Spatially varying filnite-amplitude

wave tralins on falling liquid films

B. Gjevik

In a previous paper the occurrence of steady finite«amﬁlitude
waves on falling liguid fllms has been studied by a long wave ex-
pansion technique. This analysis is now extended to iﬁclude spati-
aliy varying wvave tfains. The solutions presented may correspond
to the forced wave trains occurring downstream from a wave generator.
Moreover the second order terms In the long wave expansion are re-
ported and their effect on the finlte-amplitude wave motion is
studied, Numerical results for finilte-amplitude waves on thin films

of water or alcohol are presented.



1. Introduction.

In a previous study, Gjevik 1) hereafter referred to as (I),

- the occurrence of finite-ampllitude surface waves on falling llquid
f1lms has been investigated. However, this study is concerned with
temporally growing or decaylng wave solutions which are assumed to
be perlodiec in the distance along the inclined plane. Therefore
the transient development of these waves will correspond to speclal
experimental arrangements and the solutions given in (I) will for
example not explicitly provide any information about the spatial
development of a steady wave traln downstream from a wave generator,
Since thls latter arrangement is used by different authors 2,3) in
order to study steady finlte-smplitude surface waves on falling
ligquld films it might be pertinent to modify the analysis in (I)
according to these experimental condltions. Mathematically these
modifications merely consist of an interchange of the roles of

time and distance dovnstream and the roles of wave number and
frequency., It should be pointed out that generally there will
exlst a complex perturbation velocity fleld close to the wave
generator and the kinetic energy will be distributed among the
different elgen-modes and wlthin a certain band in the frequency
spectrum, For the range of the flow parameters of interest here only
the surface mode treated in our work 1s unstable according to
linearized stability theory, while all the other eigen-modes are
rapidly damped. (Ref. 4). I% 1s also reasonable to assume that

the fundamental finite-amplitude wave components have a similar

stabilizing effect on sideband wave perturbations as the



stablilizing effect shown by Eckhaus 5) for finite-amplitude
disturbance to parallel flow between rigid planes. Therefore,

the solution presented below might approximate the experimental
disturbances at a point somewhat downstream from the wave generator.
This position we shall refer to as the boundary statlon. In this
work we shall also report the second order approximation to the
long wave expansion (hereafter written LWE) which was found in (I)
to be a convenlent method for the study of long surface waves on
thin falling liquid films. It was mentloned in (I) that although
the higher order terms in the LWE would have a negligible influence
on the computed wave amplitudes, these terms would have a signi-
flcant effect on the veloclity of the steady finite-amplifude wave.
Consequently, these terms wlll also have an influence on the phase

angle between the fundamental wave component and lts higher

harmonics.

2. Second corder terms in long wave expansion including the effect

of surface tension.

We shall consider two-dimensional perturbations to a steady
parallel flow of an incompressible viscous fluid down an inclined
plane and adopt the same notation and scaling procedure as intro-
duced in (I). The flow is then characterized by a Reynolds number,

a Weber number and the angle of inclination of the plane defilned

respectively by
3
R = gheiine , (1a)

T
W pghZsin® (1b)

9 (1e)
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where g 1s the acceleration of gravity, h 1is a mean thickness
of the fluld layer defined by the normalization condlition imposed
in § 4, v 4is the kinematic viscosity, p 1s the density of the
filuid and T denotes the surface tension. As in (I) we assume R
to be of order unity. The surface deflectlon is a function of x

and + which can be written (when scaled by h) :
g{x,t) = 1 + n(x,t) (2)

vhere n(x,t) 1s a swmall perturbation of order 0(e) << 1, x 1is
the distance along the flow direction and t 1s time. Since we

assume no mass transport through the free surface nor through the

bottom plane

SRR (3)

3 ax ?
where Qx is the volume flux (pr. unit span) in the x-direction.
With the LWE method as used in (I) the second order terms in Q
can be evaluated, Hence 1f o denotes the expansion parameter

3
0, = A(D) + a(B(D)E + c()F3)

