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A B S T R A C T

Climate change is an increasing threat to freshwater ecosystem goods and services. We review recent
research regarding the direct and indirect impacts of climate change on freshwater ecosystems and the
severity of their undesirable effects on ecosystem processes and services. Appropriate management
strategies are needed to mitigate the long-term or irreversible losses of ecosystem services caused by
climate change. To address this, this review puts forward a threshold-based management framework as a
potential platform for scientists, decision makers and stakeholders of freshwater ecosystems to work
together in reducing risks from climate change. In this framework, the susceptibility of local freshwater
ecosystems to change beyond thresholds is continuously investigated and updated by scientists, used to
design policy targets by decision makers, and used to establish mitigation measures by local
stakeholders.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Freshwater ecosystems, defined as aquatic systems with
average salinities less than 0.5 parts per thousand (Moss, 2009),
provide a diverse range of essential services such as food products,
clear water, waste recycling, nutrient cycling, carbon storage, as
well as cultural and recreational amenities. However, freshwater
ecosystems are changing rapidly due to factors like urbanization
and climate change. Over the past 50 years, economic and
population growth have resulted in more rapid changes in the
structure and function of freshwater ecosystems than in any
other comparable time period of human history (MEA, 2005).
Populations of freshwater species in North America, Europe,
Australia, and New Zealand are estimated to have declined on an
average by 50% between 1970 and 2000 (MEA, 2005). Freshwater
ecosystems in urban areas are among the most affected (Kozlowski
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and Bondallaz, 2013), in that urbanization has led to dramatic
changes in freshwater ecosystems throughout the globe (Alberti
et al., 2007; Kozlowski and Bondallaz, 2013).

Adding to the ongoing burdens of intensive agriculture,
industrialization and urbanization, climate change is an addi-
tional serious threat to freshwater ecosystems and biodiversity
worldwide. Climate change can alter freshwater ecosystems via
various direct and indirect mechanisms (Chu et al., 2005;
Vörösmarty et al., 2010). Rising temperature and changing
precipitation directly influence shifts in habitats and seasons,
and also the physiological adaptation and phenology of freshwa-
ter species, thereby altering food web structure and ecosystem
dynamics (Doak and Morris, 2010; Walther et al., 2002). Climate
change can also indirectly affect freshwater ecosystems via
geomorphological alterations of lake and river systems, changes
in nutrient and ionic loads (leading towards alteration of
photosynthetic rates, eutrophication, acidification, salinization)
as well as enhancing the impacts of prevalent diseases, chemical
pollutants, biological invasions, and changes in predation and
competition among species (IPCC, 2007). There have been a large
number of discussions on the challenges and solutions facing
human interventions to freshwater ecosystems (e.g., Chen et al.,
2014), considering experimental and theoretical ecological
thresholds (e.g., Horan et al., 2011), and how to best implement
le under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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risk management of aquatic ecosystems (e.g., Chen et al., 2011,
2013). However, it remains rare to explicitly discuss the
freshwater ecological thresholds associated with climate change.
There is an urgent need for integrating the scientific understand-
ing of the diverse, complex and interrelated impacts of climate
change on the thresholds of freshwater ecosystems. Here we
review freshwater ecosystem thresholds in the context of climate
change, and suggest the need for collaborative efforts across
scientists, decision makers and stakeholders at all levels.

2. What are ecological thresholds?

There are several definitions for the term “ecological threshold”.
Most of these definitions commonly emphasize the non-linearity
of ecological or biological responses to pressures caused by human
interventions or natural processes. As defined by Groffman et al.
Fig. 1. Conceptualization of threshold-based ecosystem change. Climate change control 

the y-axis. The climate change variables could be one or any combination of parameters th
of invasive species, nutrient concentration). The ecosystem service could refer to any requ
ecosystem change in this way could serve as a basis for communication in ecosystem m
makers manage appropriately, and stakeholders get involved through enacting mitigat
(2006), an ecological threshold is the point, or “tipping point”, at
which there is an abrupt change in an ecosystem quality, property
or phenomenon, or where small changes in environmental drivers
can lead to dramatic changes to an ecosystem. Thresholds and their
associated stability towards different environmental drivers can
be conceptualized within a coupled socioeconomic–ecological
system (Horan et al., 2011). Any restoration of losses in ecosystem
services after a threshold is crossed could be difficult or costly
(Groffman et al., 2006).

Identifying ecological thresholds related to climate change is
complex, as various climate-change control variables (e.g.,
atmospheric and surface water temperature) can be related
differently to changes in the ecosystem service responses (e.g.,
fish supply, volume of potable water) (Rockström et al., 2009).

