
Spatially varying finite-amplitude 

wave trains on falling liquid films 

B. Gjevik 

In a previous paper the occurrence of steady finite-amplitude 

waves on falling liquid films has been studied by a long ~1ave ex­

pansion technique. This analysis is now extended to include spati­

ally varying wave trains. The solutions presented may correspond 

to the forced wave trains occurring downstream from a wave generator. 

l~oreover the second order ter'ms in the long wave expansion are re­

ported and their effect on the finite-amplitude v1ave motion is 

studied, Numerical results for finite-amplitude waves on thin films 

of water or ale IDhol are presented. 



- 1 -

1. Introduction. 

In a previous study, Gjevik l) hereafter referred to as (I), 

the occurrence of finite-amplitude surface waves on falling liquid 

films has been investigated. Hov1ever, this study is concerned with 

temporally growing or decaying wave solutions which are assumed to 

be periodic in the distance along the inclined plane. Therefore 

the transient development of these waves will correspond to special 

experimental arrangements and the solutions given in (I) 1~ill for 

example not explicitly provide any information about the spatial 

development of a steady wave train downstream from a wave generator. 

Since this latter arrangement is used by different authors 2 ,3) in 

order to study steady finite-amplitude surface waves on falling 

liquid films it might be pertinent to modify the analysis in (I) 

according to these experimental conditions. Mathematically these 

modifications merely consist of an interchange of the roles of 

time and distance downstream and the roles of wave number and 

frequency. It should be pointed out that generally there will 

exist a complex perturbation velocity field close to the wave 

generator and the kinetic energy v1ill be distributed among the 

different eigen-modes and within a certain band in the frequency 

spectrum. For the range of the flow parameters of interest here only 

the surface mode treated in our wol'k is unstable according to 

linearized stability theory, while all the other eigen-modes are 

rapidly damped, (Ref. 4). It is also reasonable to assume that 

the fundamental finite-amplitude wave components have a similar 

stabilizing effect on sideband wave perturbations as the 
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stabilizing effect shown by Eckhaus 5) for finite-amplitude 

disturbance to parallel flow between rigid planes, Therefore, 

the solution presented below might approximate the experimental 

disturbances at a point somewhat downstream from the wave generator. 

'rhis position we shall refer to as the boundary station. In this 

work we shall also report the second order approximation to the 

long wave expansion (hereafter written L\>IE) which 1qas found in (I) 

to be a convenient method for the study of long surface waves on 

thin falling liquid films. It was mentioned in (I) that although 

the higher order terms in the LWE would have a negligible influence 

on the computed wave amplitudes, these terms would have a signi­

ficant effect on the velocity of the steady finite-amplitude wave. 

Consequently, these terms will also have an influence on the phase 

angle between the fundamental v1ave component and its higher 

harmonics. 

2. Second order terms in long wave expansion including the effect 

of surface tension. 

We shall consider two-dimensional perturbations to a steady 

parallel flow of an incompressible viscous fluid down an inclined 

plane and adopt the same notation and scaling procedure as intro­

duced in (I). The flow is then characterized by a Reynolds number, 

a Weber number and the angle of inclination of the plane defined 

respectively by 

R = g;h 3 sine (la) 2v 2 ' 

vl 
T (lb) = pgh 2sine 

e ' (lc) 
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\~here g is the acceleration of gravity, h is a mean thickness 

of the fluid layer defined by the normalization condition imposed 

in § 4, v is the kinematic viscosity, p is the density of the 

fluid and T denotes the surface tension. As in (I) we assume R 

to be of order unity, The surface deflection is a function of x 

and t ~rhich can be written (when scaled by h) 

~(x,t) = 1 + n(x,t) (2) 

where n(x,t) is a small perturbation of order O(e:) << 1, x is 

the distance along the flow direction and t is time. Since we 

assume no mass transport through the free surface nor through the 

bottom plane 

(3) 

~1here Qx is the volume flux (pr, unit span) in the x-direction. 