2 2 31}
+ a2 (D(0) (22 + B(7) 35 + Fo)ge

ag a3c aZC’ 2 ,?_E,. 2
+ G(Z.;)'a_}'(- '5;;-5' + H(C)(W + I(C)(ax Ax 2 ) *

where the functions A, B, C etc. are defined in the Appendlx,
The fact that the equation for the surface deflectlon always can
be written in form (3) to any order in the LWE for Qx was

apparently overlooked by Benney 6) and due to calculation errors
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the equation for the surface deflectlon glven in hls paper cannot
be transformed to (3). The last four terms in the expression (4)
includes the effect of the surface tension and are to our knowledge
not reported in earlier work on the subject, The corresponding
second order approximation to the velocity fleld 1s given by
lengthy algebrailc expressions and will therefore be qmitted here,
The second order terms for the veloelty field imply, however, a
distortion of the mean velocity profile of order 0 (e?a?), The
distortion of the mean velocity proflile is therefore obviously a
negligible effect in establishing steady finite-amplitude wave

motlon on falling liquid films,

3. The amplitude equatlons for a spatially varying wave train.

We assume n(x,t) to be a periodic function of t. Thus

n(x,t) can be expanded in a Fourler series

k=N
nGx,t) = 1 A (x)eF (5)
k=-N

where ¢ 1s the dimensionless freguency scaled according to (I)

by 95%%329 . The PFourler coefficlents Ak are functicns of X
P
and A—k = Ak, where asterisk denctes complex conjugate and N

denotes the number of terms retained in the Fouriler series. Ve

also write

Be(x) = A ()™, (6)

where o 1s the dimensionless wave number. Up to thils stage o



~

is left unspecified, For a steady periodic wave train Ak is
independent of x. This case corresponds to the steady wave
solutions given in (I), For a steady wave train and in a certain
range of the [low parameters the result in (I) shows that the
Fourier expansion will converge rapidly. If we are close to this
steady state Ek(x) wlll be a slowly varylng function of x.
Consequently we introduce the expansion (5) with N = 2 1in the
equation for the surface deflection (Eq.3). Moreover if only the
first order derivatives of Ek(x) (k = 1,2) are retained, the

following truncated set of amplitude eqguations is cobtained.

ay %%L = (By-1c)A, + qfi,A; + mlA %A + rA A, (7a)
an N -
as diz = (By-21c)h, + pA,?Z, (7p)

It also becomes evident from the further development (see Eq.9)
that by a proper normalization of ¢ +the maximum value of Eg
will be of order |H1lz- Hence the term EIEO should be retained
in (7a). The coefficients in Egs. (7a) and (7b) are glven in the
Appendix,

We now denote the mean value of a property of fluid wilth

respect to t wlth a bar. Then from Eg. (3) it follows that

Q. = Qo (8)

X

where Q¢ IJ1s determined by the conditions at the boundary station
as defined in § 1. Thus our present formulation of the problem
implies that the volume flux 1s periodic in time and has a mean

value which 1s constant in the downstream directlon. By a



substitution of (5) and (6) into (B), (8 ) can be written with a

sufficient degree of accuracy as

% + 2Ry + 41a, 1% = Q

or equivalently

ho = 3Qo - § - 2|A1]%, (9)

Hence (7a), (7b) and (9) form a complete set of equations and

~

Ay, Ay and Ao, are uniquely determined by the conditions

imposed at the boundary station,

b, Steady far-fleld solutions of the amplitude equations,

In the range of the flow parameters leading to x-independent
far-field solutions of (7a) and (7h) ¢ can be normalized so that
Eo = 0 in the far-field renge. This normalization defines the
scaling parameter h as the mean film thickness in the far-fileld
limit. Conseguently (7a) and (7b) become analogous toiﬁimen
dependent amplitude equaticns studied in (I) and the steady far-
field solution of (7a) and (7b) must correspond to the steady
finite-amplitude wave solutions given in (I). There will be no
loss in generallty by choosing the origin of x so that for the

far-field non~zero solutlons we have

El = B$S)a (loa)
~ (s)
A, = BS®IAMTTT (10b)

where B§S), BﬁS) and A,(S) are real values Independent of x.
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Substitution of (10a) and (1Qb) in (7a) and {(7b) leads to

B B
BgS) = (._, .133-_1:)%’ if .151.1.: > 0, (118.)
r r
p.cosh;+p,sinA,
L AL G
r

bgp, () = J2AT et By (11c)
BopPpt (Boy=~2By,4)Dy

where the Indices r or 1 denote respectively the real :or the

imaginary part of a complex valued quantity and

- 16
P, = Bom + 0(o). (12)

The following relation between wave amplitude and frequency mus%t

also be satisfied

- (s)?
¢ = B, + P,B , (13)
where
p_+q B,:=2B
Pz -2+ 4 L2 15 2L 11 442y, (14)
L 62r 82r2

