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The effect of viscosity on capillary-gravity waves is examined 

by a long wave expansion. The phase velocity differs little from 

that for an inviscid fluid unless the depth is close to the boundary 

layer thickness. Numerical results for water' are in agreement with 

measurements. 
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In a recent paper by vial bridge and Woodward 1 ) measurements 

on surface capillary-gravity waves in shallow water are reported. 

The waves are generated by a harmonically vibrating wave maker and 

for a certain frequency, (20 Hz), the wavelength for waves on 

water layers of different depths is measured. Their experimental 

values agree, within the error of their measurements, with those 

derived from the inviscid dispersion relation down to depths of 

about 0.012 em. For smaller depths, however, they observed a lower 

wavelength than predicted by the inviscid theory, and they suggested 

that this decrease may be due to the effect of viscosity. 

The damping effect of viscosity on capillary-gravity waves on 

deep water was studied theoretically many years ago 2 ), To our 

knowledge the case when the depth becomes of the order of the bottom 

boundar•y layer thickness as in the experiments quoted above, has not 

been treated. For long waves, as in the case reported in Ref, 1) 

a solution to the equations of motion which include the effect of 

viscosity can easily be found, and we will proceed to show that in 

agreement with the observations viscosity affects the phase velocity 

of the waves, 

Consider two-dimensional wave motion 1dth frequency w on a 

layer of an incompressible viscous fluid with kinematic viscosity v, 

and density p, l'lhich is laying on a horizontal plane, The mean 

layer thickness is h. A coordinate system (x,z) \'lith axes along 

the plane and normal to the plane, respectively, is introduced and 

the velocity components along these axes are and 
~ 

w. The surface 

deflection is described by 1;; = h + n(x,t), \'There t is time, With 

a given frequency w the dispersion relation for capillary-gravity 
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waves on an inviscid fluid layer determines the dimensionless 

wavenumber a 

h 
a = 211 ;:: , 

where A denotes the wavelength, For the smallest depth treated 

in Ref. 1), a= 0,12, so that in this case a long wave expansion 

is appropriate, Consequently we assume a << 1 and we define 

dimensionless variables (without a tilda) with the following 

transformation; u c u, acsw' 
h hz, t _l!_t = w = X = -x z = = s (X ' acs ' - -p = 2 ;:; = ht:;, where p denotes the pressure and cs = /gh, pes p, 

We also assume the amplitude of the motion which is determined by 

the amplitude of the wave ma!{er to be of order £, where £ << l. 

Hence the equations of motion can be written 

(la) 

(lb) I 

where a variable as index denotes differentiation with respect to 

that variable and 

R = --
\) 

is a Reynolds number. If terms of order a 2
£ are neglected, Eq,(lb) 

shows that is determined by the dynamical boundary 

conditions at z = ;:;. In the case of a free surface these must 

express the continuity in normal stress component and vanishing of 

the tangential stress component, By neglecting higher order terms 

in a and £ in these conditions we obtain 

P - £ w + z = £ w 1 + n - a 2 Wnxx' R z R z z=l (2) 



- 3 -

and 

u + a 2 w = 0 z X 
at z = 1. (3) 

In (2) a Weber number, 

vl = T 
pghz ' 

where T denotes the surface tension, is introduced, \ve assume 

a 2W to be at least of order unity which implies that capillarity is 

at least of the same importance as gravity, This is for example 

the case for the range of a and h treated in Ref, l), The 

boundary condition at the bottom plane is 

u = 0 at z = o, 

and conservation of mass requires 
1 

nt = - J uxdz • 
0 

( 4) 

(5) 

Eq. (la) with the conditions (2), (3), (4), and (5) can easily be 

solved, \ole assume a solution of the form 

u = U(z)exp i(Bx - at) (6) 

where B and a are constants and i is the imaginary unit. Hence 

for given values of a, R and v/ we have an eigenvalue problem 

with B as the complex eigenvalue, According to the definition of 

a, B = 1 for an inviscid fluid. With ImB > 0 the solution (6) 

represents a spatially damped wave solution, On the other hand, for 

a given wavenumber an eigenvalue problem leading to a complex eigen-

value frequency could equally have been posed, However, for weakly 

spatially damped waves, properties for temporally damped waves can 



- 4 -

be obtained from the solution (6) by similar arguments as given 

in Ref. 3). 

The complex dispersion relation and the eigenfunction U(z) 

are given by lengthy algebraic expressions. Therefore only the 

result Nhen terms of order o: 2 are neglected will be given here 

(7) 

( ) [ 
exp(-Qz) + exp(Q(z-2) n 

u z =A 1 - 1 + exp(-2n) J ' (8) 

where 2v 1 
hb = (~) 2 , the thickness of the boundary 

layer at the bottom; and A is an integration constant. For 

hb ~ 0 (7) reduces to the wellknown dispersion relation from 

inviscid surface wave theory. 

For jnj >> 1 (h >> hb) Eq (7) can be solved approximately, 

With an ordinary perturbation technique we find 

(9) 

Eq. (9) shov1s that for a given frequency the effect of viscosity 

leads to a reduction of the wavelength (or equivalently a reduction 

in the phase velosity) compared to the inviscid values. This effect 

of viscosity is most pronounced for wave motion dominated by gravity 

i.e. a 2 W << 1. 

In order to find the relation between frequency and wavelength i 

in cases where h is of order hb we have solved Eq. (9) numeri­

cally, This is done for water with w in the range 10 - 40 Hz. 
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Since i3 is found to vary little vlith frequency, only the results 

for two cases, w = 20 Hz, and w = 10 Hz is given in Figure 1. 

It is a striking feature of these graphs that the viscous correction 

to the wavelength is small unless h becomes close to hb, and that 

the magnitude of the correction increases rapidly for h ~ hb. 

If 11e assume that the approximations used here are valid at 

least at some distance avmy from the wave maker our result for 

w =20Hz could be compared with the observation in Ref. 1). It is 

found that the viscous correction to the wavelength for values of h 

down to hb is within the error of their measurement. For the 

smallest value of h (h : 0. 5 hb) reported in Ref. 1) the computed 

wavelength seems to be somewhat less than the measured value. The 

reason for this discreapancy for the smallest depth might be due 

to non-linear effects, for in an experiment where the .amplitude of 

the wave generator is kept constant for the various depths treated 

(which seems to be the case in the quoted experiments) non-linear 

effects will obviously be more pronounced at the smallest depth. 

Finally it should be noted that the condition (5) requires that 

the mean volume flux with respect to time is constant in the x­

direction. Therefore the mean volume flux produced by the waves must 

compensate that due to viscous effects. This implies that an adjust­

ment of the mean layer thickness occurs and also that a circulation 

(of order £ 2
) is generated. This circulation can be computed from 

the solution given above. Observation of the circulation pattern is 

obviously a difficult task and has, to our knowledge, not been 

reported, 
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Figure 1 The complex eigenvalue tl for water, with v = 0,01 cm 2 /s, 

and T = 75 g/cm2
, as function of the ratio h/hb. 

Solid curves; (J) = 10 Hz, hb = 0.013 em. Dotted 

curves; w = 20 Hz, hb = 0,018 em, 
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