With the L\~E method as used in (I) the second order terms in Qx 

can be evaluated. Hence if a. denotes the expansion parameter 

where the functions A, B, C etc. are defined in the Appendix. 

The fact that the equation for the surface deflection always can 

be written in form (3) to any order in the L\~E for Qx was 

apparently overlooked by Benney 6) and due to calculation errors 
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the equation for the surface deflection given in his paper cannot 

be transformed to (3). The last four terms in the expression (4) 

includes the effect of the surface tension and are to our knowledge 

not reported in earlier work on the subject, The corresponding 

second order approximation to the velocity field is given by 

lengthy algebraic expressions and will therefore be omitted here. 

The second order terms for the velocity field imply, however, a 

distortion of the mean velocity profile of order 0 (e 2a 2 ), The 

distortion of the mean velocity profile is therefore obviously a 

negligible effect in establishing steady finite-amplitude wave 

motion on falling liquid films. 

3. The amplitude equations for a spatlally varying wave train. 

\~e assume n(x,t) to be a periodic function of t. Thus 

n(x,t) can be expanded in a Fourier series 

k-N 
( t) ~ Ak(x)eikct n x, = t. 

k=-N ' 

where c is the dimensionless frequency 

by aghsine The Fourier coefficients 
2v 

* 

(5) 

scaled according to (I) 

Ak are functions of x 

and A_k = Ak' where asterisk denotes complex conjugate and N 

denotes the number of terms retained in the Fourier series • vie 

also write 

(6) 

where a is the dimensionless wave number. Up to this stage a 



- 5 -

is left unspecified, For a steady periodic wave train Ak is 

independent of x. This case corresponds to the steady wave 

solutions given in (I), For a steady wave train and in a certain 

range of the flow parameters the result in (I) shows that the 

Fourier expansion will converge rapidly. If we are close to this 

steady state Ak(x) will be a slowly varying function of x. 

Consequently we introduce the expansion ( 5) 1~i th N = 2 in the 

equation for the surface deflection (Eq.3). Moreover if only the 

first order derivatives of Ak(x) (k = 1,2) are retained, the 

following truncated set of amplitude equations is obtained. 

~ N N N N N N 

= (B,-ic)A, + qA2A1 + m!AII 2A1 + rA,Ao, (7a) 

~ . ~ 

= (B2-2ic)A2 + pA 12, (7b) 

It also becomes evident from the further development (see Eq.9) 

that by a proper normalization of 1; the maximum value of A0 
~ 

will be of order I A112 . Hence the term A1A0 should be retained 

in (7a). The coefficients in Eqs. (7a) and (7b) are given in the 

Appendix, 

We now denote the mean value of a property of fluid with 

respect to t with a bar. Then from Eq. (3) it follows that 

(8) 

where Q0 is determined by the conditions at the boundary station 

as defined in § 1. Thus our present formulation of the problem 

implies that the volume flux is periodic in time and has a mean 

value which is constant in the downstream direction. By a 
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substitution of (5) and (6) into (~), (8) can be written with a 

sufficient degree of accuracy as 

or equivalently 
N N 

Ao = ~Qo - ~ - 2IA, 1
2• (9) 

Hence (7a), (7b) and (9) form a complete set of equations and 

A,, A2 and Ao are uniquely determined by the conditions 

imposed at the boundary station, 

4. Steady far-field solutions of the amplitude equations. 

In the range of the flow parameters leading to x-independent 

far-field solutions of (7a) and (7b) ~ can be normalized so that 

-Ao = 0 in the far-field range. This normalization defines the 

scaling parameter h as the mean film thiclmess in the far-field 
lh€' 

limit. Consequently (7a) and (7b) become analogous toJ\time-

dependent amplitude equations studied in (I) and the steady far­

field solution of (7a) and (7b) must correspond to the steady 

finite-amplitude wave solutions given in (I). There will be no 

loss in generality by choosing the origin of x so that for the 

far-field non-zero solutions we have 

A 1 =B~s), (lOa) 

(s) ill
1 
(s) 