With Eq. (13) also the dimensionless wave-number, o, of the far-
field waves 1s determined. It follows from Egs. (1lla) and (12)
that steady non-zero far-fileld solutions to (7a) and (7b) only
exist for a certain band of frequencles. For relatively high
frequencies leading to B4, < ¢ it is easily shown that (7a) and
(7b) only possess the trivial solution ﬁl & Ea + 0 for x —+ o,
On the other hand, for relatlvely low frequencles so that IBZPI
becomes small compared to Blr’ the convergence of the series

expansion, Eq. (5), will be violated. (See I). 1In the case of



non-dispersive infinitesimal-amplitude waves (821 = 2311) the
formulas (lla)-~(1llc) reduce to Eq. (22) in (I). Therefore the
main effect of the second order terms in the LWE will be a

correction to the angle A,. The limit A, = %- for o =+ 0.
kil

derived in (I) 1s, however, unaffected. For the case 0 =
and for relatively short waves we found in (I) that the non-linear
terms would lead to a negligible decrease in wave veloclty i.e.
for a? > 0.673 R/W. Since B,y ~ 28,y 18 negative for values
of o and R within the range of non-zero far-field solutions

to (7a) and (7b) (the case R << 1 excepbed) it follows from
Eqs. (13) and (14). that the dispersion terms will accentuate the
veloclty decrease in certain ranges of o and R ., (See also
nunerical results in Table 1 and Table 2). For relatively longer
waves the numerilcal results indicate that the non-linear terms
lead to a weak increase in the wave veloclty. In Lin's study of
the steady wave solutlion the dispersion terms are neglected (See
I). Therefore the veloclty decrease for relatively short finite-
amplitude waves was not shown in his previous analysié? However,
these results have been modified recently {Lin (1970) private
communication ], It follows from the results in (I) that in the
neighbourhood of the linear neutral line in the stabllity diagram
the third harmonics 53 will be negligible compared to Eg and
El and a good approximation to the far~field wave amplitudes 1is
found from Eg. (11). Since the third harmonic was included in

the numerical calculations of the steady solution presented in (I),
we have also included 33 in the recalculations which admit the

improvement in the LWE. Consistent with the definitions in (I)



-9 -

“ (s) (s)
we have introduced A, = Bgs)ei(AZ HP! ), and we have solved

a similar set of equations as Eq (15) in (I). The detalls in
these numerical calculatlons are as described in (I). For small
values of o and R the correction to the amplitudes B,(S),

B§S) and Bgs) due to the second order terms 1in the ILWE are

almost negliglible, But there is a conslderable correction to the

wave veloclty as well as to the values of Al(s) and AZ(S). The

correction to these angles will have some influence on the wave
profils gilven in (I), but the waves are still found to retain
thelr characterlistic shape with steep fronts and somewhat flatter
valleys. The data for the far—field waves on a water film are

given In Table 1 and Table 2 for two different angles of inclina-

tion, 6 = T and 6 = §° The data in Table 2 are computed for

24
the same values of the flow parameters as used in (I)., The data

in Table 1 are typical for some of Koehler's experiments 3)

(quoted in § 5).

With the same method as described above we have also computed
the far-fleld wave amplitudes for the vaiues of the wave length,
A, and the mean volume flux corresponding to observed onset of
wave motion on vertically falling films as reported by Kapitza

et.at. 2) Since R actually is the given parameter in our

L

computations we have adjusted this parameter until the required
value of Qx was obtained. The surface deflection is given in
terms of the quantlty

4

- min
v =g

max” %
T

max -“min

where and Cnin denote respectively the maximum and minimum

max
thickness of the fluld layer.The results are presented in Table 3.




Table 1

a B*i(sﬁ' B§S) B§S) | A;(S)r Aés’ﬁ 214 ¢ i Cmax | ®min Cz%/s |
0.040 0,0QOQ -0.0023 0.0002 0.584 0.222 -1.995 -1.985 | 1.037 0.955 0.0761
0.037 0.0232 -0.0044 0.0004 0.659 0.249 -1.994 -1.976 | 1.041 0.945 0.0762
0.034 0.0219 -0.0053 0.0006 0.702 0.291 -1.993 -1.974 1 1.040 0.946 0.0761
0.0%0 0.0176 -0.0066 0.0008 0.721 0.404 -1.993 =-1.971 1 1.0%2 0.¢51 0.0761

