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Abstract 

Alzheimer’s disease (AD) is regarded a human-specific condition, and it has been suggested that brain 

regions highly expanded in humans compared to other primates are selectively targeted. We 

calculated shared and unique variance in the distribution of AD atrophy accounted for by cortical 

expansion between macaque and human, affiliation to the default mode network (DMN), 

ontogenetic development and normal aging. Cortical expansion was moderately related to atrophy, 

but a critical discrepancy was seen in the medial temporo-parietal episodic memory network. 

Identification of “hotspots” and “coldspots” of expansion across several primate species did not yield 

compelling evidence for the hypothesis that highly expanded regions are specifically targeted. 

Controlling for distribution of atrophy in aging substantially attenuated the expansion-AD 

relationship. A path model showed that all variables explained unique variance in AD atrophy, but 

were generally mediated through aging. This supports a systems vulnerability model, where critical 

networks are subject to various negative impacts, aging in particular, rather than being selectively 

targeted in AD. An alternative approach is suggested, focused on the interplay of the phylogenetically 

old and preserved medial temporal lobe areas with more highly expanded association cortices 

governed by different principles of plasticity and stability. 
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Alzheimer’s disease (AD) is associated with heterogeneous brain atrophy, with accelerated atrophy in 

the temporal lobe in initial phases, spreading to medial parietal and then most of the cortex in later 

stages (McDonald et al., 2009). Fundamental to the understanding of disease progression is 

knowledge about the basic factors governing the distribution of atrophy. Several complementary 

theories or principles have been proposed. First, AD exists almost exclusively in humans, being very 

uncommon in other primates (Finch and Austad, 2012, Bufill et al., 2013). On this basis, it has been 

suggested that human-specific adaptations during evolution of the brain could be the cause of age-

related neurodegenerative diseases, and specifically AD (Neill, 1995, Rapoport and Nelson, 2011, 

Buckner, 2012, Neill, 2012, Bufill et al., 2013). Especially, high-expanding regions of the human cortex 

have been hypothesized to be preferentially targeted (Rapoport and Nelson, 2011). However, the 

extent to which prime target areas of AD, including medial temporal lobes (MTL), are relatively more 

expanded in the human cortex compared to the cortices of other primates is debatable (Van Essen 

and Dierker, 2007).Critically, the degree of correspondence between cortical expansion from 

monkeys to humans and distribution of atrophy in AD has not been formally quantified. 

 

Further, it has previously been suggested that what we now conceptualize as the default mode 

network (DMN) is supported by cortical areas that are particularly enlarged in humans, relative to 

other primates (Andreasen et al., 1995). Intriguingly, several have pointed to an overlap between 

DMN and distribution of amyloid plaques (Sperling et al., 2009), and speculated that this may be 

causally related to overall high levels of DMN activity (Jagust and Mormino, 2011, Buckner, 2012), 

thereby creating a link between evolutionary change, DMN activity and AD. Parts of the DMN, 

especially the medial parietal area, are characterized by hypometabolism (Gusnard et al., 2001), 

disturbed task-induced deactivations (Lustig et al., 2003) and reduced functional connectivity 

(Greicius et al., 2004) in AD. Hence, DMN function yields a complementary account to the selective 

cortical expansion hypothesis of distribution of atrophy in AD.  
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A third view is based on ontogenetic development, according to which brain regions with the most 

protracted development tend to be more vulnerable to degeneration in AD (Rapoport and Nelson, 

2011, Buckner, 2012, Bufill et al., 2013) as well as in aging (Tamnes et al., 2013). For instance, 

according to this view, the posterior-to-anterior gradient of cortical maturation will be expected to 

be reversed in aging-related decline. This is often referred to as the theory of retrogenesis, in which 

degenerative mechanisms are thought to reverse the order of acquisition in normal development 

(Reisberg et al., 2002, Ewers et al., 2011). Several causes for this phenomenon have been proposed, 

including similarities in the sequence of myelin acquisition in development and the pattern of myelin 

loss, cell loss and neurometabolic change in AD (Reisberg et al., 2002). Interestingly, similarities 

between cortical development and  the degree of cortical expansion in monkeys versus humans have 

also been demonstrated, with high-expanding regions with more complex cellular architecture 

showing more complex and protracted developmental trajectories (Rosa and Tweedale, 2005, Shaw 

et al., 2008, Hill et al., 2010). Accordingly, regions that are selectively larger in humans than in other 

primates, and that show relatively late maturation, may be more vulnerable to AD pathology. 

