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Abstract

Background: With advances in next generation sequencing technology and analysis methods, single nucleotide
variants (SNVs) and indels can be detected with high sensitivity and specificity in exome sequencing data. Recent
studies have demonstrated the ability to detect disease-causing copy number variants (CNVs) in exome sequencing
data. However, exonic CNV prediction programs have shown high false positive CNV counts, which is the major
limiting factor for the applicability of these programs in clinical studies.

Results: We have developed a tool (cnvScan) to improve the clinical utility of computational CNV prediction in
exome data. cnvScan can accept input from any CNV prediction program. cnvScan consists of two steps: CNV
screening and CNV annotation. CNV screening evaluates CNV prediction using quality scores and refines this using an
in-house CNV database, which greatly reduces the false positive rate. The annotation step provides functionally and
clinically relevant information using multiple source datasets.
We assessed the performance of cnvScan on CNV predictions from five different prediction programs using 64
exomes from Primary Immunodeficiency (PIDD) patients, and identified PIDD-causing CNVs in three individuals
from two different families.

Conclusions: In summary, cnvScan reduces the time and effort required to detect disease-causing CNVs by
reducing the false positive count and providing annotation. This improves the clinical utility of CNV detection
in exome data.
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Background
With advances in next generation sequencing technol-
ogy and analysis methods, single nucleotide variants
(SNVs) and indels can be detected with high sensitivity
and specificity in exome sequencing data [1, 2]. While
recent studies have demonstrated the ability to detect
disease-causing copy number variants (CNVs) [3], ex-
onic CNV prediction programs have shown high false
positive CNV counts [4]. This high false positive count

is the major limiting factor for the applicability of these
programs in clinical studies. Here we report a tool
(cnvScan) which considerably improves the clinical utility
of computational CNV prediction by reducing the false
positive count and providing clinically relevant annotation.
cnvScan enables users to evaluate CNVs predicted

from any program and provides robust CNV quality as-
sessment to reduce the false positive count. As a com-
parison, the false positive count of SNV prediction was
reduced with the availability of variant quality assessment
and recalibration methods introduced by programs like
GATK toolkit [5]. While commonly used CNV prediction
programs (ExomeCopy [6], ExomeDepth [7], ExCopyDepth
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[4], CoNIFER [8] and XHMM [9]) calculate CNV quality
scores providing statistical support for the prediction, re-
searchers have not yet studied how CNV quality scores can
be effectively used to filter false positive CNVs.
When considering techniques used to improve vari-

ant discovery in exome sequencing, current SNV ana-
lysis pipelines use in-house SNV databases to filter
out variants due to technical artifacts and population-
specific variants. In order to provide similar methods
for CNV analyses, we developed a novel method using
an in-house CNV database to further evaluate the
quality of CNV calls.
In addition, existing CNV analysis tools such as ANNO-

VAR [10], VEP [11], CNVAnnotator [12] and DeAnnCNV
[13] do not assess the quality scores reported by CNV
prediction programs or provide the broadest range of clin-
ically relevant data. For example, different annotation
programs use different sets of source datasets when an-
notating CNVs [10–12] and do not use recent data sets
such as the development disorder annotations from
DECIPHER (DDD) [14] or high quality manually cu-
rated CNVs from the database of genomic variants
(DGV) [15]). With cnvScan, we have created a central
resource combining multiple different datasets to pro-
vide annotation of high quality CNVs.
To assess the clinical utility of cnvScan, we used 64

exomes from primary immunodeficiency (PIDD) pa-
tients. cnvScan greatly reduces false positive CNVs and
enabled the identification of three high-quality rare
CNVs in two families. Both of these CNVs were con-
firmed as PIDD-causing variants. cnvScan thus provides
both robust CNV quality assessment and a broad range
of functionally and clinically relevant information for
each CNV.

Results and discussion
As input, cnvScan can use a CNV results file from any
prediction program. cnvScan then uses a two-step ap-
proach to improve the functional and clinical interpret-
ation of computationally predicted CNVs: CNV screening
and CNV annotation (Additional file 1: Figure S1).

CNV screening
In order to generate a set of input files to test our pro-
gram, we performed computational CNV prediction on
exomes from 17 patients with primary immunodeficiency
(PIDD) using ExomeCopy [6], ExCopyDepth [4], Exome-
Depth [7], CoNIFER [8] and XHMM [9] (Methods).
CNV prediction programs calculate quality scores

which provide statistical support for the predictions
(Additional file 1: Table S1). But how quality scores
can be used as an effective parameter when evaluating
the quality of computational CNV predictions has not
been tested.

The prediction programs assessed in our study em-
ploy a coverage-based approach to call CNVs. There-
fore the quality of the CNV calls will be affected by
factors that influence the coverage of exonic regions.
For example, genomic features such as GC % can affect
coverage distribution and repeat content can affect the
mapping quality of aligned reads. Prediction programs
model these features using different statistical ap-
proaches [16] and CNV quality scores are assigned.
Therefore, we studied CNVs from all the prediction
programs to test how coverage and genomic features
affect quality scores.
Analysis showed that there is no strong correlation be-

tween quality scores and CNV length, GC%, repeat length
and mean coverage (Additional file 1: Figure S2–S5). This
indicated that the quality score is a stable measure
which is less sensitive to coverage or genomic features.
For example, shorter (1 kb) and longer (over 100 kb)
CNVs were observed for the entire spectrum of quality
scores reported (correlation coefficients = 0.00–0.23).
When considering repeat content and quality scores,
CoNIFER showed low repeat content for high quality
CNVs. However, all the other programs showed shorter
(10 bp-1 kb) and longer (over 10 kb) repeat content for
all the reported quality scores.
Since this initial analysis suggested that quality scores

are stable across different genomic features, we wanted
to further investigate how the quality score could be
used to reduce the false positive (FP) count. As a first
step, we studied the relationship between the quality
score and the false discovery rate (FDR). In order to
calculate the FDR, we derived a set of true positive
(TP) and FP CNVs by comparing CNV calls from ex-
ome sequencing and exon-focussed aCGH experiments
(exaCGH [4]) from 17 PIDD patients. Next we used
these TP and FP CNVs to further examine the quality
scores of the programs (Methods).
In order to test the applicability of quality scores for

