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1 Introduction

Statistics is the science of analyzing and interpreting data. Extensive amounts of data are being

collected and stored from various areas; from example finance and climate to genomics. Typi-

cally, with the rapid technology development data becomes more complex, with large number

of variables and few samples, strong correlations, complex interactions between different data

sets and higher signal-to-noise ratio.

In biostatistics, epigenomics is a field of growing interest with complex data structures. Epige-

nomics is the science of what our genes are “wearing”; the elements surrounding the gene which

can change gene expression and biological cell functions (Quina et al., 2006). The entire com-

plex consisting of DNA and the molecules attached to it, such as proteins and RNA, is called

chromatin. Chromatin is tightly packed within the nucleus in each cell in a specific manner

and its spatial structure is of major importance for biological processes. For instance, Kleinjan

and van Heyningen (2005) and West and Fraser (2005) showed that three-dimensional (3D)

contacts between different parts of DNA are associated with gene expression. Sophisticated

statistical methods are needed to analyze the spatial structure of chromatin and questions such

as if two points on the genome are more co-localized than expected by chance, can be answered

using a well-defined hypothesis tests. The complex distribution of the spatial structure poses a

challenge since the distribution of the 3D structure is far from homogeneous and specific con-

tacts are highly correlated. The difficulty of finding a proper distribution for the data calls for

permutation testing and randomization procedures.

Another important epigenetic factor is the simple methylation group which can get attached to

the DNA strands. DNA-methylation strongly influences the gene expression, and when the start

site or promoter region of a gene is methylated, the gene is typically not expressed. Therefore,

DNA-methylations have an enormous potential to influence biological function in the cells and

human body. When analyzing the effect of genome wide DNA-methylations on an outcome,

there are typically more variables than samples. In this high dimensional setting, penalized

regression is a much used statistical tool. But, with a large amount of variables, and possibly

a great level of noise in the data, the penalized regression can benefit from some guidance, for

instance in the form of co-data, such as gene expressions. But how to find the optimal way to

integrate and analyze complex and large data sources is a great challenge.

The outline of this thesis is as follows: Section 2 presents an introduction to genomics and

epigomics and questions related to the analyses of chromatin structure and DNA-methylation.

Section 3 presents a short overview of the main aims of the thesis. The background methodology

is presented in Section 4, introducing hypothesis testing and penalized regression. Section 5

gives a summary of the four papers, and Section 6 some extensions and future work. Lastly, a
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2. BIOLOGICAL BACKGROUND

discussion of relevant themes in the thesis are presented in Section 7.

2 Biological background

DNA is the genomic material, unique to all humans (except identical twins), containing our

inheritable potential. DNA consists of nucleotides, which are complex molecules of sugar (de-

oxyribose), phosphate and one of the four bases, cytosine (C), thymine (T), adenine (A) and

guanine (G). DNA contains 3.3 billion nucleotides (Ziegler et al., 2010). With a specific linear

ordering, the nucleotides form coding sequences. In 2003, the first complete sequencing of a

human genome was finished by the Human genome project (Collins et al., 2003; Watson, 1990),

presenting a typical reference human genome. With this event, the “book of life” had been read,

but it was only the beginning and the next step has been to understand what type of influence

the coding could have. The linear ordering of all nucleotides are identical in every single cell

in an organism, except for red blood cells (Ziegler et al., 2010). But, even with identical DNA,

there is a great variety of cell types with different tasks and functions. In the last decades, there

have been done tremendous work to find the explanation of this differently functioning cells.

2.1 Genomics and epigenomics

The term genomic is used for the study of genes, genetic variation and their heredity in living

organisms and focuses on the DNA sequence. There are between 20000 and 25000 genes in the

human DNA (Pertea and Salzberg, 2010). The most common definition of a gene is a sequence

of nucleotides providing the coded instructions for functional gene products, such as proteins

(Pertea and Salzberg, 2010). To what degree a gene influences a biological function will depend

on whether the gene is switched on or off and how well the gene is expressed. Thus, it is natural

to talk about a gene’s potential to express a hereditary function. There exist different versions

of genes, and errors synch as mutations, can occur. For instance will a mutation of the tumor

suppressor gene TP53, highly increase your risk of getting cancer (Cheah and Looi, 2001).

A gene is expressed by first making a copy of the coding sequence of DNA, called mRNA (see

Figure 2.1), which later translates into protein. One option to quantify the expression level of

a gene is to count the number of mRNA in a sample. More copies of the gene leads to higher

amount of mRNA and more protein is produced. The amount of proteins influences the final

biological function.

An important question regarding gene expressions is, which characteristics will influence the

amount of expression. This is the core of epigenomics, where the Greek term epi means over,
outside of or around. The epigenomic has been defined in several ways (Schones and Zhao,

2008; Ptashne, 2007), but this thesis follows the definition of (Goldberg et al., 2007). Here

epigenomic is the study of any potentially stable and ideally heritable change in the gene ex-

pression or cellular phenotype which is not caused by changes in the underlying DNA sequence.

Epigenetic changes occur on chromatin level. Chromatin is the structure formed when DNA is

wrapped around repeated histone proteins (Schones and Zhao, 2008). The functions of chro-
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2.2. The spatial structure of chromatin

Figure 2.1: A gene is expressed through the processes of transcription and translation. During transcrip-

tion, the enzyme RNA polymerase (green) uses DNA as a template to produce a pre-mRNA transcript

(pink). The pre-mRNA is processed to form a mature mRNA molecule that can be translated to build the

protein molecule (polypeptide) encoded by the original gene. Figure and figure text are reprinted from

Nature Education (2010).

matin are many: it controls how to package DNA, avoid DNA damage, control replication,

and gene expression (Francis, 2011). The spatial structure of chromatin can strongly influence

the regulation of genes (Kleinjan and van Heyningen, 2005; West and Fraser, 2005). Another

important epigenetic factor is DNA-methylation, where small molecules become attached to

DNA. The epigenetic factors DNA-methylation and the spatial chromatin structure are said to

be inheritable (Li et al., 1993; Bird, 2002; Margueron and Reinberg, 2010; Smith et al., 2002),

and they are further explained in the next subsections.

2.2 The spatial structure of chromatin

The total length of the DNA strand in a human cell is about 2 meters long if it could be stretched

out (Calladine et al., 2004). It therefore needs to be tightly packed to fit within the cell nucleus.

It could potentially be packed to a tight ball with diameter 2 micrometers, but in practice it is

less dense since it also needs to be accessible (Calladine et al., 2004). The overall chromatin

structure is characterized as open or closed compartments (Lieberman-Aiden et al., 2009). The

open parts (euchromatin) are associated with potentially active genes and are accessible and

typically non-methylated. The closed parts (heterochromatin) often contain inactive genes, or

no genes at all. These regions are highly condensed and inaccessible and usually methylated

(Quina et al., 2006). Figure 2.2 shows an overview over the typical epigenetic factors, such as

the spatial chromatin structure, DNA-methylation and histones. Different histones influence the

structure of chromatin and also work as important epigenetic factors, but they will not be a topic
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2. BIOLOGICAL BACKGROUND

of this thesis.