 

An alternative view to a disease-specific model where high-expanding regions in humans are 

preferentially targeted in AD is a systems vulnerability model. According to such a view, brain 

systems affected in AD may also be vulnerable to a range of insults and conditions, including normal 

aging (Jagust, 2013). Thus, a link between differential cortical expansion and AD can be interpreted in 

terms of general vulnerability of brain networks, where AD may represent one extreme case of 

negative impact. If so, one would expect that high-expanding brain regions are as preferentially 

targeted in normal aging in the absence of neurodegenerative disease, and that the relationship 

between expansion and AD to a substantial degree would be mediated by brain changes in normal 
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aging. The same line of reasoning applies to the relationship between the DMN system breakdown, 

expansion and AD vs. aging. 

 

Lack of formal quantification and comparison of the explanatory power of each of these theories is 

hampering progress in understanding distribution of atrophy in AD. On this background, we had 

three major aims: (1) To contrast rate of atrophy in AD between “hotspots” and “coldspots” of 

expansion of the cerebral cortex across primates of different sizes. We hypothesize that rate of 

atrophy in AD will not strictly follow degree of expansion, with especially the MTL with its known 

vulnerability to AD as a candidate for deviation. (2) To test to what extent the possible accelerated 

atrophy in AD in high-expanding regions can be explained by atrophy that also occurs in normal 

aging. This contrasts the principle of high-expanding areas being selectively targeted in AD vs. being 

more generally sensitive to negative impacts, in accordance with a systems-vulnerability view. (3) To 

test whether and how the affiliation of a cortical region to the DMN, degree of cortical expansion, 

aging and development are interrelated or independent in accounting for regional distribution of AD 

atrophy. These questions directly address the degree of specificity in the vulnerability of critical brain 

systems in AD.  

 

In the present work, we take advantage of well validated cortical expansion maps between macaque 

and humans (Bardet et al., 2007, Hill et al., 2010), across several primate species (Chaplin et al., 

2013) and from children to adults (Fjell et al., 2013b), as well as longitudinal atrophy maps from 

healthy older adults and AD patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(Fjell et al., 2013a), and of intrinsic connectivity maps based on 1000 participants (Yeo et al., 2011). 

These different datasets were re-analyzed and combined in a joint model. Comparing cortical 

expansion across primate species with grossly different brain sizes is most appropriately referred to 
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as allometric scaling. Here, cortical expansion from other primates to humans is used as a proxy for 

cortical areas more or less unique to the human brain.  

 

Materials and methods 

An overview of the different analysis steps taken is presented in Table 1. 

 

[Insert Table 1 about here] 

 

Atrophy and DMN maps 

Samples were drawn from ADNI (www.adni-info.org), and are identical to those in (Fjell et al., 

2013a). Participants were 55-91 years of age at baseline. Healthy controls scored 24-30 on Mini-

Mental State Examination (MMSE) (Folstein et al., 1975), Clinical Dementia Rating (CDR) (Morris, 

1993) of 0, and were non-depressed. 132 healthy older adults with no conversion to mild cognitive 

impairment over at least 3 year were available (60-90 years, mean 75.4, SD = 5.1, 63 females/ 69 

males), as were 122 AD patients with no change of diagnostic status over the three year interval (55-

89 years, mean 74.4, SD = 7.6, 57 females/ 65 males). From this group, a subsample (n = 37) of very 

low AD-risk was created based on normal levels of  CSF Aβ1-42 (> 192 pg/ml, corresponding to an 

established criterion from the ADNI, see (Shaw et al., 2009)) and homozygoticy for apolipoprotein 

(APOE) ε3. This biomarker defined very low-risk subsample was used in an additional test of common 

effect of aging and AD in the final path analysis (see below). All participants had one-year longitudinal 

MRI passing internal quality control. 1.5 T scanners were used (see 

http://adni.loni.ucla.edu/research/protocols/mri-protocols/), and percentage volumetric change 

over one year was calculated for each point on the cortical surface with no anatomical constraints 

using Quarc (Holland et al., 2011, Holland et al., 2012). DMN connectivity maps were drawn from 
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FreeSurfer version 5.3 (http://surfer.nmr.mgh.harvard.edu/), based on resting-state data from 1000 

subjects (Yeo et al., 2011) and thresholded by a vertex-wise confidence of .15. 

 

Expansion maps 

Cortical expansion maps between the macaque monkey and 12 young adult humans (Van Essen and 

Dierker, 2007, Hill et al., 2010), and between marmoset and capuchin and marmoset and macaque 

(Chaplin et al., 2013), were used for the calculations. Maps were originally created by surface-based 

registration methods, computed based on a combination of functional and structural homologies, 

described in detail elsewhere (Orban et al., 2004, Van Essen and Dierker, 2007, Hill et al., 2010, Van 

Essen et al., 2012, Chaplin et al., 2013). Only the right hemispheres were available. Computation of 

expansion maps for human development is described in (Fjell et al., 2013b), based on a sample of 

331 healthy children 4-20 years by use of a surface-based smoothing spline approach (Fjell et al., 

2010) applied to FreeSurfer generated cortical surface maps (Dale et al., 1999, Fischl et al., 1999a, 

Fischl et al., 1999b). 