Table 2

@ B§S) ﬁg)‘ B§S) A#S) A§S) 14 © Smax ‘min czg/s |
0.069 0.0448 -0.0037 010003 1.316 0.687 -1.985 -1.972 ] 1.088 0.908 0.0337
C.064 0.0598 -0.0087 ¢.0011 1.420 0.755 -1.980 -1.960 | 1.12¢ 0.873 0,.0340
0.059 0.0614 -0.0119 0.0017 1.489 0.8%4 -1.978 -1.960 | 1.126 0.867 0.0341
0.051 0.0526 -0.0160 (.0024 1.583 1.032 -1.978 -1.970 | 1.117 0.882 0.0339
0.042 0.0301 -0.0174 | C.0027 1.654 1.286 -1,9882 -1.986 | 1.083 0.916 0.03%6

...OL..
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Table 3
Kapitza et al.'s observations Computed values
v T/p Q A
Liquid X ¢ °s IR o %
em?/s |em®/s? [em?/s cm en/s em/s

Water 0,0114 T4 0,061 0,89 0,16 12,4 |7.39 |0.26 }12.06

Alcohol 0.0202 29 0.068 0.71 0.18 10,7 |[4.,63 0,27 |10.64

It is seen from Table 3 that the computed wave velocities, C s
agree well with the measured values reported by Ref., 2. But the
computed values of ¢ are conslderably higher than the measured
values. Although the agreement 1s somewhat improved as compared
to the results in (I) the discreapency is larger than the estimated
error of the measurements gilven by Ref, 2, For the values of «
and R ‘treated in Table 3, however, higher order terms in LWE
might have some influence on the equilibrium amplitudes. There 1is
also ancther point which should be considered., The numerical
results in § 5 show that for flow rates in the range where the
onset of wave motion 1s reported, the downstream development of the
wave traln is very slow., Thus in experiments in this range of
flow rates care must be taken in order to observe the actual steady

far-field amplitude value.

5. Spatlal variations of the wave trains,

In order to study the spatial variation of the wave trains we
shall integrate (7a) and (7b) numerically and we shall apply the same

method of integration as already described in (I). Consequently




- 12 -

we write
A, = Bel® | (15a)
Ao = Bet®2 (15b)
A, = 82 - 26, , (15¢)
where B,, Bz, 6, and 6, are real functions of x . Thus

by substitution of (1l5a) -~ (15e¢) 1n (T7a) and (7b) four differential
equations are obtained, namely; three equations for the variables
B,, B2 and A, and a fourth equation describing ¢, as function
of x. The variation of 6, with x along the wave train will
physically imply a varlation of the wavelength in the downstream
direction., For a wave train with a growing amplitude in the down-
stream direction it can be shown that the wavelength decreases
slowly until it adjusts to i1ts far-field limit, while for a de-
caying wave train, the wave length increases slowly in the down-
stream direction. It also becomes evident from (Eq.9) that for a
spatially growing wave train the mean layer thickness decreases

in the downstream direction while for a spatlally decaylng wave
train the mean layer thilckness increases.

If the values of B,, By and A, are described at the
boundary station (see § 1) the surface deflection in the down-
stream direction can be found. The boundary conditions on B, ,
B, and A, should match the disturbances introduced by the wave
generator. If this is vibrating at a fixed frequency, ¢ , these
conditions might be modelled by the following conditions; B,
corresponds to the amplitude of the fundamental frequency. How-
ever, Bz and A, have values determined by the background noice,

The downstream development of the wave train will therefore depend




- 13 -

on the boundary values of B, and A;. For boundary values
|Bo| << By} it is however found that except for values of X
close to the boundary station the downstream development 1s alimost

Independent of the boundary values imposed on B, and 4;.

Numerical results showing the spatial variation of the amplil-
tude B; for a wave train on a water film are presented in the

graphs in Figure 1 and 2., These computations are performed for

m 1
2

two different angles of inclinations, namely 0 = TR g =
and for values of the flow parameters in the range where the

observed onset of wave motion is reported. {(Refs. 2,3).

For a given frequency the amplitude B; 41is normalized by
corresponding farfield amplitude BES). However, for the damped
wave trains the amplitude 1s normalized by the farxfield amplltude
correponding to o = 0.064 (9.9 Hz) 1in the case of 8 = %
(Figure 1), and to the far<field amplitude corresponding to

@ = 0,040 (2.1 Hz) in the case of 0 = ;i (Figure 2),

For a water film falling on a vertical plane Figure 1 shows
that in the freguency range from 9.9 Hz to 8.0 Hz a periodic
perturbation will adjust relatively rapidly to its far-field value.
For boundary perturbations of magnitude half the far-fleld value
the adjustment will occur over a distance of approximately 20
wavelengths while for boundary perturbations of magnitude one tenth
of the far-field value the adjustment distance 1s approximately 40
wavelengths, For frequencies closer to linear neutral conditions
(10,8 Hz) the adjustment to the far-fleld value i1s very slow.