For a gene to be expressed, DNA makes a loop and is able to spatially co-localize two regions

called enhancers and promoters, in combination with some enzymes and proteins. The central

question and a main theme of this thesis is whether or not a selected pair of enhancer and

promoter regions are co-localized in 3D, or whether a group of genomic sites forms a closed

region.

To map the 3D structure of chromatin advanced technology is required. The technique used

in this thesis is called Hi-C (a chromosome confirmation capture technique). It uses formalde-

hyde to cross-link DNA, cuts it into short fragments and uses next-generation sequencing to

determine the frequency of contacts between paired fragments (Lieberman-Aiden et al., 2009).

The result is a contact frequency matrix over regions along DNA, aggregated over millions of

cells in the same tissue. The term intrachromosomal contacts will refer to regions on the same

chromosome, and interchromosomal contact refers to regions on different chromosomes. Other

known techniques for 3D mapping of chromatin are 3C, 4C, 5C (Dekker et al., 2002; Simonis

et al., 2006; Dostie et al., 2006) and ChIA-PET (Fullwood et al., 2009).

2.3 DNA-methylation

When methyl molecule, with the chemical structure CH3 (one carbon and three hydrogen atoms)

gets attached to a cytosine nucleotide followed by a guanine nucleotide (referred to as a CpG

site), the site becomes DNA-methylated. DNA-methylation is a critical regulator of gene ex-

pression (Goldberg et al., 2007). Typically, if the promoter region of a gene is methylated, the

gene is not expressed. Figure 2.3 shows that the enzyme RNA polymerase is unable to connect

to the gene when it is methylated, thus the gene can not be expressed. But the association be-

tween DNA-methylation and gene expression is complex (Bird, 2002; Schones and Zhao, 2008;

Wagner et al., 2014). Later sections will give a detailed look at all possible associations.

Illumina 450K bead chip is a popular platform to detect DNA-methylations and detects about

450,000 methylation sites, when’re each site corresponds uniquely to a CpG location. A tissue

sample will include a large number of cells, where a particular site may not be methylated on

some cells, while methylated in other cells. Using the definition by Bibikova et al. (2006), the

amount of DNA-methylation at a particular CpG site is reported as a proportion, where 0 means

that none of the cells are methylated, and 1 means that all cells are methylated in the particular

CpG. The relative score, called the beta-value, is calculated as

max(M,0)

max(U,0)+max(M,0)+100

where U is the fluorescent signal from the unmethylated versions and M is the signal from the

methylated versions. The fluorescent signal can be negative, due to background subtraction,

and is then replaced by the zero value. The constant 100 is to adjust for situations where both

M and U values are small.
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2.3. DNA-methylation

Figure 2.2: The characteristics of epigenomes includes DNA-methylation, histone modifications (for

instance H3K4me3, H3K4me2) and other factors such as small RNAs, which contribute to an overall

epigenome that regulates gene expression and allows cells to remember their identity. Chromatin is

divided into accessible open regions called euchromatin and poorly accessible closed regions called het-

erochromatin. DNA-methylation is persistent throughout the genome. Figure is reprinted from Schones

and Zhao (2008). 5



Figure 2.3: Epigenetic modification of the glucocorticoids receptor (GR) promoter by CpG altered

DNA-methylation. Figure is reprinted from Erhuma (2012).

3 Aims of the thesis

By studying epigenetic markers we wish to get a better understanding of gene expressions and

other biological functions. The main goal of this thesis is to develop new relevant statistical

methodology for epigenomic data, which should be made publicly available as user-friendly

tools. The thesis is divided into two parts, where the first part focuses specifically on hypothesis

test for 3D chromatin structure and the second part on integration of genome wide data sets in

penalized regression, particularly DNA-methylations together with gene expressions or other

types of co-data.

In more detail, the aims of the first part are to:

• Identify characteristic properties for the joint distribution of contact frequencies in Hi-C

data, evaluate the expectation, variation and correlation structures among contact frequen-

cies, and describe the genome wide heterogeneity of the data.

• Incorporate these properties into a permutation test for 3D co-localization of genomic

elements, present a proper permutation scheme reflecting the meaningful level of ran-

domness in the data, and develop a suited effect size for the level of 3D co-localization.

• Present the proposed methodology as a publicly available tool on a web-site.

The aims of the second part are to:

• Develop integrative methodology in penalized regression, by allowing different types of

co-data to be included. The penalization method should cover models both assuming and

not assuming sparsity among the important covariates. The integration method should
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allow for the co-data not to be included, if it does no improve the predictive performance

of the method. R packages should be presented.

• Get a wider understanding of the possible associations between genome wide DNA-

methylations and gene expressions.

• Apply the new integration methodologies on a data set of bone mineral density in post-

menopausal women, by integrating both genome wide DNA-methylations and gene ex-

pressions.

4 Methodology

Two of the most fundamental concepts in statistics are hypothesis testing and regression. Hy-

pothesis testing assesses evidence “in favor” or “at expense” of some claim about a phenomenon.

Regression analyses evaluate specific relationships among variables. This chapter gives the

background material for parametric and permutation-based hypothesis testing, where both types

of tests have been proposed for the analysis of Hi-C data. For genomic and epigenomic data,

multiple hypothesis tests are often performed, and we need to correct for the number of tests.

It is also possible to formulate a test with a high dimensional alternative. Both these situations

will be given extra attention in this chapter. If regression is the goal of the analysis, penalized

regression is a popular tool and will be introduced in the second and last subsection.

4.1 Hypothesis testing

A hypothesis test is a formal procedure for studying a phenomenon with variation. With some

uncertainty, one can say that the phenomenon has a specific property, either belonging to a

predefined null hypothesis or an alternative hypothesis. The result from a statistical test is

called significant if it is unlikely that your observations have happened by chance. There is a

difference between parametric tests, where the distribution of the random variable is known, and

permutation tests where no distribution for the data is assumed. The latter case is the method

used in paper I in this thesis.

4.1.1 Parametric test versus permutation test

Let X be the random variable of interest with distribution Pr(X ≤ x) = F(x), depending on

some unknown parameters θ . For simplicity, scenarios where θ is one real-valued parameter

is considered. There are n independent observations, xi for i = 1, . . . ,n, coming from the same

distribution F . In a parametric test, a simplest decision for the parameters θ is

H0 : θ = θ0,

HA : θ �= θ0,

7



4. METHODOLOGY

for some predefined value θ0. Let T = T (X1, . . . ,Xn) be some suitable test statistic and c the

critical value. The null hypothesis is rejected if our observed test statistic t = T (x1, . . . ,xn)

exceeds c, t ≥ c.

Two types of errors can be made. Either t ≥ c, when in fact H0 is true, or t < c, when in fact H0

is not true. The significance level α is the probability of a type I error (Lehmann, 1999)

α = Pr(T ≥ c|H0 true),

and c is chosen such that α is equal to or lower than some predefined significance level, typically

α = 0.05.