 

Statistics 

All maps were Z-transformed to remove scaling differences (mean = 0, SD = 1). The maps were 

correlated vertex-by-vertex by Pearson correlations to yield a global measure of anatomical overlap 

(with the medial wall masked out before analyses). Significance was decided by permutation testing 

(10 000 permutations), and p-values were Bonferroni corrected for multiple comparisons. Partial 

correlations were run to control for the effect of aging. Regions of correlation vs. anti-correlation 

between AD atrophy and cortical expansion were identified by thresholding the Z-transformed 

atrophy and macaque to human expansion maps. Regions of correlation were characterized by Z > 

.05 or Z < -.05 for both cortical expansion and AD, and areas of anti-correlation by combinations of Z 

> .05 with Z < -.05. A similar procedure was used for DMN vs. AD atrophy. “Hotspots” and “coldspots” 
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of differential cortical expansion were identified by thresholding average expansion across all 

included species at z > 1 (hotspots) or z < -1 (coldspots). These regions were then used to extract rate 

of atrophy for all AD patients, tested against mean cortical atrophy by one sample t-tests. Next, 

atrophy in AD and aging, as well as cortical expansion, were correlated with the confidence value of 

each vertex of belonging to the DMN network, thresholded at .15. To show the distribution of 

variance across the different variables, a path model was constructed and the significance of each 

path was decided by permutation testing. This model was also run with the biomarker defined low 

risk subsample of healthy elderly. 

 

Results 

Cortical expansion 

The degree to which the surface model of the macaque cortex had to be expanded to reach the size 

of the surface model of human cortex, i.e. cortical expansion, as well as annual percentage volume 

change in AD and normal aging, were calculated for 163842 points on the brain surface and related 

by Pearson correlations (Figure 1). All reported correlations were significant at p < .05 (two-tailed, 

corrected for multiple comparisons) as evidenced by permutation testing. Expansion correlated with 

regional distribution of atrophy in AD (r = .35) and normal aging (r = .34). Scatterplot (Figure 2) of the 

relationship between expansion and atrophy in 34 cortical regions revealed great variability, with 

some showing high expansion and atrophy, e.g. lateral temporal regions, while others deviated from 

this trend, e.g. MTL regions. Atrophy in AD and aging showed a stronger correlation (r = .74). The AD-

expansion correlation dropped significantly to partial r = .15 when atrophy in aging was controlled 

for. 

 

 [Insert Figure 1 and Figure 2 about here] 
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Color-coded conjunction maps of correlations and anti-correlations between AD and differential 

cortical expansion were computed by thresholding the Z-transformed maps as described above 

(Figure 2). High expansion and high rate of atrophy could be seen in the entire lateral temporal 

cortex, extending into the temporo-parietal junction (TPJ) and inferior parietal cortices. Low 

expansion and low rate of atrophy in AD characterized the central sulcus, cuneus, calcarine sulcus 

and adjacent extrastriate cortex  and the lingual gyrus. Anti-correlations were seen in the medial 

temporal lobe (MTL), including entorhinal, parahippocampal and fusiform cortices, as well as 

posterior cingulate/ retrosplenial cortices extending towards the precuneus and supplementary 

motor cortex, which have marked decline both in AD and in normal aging despite relatively low 

cortical expansion in the comparison between macaque and human.  

 

Next, expansion maps across several Simian primate species (see (Chaplin et al., 2013)) were 

compared, showing a conserved pattern of differential cortical expansion (Figure 3). MTL showed the 

same relative preservation across species that was seen between macaque and human. “Hotspots” 

and “coldspots” of expansion were identified by thresholding the average expansion map across all 

species at z > 1 (hotspots) or z < -1 (coldspots) (Figure 4). Two previously identified major hotspots 

were situated in the TPJ extending somewhat anteriorly into the lateral temporal cortex (H1 in Figure 

4), and in the lateral middle and inferior prefrontal cortex (H2) (Chaplin et al., 2013). Two adjacent 

coldspots were identified in the MTL extending inferiorly to the fusiform gyrus (C1) and in the medial 

occipital lobe (C2). In AD, H1 (2.41%) and C1 (2.22%) showed more decline than the mean cortical 

atrophy of 1.62% (H1 t = 4.60; C1 t = 5.13, df = 121, p < .0001), as evidenced by a one-sample t-test. 