A2 = B2 e , (lOb) 

Where B(,s), B2(s) d • (s) are 1 1 i d d t f an u, rea va ues n epen en o x. 
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Substitution of (lOa) and (lOb) in (7a) and (7b) leads to 

= -

tgl11(s) = 

if 

prcosll 1+pisinll 1 
132r 

> o, 

132rpi-(i32i-2131i)pr 
132rpr+(i32i-2131i)pi 

( lla) 

(llb) 

(llc) 

where the indices r or i denote respectively the real .or the 

imaginary part of a complex valued quantity and 

(12) 

The follo~1ing relation between wave amplitude and frequency must 

also be satisfied 

c - 13 + p B(s) 2 

- 11 i 1 ' 

where 

P.= - 2 + 4 
J. 

- 16 

(13) 

(14) 

1'/ith Eq. (13) also the dimensionless wave-number, a, of the far­

field waves is determined. It follows from Eqs. (lla) and (12) 

that steady non-zero far-field solutions to (7a) and (7b) only 

exist for a certain band of frequencies. For relaUvely high 

frequencies leading to fllr < 0 it is easily shown that (7a) and 

(7b) only possess the trivial solution A1 & A2 + 0 for X + oo, 

On the other hand, for relatively low frequencies so that I e2r I 
becomes small compared to 13lr' the convergence of the series 

expansion, Eq. (5), will be violated, (See I), In the case of 
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non-dispersive infinitesimal-amplitude waves (S2i ~ 2S1i) the 

formulas (lla)-(llc) reduce to Eq, (22) in (I). Therefore the 

main effect of the second order terms in the LYlE ~1ill be a 

correction to the angle 6 1 • The limit 1T 6 1 = - for a + o. 
2 

derived in (I) is, however, unaffected. For the case e - 1T 
- 2 

and for relatively short waves we found in (I) that the non-linear 

terms ~1ould lead to a negligible decrease in wave velocity i.e. 

for a 2 > 0.673 R/W. Since S2i - 2Sli is negative for values 

of a and R within the range of non-zero far-field solutions 

to (7a) and (7b) (the case R << l excepted) it follows from 

Eqs. (13) and (14). that the dispersion terms will accentuate the 

velocity decrease in certain ranges of a and R • (See also 

numerical results in Tableland Table 2). For relatively longer 

waves the numerical results indicate that the non-linear terms 

lead to a weak increase in the wave velocity. In Lin's study of 

the steady wave solution the dispersion terms are neglected (See 

I). Therefore the velocity decrease for relatively short finite-
1) 

amplitude waves was not shown in his previous analysis. However, 

these results have been modified recently [Lin (1970) private 

communication]. It follows from the results in (I) that in the 

neighbourhood of the linear neutral line in the stability diagram 

the third harmonics As will be negligible compared to A 2 and 

A1 and a good approximation to the far-field wave amplitudes is 

found from Eq. (11). Since the third harmonic was included in 

the numerical calculations of the steady solution presented in (I), 
~ 

we have also included As in the recalculations which admit the 

improvement in the LWE. Consistent with the definitions in (I) 
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we have introduced 
(s) i(t'. (s) + t'. (s) 

A3 = B3 e 2 + 1 ), and we have solved 

a similar set of equations as Eq (15) in (I). The details in 

these numerical calculations are as described in (I). For small 

values of a and R the correction to the amplitudes B (s) 
I ' 

B~s) and B~s) due to the second order terms in the LWE are 

almost negligible. But there is a considerable correction to the 

wave velocity as well as to the values of t'. 1 (s) and t'. 2 (s). The 

correction to these angles will have some influence on the wave 

profils given in (I), but the waves are still found to retain 

their characteristic shape with steep fronts and somewhat flatter 

valleys. The data for the far-field waves on a water film are 

given in Table 1 and Table 2 for two different angles of inclina-

tion, 0 = ....:!!... and 0 = !, 
2 4 2 

The data in Table 2 are computed for 

the same values of the flow parameters as used in (I). The data 

in Table 1 are typical for some of Koehler's experiments 3) 

(quoted in § 5). 