Fig. 1 presents a general schematic diagram on how to view the
interactions between climate change control variables and
variables are on the x-axis and the response variables on ecosystem services are on
at are directly or indirectly affected by climate change (such as temperature, number
ired by the local population (such as potable water, fish population). Conceptualizing
anagement, where scientists inform of susceptibility to threshold changes, decision
ion measures to prevent loss of services.
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ecosystem service response variables using a threshold-based
approach. Ecosystem services can be linearly dependent, non-
linearly dependent, or independent of the climate control
variables. When a shift in a climate control variable causes a
substantial depletion in a dependent ecosystem service, a
“threshold”, point F1, may be crossed, after which the drop in
this service can become depleted rapidly with slight increases in
the climate control variable. Often it is difficult to predict when a
threshold occurs, or even ascertain the relationship between the
climate change variable and the ecosystem service. Thus, a range
can be assigned as a “zone of uncertainty”. The “ecosystem
boundary”, point F0 in Fig. 1 refers to the lowest value of a climate
change control variable (compared to the present value) in which
the probability of passing a “threshold” becomes higher than an
assigned margin of safety (Rockström et al., 2009). Sometimes,
ecosystems exhibit resilience (Kattel et al., 2013). After the
thresholds are crossed, ecosystem services can recover either
due to the climatic and other environmental variable reversing to
an earlier level or some delayed feedback or buffering mechanism.
This restoration is usually not instantaneous. It often requires the
control-variable to decrease to a level substantially below the
threshold, which is a phenomenon, referred to as ecosystem
hysteresis (Scheffer et al., 2001). However, if ecosystem thresholds
are crossed and restored periodically (e.g., from forest fires), this
behavior would be “cyclical”. However, if the change in a
climatically sensitive and controlled variable becomes extreme,
a “point of no return” can be reached, indicated as point F2 in Fig. 1,
i.e., a ‘catastrophic’ transition where the ecosystem can no longer
return to its original state (e.g., Kattel et al., 2013). The condition
between F1 and F2 can have profound implications for ‘early
warning signals’ for ecosystem management (Wang et al., 2012).
However, this is often unnoticed (Scheffer et al., 2001; Folke et al.,
2004).

A key goal of ecosystem management is to avoid thresholds
with slow recovery or points of no return. Though difficult for
scientists to anticipate, boundaries and thresholds are highly
useful for mobilizing policy makers or stakeholders. For instance,
the use of 350 ppm CO2 being a safe level to avoid a tipping point
for global ecosystem change has been successful for mobilizing
stakeholders and policy efforts (Hansen et al., 2008), as has been
the prediction that a warming of 1–2.5 �C above pre-industrial
Table 1
Example freshwater ecosystem monitoring approaches with possible scientific, policy and
economic services.

Environmental parameter monitoring Potential affected thresh
monitoringa

Climate: surface to bottom water temperature,
evapotranspiration rates, precipitation, humidity season
onset and length

Population of algae and 

migration of fish and oth
habitat range

Hydrology: water level, water volume, water resident time Population of algae and 

excess flooding, drownin
habitat

Light: UV radiation, visible water depth Population of algae and 

(planktonic and benthic)
Oxygen: dissolved oxygen (DO) levels, lake stratification. Phytoplankton blooms, a

species, vertically migrat
oxygen sensitive species

Geomorphology: erosion rates, sedimentation, siltation Riparian fish habitat, form
zones

Water quality: pH, micropollutants, dissolved organic
carbon (DOC), nutrients including total nitrogen (TN), total
phosphorus (TP) and chlorophyll a (chl a)

Loss of sensitive species
species dynamics,popula
and plants

Species diversity: presence of invasive species, changes in
foodweb structure, biodiversity losses

Loss of locally important

a The threshold like responses and socio-economic service may be affected by a combi
water over usage, urbanization).
levels could be a threshold value where substantial loss of Arctic
summer ice or the Greenland ice sheet could occur (IPCC, 2007).

3. Effects of climate change and threshold tendencies in
freshwater ecosystems

The most practical thresholds for use by policy makers and
stakeholders are those based on measurable control variables that
have a straightforward link to an ecosystem response (Table 1). The
easier the climate control variable is to quantify, as well as its effect
on ecosystem services, the more practical it is to implement policy
and effective monitoring measures. However, in practice direct
links between climate change control variables and ecosystem
responses are difficult to establish. Anthropogenic climate change
is quantified by several parameters that could be used as control
variables for defining the thresholds of freshwater ecosystems, e.g.,
atmospheric and surface water temperature, the length and onset
of seasons, and precipitation (Table 1). However, in most cases,
multiple control variables acting together must be considered. For
example, riverine ecosystems are strongly and simultaneously
influenced by variables like streamflow, erosion rates, tempera-
ture, and concentrations of micro-pollutants; though how to
account for all the variables in a threshold type model is not always
straightforward (Groffman et al., 2006). Other control variables
that are indirectly influenced by climate change as well as other
anthropogenic processes include water volume, salinity, dissolved
oxygen (DO) and pH. All of these parameters, in isolation or in
combination, could influence ecosystem services. In Section 4, we
review the state-of-the-art understanding of how shifts towards
ecological thresholds for freshwater ecosystems can be influenced
directly or indirectly by climate change. A schematic overview of
this presentation is provided in Fig. 2.