C2 (0.57%) showed less decline than the mean (t = 12.96, p < .0001) while H2 (1.57%) did not differ 

from mean atrophy (t = 0.34, n.s.). 

 

[Insert Figure 3 and Figure 4 about here] 
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Default Mode Network (DMN) vulnerability 

AD correlated .27, aging .19 and cortical expansion .15 with the DMN network (Yeo et al., 2011) (p < 

.05, corrected) (Figure 5). More detailed inspections revealed overlap between DMN and AD in parts 

of lateral temporal cortex and around TPJ and in the medial parietal (precuneus) and posterior 

cingulate/ retrosplenial cortex (Figure 2), while high atrophy regions outside DMN was seen in the 

rest of the lateral and medial/ inferior temporal cortex. MTL had lower probabilities of being part of 

the DMN according to this parcellation scheme, although by use of a lower confidence threshold for 

inclusion, some vertices in the parahippocampal gyrus, mainly in the left hemisphere, would have 

been included in the DMN (Yeo et al., 2011). Interestingly, within DMN, cortical expansion and AD 

correlated in the lateral temporal cortex and TPJ, but were anti-correlated in posterior cingulate/ 

retrosplenial cortex.  

 

[Insert Figure 5 about here] 

 

Path modeling 

Using all variables as predictors and AD atrophy as dependent in a multiple regression yielded R2 = 

.57. A path model (SPSS Amos version 21) was constructed to disentangle variance across all 

variables (Figure 6). Cortical expansion between macaque and human was the single exogenous 

variable, AD was the endogenous variable, with  DMN affiliation, development and aging as 

mediating variables. Paths were drawn from cortical expansion to all variables and from all variables 

to AD. Additional paths were drawn from DMN to aging and development and from development to 

aging. All paths were significant (p < .05, corrected). Aging was related to AD by partial β = .67, 

compared to .12 for DMN and .10 for cortical expansion. Expansion was further related to aging by β 

= .30 and to DMN by β = .15. DMN was related to aging by β = .12. The indirect contribution from 
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expansion to AD through aging was .20. DMN had an indirect contribution through aging of .08. 

Developmental expansion was related to cortical expansion (β = .11), DMN (β = .13), aging (β = .18) 

and to a smaller degree directly to AD atrophy (β = .04). The indirect contribution from development 

to AD through aging was .12.  

 

[Insert Figure 6 about here] 

 

As a final test, the estimations were re-run with the biomarker defined low risk group of elderly 

included instead of the full sample of elderly. The general results upheld, but with a moderate 

reduction in the relationship between cortical expansion and aging (from β = .30 to β = .19) and aging 

and AD (from β = .67 to β = .56), and an increase in the relationship between cortical expansion and 

AD (β = .10 to β = .19). 

 

Discussion 

Atrophy as a function of cortical expansion 

Different rates of cortical expansion between the macaque and human brains explained 12.2% of the 

distribution of atrophy in AD. One hotspot of expansion, TPJ and parts of lateral temporal cortex, 

showed highly elevated rates of atrophy in AD. Conversely, medial parts of the occipital cortex 

showed low expansion and resistance to atrophy. However, the results also revealed deeply 

problematic aspects with the view that high-expanding regions are specifically targeted in AD. MTL is 

the earliest and most heavily affected region in AD (Price and Morris, 1999, McDonald et al., 2009) 

but show relatively low rates of expansion between macaque and human (Bardet et al., 2007, Hill et 

al., 2010) and across several simian species (Chaplin et al., 2013). This “coldspot” of expansion 

showed accelerated atrophy, with the MTL and medial parietal memory network showing marked 

anti-correlation between degree of expansion vs. AD. Rodent models are frequently used to study 
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learning, memory and spatial navigation (Colgin et al., 2008), because the MTL system is evolutionary 

preserved, with similarities in organization and function across many species. It has also been shown 

that a part of the retrosplenial cortex in primates, the prostriate cortex, has evolutionary old 

histological characteristics, with some very primitive visual response properties (Yu et al., 2012). 