\~i th the same method as described above v1e have also computed 

the far-field wave amplitudes for the values of the wave length, 

>-, and the mean volume flux corresponding to observed onset of 

wave motion on vertically falling films as reported by Kapitza 

et.at. 2 >. Since R actually is the given parameter in our 

computations we have adjusted this parameter until the required 

value of Qx was obtained. The surface deflection is given in 

terms of the quantity 

l;max-l;min 
z;max + z;min 

cp = 

• 

where ~max and l;min denote respectively the maximum and minimum 

thickness of the fluid layer.The results are presented in Table 3, 



Table 1 

B ~ S) I B ( s) ! { s)' /::, ( s) i --·, I ' 
Cl 

B.l s) : /::,1 ' ; c i {;max ~min Qx I 
1 I 2 3 2 "1 i cm2/s J 

0.040 0.0202 -0.0023 0.0002 0.584 0.222 -1.995 -1.985 1.037 0.955 o.o761 1 

0.037 0.0232 -0.0044 0.0004 0.659 0.249 -1.994 -1 • 976 1 .041 0.945 0.0762 

0.034 0.0219 -0.0053 0.0006 0.702 o. 291 -1.993 -1.974 1.040 0.94.6 0.0761 

I o •0'30 0.0176 -0.0066 0.0009 0.721 0.404 -1.993 -1.971 1 .032 0.951 0.0761 
------

Table 2 
~ 

0 

Cl B~ S) I :fs~J 
... r-

B ( s) 6 ( sT! /::,~ S) ~ 
; 

Qx I 

31i c {;max {;min I 3 1 cm?!s 
I 

0.069 0.0448 -0.0037 
I 

-1.972 1.088 0.908 0.0337 I. 0003 1.316 1 0.687 -1.985 .. 0 

0.064 0.0598 -0.0087 I 0 I. 0011 1. 420 0.755 -1.980 -1.960 1.120 0.873 0.0340 
I 

o.o59 1 o.o614 -0.0119 I 

I 0.051 1 o.0526 -0.0160 ( 
- ...._____ ____ - _,__ 

I 
I 

.0017 1.489 0.834 -1.978 -1.960 1.126 0.867 o.o341 I 
I 

.0024 1.583 1.032 -1.978 -1.970 1 • 117 0.882 0.0339 

.0'::27 1 1.654 1.286 -1.982 -1.986 1.083 0.916 0.0336 I 

c 

1 
10.042 I 0.0301 I -0.0174 I \ 

-- ----
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Table 3 

Kapitza etal.'s observations Computed values 

\) T/p Qx II c c Liquid cp s R cp s 
cm 2 /s cm3 /s 2 cm 2 /s em cm/s cm/s 

Water O.Oll4 74 0,061 0,89 0.16 12.4 7.39 0.26 12.06 

Alcohol 0.0202 29 0,068 o. 71 0.18 10.7 4.63 0,27 10.64 

It is seen from Table 3 that the computed wave velocities, 

agree well with the measured values reported by Ref. 2. But the 

computed values of cp are considerably higher than the measured 

values. Although the agreement is somewhat improved as compared 

c > s 

to the results in (I) the discreapency is larger than the estimated 

error of the measurements given by Ref. 2. For the values of a 

and R treated in Table 3, however, higher order terms in LWE 

might have some influence on the equilibrium amplitudes. There is 

also another point which should be considered, The numerical 

results in § 5 show that for flow rates in the range where the 

onset of wave motion is reported, the downstream development of the 

wave train is very slow. Thus in experiments in this range of 

flow rates care must be taken in order to observe the actual steady 

far-field amplitude value. 