When H0 is true, the test statistic T will follow some distribution Pr(T ≤ t|H0 true) = G(t)
depending on the distribution of X . The formal definition of a p-value is p ≡ Pr(T > t|H0 true),

such that p = 1−Pr(T ≤ t|H0 true) = 1−G(t). It follows that the p-value is uniformly dis-

tributed over the interval [0,1], because

Pr(P ≤ p|H0 true) = Pr(1−G(T )≤ 1−G(t)|H0 true)

= Pr(G(T )> G(t)|H0 true) = Pr(T > t|H0 true)≡ p. (4.1)

This holds as long as G(·) is invertible and X is continuous (Murdoch et al., 2008).

The power β of a particular test is a function of the type II error and equals

β = 1−Pr(T ≤ c|H0 not true) = Pr(T > c|H0 not true). (4.2)

If the hypothesis test is performed several times, the power will be the ratio of correctly rejected

H0 (Lehmann, 1999).

Permutation tests
In a non-parametric setting, one does not want to assume any family of distributions for the

test statistic. A highly popular solution to this problem is the permutation tests, also known as

resampling or randomization tests. In such type of methods, the observations are permuted to

find new randomized test statistic and thus its distribution. The method is flexible and robust to

missing data. Permutation tests are exact, in the sense that no assumptions or approximations are

made for the distribution of the test statistic. For large samples, the parametric and permutation

approaches are equivalent (Good, 2005).

The only assumption needed in a permutation test is that the resampled observations are ex-

changeable. The joint distribution for resample t1, t2 and t3 should be independent of the or-

dering, such that F(t1, t2, t3) = F(t1, t3, t2). Any order of a finite number of samples should be

equally likely. Independent, identically distributed variables are always exchangeable (Good,

2005).

Let tb be the resampled test statistic from randomizing the observations, where b = 1, . . . ,B.

8



4.1. Hypothesis testing

The p-value can then be defined as in Phipson and Smyth (2010)

p =

[
∑B

b=1 I(tb > t)
]
+1

B+1
,

where I(·) is the identity function.

There are several challenges using a permutation test. The null hypothesis needs to be precise

without specifying a distribution with corresponding parameters for the data. The randomiza-

tion scheme must reflect the desired null distribution for the test statistic, such that the test

actually has significance level α . This means that if the test is performed several times when

H0 is true, the null hypothesis should be rejected α ×100% of the cases. One way to check this

is to simulate data where H0 is in fact true and run the hypothesis test. If the test is correctly

specified, the p-values should be uniformly distributed when H0 is true, as seen in Equation

(4.1).

Another challenge is to find the power of the test. This can be difficult due ti the unknown

distribution of the test statistic under the alternative hypotheiss and will be discussed in the

Discussion.

4.1.2 Hypothesis testing on 3D chromatin structure

When analyzing Hi-C data, one is typically interested in a predefined set of sites along the

genome, and the co-localization between those elements. One of the first methods to handle

this question was proposed by Botta et al. (2010). A permutation test was suggested, where the

3D contacts were considered as independent, and uniformly randomized. Duan et al. (2010) and

Dai and Dai (2010) presented a parametric test by assuming that the 3D contacts were hyper-

geometrically distributed, thus again assuming that the 3D contacts are independent. When

evaluating the 3D structure, it is clear that some of the contacts are extremely correlated. For

instance, the transitivity relation gives that if a element i and j are close to k, then also i and j
are close. Witten and Noble (2012) analyzed interchromosomal 3D contacts and accounted for

the dependencies in the 3D structure, by proposing an uniform resampling of the position of the

genomic elements, and thus letting the 3D data itself be fixed. Paper I will go far beyond this

paper in treating different forms of dependencies in the data. In the presented literature, the 3D

contacts are often referred to as 3D interactions. Since this term may be confusing in statistics,

use the term 3D contacts is instead used.

Additional properties need to be considered when analyzing intrachromosomal 3D contacts.

The genomic distance between the elements is the linear distance along the genome, often

counted as number of base pairs along the DNA strand. For intrachromosomal 3D contacts, a

higher contact frequency is expected between elements with short genomic distance.

Also, the distribution of the 3D contact frequencies varies throughout the genome, and is not

homogeneous. For instance, it depends on whether the genomic elements are close to the center

(centromeres) or the end (telomeres) of the chromosome, and the GC content (the intensity

of C and G nucleotides) in the region. It should be possible to take into these properties in a

hypothesis test.

9



4. METHODOLOGY

4.1.3 Controlling the false discovery rate in multiple testing

When multiple tests are being performed, the overall false discovery rate (the rejection of H0

when it is actually true) needs to be controlled. Benjamini and Hochberg (1995) proposed a

method for adjusting the p-values with respect to the overall false discovery rate (FDR) among

m hypotheses. There are i = 1, . . . ,m hypotheses on the form

H0i : θi = θ0i HAi : θi �= θ0i.

The un-adjusted p-values, pi, are calculated by some method for each i individually. The num-

ber of rejected and accepted hypotheses are shown in Figure 4.1, where V , U , T , S, and m0 are

unknown quantities. V is the number of type I errors, and T is the number of type II errors. One

is prepared to tolerate some type I errors, provided their number is small in comparison to R,

the total number of significant tests. FDR is defined as the expected proportion of type I errors

among the rejected hypotheses, E(V/R), which is put equal to zero when R = 0. The proce-

dure to control this quantity was presented by Benjamini and Hochberg (1995). It holds under

certain dependency structures including positive dependences between the tests (Benjamini and

Yekutieli, 2001) .

Figure 4.1: Figure reprinted from Benjamini and Hochberg (1995).

4.1.4 A test for a high dimensional alternative

A utility test developed by Goeman et al. (2006) can be used to test against a high dimen-

sional alternative. This test, called the global test, allows for the alternative hypothesis to be

a high-dimensional model. Suppose that the outcome variable Y has distribution dependent

on p variables x1, . . . ,xp through some coefficients β = (β1, . . . ,βp). The test is formulated as

H0 : β = 0 against HA : β �= 0. The null hypothesis is that there is no association between Y
and the p variables, with alternative hypothesis that one or more variable is associated with

Y . A prior distribution is assumed for β, where Cov(β ) = τ2Σ , and the test can be written as

H0 : τ2 = 0 against HA : τ2 > 0. For the linear model, Goeman et al. (2006) showed that the test

has good power, even when compared to the classical tests in low dimensions.
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4.2. Regression in high dimensions

4.2 Regression in high dimensions

This section describes regression modeling, by first introducing ordinary regression where we

have less variables than samples, so called p ≤ n. In the opposite scenario, p > n, the penalized

methods lasso and ridge regression will be presented. Lastly, we introduce penalized methods

with multiple penalty terms.

4.2.1 Ordinary regression (p ≤ n)

Let there be n independent observations of some outcome yi and variables xi = (xi1, . . . ,xip)
T

for i = 1, . . . ,n. A regression model analyzes the relationship between the outcome and the p
variables or predictors. The following theory on generalized linear models is based on the book

by Dobson and Barnett (2008).

Generalized linear models (GLM)
Based on some unknown coefficients β = (β1, . . . ,βp)

T , we assume a true linear relationship

between the predictors and some monotone link function g() of the expected value of the ran-

dom outcome Yi. The model is

g(E(Yi)) = β1xi1 + · · ·+βpxip.