4. Thresholds associated with direct effects of climate change

Over the past decades, freshwater ecosystems have exhibited
direct responses to changes in temperature, precipitation, and
atmospheric humidity (Hader et al., 2007), particularly in regard to
the phenology and physiology of freshwater species, as well as
their habitats. These responses become more pronounced with an
increasing global surface temperature (Schippers et al., 2004).
 stakeholder involvement to assess or prevent possible thresholds and loss of socio-

old response Potentially affected socio-economic services monitoringa

plants,
er species,

Changes in local economy due to change in products (prices of
food, water, plants, real estate), as well as quality of life (health,
opinion pools, recreational land area)

plants, areas of
g, loss of water

plants

erobic benthic
ing fish species,
,
ation of anoxic

, change in
tion of algae

 species

nation of climate and local anthropogenic impact parameters (e.g., pollution levels,



Fig. 2. Overview of ecosystem services that are directly and indirectly impacted by climate change and local anthropogenic impacts. The figure is an illustration of the
complex, cyclical nature of how the use of ecosystem services can, through direct and indirect mechanisms, affect those same ecosystem services. Appropriate global action to
reduce harmful climate change impacts and local action to reduce harmful disturbances in water quality can help mitigate losses of ecosystem services.
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4.1. Phenological thresholds

Climate change has directly influenced the phenology of aquatic
biota. Changes in air temperature influence water temperature and
the timing and duration of the stratified period, while changes in
precipitation can influence water residence time. These changes in
turn influence the seasonal dynamics of the biota present (Peeters
et al., 2007). Phytoplankton phenology in lentic systems is directly
affected by an increased water temperature, changes in the onset
and the duration of thermal stratification, and earlier ice break up
(Meis et al., 2009). For instance, phytoplankton blooms in the US
lakes and Taihu Lake, the third largest lake in China, have begun to
occur earlier due to the warmer spring (Qin et al., 2010; Winder
and Schindler, 2004). In addition, high air temperatures and low
wind speeds have directly led to an early onset of the spring
phytoplankton bloom in Upper Lake Constance of the western
European Alps (Peeters et al., 2007).

Changes in temperature and seasons influence multiple levels
of biological organization, including foraging behavior, phenology
and metabolic rates, potentially leading to profound shifts in the
stoichiometry of elemental fluxes between consumers and
resources at the base of the food web (Woodward et al., 2010).
A rise in surface-water temperature and a regional decrease in
wind velocity in central Africa’s Lake Tanganyika, which provides
25–40% of the animal protein for surrounding populations, has
lead to a reduction in primary productivity by �20%, implying a
�30% decrease in fish yields (O’Reilly et al., 2003). Arctic lake and
river systems, however, experiencing the opposite effect, as longer
growing seasons have led to increased primary productivity (Smol
et al., 2005). Such differences in phenology and life cycle cues can
induce strong variance in community composition (Burgmer et al.,
2007), trophic levels and fish production, ultimately changing
ecosystem services (Ficke et al., 2007).
4.1.1. Physiological thresholds
Some species that are exposed to warmer temperatures for

longer periods will show biochemical variations at the cellular
level. Heatwaves, which are likely to increase in severity due to the
changing climate (Schar et al., 2004), may influence freshwater
gastropods and mussels by affecting the release of the stress-
associated enzymes (e.g., protein kinases), altering metabolic
activity and causing hypoxia in these animals (Anestis et al., 2010).
Physiological processes in aquatic organisms, including rates of
oxygen uptake, movement, feeding, developmental rate, and
immune function are strongly driven by temperature (Helmuth,
2009). Warmer surface temperatures of freshwater lakes can lead
directly (through water currents) and indirectly (through affecting
plant and algae growth as discussed above) to the alteration of
thermal stratification in temperate lakes, which can lead to an
increased dissolved organic carbon (DOC) concentrations in the
hypolimnion, limiting the DO level for vertically migrating fish
species, potentially causing hypoxia (Hader et al., 2007). A
mismatch between the demand for oxygen and the capacity of
oxygen supply to the tissues can deviate the physiological
adaptation of aquatic species and restrict tolerance of these
animals to a range of climatic extremes (Pörtner and Knust, 2007).
Decreased oxygen in lakes also decreases the processing of organic
matter, recycling of nutrients, and the microbial breakdown of
pollutants (Carpenter et al., 2011).