 

These low-expanding and AD-vulnerable regions overlapped well with the Papez’ circuit, which is 

important for normal episodic memory function. The fact that such cognitive functions are reduced 

due to degeneration of low expanding brain regions and networks prompts the question of to what 

degree they really represent human-specific adaptations. Since storage and transmission of 

knowledge in preliterate societies should depend highly on individual brain capacity, evolution of a 

human-specific memory capacity, with corresponding expansion of relevant cortical regions, could be 

plausible (Bufill and Carbonell, 2004). In accordance with such an account, there are aspects of 

human memory vulnerable to AD (Addis et al., 2009) that may not be shared with other primate 

species, such as episodic simulation and long-term foresight - mental time travels ((Tulving, 1983), 

but see (Schwartz and Evans, 2001)). A prime candidate for supporting such functions is the DMN, 

likely involved in aspects of complex cognition such as episodic simulations (Addis et al., 2009), self-

projection (Buckner and Carroll, 2007), and mental time travels (Ostby et al., 2012). These are 

functions that may possess qualities that could be human-specific ((Tulving, 1983, Suddendorf, 2013), 

but see (Schwartz and Evans, 2001, Corballis, 2013)). However, DMN-like activity develops quickly 

during the first year of infancy (Gao et al., 2013), likely prior to establishment of more stable, 

extensive and prolonged episodic memory and mental time travel abilities, and has been observed in 

a number of species, including non-human primates (Rilling et al., 2007, Barks et al., 2013, Belcher et 

al., 2013), rats (Lu et al., 2012) and mice (Sforazzini et al., 2013). A meta-analysis of fMRI data in 

monkeys showed consistent task-related deactivation within a network including medial prefrontal 

and medial and lateral parietal cortex, thus very similar to the human DMN (Mantini et al., 2011), 
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indicating that DMN may not be exclusive to humans. There is even evidence that DMN in 

chimpanzees, like in humans, plays a role in social cognition (Barks et al., 2013). A recent study of 

humans and monkeys identified two human-specific resting state networks, which did not include 

DMN (Mantini et al., 2013). Although it is very difficult to make inferences from brain activity to 

cognitive function, especially across species and particularly during uncontrolled task-free conditions, 

comparative data do not support the view that the DMN reflects the brain’s most human and 

complex parts. This also means that the function of the DMN not necessarily represents human-

specific cognition. Of course we do not know if the DMN has the same function across species, and 

there could be microstructural differences that lead to differences in DMN function.  

 

Regardless of whether certain aspects of episodic memory differ between humans and other 

primates (Corballis, 2013, Suddendorf, 2013), it is not evident that these aspects are the most 

vulnerable early in AD. Spatial navigation is an early AD symptom related to episodic memory 

(Bellassen et al., 2012, Lithfous et al., 2013), also dependent on the MTL system, which can hardly be 

said to be a human-specific cognitive adaptation. The basis of spatial navigation is rooted in grid cells 

in the entorhinal cortex (Fyhn et al., 2004), which is the first region to harbor increased amounts of 

neurofibrillary tangles and other AD-pathology (Braak and Braak, 1991, Van Hoesen et al., 1991), 

although likely not β-amyloid in the initial phases (see below). Together with the occipital cortex, 

MTL was the major “coldspot” region in the expansion of the cerebral cortex, with a high degree of 

relative preservation across several primate species. Thus, even though we can not exclude the 

possibility that certain human-specific cognitive functions may be impaired in AD, there seems to be 

no clear connection between the early cognitive symptoms and brain pathology on the one hand, 

and cortical expansion across primate species and human-specific higher-order cognitive functions 

on the other.  
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Specificity of atrophy: aging vs. AD 

Despite discrepancy in the critical medial DMN and MTL regions, there were also some overlaps 

between cortical expansion and AD atrophy. A further aim of this study was to test whether high-

expanding regions with accelerated atrophy were preferentially targeted in AD compared to aging. 

The expansion-atrophy relationship was similar in magnitude in aging and AD. Partialling out the 

effect of aging caused the relationship between cortical expansion and AD to drop from 12.2% to 

2.25% shared variance. This suggests that rather than being specifically targeted by AD, some high 

expanding areas may represent regions of high vulnerability to different conditions, aging in 

particular, in line with a systems vulnerability view (Jagust, 2013). The hotspot region in the TPJ/ 

lateral temporal cortex showed accelerated decline in AD, but was heavily affected by aging as well. 

To the extent that high-expanding regions are specifically targeted in AD, we would not expect to see 

the same pattern of decline in normal aging. The same general pattern was upheld when only the 

healthy elderly negative for amyloid and homozygote for APOE ε3 were included, although the 

relationships naturally were somewhat attenuated. 