For reasons of simplicity, the data is mean centered, such that the intercept β0 = 0, and the

number of coefficients is p. On matrix form the model is written g(E(Y )) = Xβ for Y =

(Y1, . . . ,Yn)
T and X the n× p design matrix with rows xT

i .

In this type of generalized linear model, the distribution of Y belongs to the exponential fam-

ily, for instance binomial (logistic regression), Poisson or Gaussian. McCullagh and Nelder

(1989) showed how to convert the proportional hazard model in survival analysis to also fit the

generalized linear models.

Maximum likelihood estimate (MLE)
Estimates of β are found by maximizing the log likelihood, l(β). It is β where the derivative

of the log likelihood is zero. For many of the distributions at hand, there are no explicit formula

for β in this case. A typical methods to use is then the Newton-Raphson iteration,

β(k+1) = β(k)−
[
l′′(β(k))

]−1
l′(β(k)).

The procedure is iterated until the difference between β(k+1) and β(k) is smaller than some

threshold. The solution of β can be written as

β̂ = (XT
wXw)

−1XT
wz, (4.3)

for appropriate Xw =WX , where W is some weights, and z = (z1, . . . ,zn) corresponding to

the distribution at hand (Dobson and Barnett, 2008, Chapter 4, page 63-64). For instance, in lo-

gistic regression with the logic link function we have that W = diag(
√

p1(1− p1), . . . , ,
√

pn(1− pn))

11



4. METHODOLOGY

for pi = expit(xT
i β), and zi = logit(pi)+

yi−pi
pi(1−pi)

. Note that both Xw and z depends on β.

In linear regression, the matrix Xw is simply the design matrix X and z = y, such that the

estimate of β becomes β̂ = (XTX)−1XTy.

Validation of prediction models
After estimating the coefficients of a model, the predictive performance for new data is impor-

tant to evaluate. If the model only fits the current data, it is not a desirable model. To evaluate

the predictive performance one needs training data (ytrain,Xtrain) to train the model β̂train, and

test data (ytest,Xtest) to predict the outcome ŷ(Xtest, β̂train). For the linear case the predicted

outcome becomes ŷ=Xtest×β̂train. Finally, ŷ is compared to the truth ytest. For logistic regres-

sion we model the predicted probability of the event, and for survival we model the predicted

event probability at different times.

The test data should be some new independent comparable data set. If this is not possible to

obtain, cross-validation of the one data set at hand is a common approach. In a cross-validation

setting, the data is divided into K partitions, where 1/K is used as test data and the other pro-

portion is used to fit the model. This procedure is done K times for all possible combinations of

training and test data.

It is a variety of different methods used to measure the predictive performance of a fitted model.

Some of the most common ones are briefly described next.

The predictive mean square error 1
n ∑n

i=1(yi − ŷi)
2 is often reported. For logistic regression, this

is called the Brier score and measures the difference between the true outcome and the predicted

probability of the event (Brier, 1950; Pepe et al., 2004). For survival, the Brier score includes

some weights, taken into consideration the conditional probability of being uncensored during

time (Graf et al., 1999).

A receiver operating characteristic (ROC) curve shows the model’s ability to discriminate be-

tween two groups based on different thresholds. The curve shows the sensitivity and specificity

of the binary classifier. Often the area under the ROC curve (AUC) is reported. When AUC is

equal to 0.5, the decision made by the model is no better than a random guess. For survival, the

time-dependent ROC curve is used (Heagerty et al., 2000).

4.2.2 Penalized regression (p > n)

When there are fewer variables than observations (p ≤ n), Equation (4.3) has an unique solu-

tion. In contrast, when p > n, XT
wXw is singular and noninvertible, there are infinitely many

solutions and penalized regression is needed.

Penalized likelihood
In penalized regression, a restriction is enforced on the size of the coefficients. To this end,

one introduces a penalty function J(β) and maximizes the log likelihood function under the

restriction that J(β)< s for some chosen value s. The consequence of this is that the estimated

coefficients are shrunken towards zero. The maximum of the log likelihood with respect to the
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4.2. Regression in high dimensions

restriction can be written, on the Lagrangian form, as

β̂λ = max
β

{
l(β)−λJ(β)

}
, (4.4)

for some penalty parameter λ ≥ 0. The solution space for larger value of s ∈ (0,∞), is equal to

the solution space of the Lagrangian form for smaller values of λ . Larger values of λ lead to

more shrinkage towards zero in the β̂. This leads to more bias and less variance (Hastie et al.,

2009; Bühlmann and van de Geer, 2011). The optimal value of λ can therefore be chosen such

that the bias-variance tradeoff is optimal, for instance by minimizing the predictive mean square

error (pMSE) by use of K-fold cross validation. Typically K = 10, so that nine tenth of the data

serve as training set, and 1/10th as test data.

However, Equation (4.4) depends on the scaling of the data. Therefore, normalization of the

data is typically done by centring each covariate so they have mean zero and standard deviation

one.

The lasso
The least absolute shrinkage and selection operator (lasso) was first introduced by Tibshirani

(1996). The penalty term is based on the L1-norm J(β) = ||β||1 = ∑p
j=1 |β j|, favoring sparse

solutions where a large proportion of the coefficients are exactly zero. The lasso can select at

most n variables out of p candidates (Efron et al., 2004).

There are versions of the lasso that posses the oracle property. This means that the methods

find estimators that are asymptotically as good as the oracle estimator, which a priori knows

the non-zero β . There are three assumptions that need to be fulfilled. First, there should only

be weak correlation between predictors, especially between relevant and irrelevant covariates.

Secondly, the true model must be highly sparse with less influential covariates than n. Thirdly,

the minimum value of β must be such that mini(|βi| : βi �= 0) ≥ K, for some constant K > 0

(Bühlmann and van de Geer, 2011).

In the case of orthonormal X in linear regression, there exists a closed form solution for the

lasso, namely the soft thresholding β̂ λ
j = sign(β̂ j)(β̂ j − λ )+, for the least square solution β̂ j

(Hastie et al., 2009).

Ridge regression
Ridge regression was introduced for the linear model by Hoerl and Kennard (1970), and it is

based on the L2-norm with penalty J(β) = ||β||22 = ∑p
j=1 β 2

j . It favors solutions with many

small non-zero coefficients, and does not do variable selection.

In Figure 4.2, we see a illustration of lasso and ridge regression for p = 2. Here, β1 is on one

axis and β2 on the other. The ellipses represent the log likelihood with maximum value in the

center, the black square shows the lasso constraint (|β1|+ |β2| < s) and the black circle the

ridge regression constraint (β 2
1 +β 2

2 < s). We see that in the lasso case the maximum of the log

likelihood together with the L1-norm restriction often lead to one of the variables being exactly

zero, which is not the case for the ridge regression. This is why the lasso results in a selected

list of coefficients different from zero, in contrast to ridge regression, which will include all p

13



4. METHODOLOGY

Figure 4.2: Estimation picture of (a) the lasso and (b) ridge regression. Figure reprinted from Tibshirani

(1996).

coefficients.

More details on the ridge regression solution
When using the ridge penalty we can find a closed-form solution for β̂ . With a closer look

at the ridge regression solution we see some interesting properties for the final estimates. The

following calculations are based on a paper by Le Cessie and Van Houwelingen (1992).