5. Spatial variations of the wave trains. 

In order to study the spatial variation of the wave trains we 

shall integrate (7a) and (7b) numerically and we shall apply the same 

method of integration as already described in (I). Consequently 
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we write 

Al = B iS 1 le ' 
(15a) 

" B2eie2 A2 = (15b) 
' 

111 = 62 - 261 (15c) ' 

where B1 , B2, 62 and 62 are real functions of x . Thus 

by substitution of (15a) - (15c) in (7a) and (7b) four differential 

equations are obtained, namely; three equations for the variables 

B1 , B2 and 11 1 and a fourth equation describing ~' as function 

of x. The variation of 61 with x along the wave train will 

physically imply a variation of the wavelength in the downstream 

direction, For a wave train with a growing amplitude in the down­

stream direction it can be sho1m that the wavelength decreases 

slowly until it adjusts to its far-field limit, while for a de­

caying wave train, the wave length increases slowly in the down­

stream direction. It also becomes evident from (Eq.9) that for a 

spatially growing wave train the mean layer thickness decreases 

in the downstream direction while for a spatially decaying wave 

train the mean layer thickness increases. 

If the values of B1 , B2 and 11 1 are described at the 

boundary station (see § 1) the surface deflection in the down­

stream direction can be found. The boundary conditions on B1 , 

B2 and 11 1 should match the disturbances introduced by the wave 

generator. If this is vibrating at a fixed frequency, c , these 

conditions might be modelled by the following conditions; B1 

corresponds to the amplitude of the fundamental frequency. Hovl­

ever, B2 and 11 1 have values determined by the background noice. 

The downstream development of the wave train will therefore depend 
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on the boundary values of B 2 and 1'::. 1 • For boundary values 

IB2I <<!Btl it is however found that except for values of x 

close to the boundary station the downstream development is almost 

independent of the boundary values imposed on B2 and 1'::. 1 • 

Numerical results showing the spatial variation of the ampli-

tude B1 for a wave train on a water film are presented in the 

graphs in Figure 1 and 2. These computations are performed for 

two different angles of inclinations, namely a = 11 a 11 
24 ' 2 

and for values of the flow parameters in the range where the 

observed onset of wave motion is reported. (Refs. 2,3). 

For a given frequency the amplitude Bt is normalized by 

corresponding fal"<fl.eld amplitude B~s). However, for the damped 

wave trains the amplitude is normalized by the far;..field amplitude 

correponding to a = 0.064 (9.9 Hz) in the case of 11 a = 2 

(Figure 1), and to the faJ:"ofield amplitude corresponding to 

a= 0.040 (2.1 Hz) in the case of a= 2~ (Figure 2). 

For a water film falllng on a vertical plane Figure 1 shows 

that in the frequency range from 9.9 Hz to 8.0 Hz a periodic 

perturbation will adjust relatively rapidly to its far.-field value. 

For boundary perturbations of magnitude half the far-field value 

the adjustment will occur over a distance of approximately 20 

wavelengths while for boundary perturbations of magnitude one tenth 

of the far~f~ld value the adjustment distance is approximately 40 

wavelengths. For frequencies closer to linear neutral conditions 

( 10.8 Hz) the adjustment to the far-field value is very slow. 

For frequencies above 13.7 Hz a perturbation is rapidly damped 

and its amplitude is vanishingly small at a distance of 20 wave-

lengths from the boundary station. (For frequencies somewhat 
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lower than 8.0 Hz, S9 tends to zero, and obviously in this range Lr 
of frequencies several terms in the expansion (5) must be retained 

in order to establish an eventual steady far~field wave solution.) 

The data for the case e - 1T - 24 reveal generally the same 

dependence on the frequency, But even the volume flux is higher 

in this case the downstream variation of the 1mve trains is much 

slower. This is to be expected since on a slightly inclined plane 

the available potential energy for the perturbation motion will 

be less. It is seen from Figure 2 that with perturbations at the 

boundary station of magnitude one half of the corresponding far­

field values, the adjustment to this latter amplitude will only 

occur at a distance of at least 100 wavelengths in the downstream 

direction, 

Observations of forced wave trains on liquid films are scarce. 

To our lmowledge Koehler 3) is the only author who gives a quali­

tative description of the spatial variation of forced ~rave trains. 