 

A common denominator for low-expanding regions that are vulnerable to AD and normal aging could 

be high levels of unique types of plasticity (Cotman et al., 1993, Neill, 1995, Mesulam, 1999, Neill, 

2012). MTL and DMN play special roles in memory, with high demands for life-long plasticity (Aimone 

et al., 2010, Lazarov et al., 2010). MTL also harbors the only area of adult human neurogenesis 

besides the olfactory bulb, the dentate gyrus (Eriksson et al., 1998, Lotsch et al., 2013). This state of 

affairs is markedly different in a number of other species, including other primates, where new 

neurons may be added throughout life in areas of the neocortex ((Gould et al., 2001, Bernier et al., 

2002), but see (Rakic, 2002)). Evolution must progress with a delicate balance of plasticity and 

stability, and appears to have favored stability over plasticity in humans (Rakic, 2002, 2004, Bhardwaj 

et al., 2006). Hence, although the human MTL is not very different from other primate species in 
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terms of anatomy, function (Clark and Squire, 2013) or neurogenesis (Rakic, 2002), what is special 

about the human MTL may rather be its role as an evolutionary old and plastic area within an 

otherwise much more developed and expanded neocortex.  

 

Altered neurogenesis in the hippocampus has been proposed as an early critical event in AD (Mu and 

Gage, 2011), and lesions in the limbic system could have consequences for association cortices 

function due to reciprocally interconnections (Mesulam, 1999). Of note, many of the structures on 

the surface of the basal forebrain and within MTL that comprise olfactory cortex are also sites of 

initial pathology (Price et al., 1991, Wang et al., 2010), and along with episodic memory and 

navigation (Drago et al., 2011), olfactory  function (Stamps et al., 2013) is among the first to decline 

in AD. The downside of being lone areas involved in, or surrounding or tightly interconnected to 

areas being involved in, this type of plasticity in the human brain may be increased vulnerability, with 

accumulation of negative impacts through life (see below). Different mechanisms related to 

neuroplasticity are then manifested in other cortical regions. For instance, dendritic spines may 

represent a primary site of structural plasticity throughout the cortex, and spine density and 

plasticity is reduced in aging (Jacobs et al., 1997, Esiri, 2007, Freeman et al., 2008, Bloss et al., 2011, 

Benavides-Piccione et al., 2012). Importantly, while tangle accumulation starts in MTL, spreading to 

isocortical association areas in later AD stages (Braak and Braak, 1991), medial parietal and 

prefrontal DMN regions are characterized by increased concentrations of β-amyloid in initial phases 

(Sperling et al., 2009). Thus, the two hallmark histopathological criteria for AD originate in regions 

characterized by different mechanisms of plasticity, that are relatively preserved during evolution 

while showing high rates of atrophy.  

 

The cost of maintained plasticity may be increased vulnerability to factors which can trigger cognitive 

decline (Bufill et al., 2013). Perturbation of neuroplasticity has been proposed as a fundamental 
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principle that could potentially account for the clinical and neuropathological features of AD, and 

that amyloid depositions and neurofibrillary tangles are manifestations of the same underlying 

phenomenon (Mesulam, 1999). The potential for neuroplasticity is higher in the limbic system than in 

other parts of the cerebral cortex, which increases its vulnerability to neurofibrillary degeneration. A 

consequence of this view may be that late-onset AD is the manifestation of a failure to keep up with 

the “increasingly more burdensome work of plasticity” (Mesulam, 1999).  

 

Interestingly, this calls for a life-span perspective on aging and AD, in that the same regions are 

sensitive even to prenatal factors. For instance, recent research demonstrated effects of normal 

variation in neonatal characteristics such as birth weight on MTL (Walhovd et al., 2012) and DMN 

structures (Raznahan et al., 2012). Thus, rather than regarding such networks as specifically targeted 

in AD, a life-span systems vulnerability view may explain dysfunction of these systems across a range 

of insults and conditions. Effects of APOE4, the major risk allele for sporadic AD (Corder et al., 1993), 

have been found on gray matter volume in MTL in neonates (Knickmeyer et al., 2013) and in the 

entorhinal cortex and the hippocampus in children and adolescents (Shaw et al., 2007). The likely 

existence of life-long gene × environment interactive negative influences indicates that antagonistic 

pleiotropy is not the only explanation for brain degeneration in aging-related dementias such as AD. 

The possibility of extreme sensitivity to initial conditions, and developmental contributions to 

emergence of pathology due to allostatic load (Lenroot and Giedd, 2011), may fit better with a 

systems vulnerability account for aging-related degeneration. 

 

Common and shared effects 

The final aim of the study was to test the distribution of variance between DMN, degree of 

differential cortical expansion between species, development, aging and AD. Atrophy was higher 

within the DMN, and DMN showed on average more expansion than non-DMN regions. Interestingly, 
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DMN and cortical expansion were mainly independent predictors of AD. Although there was a small 

indirect contribution to AD atrophy from cortical expansion through DMN, the proposed link 

between DMN and expansion in explaining AD-vulnerability was not strong. DMN and cortical 

expansion also contributed to explain AD atrophy indirectly through the influence of age. The indirect 

contribution from expansion to AD through aging was .20, compared to the direct contribution of 

.10. This suggests that expansion and DMN affiliation explain the anatomical distribution of atrophy 

in AD to a substantial extent through their influence on atrophy in aging. The same was true for 

developmental expansion, which as expected was related to cortical expansion between macaque 

and human (Hill et al., 2010, Fjell et al., 2013b), with a direct relationship to AD of .04 and an indirect 

relationship through aging of.12.  