We start with the penalized log likelihood for the ridge regression lλ (β)= l(β)−λβTβ. Let the

first and negative second derivative of the log likelihood l(β ) be noted as U and Ω , respectively.

For the penalized log likelihood we then obtain Uλ (β) =U(β)−2λβ and Ω λ (β) = Ω(β)+

2λ . Similarly as for the non-restricted case we can find the Taylor series expansion of the first

derivative Uλ around the true value β0 as

Uλ (β) =Uλ (β0)−Ω λ (β0)(β−β0)+o(||β−β0||).

Using the fact that Uλ (β̂λ ) = 0 we see that

β̂λ ≈ β0 +[Ω(β0)+2λ ]−1 (U(β0)−2λβ0) = [Ω(β0)+2λ ]−1 (β0Ω(β0)+U(β0)) .

The unrestricted estimates can be approximated as β̂ ≈ β0 +Ω(β0)
−1U(β0), so the estimate

of β̂λ can be written

β̂λ ≈ [Ω(β0)+2λ I]−1Ω(β0)β̂, (4.5)

where Ω(β0) is typically approximated by Ω(β̂). For linear regression, this expression simpli-
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4.2. Regression in high dimensions

fies to

β̂λ = [XTX+2λI]−1XTXβ̂.

For orthonormal X , the expression further simplifies to β̂λ = 1
1+2λ β̂, and we see that the ridge

estimate is a simple shrinkage of the ordinary least squares estimate.

Simplify calculations by the use of singular value decomposition
The singular value decomposition (SVD) is extremely useful for calculating the ridge solution.

To this end we write the n× p matrix X as UDV T , where U (n× p) and V (p× p) are

orthonormal matrices spanning the column and row space of X . The p× p matrix D= diag(di)

is a diagonal matrix with the singular values di of X on the diagonal. Remember that UTU = I

and V TV = I . Then

XTX = (UDV T )TUDV T = V DUTUDV T = V D
2
V T

[XTX+λI]−1 = [V D2V T +λI]−1 = [V (D2 +λI)V T ]−1 = V (D2 +λI)−1V T

= V diag

(
1

d2
i +λ

)
V T

[XTX+λI]−1XT = V diag

(
1

d2
i +λ

)
V TV DUT = V diag

(
di

d2
i +λ

)
UT .

Similar calculations are valid for generalized linear models using Xw instead of X .

R packages
There are several R packages that may be used for lasso and ridge regression. Two of them

are glmnet by Friedman et al. (2010) and penalized by Goeman (2010). There are several

differences between these two packages as seen in Table 4.1. In practice, one should keep in

mind when comparing the optimal λ , that different scaling is used for the objective function for

the two packages, which leads to a transformation of λ . Further, the optimization procedure

is different, together with different loss functions in the cross validation, but this only results

in small differences in the optimal value of λ . For the overall comparison the running time is

often the critical part. Both methods are fast, but often glmnet is fastest, which is shown for

Cox regression in Simon et al. (2011).

4.2.3 Penalized regression with multiple penalties

In the penalized methods presented so far, all regression coefficients are penalized with one

common parameter so all covariates are treated equally. If multiple penalty terms, λ j = λ l j is

introduced, the penalized log likelihood can be written as

lλ (β) = l(β)−
p

∑
i=1

λ j|β j|r = l(β)−λ
p

∑
i=1

l j|β j|r,

where r = 1 is the lasso, and r = 2 is ridge regression. The penalty terms can be different for

all covariates or groups of covariates. A wide range of methods emerges, particularly based on

the lasso, and a selection of these methods are presented next.
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Characteristics glmnet penalized
Objective function n−1l(β)−λJ(β) l(β)−λJ(β)
The λ path Preselected grid of length 100, Iterates to the optimal loss function

β̂(λmax) = 0, λmin = 0.001×λmax
Optimizing

scheme

Coordinate decent (Friedman et al.,

2010), solving the problem along the

preselected path of values for λ , using

the current estimates as warm starts.

Follows the gradient of the log like-

lihood from a given starting value of

β. Automatically switch to a Newton-

Raphson algorithm when it gets close

to the optimum

Loss function Mean squared (absolute) error,

deviance,

partial-likelihood, Cross-validated likelihood

misclassification error,

area under the ROC curve.

K-fold CV Default is 10 Default is n

Table 4.1: The differences between the two R-packages glmnet and penalized used to maximize the

penalized log likelihood.

Adaptive lasso
In adaptive lasso, presented by Zou (2006), the penalty weights are defined as l j = 1/β̂ L

j , where

β̂ L
j is the estimate from the classical lasso. The covariates that classical lasso finds important,

are given a lower penalty in the adaptive lasso, while those set to 0 in the first iteration are no

longer included. The result is that fewer variables are selected, and their coefficients are hardly

shrunken. Under some assumptions on the design matrix X and sufficiently large non-zero

coefficients, the adaptive lasso possess oracle properties, meaning that the method can correctly

select the nonzero coefficients with a probability converging to one.

General multi-penalty
The covariates are divided into predefined groups, and one penalty term λg are introduced per

group g = 1, . . . ,G (Tai and Pan, 2007). If the number of groups is small, each λg is found by

cross validation, which means in total a G-dimensional cross validation. For large G this may

be computationally too demanding, so it is suggested to use λg = λ lg, and only determined λ by

cross validation. The penalty weights lg is then the mean of the absolute value of the variables

in group g.

Group lasso
For group lasso, predefined groups are included, such that either all covariates in a group are

selected or none of them are selected. The penalty is a L1-norm at the group level, and a L2-

norm for the features within each group, λ ∑L
l=1

√
pl||β (l)||2, where β (l) is the coefficient vector

of group l, and pl is the length of β (l) (Yuan and Lin, 2006). Later, the sparse group lasso was

presented by Simon et al. (2013) as (1−α)λ ∑L
l=1

√
pl||β (l)||2 +αλ ||β ||1, where α = 0 gives

the group-lasso and α = 1 gives the classical lasso. This method results in sparsity within the

selected groups.
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Weighted lasso with data integration
To incorporate external knowledge of believed relevance of each covariate, Bergersen et al.

(2011) presented the weighted lasso with data integration. Each individual penalty weight is

calculated based on some co-data together with an additional introduced parameter to decide

upon the relative strength of the external weights. The method is data driven, so the data decides

the range of the individual penalties through a two-dimensional cross-validation. If the co-data

is not relevant, the method allows for no weights.

Garcia et al. (2013) further build upon this method, where they, based on some external infor-

mation, divide the covariates into two groups. The first group of covariates should not be subject

to selection, and the second group of covariates gets individual penalties such that some of them

are more likely to be in the model than others. The penalties for the first group are constructed

such that those covariates are guaranteed to be in the model.

4.2.4 Bayesian perspective

Lasso and ridge regression have a Bayesian interpretation. If a prior for β is defined as a Gaus-

sian N(0,τ2), the mode (and the mean) of the corresponding posterior distribution is the ridge

estimate, where λ ∝ 1/τ2. If the prior for β is defined as double-exponential (τ/2)p exp(−τ||β||1),
the mode of the posterior is the lasso estimate (Hans, 2009). The idea of individual penalties

could therefore be viewed as having different priors in terms of the variances τ2
j for each coef-

ficient β j.