To place this in the context of a freshwater ecosystem threshold, a
previous modeling study suggests that a doubling of CO2 concen-
trations would cause earlier onset of lake stratification and a 1–7 �C
increase in summer epilimnetic temperature, consequently limiting
the vertical migration of zooplankton in addition to physiological
and respiration failures in cold water fish species (De Stasio et al.,
1996). This example and other examples of freshwater ecosystem
thresholds related to climate change are presented in Table 2.
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4.1.2. Habitat-associated thresholds
Climate change also directly influences fish populations, as

changes in climate lead to changes in the hydrological regimes and
habitat niches that endemic fish have evolved to cope with (Ficke
et al., 2007). Global warming has been attributed with decreasing
the thermal niche and habitat availability for cold water fish, such
as galaxid and salmonid fishes (Carpenter et al., 2011). A 3 �C
change in mean annual temperature corresponds to a shift in
approximately 300–400 km latitudinal and 500 m altitudinal
isotherms (Smol et al., 2005). One study estimates that global
warming could shift natural habitat ranges by approximately
6.1 km per decade towards the poles (Parmesan and Yohe, 2003).
This change, though subtle, is enough to impact fish communities
and ecosystem adaptation in the higher latitudes. To place habitat
changes in the context of climate change related thresholds, a
coupled CO2–climate model suggests that an increase in 2–6 �C
summer mean temperature will reduce 50% of the suitable habitats
for cold water fish in the US (Eaton and Scheller, 1996). A further
4 �C increase in mean air temperature will extend the habitat of
small bass mouth and yellow perch as far as 500 km towards the
north (Shuter and Post, 1990).

5. Thresholds associated with indirect effects of climate change

Climate change can affect freshwater ecosystems indirectly via
a range of positive and negative feedbacks. These indirect effects
Table 2
Thresholds for freshwater ecosystem regime shift

Regime-shift Parameter 

Physiological related
Early lake stratification, limiting vertical
migration and causing physiological
failure in cold fish

Atmospheric CO2 concentrations 

Habitat related
Reduction in fish habitats by 50% Summer mean temperature 

Shift of small bass and yellow perch
habitat 500 km north

Mean air temperature 

Substantial loss of ice sheet Temperature 

Water quality related
Shift in diatom community Nitrogen deposition loads 

Shift in biotic assemblages, water quality
and carbon budget

Dissolved organic carbon 

From clear to turbid state 1) Orthophosphate phosphorus
concentration in the water

From clear to turbid state Total phosphorus in water 

From turbid to clear state Total phosphorus in water 

From clear to intermediate state 2) Total phosphorus in water 

From intermediate to turbid state 3) Total phosphorus in water 

From clear- to turbid-state Total phosphorus in water 

From turbid- to clear-state Total phosphorus in water 

From turbid to clear state 4) Phosphorus loading 

From clear to turbid state Dynamic linear model standard deviation
(DLM SD) of phosphorus in soil, water and
sediment

Note: Although different words are used for the states of freshwater ecosystems, we used
states were listed: (1) from meso- to eutrophic; 2) from grass-stable to grass-algae int
persistent eutrophy to oligotrophy.
may be gradual and subtle in the short term but could be
catastrophic in the long term, leading to slowly recovering or
irreversible threshold type losses. Changes in geomorphology,
water depth, flow regimes, siltation and sediment flux in lake and
river systems can occur as a result of indirect effects of climate
change (Lake et al., 2000). Biotic and abiotic interactions with
climate can further lead to unprecedented ecological conditions,
including the alteration of photosynthetic rates, eutrophication,
acidification and salinization (Schindler, 2001; Woodward et al.,
2010). Widespread invasion from exotic flora and fauna, and
changes in predation and competition among species are also
exacerbated by indirect interactions between climates and human
activities (Baron et al., 2002).

Below, we take the trophic state threshold as an example of
indirect effects of climate change. Other thresholds related to
indirect effects are described in Supplementary information, and
they include morphological, photosynthetic, acidification, salinity,
pollutant thresholds, disease, biological invasion, as well as
predation and competition-associated thresholds.

Decreased precipitation and lower water flows imply smaller
dilution volumes and thus, higher concentrations of nutrients
downstream from point pollution source, particularly untreated
sewage in developing countries. On the other hand, the increased
occurrence of storm events can cause an overflow and discharge of
nutrient intoreceivingriversorlakes(Whiteheadetal.,2009).Severe
storms can entrain large amount of deeper and anoxic sediments,
Threshold Location References

A doubling of CO2

concentrationfrom the
1980s level

North temperate lakes De Stasio
et al. (1996)

2–6 �C US lakes Smol et al.
(2005)

4 �C US lakes and rivers Shuter and
Post (1990)

1–2.5 �C increase above
pre-industrial levels

Arctic, Antarctic, Greenland and other
mountain areas

IPCC (2007)

1.4 kg N ha �1 y�1 Lakes around the eastern Sierra
Nevada and the Greater Yellowstone
National Park, US

Saros et al.
(2011)

91% increase 22 upland lakes and streams, UK Evans et al.
(2005)

10–12 mg/L 26 temperate lakes, Northern Italy Chiaudani
and Vighi
(1974)

150 mg/L Lake Velume, Netherland
100 mg/L Lake Velume, Netherland
61 mg/L Gehu Lake, China Tao et al.