For frequencies above 13,7 Hz a perturbation is rapidly damped
and its amplitude is vanishingly small at a dlstance of 20 wave-

lengths from the boundary station, (For frequencies somewhat
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lower than 8.0 Hz, B,, tends to zero, and obviously in this range
of frequencles several terms in the expansion (5) must be retalned

in order to establish an eventual steady far-field wave solution,)

The data for the case 6 = g% reveal generally the same
dependence on the frequency. Bubt even the volume flux 1s higher
in this case the downstream variation of the wave trains 1s nmuch
slower, This 1s to be expected since on a slightly ineclined plane
the availlable potential energy for the perturbation motion will
be less. It 1s seen from Figure 2 that with perturbations at the
boundary station of magnltude one half of the corresponding far-
field values, the adjustment to this latter amplitude will only

occur at a distance of at least 100 wavelengths in the downstream

direction,

Observatlions of forced wave trains on liquid films are scarce.
To our knowledge Koehler 3) is the only author who gives a quali-
tative description of the spatial varlation of forced wave trains,
Koehler's observatlions are made on a slightly inclined plane. Our
computations for the case 6 = ;% seem to agree wlth these obser-

vations, It 1s regretable that no quantitative measuremenis exist

so that a direct comparison between theory and experiments can be

made,
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Appendix

The functions introduced in Eq (4) are defined by

while the

4+

+

Alg) = % ¢

B(z) = % Rz® - 2 cot og°

C(g) = % a?ug?

D(g) = A2 R%g® + 4 g3 - 32 R oot 61"
E(z) = 3% R?g*® + 2% - 2L R cot 677

F(z) = 3% o® RWL’

1]

G(z) = 4% a?RWE®

H(z) = &% o®RWE®

£

I(z) = «.-5- a® RWgs ,
coefficients in (7a) and (7b) are
ak?(B(1l) - k?C(1)]

10-kAT(1) + a®k3(E(1) - K2P(1))] , (k= 1,2) ,
2alB*(1) ~ C€'(1)]
il-a"(1) + 2a%(D(1) + E'(1) - F'(1) - @(1) - H(1))] ,

alB'(1) - 7C' (L)}

10-A"(1) + a?(-4D(1) + 5E'(1) - 17F'(1) + 10G(1) - 8H(1)] ,
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m = %[B"(l) - ¢"(1)]

+ a0~ 3 A1)+ 02 (-D{1)+ £ B(1)~ 2 F(1)+ 6(2)- 3u{1)+ 3T(1))

ir

a A'(1l) - o?[3E(1) - 5F(1)] + i2alB(1) - Cc(1)] ,

1

At(1l) - 4g2[3E(1) - 20®(1)1 + 1holB(1) - 8C(1L)] ,

q

r = afB'(1) - C(1)T + i[- A"(1) + ®*(E'(1) - F'(1))] ,

where prime denotes differensiation with respect to (.
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Table and Figure Captions

Data for steady finilte-amplitude surface waves (far-field

waves) on a water film with 6 = g%-, R = 11,39 and W = 859,

Data for steady finite-amplitude surface waves (far-field

waves) on a water film with o = g s R =50 and W = 755,

Spatial variation of the ratio B /B{®) at
R=5 (0§, ¥0.034 em*/s), 0 = 7, and W = 755 (water) for
different values of the frequency and for two different

boundary conditions. (BllBSS) = 0.5 og 0.1).

Curve I: 10.8 Hz (o = 0.069). Curve II: 9.9 Hz (a 0.064).

Curve III: 9.2 Hz (a=0,059). Curve IV: 8,0 Hz (o 0.051).
Damped wave trains (dotted lines) curveg V,VI, and VII for
12.1 Hz, 13.7 Hz, and 16.2 Hz respectively. (For these

(s)

curves B, 1s normallzed by the value of B, corresponding

to 9.9 Hz.

Spatial variation of the ratioc BI/Bgs) at

R = 11.39 (@, ¥ 0.076 em®/s), © = - » and W = 859

(water) for different values of the frequency and for two
different boundary conditions (BllBSS) = 0.5 or 0.1l).
Curve I: 2,1 Hz (¢ =0.040), Curve II: 1.9 Hz (a = 0.037
Curve IIT: 1.8 Hz (o = 0.034).Damped wave trains (dotted
lines) curves IV, V, and VI for 2.3 Hz, 2,6 Hz, and

3.1 Hz respectively (For these curves B; 1s normaligzed by

the value of Bgs) corresponding to 2.8 Hz.)
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