Empirical Bayes approach is when the hyperparameters (for instance τ or τ j) are estimated from

the data itself, and plugged into the posterior (Efron and Morris, 1973; Morris, 1983). Typically,

an estimate of the hyperparameter is found by maximizing the marginal distribution over the

hyperparameter. A simple example is for a Gaussian model yi|θi ∼ N(θi,σ2) (σ2 known) and a

Gaussian prior θi ∼ N(μ,τ2) for i = 1, . . . ,n. Then the marginal m(yi|μ,τ2) ∼ N(μ,σ2 + τ2),

and when maximizing it as a function of (μ,τ2) we get μ̂ = ȳ = ∑i yi and τ2 = (s2 −σ2)+ =

max(0,s2 −σ2), where s2 = 1
n ∑i(yi − ȳ)2.

5 Summary of papers

5.1 Paper I

Jonas Paulsen*, Tonje G. Lien*, Geir Kjetil Sandve, Lars Holden, Ørnulf Borgan, Ingrid K.

Glad and Eivind Hovig (2013). Handling realistic assumptions in hypothesis testing of 3D co-

localization of genomic elements. Nucleic Acids Research, 41(10): pp 5164–5174. *Joint first

authors.

Paper I introduces a novel permutation test and an effect size for spatially co-localized genomic

elements. The main question addressed is whether a set of regions in the genome (our “query set

of interest” ) is spatially closer to each other in 3D than expected by chance. The null hypothesis
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assumes every contact to be random. The test includes both testing for genomic elements on the

same chromosome (intra) and on different chromosomes (inter). Two genomic elements close

to each other along the genome will, just by chance, often be 3D co-localized. To account for

this we standardize each 3D contact frequency by their expectation and standard deviation. The

overall test statistic is then the mean over all standardized 3D contact frequencies in the query

set of interest.

Because of the complex joint distribution of 3D contact frequencies, we present a permuta-

tion test, permuting the position of the genomic elements of interest. The strong correlation

structures within the data are taken into account by not permuting the positions uniformly, but

by including certain novel restrictions. Additional properties, for instance the GC content, are

also considered and can be preserved by only permuting elements with similar properties. The

global 3D data itself is not randomized and is thus fully maintained.

The 3D structure under the null hypothesis is simulated by a random walk inside a reflecting

sphere. The simulation studies show that the permutation test truly has significance level α .

Finally, the hypothesis test is tested on publicly available biological data using different cell

lines; IMR90, human embryonic stem cell and K562 (Dixon et al., 2012; Lieberman-Aiden

et al., 2009). The hypothesis test and all biological data are nicely implemented in a user-

friendly web page, available at https://hyperbrowser.uio.no/3d/.

5.2 Paper II

Sjur Reppe, Tonje G. Lien, Vigdis T. Gautvik, Ole K. Olstad, Hege G. Bakke, Robert Lyle,

Marianne Kringen, Ingrid K. Glad and Kaare M. Gautvik (2015). DNA methylations in bone

correlate markedly to BMD associated transcript levels and distinguish between osteoporotic

and healthy postmenopausal women (Manuscript).

Paper II investigates a selection of DNA-methylation sites and gene expressions in relation to

bone mineral density (BMD) in a study of 80 women. The 100 gene expressions most associated

with BMD, found by Reppe et al. (2010), and their 2529 cis related DNA-methylations are the

focus. Osteoporosis (OP) is a disease associated with loss of bone mineral density, and the

women in the cohort study represent a diversity of BMD including both OP cases and healthy

individuals. Five DNA-methylation sites are found to be significantly differentiated (at 5%

FDR) between the healthy and sick patients, when accounting for age.

To get a deeper understanding of the association between gene expression and DNA-methylation,

we test for significant correlation in both cis and trans related pairs. A cis relation refers to

DNA-methylation and transcript from the same gene, and trans refers to DNA-methylations and

transcripts from different genes. By the use of a permutation test, we see that the correlation

between DNA-methylation and gene expression can be both significantly positive and negative,

and occur between both cis and trans related pairs. At a 5% FDR, 1470 pairs are significantly

correlated (corresponding to, mainly, correlations larger than 0.4 or lower than −0.4). Only 5

of these 1470 significant correlations are in cis pairs. This gained knowledge is incorporated in

an integrative analysis of BMD in paper IV, using the full DNA-methylation data and genome

wide gene expressions as co-data.
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5.3 Paper III

Mark A. van de Wiel, Tonje G. Lien, Wina Verlaat, Wessel N. van Wieringen and Saskia M.

Wilting (2015). Better prediction by use of co-data: Adaptive group-regularized ridge regres-

sion. Statistics in Medicine (Published).

Paper III develops one of the methods applied in paper IV, and the presented method is a ridge

regression that allows for multiple group-penalties. The motivation is a global regression anal-

ysis (typically with more covariates than samples) with integrated co-data, where the groups

are defined by the co-data. Covariates in the same group are believed to have similar predictive

impact. The group-specific penalties are then found by the use of empirical Bayes, which adapt

to the amount of information in the co-data. Therefore, if the groups do not give improved

predictive performance, the groups will not be integrated in the final model. When there are

ordered groups, such that some groups are favored over others, a constraint is enforced on the

group-specific penalties.

Simulations and two biological examples validate the method. For both biological examples,

the new method clearly improved predictive performance compared to ordinary ridge regres-

sion and group lasso. The results show that the method may lead to better distinction be-

tween “near-zero” and relatively large regression parameters, which promote post-hoc variable

selection. Lastly, the method is implemented in a R package, termed GRridge, available at

http://www.few.vu.nl/ mavdwiel/grridge.html.

5.4 Paper IV

Tonje G. Lien, Sjur Reppe, Kaare M. Gautvik, Ørnulf Borgan and Ingrid K. Glad (2015). In-

tegration of epigenomic and genomic data in high-dimensional penalized regression. A cohort

study on bone mineral density (Manuscript).

In paper IV, the method developed in paper III is applied to the bone mineral density (BMD)

data, where BMD is used as response, genome wide DNA-methylations as covariates and gene

expressions as co-data. The DNA-methylations with a strong association to genome wide gene

expressions are favored in the penalized regression. The p-values from the global test (described

in Section 4.1.4), adjusted for multiple testing, are used to quantify the strength of association

between DNA-methylations and gene expressions and form the basis for the grouping of the

covariates in the group-regularized ridge. The results show a considerable improvement in

prediction error with 14% compared to classical ridge regression. A relative small group of

covariates was assigned small penalties, and the remaining covariates were given relatively

large penalties, in practice excluding them from the final model.

Variable selection was also desirable in the analysis of DNA-methylations in the BMD study.