(2012)
115 mg/L Gehu Lake, China Tao et al.

(2012)
70–100 mg m�3 46 small and medium lakes along the

mid-lower Yangtze River
Wang (2007)

20–30 mg m�3 46 small and medium lakes along the
mid-lower Yangtze River

Wang (2007)

0.3 g m�2 y�1 Lake Mendota, Wisconsin, USA Carpenter
and Lathrop
(2008)

Around 1 g m�2 Lake Mendota, Wisconsin, USA Carpenter
and Brock
(2006)

 the terms clear and turbid states (widely accepted now); the original words for the
ermediate state; (3) from grass-algae intermediate to algae-stable state; (4) from
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particularly when the water level is low. As an example, a storm in
1996 that occurred at Lake Võrtsjärv, Estonia, resulted in a greater
release of sediments on one stormy day compared to the total
nutrient inflows over 1 y (Nõges and Kisand, 1999). The effects of
wind-mixing on the vertical transfer of nutrients from sediment are
more important in small lakes than the large lakes. The relationship
between North Atlantic Oscillation Winter Index (NAOw) and
phosphate has been observed in some European lakes (e.g., George
et al., 2004; Weyhenmeyer, 2004). In temperate Europe, positive
values of NAOw imply milder winter, higher water levels and lower
spring concentrations of phosphate, while negative values indicate
drier winters, low water levels and larger amounts of phosphate
released from sediment. In cold areas, the extension of the ice-free
period can cause marked increases in phosphorus concentration, as
has been observed in the hypolimnion and epilimnion in Lake Erken,
Sweden (Pettersson et al., 2010). This additional phosphorus is
released annually from the sediment zone to the water column as a
result of increased temperature and low oxygen concentration in
the bottom water (Malmaeus and Rydin, 2006). Increased tempera-
ture and precipitation intensity and changes in winter precipitation
are expected to enhance phosphorus loading in the temperate
freshwater lakes and reduce the loading in Mediterranean lakes
(Jeppesen et al., 2009).

Nutrient loads are predicted to increase under climate change in
many areas such as Denmark and UK (Andersen et al., 2006;
Whitehead et al., 2006). Higher temperature increases the release
of nitrogen from soil, and lower stream flows decrease the dilution
capacity of rivers (Whitehead et al., 2006). However, the impact on
eutrophication is not straightforward due to the complex
interaction between nutrient, light, temperature, residence time
and flow conditions (Jeppesen et al., 2005; Yang and Flower, 2012).
Increased surface water temperature can indirectly lead to
stronger stratification and regeneration of water column nutrients,
which can intensify eutrophication (Rabalais et al., 2009). Climate
change has exacerbated eutrophication through nutrient dynamics
of the north temperate lakes due to a longer growing season,
depending on epilimnion and mineral mixing (Smol et al., 2005).
The analyses of 103 Chinese lakes indicated that the mean
precipitation was one of the main predictors of eutrophication (Liu
et al., 2010). A 41-year data series (1968–2008) from Blelham Tarn
UK, where eutrophication has reduced hypolimnetic DO, indicates
negative effects that are likely to be exacerbated by changes in
climate and the thermal structure of lakes (Foley et al., 2012). The
interactive effects of future eutrophication and climate change on
harmful cyanobacterial blooms are difficult to understand, though
much of the current knowledge suggests that climate change will
likely enhance the magnitude and frequency of these events
(O’Neil et al., 2012). Recently eutrophication in lacustrine environ-
ments has been adopted as a way to define ecological and societal
thresholds in space and time (Carpenter et al., 1999). Experimental
management programs have been replicated among several lakes
based on these thresholds (Carpenter et al., 1999).

The phosphorusthresholdsforthe regime shift between clearand
turbid states have been suggested for different lakes (Table 2).
Compared to the primary drivers of eutrophication such as nutrients,
the role of climate change to modulate eutrophication thresholds is
not well understood. However, increasing temperature, changing
precipitation and atmospheric circulation can indirectly influence
the nutrient dynamics, and increase the likelihood of exceeding
thresholds of nutrients in freshwater ecosystems (Battarbee, 2000).