 

Limitations and conclusion 

The human brain is not a direct result of evolutionary adaptation of living primates, as humans and 

other primates have extinct common ancestors. As pointed out by Rakic (2009), comparative 

anatomical and DNA sequencing data indicate that macaques and humans belong to different 

branches on the phylogenetic tree (Rakic, 2009), and as such, one cannot draw inferences about 

evolution directly from cortical differences between them. Thus, inter-species comparisons can only 

be used to test hypotheses about aspects of the brain that are more or less human-specific, or at 

least, more or less different between humans and other living primate species. This way, inter-

species comparisons can be very useful in informing us about the anatomical correspondence 

between AD atrophy and degree of “human uniqueness” in regional cortical size. Further, during 

hominid evolution, cortical adaptations in addition to expansion have certainly occurred (Geschwind 

and Rakic, 2013), e.g. related to gene expression (Bufill et al., 2013), microstructural changes (Chen 

et al., 2013) and network reorganization (Buckner and Krienen, 2013). Given that AD appears to be a 

unique human disease, we would expect overlap between disease mechanisms and unique aspects 
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of the human brain at some levels. The present results indicate that a simple expansion-vulnerability 

model of cortical atrophy may not be warranted, instead favoring an approach focusing on why 

regions well-preserved across several primates seem to be critical in the chain of pathology. As 

speculated, it may be worth closing in on the interplay between phylogenetically old and preserved 

mechanisms of plasticity, as seen for example in the dentate gyrus, and high-expanding association 

cortices.  

 

Another issue of discussion is the delineation of DMN. It has been suggested to fractionate DMN into 

an MTL and a dorsal medial prefrontal subsystem including TPJ and lateral temporal cortices, with 

posterior cingulate and anterior medial prefrontal cortex as hubs (Andrews-Hanna et al., 2010). 

Following this scheme, the MTL system would be preserved across primates and characterized by 

high degree of atrophy. The prefrontal would be more expanded, with some regions less (medial 

prefrontal) and others more (lateral temporal) prone to atrophy. Thus, the DMN is not easily 

characterized as a unitary system in terms of either expansion or AD atrophy. 

 

The data also demonstrate that aging is the major factor explaining the anatomical distribution of 

atrophy in AD. Differential degree of cortical expansion, affiliation to DMN and developmental timing 

all contribute to explain the regional distribution of AD atrophy to a substantial extent through their 

influence on aging. Thus, a systems vulnerability approach to AD, with the aim of trying to 

understand why certain brain regions and neural networks are vulnerable to different detrimental 

influences accumulating through life (Jagust, 2013), may be a more promising approach than 

focusing on the effect of the disease in isolation. What is now needed are proper mechanistic models 

to explain the observed correlations between expansion and vulnerability across aging and AD on a 

molecular neurobiological level. 
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Figure Legends 

Figure 1 Regional distribution of atrophy and cortical expansion 

Panel A: Mean annual atrophy in terms of volume reduction in AD, z-transformed to remove scaling 

effects. Panel B: z-transformed cortical expansion between from macaque and human. Panel C: z-

transformed maps of atrophy in terms of volume reductions in normal aging. For all panels, red-

yellow indicates higher than mean annual atrophy, while blue-cyan indicates lower than mean 

atrophy. Scales go from 2 (red-yellow) to -2 (blue-cyan). The brains are semi-inflated to allow better 

visualization of effects within sulci. 

 

Figure 2 AD atrophy, cortical expansion and DMN 

Panel A: Mean AD atrophy and expansion (z-scores) were quantified within 34 cortical regions of 

interest to illustrate variability across regions. The x-axis denotes degree of cortical expansion from 

relatively lower (blue-cyan axis color) to higher (red-yellow axis color). The transition point between 

blue and red axis color denotes mean expansion across the surface. The y-axis denotes percentage 

annual cortical volume decline in the AD patients. The color of the dots indicates from which gross 

region of the brain they are taken. Although there is a correlation between how much cortical 

expansion is seen within a region and the amount of AD atrophy, there are also regions not following 

this tendency, e.g. the medial temporal regions characterized by relatively low degree of expansion 

but high levels of atrophy in AD. Panel B: The Z-transformed cortical expansion and AD atrophy maps 

from Figure 1 were thresholded at 0.5 < Z < -0.5. Areas of correlation were characterized by Z > .05 