Therefore, an improved extension of the weighted lasso with data integration is presented. Here,

each individual penalty is defined to be proportional to a weight, where the weight reflects the

relevance of the covariate according to the co-data. Again, the multiple corrected p-values from

the global test were used as basis for the penalty weights. An additional parameter was intro-

duced to control the relative difference between the minimum and maximum penalty weight.
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The optimal value of this parameter is decided by the data itself, such that the penalty weights

will all be equal to 1 if there are no information in the multiple corrected p-values. This was

not the case for the BMD data, and in fact we saw a great improvement of 17% in terms of

predictive performance in the weighted lasso with data integration compared to the classical

lasso with no penalty weights. The R package glmnet was used to run the method, since this

package has penalty weights as a separate argument in the function call.

Lastly, p-values from testing each DNA-methylation against only their cis related gene expres-

sions were also tried as basis for the penalty weights. But this showed no improvements in

prediction, for either of the two methods. These results indicate that DNA-methylations are in-

volved with and associated to other genes than their cis related genes. Similar results was seen

in paper II.

6 Methodological extensions and future
work

This section presents extensions to paper I and paper III. The extensions to paper I have been

published and implemented online. The extensions to paper III have been implemented in the

corresponding R package and will be published later. Lastly, ongoing work is presented, where

Hi-C data is being analyzed in a penalized regression setting.

6.1 Extensions to paper I

Several additional hypothesis have been developed, which were not included in paper I, but

published by Paulsen et al. (2014). Alternatively, one can ask questions such as: Is one query

set more/less co-localized with another query set in 3D? Are selected pairs of elements more

co-localization in 3D? There are also different options for restrictions in the randomizations

concerning predefined categories. For all the hypothesis tests, a representative enrichment score

is given, showing the 3D co-localization compared to the expected 3D co-localization. Visual-

ization of Hi-C data as heat maps and graphs were made available online.

6.2 Extensions to paper III

The adaptive group-regularized ridge regression handles logistic and linear regression models.

But, it is fairly straightforward to extend the empirical Bayes estimate in the method to also

handle Cox regression for censored survival data. For survival data, individual i has follow-

up time ti and event indicator di, where i = 1, . . . ,n. The event indicator is equal to 1 if the

event of interest has occurred and equal to 0 if the individual is censored. For each individual,

p explanatory variables xi = (xi1, . . . ,xip)
T are measured. The design matrix is denoted X , a

n× p matrix with rows xT
i . Cox regression is defined by assuming that the hazard function of
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the ith individual takes the form

h(t|xi) = h0(t)exp(xT
i β),

where β is the p-dimentional vector of coefficients.

Next, we follow the approach of van Houwelingen et al. (2006), and use the full log likelihood

for the Cox model, given by

l(β,h0) =
n

∑
i=1

[
di

{
logh0(ti)+xT

i β

}
−H0(ti)exp(xT

i β)

]
,

where the cumulative baseline hazard H0(t) = ∑s≤t h0(s) is assumed to be a step function with

jumps at the observed event times ti. For p > n, the penalized full log likelihood is

lpen(β,h0) = l(β,h0)−λβTβ.

To find the expectation and covariance of β̂, needed in the adaptive group-regularized ridge

regression, we find the first and second derivative of the penalized full likelihood. The first

derivative is

∂ lpen(β,h0)

∂β
=

n

∑
i=1

[
di −H0(ti)exp(xT

i β)

]
xi −2λβ =XT Δ −2λβ,

where Δ = (Δ1, . . . ,Δn)
T Δi = di −H0(t)exp(xT

i β), and the second derivative is

∂ 2lpen(β,h0)

∂β∂βT =−
[ n

∑
i=1

H0(ti)exp(xT
i β)xix

T
i +2λI

]
=−(XTDX+2λI),

where D = diag

{
H0(ti)exp(xT

i β)

}
. Then, by an argument similar to the one in Le Cessie and

Van Houwelingen (1992) and Cule et al. (2011), we find the first-order approximation of E(β̂k)

as

μk = [β−2λ (XTDX+2λI)−1β]k = [{I−2λ (XTDX+2λI)−1}β]k
= [(XTDX+2λI)−1{XTDX+2λI−2λI}β]k = [(XTDX+2λI)−1XTDXβ]k,

(6.1)

where [M]k denotes the kth component of a vector M. Next, the estimated covariance matrix

Σ = Cov(β̂), is approximated by

Σ ≈ (XTDX+2λ I)−1XTDX(XTDX+2λ I)−1. (6.2)

In the group-regularized ridge regression, the first-order approximation of the first and second

moments, Equations (6.1) and (6.2), are used in the calculations of the empirical Bayes estima-

tor.
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6.3 Future work using Hi-C data in penalized regression

A possible direction is to analyze the Hi-C data in a regression setting. For instance, the data pre-

sented in Jin et al. (2013) includes Hi-C experiments in primary human fibroblast cells (IMR90),

for 6 biological replicates in two different conditions, before and after treating the samples with

TNF-α signaling. For this type of data, a penalized logistic regression using the 3D contacts

as covariates could be suitable. The goal is to find a list of contacts, which differs between the

binary outcomes.

Hi-C data contains strong correlations and this structure should be taken info account. The fused

lasso, proposed by Tibshirani et al. (2005) has the restrictions ∑p
j=1 |β j| < s1 and ∑p

j=2 |β j −
β j−1| < s2. Thus, the method performs variable selection and smooths consecutive β esti-

mates by shrinking the difference. When using the squared penalty on the difference ∑p
j=2(β j −

β j−1)
2 < s2, each difference is shrunken, but not put exactly equal to zero. A requirement

for this method is that the covariates can be ordered in some meaningful way. The result is a

selection of sequences of non-zero coefficients. Li and Li (2008) and Sun and Wang (2012)

suggested a network-constraint by shrinking the estimates of β belonging to the same network.

Let Xi, j be a 3D contact from genomic element i to genomic elements j. The strongest corre-

lated neighbouring contacts would then be Xi−1, j,Xi+1, j,Xi, j−1,Xi, j+1. With modification to the

fused lasso penalty, the difference between βi, j for covariate Xi, j against each of the four other

neighboring coefficient could be penalized. A selection of sequences of 3D contacts differing

between the binary outcomes would then be selected. Further, Sun and Wang (2013) presented

a R package including penalized logistic regression, where all neighboring pairs of β estimates

can be included as an argument in the R function.

In Jin et al. (2013), the mentioned Hi-C data was analyzed by combining the Hi-C measurements

before and after treatment, and pooling all 6 replicates together. Next, they grouped all 3D con-

tacts with similar expectation, distance and properties such as mapping ability and GC content.

For a group g they fitted a negative binomial distribution NBg(X |μg,θg), which were used to

calculate the significance of each observed contact frequency by pi j = NBg(X > Xi j|μg,θg) for

all Xi j belonging to group g. The p-values were corrected for multiple testing by controlling the

false discovery rate.

On the other hand, if penalized regression was used to analyze the Hi-C data, one performs

a multivariate analysis using all covariates simultaneously, includes all replicates individually,

and incorporates the correlation structure in the model. To our knowledge, this theory has

not been used on Hi-C data. In such an analysis, the number of covariates (the 3D contacts

between each involved genomic element) could be enormous, when the number of genomic

elements grows. This may demand a large number of independent samples, larger that the data
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set presented here.