6. Identifying threshold responses for managing freshwater
ecosystems

Identifying and predicting threshold responses in ecological
systems is a challenging, though useful task. Thresholds related to
lake eutrophication causing regime shift is a well studied area
(Scheffer et al., 2001) and one that can be used to understand
thresholds from other climate-change control variables. Excessive
nutrient levels, particularly phosphorus, have been widely
accepted as the leading factor of eutrophication (Schindler,
1974; Carpenter et al., 1999). The orthophosphate phosphorus
concentration 10–12 mg L�1 in water was suggested as the
threshold from clear to turbid states in the lakes of Northern Italy
(Chiaudani and Vighi, 1974) (Table 2). Higher concentrations were
also found to be thresholds for the regime shift in Dutch and
Chinese lakes (Tao et al., 2012). Although the phosphorus
concentration in water can be controlled to some extent by
lowering nutrients emissions, such as by controlling fertilizer
usage; internal sediment release of phosphorus in addition to
temporal changes in external catchment input can cause thresh-
olds to be exceeded e.g., the level of 0.3 g m�2 y�1 external
phosphorus input in Lake Mendota, Wisconsin for threshold
crossing benchmark (Carpenter and Lathrop, 2008). With many
dynamic influential factors, changing non-linearly with time, the
use of Bayesian forecasting through Dynamic Linear Models (DLM),
which allows influential parameters to have a prior distribution
(West and Harrison, 1989), is regarded as a more reasonable
approach for modeling changes in release of phosphorus from the
lake sediment (Cottingham et al., 2000), than steady linear models.
DLM standard deviation (DLM SD) of phosphorus load in soil, water
and sediment was also suggested as a way to anticipate a threshold
of lake regime shift (Carpenter and Brock, 2006).

Thresholds from other climate-control variables, similar to
those caused by phosphorus induced eutrophication are not only
related to external driving forces, but are also mediated by internal
changes in the ecological regimes (Walker and Meyers, 2004). The
direct and indirect impacts listed above do not occur in isolation
but simultaneously, and are often indicated by a change in several
quantifiable parameters (Fig. 2). Often these changes are inconsis-
tent and may behave non-linearly across and within ecosystems.
Even a minor disturbance may move a system to a new regime,
for instance, a gradual increase in nutrients can transform an
oligotrophic lake into an eutrophic one (Limburg et al., 2002).
Approaches to identifying the thresholds of fresh water ecosys-
tems should involve the use of continuous monitoring, paleo-
limnological data and simulations, and thereby account for
changes in the present, past and future.

6.1. Implementing effective monitoring programs

Environmental policies designed to maintain freshwater quality
are often dependent on identifying “threshold” dose–response
relationships (Groffman et al., 2006). Effective monitoring is useful
for tracking ongoing ecological system shifts that are driven by
external environmental forces or internally-mediated drivers, and
thus for predicting threshold type responses, and devising
priorities and practical strategies for biological conservation (Doak
and Morris, 2010; Lindenmayer and Likens, 2009). For example, a
time series analysis of DOC in 22 upland lakes and streams of the
UK obtained during a 15 y monitoring program indicated a 91%
increase in DOC concentration has triggered a shift in biotic
assemblages, water quality and the carbon budget in the region
(Evans et al., 2005). A 20-year monitoring study of water
conductivity of shallow lakes across the Arctic region (in
combination with paleolimnological data) has provided a descrip-
tion of thresholds related to wetland permanency as a result of
climate warming, in which evaporation/precipitation ratios are a
suitable climate-control variable (Smol and Douglas, 2007). For all
monitoring programs, it is essential to establish an archive of
environmental data, such as the Vannmiljø system used in Norway
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(http://vannmiljo.miljodirektoratet.no/) for analyzing trends and
predicting threshold responses.

Key variables, such as precipitation, temperature, total nitrogen
(TN), total phosphorus (TP) and chlorophyll a (chla) should be
continuously monitored based on field sampling and laboratory
measurement. In addition, advancement of technologies including
remote sensing will improve techniques of monitoring environ-
mental forces over a regional scale. A few examples of further
monitoring approaches to obtain relevant data are presented in
Table 1.

6.2. Reconstructing historical data

Palaeolimnological techniques can help identify thresholds of
ecosystem change. For example, critical loads of nitrogen deposi-
tion were determined for alpine lake ecosystems in the Western US
using fossil diatom assemblages in lake sediment cores (Saros et al.,
2011). A transfer function technique, where calibration training
sets are constructed to show relationships between individual
species and one or more quantifiable (climate change related)
parameters, followed by a reconstruction of changes in ecosystem
functions and services based on a biological data, is useful for
identifying ecological regime shifts caused by environmental
perturbations (Battarbee, 2000). As an example, sub-fossil
assemblages of diatoms in lakes around the eastern Sierra Nevada
and the Greater Yellowstone National Park suggests that 1.4 kg
Nitrogen ha �1 y�1 can cause a regime shift in the diatom
community (Saros et al., 2011). The advancement of dating
techniques and the use of multiple species approaches for lake
sediments can further help improve climate reconstruction and
define climate thresholds of freshwater ecosystems (Battarbee,
2000), but it is still necessary to disentangle the relative role of all
influential factors using a combination of both limnological and
paleolimnological data (Battarbee et al., 2012). It also needs to be
pointed out that the historically caused perturbations result
primarily from internal shifts and climate change, whereas current
human induced perturbation (e.g., land use, changed nutrient
budgets) is now superimposed on internal shifts and climate-
related changes, making it difficult to use past changes as direct
analogs of current and future thresholds.