Koehler's observations are made on a slightly inclined plane. Our 

computations for the case 1T e = 24 seem to agree with these obser-

vations, It is regretable that no quantitative measurements exist 

so that a direct comparison between theory and experiments can be 

made. 
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Appendix 

'rhe functions introduced in Eq (4) are defined by 

A( I;) = t 1:;3 

B( 1:;) = _a RI:;G 1. cot 61:;3 
1 5 3 

c (I;) = 1. a.zv/~:;3 
3 

D (I;) = 1N+ R21:;9 + 1 4 .... 1:;3 - 1.1. R cot 61:; 6 
1 5 

E ( 1;) = 1.1_ R21:;1o + 21:;4 - ll R cot 61;7 63 6 3 

F( I;) = ll a.2 Rl'/1:;7 63 

G( I;) = ..U.a.2RWI:;6 3 

H( I;) = ¥ a.z RWI:;G 

I(l:;) = 3 2 a.2 R\'/1:;5 
5 ' 

while the coefficients in (7a) and (7b) are 

(k = 1,2) ' 

p = 2a.[B'(l) C'(l)) 

+ i[-A''(l) + 2a. 2 (D(l) + E'(l) - F'(l) - G(l) - H(l))) , 

q = a.[B'(l)- 7C'(l)] 

+ i[-A"(l) + a 2 (-4D(l) + 5E'(l) - 17F'(l) + lOG(l) - 8H(l)) ~ 
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m = Z.[B 11 (1) - C"(1)J 
2 

t tJ II 1 1 

+ i[ _ t A 'H( 1) + a 2 ( -D ( 1) + T E ( 1) - T F ( 1) + G (1) - 3H ( 1) + 31 ( 1 ))J 

a 1 = A 1 (1) a 2[3E(1)- 5F(1)] + i2a[B(1)- C(1)] , 

a 2 = A1 (1) - 4a 2 [3E(1) - 20F(1)] + i4a[B(1) - 8C(1)] , 

r = a [B 1 ( 1) - C 1 ( 1)] + i [- A" ( 1) + a 2 
( E 1 ( 1) - F 1 ( 1) ) ] , 

where prime denotes differensiation with respect to z;. 
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Table and Figure Captions 

Data for steady finite-amplitude surface waves (far-field 

waves) on a water film ~lith e = ;
4 

, R = 11.39 and W = 859. 

Data for steady finite-amplitude surface waves (far~field 

waves) on a water film with 71 
e = 2 ' R = 5.0 and W = 755. 

Spatial variation of the ratio 

R = 5 (Qx = 0.034 cm 2 /s), e = 

B /B(s) 
1 1 

11 
2 , and W 

different values of the frequency and for 

boundary conditions. (B1 /B~s) = 0.5 og 

Curve I: 10.8 Hz (u = 0.069). Curve II: 

Curve III: 9.2 Hz (u=0.059). Curve IV: 

at 

= 755 (water) for 

two different 

0.1). 

9.9 Hz (u = 0,0611). 

8,0 Hz (u = 0.051). 

Damped wave trains (dotted lines) curves V,VI, and VII for 

12.1 Hz, 13,7 Hz, and 16.2 Hz respectively. (For these 

curves B1 is normalized by the value of B~s) corresponding 

to 9,9 Hz. 

Figure 2 Spatial variation of the ratio B1 /B~ s) at 

R = 11.39 (Qx = 0.076 cm 2 /s), e = 2
11

4 , and \1 = 859 

(water) for different values of the frequency and for two 

different boundary conditio~s (B 1 /B~s) = 0.5 or 0.1). 

Curve I: 2.1 Hz (a= 0,040). Curve II: 1.9 Hz (a = 0.037 

Curve III: 1.8 Hz (a= o.034),Damped wave trains (dotted 

lines) curves IV, V, and VI for 2.3 Hz, 2,6 Hz, and 

3.1 Hz respectively (For these curves B1 is normalized by 

the value of B~s) corresponding to 2,8 Hz,) 
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