7 Discussion

Paper 1 presented a permutation test and checked, using simulations, that the test truly has

significance level α . In addition, it is valuable to check the methods ability to find the true

negative, thus correctly rejecting the null hypothesis. It is not obvious how to do this in a

permutation setting, so this topic will be discussed in this section. Next, we take a closed look

at the similarities and differences between lasso and ridge regression. Lastly in this discussion

section, important aspects in integration methods are being evaluated.

Challenges when evaluating permutation tests

As mentioned in Section 4.1.1, it is of interest to quantify the power of the permutation test, i.e.

the proportion of correctly rejected null hypothesis. This is challenging when the distribution

under the alternative hypothesis HA is unknown. One could try to simulate from an approxi-

mation of the distribution under the alternative hypothesis. But, it can be challenging to find a

proper simulation setting approximating the real data setting. For the test in Paper I, there is

no obvious candidate for a simulation study since the distribution under HA is highly complex

and differs for each observed query set, for different true co-localization signal and for each

biological data set. A simplified simulation setting could use modifications of a random walk

where the walk has a tendency to move back towards a central location (Gillespie, 1996), or a

self-attracting 3-dimensional random walk (Bolthausen and Schmock, 1997). But this would

be a highly simplified version of a real biological data set and would not necessarily reflect the

true power of our test when testing on real data.

An alternative approach done by Witten and Noble (2012), is to use real biological data, find

the most extreme observations and check that those observations actually generate a low and

significant p-value. But, note that by the construction of a permutation test the 5% largest

(most extreme) observations will always result in the correct conclusion, namely rejection of

the hypothesis.

The basic concept of statistical power is that the test should reject H0 when HA is true, see

Equation (4.2). Therefore, it is a good idea to validate known results where co-localization

is present. The hypothesis test in paper I shows, as expected, that regions marked by “active

promoter” or “strong enhancer” are significantly co-localized, even after taking the domain

properties of the query set into account. Also, when shifting the elements in the query set away

from their original positions, the significance is lost and lower enrichment scores are achieved.

The test also finds that query sets in either end of the chromosome arms have larger 3D co-

localization than genomic elements in the middle of the chromosome arms, as mentioned in

Imakaev et al. (2012).

Generally, it is most natural to calculate the power of a test if there are competing methods. To

our knowledge, at the time paper I was published, comparable methods were not available.
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7. DISCUSSION

Lasso versus ridge regression

Lasso and ridge regression are often presented as competing methods and some researchers tend

to prefer one. But, what are the main differences, and when should one method be preferred

over the other? Table 7.1 gives a brief overview of the differences to be discussed in this section.

Firstly, prediction error is standard to compare the performance of the methods. Uniformly, no

method dominates the other in terms of prediction (Tibshirani, 1996; Fu, 1998), but there are

some special cases worth looking into. In the classical situation with few variables n > p and

highly correlated predictors, ridge tends to predict better than lasso (Tibshirani, 1996). The

same is the case for n < p and little or no sparsity (Hastie et al., 2009), for instance with gene

expressions data (Bøvelstad et al., 2007; van Wieringen et al., 2009). One reason for this could

be that ridge regression includes all variables, while lasso works as a variable selection method.

When lasso is compared to other variable selection methods, it performs well (Tibshirani, 1996;

Hastie et al., 2009). For larger number of covariates (p >> n), with or without sparsity, both

methods seem to have problems (Zou and Hastie, 2005). Therefore, the “bet on sparsity” prin-

ciple is formulated by (Hastie et al., 2009) “Use a procedure that does well in sparse problems,

since no procedure does well in dense problems”. All in all, there is no overall optimal method

in terms of prediction.

An important aspect mentioned earlier, is that lasso assumes the true model to be sparse, and

thus performs variable selection. If one is unsure whether the sparsity assumption is valid or

not, it can be an idea to run the ridge regression first and evaluate the size of the resulting

estimates. But in some situations without true sparsity, variable selection is highly desirable

and appealing for interpretational reasons (Zou and Hastie, 2005). It is important to have in

mind, that the lasso can be unstable for different folds in the K-fold CV and will give different

selected covariates (Ein-Dor et al., 2005; Michiels et al., 2005; Meinshausen and Bühlmann,

2010). These different sets may give similar prediction values, but for interpretational reasons

it is important to not over interpret the obtained list of selected covariates.

The value of β̂ depends on the collinearity among the predictors. Ridge regression smooths

correlated variables, and in the special case of k identical predictors, each predictor gets identi-

cal coefficients with 1/k the value that any single predictor would get if fitted alone (Friedman

et al., 2010). Lasso tends to select only one variable out of a set of highly correlated covari-

ates (Zou and Hastie, 2005). Both methods shrink the estimates, and for orthonormal X , ridge

regression shrinks on a multiplicative scaling and lasso on an additive scale.

Lastly, it is worth mentioning again, that version of the lasso possesses the oracle property that

the method can correctly select the nonzero coefficients with probability converging to one.

Note that some of the assumptions are hard to achieve, for instance that the number of true

nonzero coefficients is less than n (Bühlmann and van de Geer, 2011).

Zou and Hastie (2005) suggested the elastic net, having penalty λ1 ∑p
j=1 |β j|+ λ2 ∑p

j=1 β 2
j . It

smooths the coefficients, is more stable and still performs variable selection, where correlated

variables have a tendency to be either all inn or all out. This may be a good option if one wants

to strike a balance between lasso and ridge regression.
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Characteristics Lasso Ridge
Prediction Depends on data Depends on data

Variable selection Yes No

(sparsity assumtion)

Stability Unstable Less unstable

(in K-fold CV)

Collinearity Tends to select one representative Smooth correlated variables

Shrinkage additive : sign(β̂ j)(β̂ j −λ )+ multiplicative : 1
1+λ β̂

(orthonormal X)

Oracle property Some versions No

Table 7.1: The differences between lasso and ridge regression.

Requirement for integration analysis

Data integration has been an increasingly popular field of research the last years, and a number

of methods have been proposed. In a regression setting, one option could be to include all

variables from all data sets as covariates in the integrated regression. A highly reasonable

requirement for integration methods, where one has some sort of co-data, should be to evaluate

whether or not to include the extra information. In some situations, the co-data contributes to

additional understanding and a stronger signal, but in other cases the co-data only adds more

noise to the analysis. For the two methods proposed in paper III and IV, a tuning parameter

controls whether or not the co-data is included. This is a strength. One should not automatically

assume that integration is better than analyzing the data sets separately.

The two methods, adaptive group-regularized ridge regression and the weighted lasso with data

integration, diverge in their perspective on shared signal between the main data source and the

co-data. When using the group-regularized ridge, the original β estimates from classical ridge

regression need to show different and distinct signals for at least two of the groups defined by

the co-data. In other words, if we believe that there are 4 groups of covariates with different

impact on the response, the β estimates from the classical ridge, should reflect, to some extent,

these differences also without using the group information. If that is the case, we are more

convinced that the group information based on the co-data is true. The weighted lasso with

data integration is not dependent on the signal in the classical lasso with no data integration.

In situations when the classical lasso does not find any signal in the main data set, the co-data

could still be incorporated and give overall better predictions. This can be preferable when there

is too much noise in the main data, but a clear signal based on the co-data.
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