6.3. Developing appropriate numerical tools and models

Precision in ecosystem projections will increase when quanti-
tative estimates of thresholds are backed by reliably measured data
(Woodward et al., 2010). Scenario-based models can provide
decision-makers a range of possibilities, as well as integrate
natural and social science based strategies for adaptation (IPCC,
2007). The Intergovernmental Panel on Climate Change (IPCC) has
implemented a variety of scenario-based climate-change models,
including models associated with historical freshwater ecosystems
(IPCC, 2007). However, models to describe thresholds that
influence individual freshwater ecosystems have not yet been
developed, due to the uncertainty in future climate projections as
well as scale issues, as small lakes cannot be adequately
represented using coarse resolution climate models (Groffman
et al., 2006). Some attempts have been made for improved
modeling of the ecological thresholds such as the trophic cascade
model for game fish (Carpenter and Brock, 2004) and the water
quality model for DO concentrations in North American lakes
(Stefan et al., 1993). Advancement of computer software and
numerical modeling will continue to improve the knowledge of
threshold based ecological management strategies.

Several types of models, e.g., statistical, rule-based, the
previously mentioned DLM models, and process-based models,
have been used to guide ecosystem management under global
change. Process-based models are based on a scientific under-
standing of relevant ecological processes, and provide a valuable
framework to include responses to the changed environmental
conditions (Cuddington et al., 2013). The current understanding of
the role of thresholds is often based upon conceptual models of
how ecosystems work (Dennison et al., 2007). Process-based
threshold models can be specifically designed to anticipate
ecological consequences of human activities on freshwater
ecosystems, and should play a key role in setting conservation
targets by water resources managers.

6.4. Testing climatological hypotheses

Laboratory or field-based experimental designs have the
potential to characterize ecological thresholds (Adler et al.,
2009). For instance, a laboratory experiment on burrowing mayfly,
Hexagenialimbata, from the Lower Mobile River, Alabama, suggests
that the nymphs of this animal can survive at elevated salinity
levels (6.3%) only for temperature below 18 �C, however, when the
salinity level is reduced to 2.4% they can survive at higher
temperatures up to 28 �C, which was further supported by field
observations (Chadwick and Feminella, 2001). Similarly, an
experiment which reduced the pH of a small lake from 6.1 to
4.7 was found to cause a substantial decline in species richness of
many freshwater taxa, reducing the ecosystem’s adaptive capacity
(Hogsden et al., 2009). These studies assist with understanding
which species within ecosystems are the most vulnerable to
climate change, and how the disappearance of these species will
influence the broader ecosystem services.

6.5. Relating threshold-associated costs to ecological and societal
adaptation

Ecosystem service changes also influence the societal structure
of the population dependent on those services. Loss of ecosystem
services, including water quality, water quantity, fishery resources,
and recreational amenities, can lead to the crossing additional
thresholds associated with social systems and unacceptable
societal costs. Integrating key components of societal development
can promote ecological resilience, including information manage-
ment, cultural integrity, technological development, institutional
responsibility, and education (Falkenmark, 2003). Consideration of
a probabilistic framework with a range of components can offer
policy and management responses to emerging crisis from
freshwater ecosystem changes worldwide (Vörösmarty et al.,
2010). Specifying the thresholds related to time, location, species,
disturbance and scale, and understanding their economic and
societal implications can help set up regulations, improve adaptive
capacity of freshwater ecosystems, and facilitate societal adapta-
tion (Naiman and Turner, 2000). The socio-economic costs of
crossing ecological thresholds in freshwaters need to be placed
clearly into the context of threshold-based management program
(Table 1). This involves a careful cost-benefit analysis of the
services affected before and after crossing thresholds.