(green) or Z < -0.5 (yellow) for both cortical expansion and AD, while areas of anti-correlation (pink) 

were characterized by combinations of Z > 0.5 with Z < -0.5. The medial surface is slightly tilted to 

allow inspection of inferior temporal and fusiform cortex. Panel C: A similar procedure was used to 

show areas of high atrophy within DMN (green), low atrophy outside DMN (yellow) and high atrophy 

outside DMN (pink). 
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Figure 3 A conserved pattern of differential expansion across primate species 

Cortical expansion (Z-scores) from comparisons between cortical area of smaller vs. larger brained 

Simian primates. From left to right are shown marmoset vs. capuchin, marmoset vs. macaque and 

macaque vs. humans, as well as the mean expansion across all species. General patterns of high and 

relatively low expansion are well preserved across species. The medial temporal cortex (lower panel) 

showed high degree of preservation across all comparisons (thresholded by z < -1).  

 

Figure 4 Hotspots and coldspots of cortical expansion 

Upper panel: The average expansion maps across marmoset, capuchin, macaque and human were 

thresholded at z > 1 or z < -1 to reveal regions of consistently high (“hotspots” – green-yellow) and 

consistently low (“coldspots”- blue-pink) cortical expansion through across primates. Lower panel: 

Mean atrophy in AD was quantified within the two hotspot regions (H1 & H2) and the two coldspot 

regions (C1 & C2). H1 and C1 showed elevated rate of atrophy, while C2 showed reduced decline.  

 

Figure 5 Default mode network (DMN) and cortical expansion 

Upper panel: Delineation of the DMN based on (Yeo et al., 2011). Colors denote the probability for 

each vertex being a part of the DMN. The scale goes from .15 (red) to 1 (yellow). Lower panel: 

Atrophy and expansion from the maps in Figure 1 were extracted for vertices inside vs. outside DMN 

and plotted in terms of z-scores. Atrophy and expansion are larger for DMN vertices than vertices 

outside DMN. All contrasts were significant (p < .05, corrected). 

 

Figure 6 Path model of shared and unique contributions to distribution of AD pathology 
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A path diagram was constructed to show how the variance was distributed among variables. Arrows 

show relationships between any two variables in terms of independent (start of line) vs. dependent 

(end of arrow), colors and thickness of lines correspond to standardized partial path weights.  
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Input Processing Output 

Human atrophy maps 

1-year longitudinal MRI in 122 
AD patients 

Quarc, surface-based analysis  
(Holland et al., 2011), Z-
transformation 

AD atrophy maps (z-scores) 

1-year longitudinal MRI in 132 
healthy elderly 

Quarc, surface-based analysis, 
Z-transformation  

Aging atrophy maps (z-scores) 

1-year longitudinal MRI in 37 
healthy elderly with very low 
AD -risk 

Quarc, surface-based analysis, 
Z-transformation 

Low-risk aging atrophy maps (z-
scores) 

Cortical expansion maps between primates of different size 

MRI of one macaque and 12 
young humans 

Surface-based registrations, 
based on inter-species 
homologies, by CARET (Orban 
et al., 2004; Van Essen and 
Dierker, 2007), Z-
transformation 

Macaque-vs-human expansion 
maps (z-scores) 

MRI of one marmoset, one 
capuchin, one macaque 

Surface-based registrations, 
based on inter-species 
homologies by CARET (Chaplin 
et al., 2013; Van Essen et al., 
2012), Z-transformation 

Marmoset-vs-capuchin 
expansion map, marmoset-vs-
macaque expansion map (z-
scores) 

Normalized (0-1) expansion 
maps of marmoset-vs-
capuchin, marmoset-vs-
macaque, macaque-vs-human 

Average of normalized 
expansion maps across all 
species (Chaplin et al., 2013), Z-
transformed 

Average expansion map across 
primates (z-scores) 

Average expansion map (z-
scores) 

Thresholded at 1 < Z or Z < -1 “Hotspots” and “Coldspots” of 
expansion 

Human developmental expansion 

MRI of 331 healthy children, 4-
20 years 

FreeSurfer reconstructions and 
area calculations, surface-
based smoothing spline (Fjell et 
al., 2010), Z-transformation 

Estimated mean cortical 
expansion (z-scores) 

Default mode network 
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Resting-state BOLD scans from 
1000 healthy participants 

Surface-based alignment, 
clustering approach (Yeo et al., 
2011), thresholded at .15 
confidence 

Thresholded DMN confidence 
maps 

 

Table 1 Overview of the main analysis and reconstruction steps 
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