and SMI-training (orange) groups in the left hippocampus and 

the right prefrontal cluster shown in Fig. 1a. c) Hippocampal volume change correlates with 

verbal recall improvement across all participants. The scatterplot shows CVLT 5-minutes 

delay free recall change residuals corrected for baseline performance (Y-axis) and baseline-
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corrected left hippocampal volume change (X-axis). A linear fit line across groups is shown 

in red.  