Certain threats to freshwater ecosystems may be addressed
through investments and advances in infrastructure, science and
technology (Vörösmarty et al., 2010). Though this may be mainly a
question of political will in richer countries, poorer countries often
lack the resources to invest in freshwater infrastructure (UNFCCC,
2007). It is estimated that the United States currently would have
to put in $60 billion dollars for the restoration of its ecosystems. In
regions like the Middle East and North Africa, water pollution and
over exploitation of water is expected to incur environmental
damage costs equivalent to 2.1–7.4% of their gross domestic
product(GDP). Similarly, the cost of water related crises in China
was 2.3% of China’s GDP in 2003.
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Assigning an economic value to the crossing of ecological
thresholds is an effective way of communicating the societal and
economical costs to decision makers and stakeholders (Balmford
et al., 2002). For example, the use of artificial drainage in South
Ontario marshes for the purpose of increasing agricultural
productivity was found to be less beneficial economically than
not draining (van Vuuren and Roy, 1993). The cost-benefit analysis
suggested that the naturally intact marsh ecosystems would cost
less (3700 USD ha�1) than the artificially drained marshes
(8800 USD ha�1). Thus the use of scenario-based numerical models
of freshwater systems coupled with economical models is strongly
encouraged, as it can help implement threshold-based manage-
ment approaches of freshwater ecosystems effectively, and
thereby underscore the services that intact ecosystems can provide
to society (de Groot et al., 2002). Risk analysis should be conveyed
together with threshold analysis, in which models are used to
predict the risk and benefits (environmental, economical, societal)
from thresholds being crossed under different climate change
scenarios, as well as the risk and benefits from potential mitigation
efforts.

7. Threshold-based management in freshwater ecosystems

The goal of ecosystem management is to restore or preserve
some main attributes of an ecosystem that are desirable for
humans (Mayer and Rietkerk, 2004). Due to the inherent
complexity of ecosystems, this can only be achieved through a
framework (e.g., Fig. 1) involving long-term collaborations
between scientists, policy makers and stakeholders. The main
goal of such collaboration would be to set up a warning and
prevention system from approaching thresholds (near F0 or F1), as
well as mitigation strategies to prevent such thresholds being
reached. In this effort, scientists with the assistance of local
stakeholders would monitor relevant environmental parameters
and potential threshold responses (examples are presented in
Table 1). Decision makers would set up a program to encourage
such monitoring efforts, as well as be prepared in advance to
enforce appropriate mitigation strategies as needed (e.g., lowering
fish quotas, capping contaminated areas, preventing excess
nutrients from entering the local area). Mitigation strategies
would ideally have to be planned far well in advance based on
previously conducted simulations and risk analysis. Clear com-
munication with stakeholders regarding risks from crossing
thresholds is critical, particularly in cases where long term and
short term interests collide (e.g., over fishing, urbanization).
Further, stakeholders should be encouraged to notify authorities in
case a rapid loss in ecosystem services occurs (potentially
indicating a threshold F1 being met)(Fig. 1), to get involved in
monitoring programs (e.g., species counting, environmental
parameter logging), as well as be presented with opportunities
to act in a way to mitigate risks from boundaries F0 being reached.

Disagreement may often occur amongst actors on practices,
remediation and logistic issues. Scientists being too cautious about
the position of F0, may risk losing trust by decision makers and
stakeholders, particularly if no change in a response variable is
evident after F0 is crossed (Fig. 1). On the other hand, if scientists
are under cautious, predicting an F0 that is close to F2, then trust in
scientists would also be lost alongside the ecosystem service.

Ecological systems are not simple to understand, neither are
threshold responses. After a threshold is crossed, the situation may
become restored by various feedback loops (Fig 1). The prudent
option is, however, to assume that this does not happen (Briske
et al., 2010). Avoiding disagreements amongst actors is essential
when ecosystem is at a risk to cross thresholds. Disagreements are
resolved through regular interactions by organizing public
involvement (e.g., through fairs, festivals, workshops, panel
discussions, news media), as well as research projects and societal
awareness programs implemented amongst ecologists, modelers,
economists, sociologists, resource managers, stakeholders and
decision makers, activists and reporters (Carpenter et al., 2009;
Lindenmayer and Likens, 2009). Bringing these actors in a
common, formerly established platform can be a successful
approach for freshwater ecosystems globally (Carpenter et al.,
2009; MEA, 2005). This reflects an adaptive management
approach, where solutions to the problems are proposed and
implemented, and the management strategies are constantly
reviewed over the course of ecological response to climate change
(Williams, 2011). Due to multiple spatial and temporal scales of
ecosystems, Côté and Darling (2010) argued that the ecosystem
management to control local anthropogenic disturbance, for
example nutrient input, and to reverse the ecosystem degradation
will inadvertently lower resilience to climate disturbance. Ongoing
research on freshwater ecosystem management is needed,
especially in regards to integrating rare or extreme events in
freshwater ecology (e.g., see Fuentes et al., 2006; Denny et al.,
2009), and evaluating evidence and uncertainty in threshold
concepts and models (Katharine and Richard, 2009). Establishing
programs that seek to identify or prevent thresholds from being
crossed, and which have the involvement of the scientific, policy
and stakeholder communities, are a way to effectively manage
threats of local impacts and global climate change on freshwater
ecosystem services.
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