CNV quality assessment, we first studied the relation-
ship between TP CNVs, FP CNVs and quality scores of
each program. Here we calculated the cumulative TP
(cTP) and cumulative FP (cFP) counts (Methods) (Fig. 1).
As expected, high quality scores gave higher cTP counts
compared to cFP counts. ExomeCopy, ExCopyDepth
and ExomeDepth showed higher cTP count compared to
cFP count for any given quality score (Fig. 1b, e). CoNI-
FER and XHMM showed higher cFP counts (Fig. 1f, g)
due to the low thresholds used when executing these pro-
grams (Methods). Moreover, a clear inverse correlation
between cFP and quality score was observed (correlation
coefficient of XHMM= −0.98; Fig. 1g).
We next calculated the FDR to evaluate the relation-

ship between FP CNVs and quality scores. Fig. 1h, i, j
show how FDR varies with CNV quality score. For all
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Fig. 1 Cumulative TP (cTP) count and cumulative FP (cFP) count distribution for five programs tested in the study. a cTP count vs cFP count for
each quality score of the prediction program. b, c, d cTP count distribution vs CNV quality score. e, f, g cFP count distribution vs CNV quality
score. h, i, j False Discovery Rate (FDR) vs CNV quality score for five programs. FDR: False positive CNVs/(True positive CNVs + False positive CNVs).
All the programs showed a decrease in FDR with increasing quality score (Pearson correlation coefficients (r) - ExomeCopy: r = −0.49, p = 2.50e-21;
ExCopyDepth: r = −0. 56, p = 1.44e-74; ExomeDepth: r = −0.64, p = 7.82e-105; CoNIFER: r = −0.63, p = 0.00; XHMM: r = −0.98, p = 4.34e-269). Quality
scores of different prediction programs have different ranges, therefore scores are presented in different figures. CoNIFER SVD-ZRPKM values range
from −3 - +3, thus absolute values are presented in Fig. 1c, f
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the programs, FDR showed a decrease with the increas-
ing CNV quality score. This also highlighted the applic-
ability of the quality score as an effective parameter that
can reduce FP CNV counts. For example, ExCopyDepth
showed a 50 % decrease in FDR at 40.6 quality score.
Thus, we were able to test and confirm the importance
of the quality score in reducing FP CNV count and FDR
of CNV prediction.
CNV prediction programs tested in our study call

CNVs based on normalized coverage data extracted
from a collection of exomes (reference collection) [17].
High coverage variance across the reference collection
can affect the normalization process and consequently
increase FP CNVs count. Therefore overlapping false
positive CNVs can be predicted from a set of samples,
when exonic regions in these samples were affected by
technical artifacts. With the analysis of CNV prediction
quality (Fig. 1), we observed that the majority of false
positives have low scores. Therefore we hypothesized
that false positive CNVs predicted from multiple sam-
ples would have lower median quality scores than the
median scores of true positives. To test our hypothesis, we
developed a method using an in-house CNV database.
The in-house database was developed from the exomes

used in the reference collection of the prediction program
and consists of the location, quality score and sample ID
of each predicted CNV (Detailed description of com-
mands used to develop the database is available in the
Additional file 1: Text S1).
Since prediction programs tested in our study use differ-

ent statistical approaches to assign quality scores, separate
databases were created for each program. These databases
were then used to assess the quality of TP and FP CNVs
identified from exaCGH experiments (Methods). Here, in-
house databases were searched using TP and FP CNVs as
queries to identify overlapping database CNVs and their

counts. Database CNV count represents the number of
samples in which query CNVs were predicted. If two or
more database CNVs were found, the median quality
score (CNVQ) of these CNVs was calculated.
Due to the high FP count in CNV prediction, TP queries

were present at low frequency and FP queries were over-
represented in the in-house database (Additional file 1:
Figure S6). These overrepresented FP queries were the FP
CNVs predicted from multiple exomes. Thus, we expected
these FP queries to have lower CNVQs than the CNVQs
of TPs. This was tested by calculating the CNVQ ratio be-
tween TP and FP CNVs (Fig. 2).
As expected, high CNVQ ratios (> 1.5) indicating low

CNVQ for FPs were observed in ExomeCopy predic-
tions. ExCopyDepth and ExomeDepth also showed
higher CNVQ ratios in low database CNV counts (< 5).
However, the CNVQ ratio decreases with increasing
database CNV counts. For example, ExCopyDepth and
ExomeDepth showed low CNVQ ratios (< 1) for higher
database CNV counts (> 7). XHMM also showed low
CNVQ ratios (< 1) for all the database CNV counts.
ExCopyDepth, ExomeDepth and XHMM are optimized
to detect rare CNVs [4, 7, 9]. Therefore these algorithms
were not effective in assigning quality scores that can be
used to differentiate FPs and common TPs (Additional
file 1: Table S2). Hence low CNVQs or higher database
CNV counts could indicate the prediction of FP or com-
mon TP CNVs.
In order to demonstrate how FPs and TPs can be differ-

entiated using CNVQ, we compared FP and TP CNVQ
distributions. The CNVQ range of FPs is lower than the
CNVQ range of TPs (Fig. 2a, b, c, d, e). However there is
an overlap between FP and TP distributions, indicating
that FPs and low quality TP could have similar scores.
This may be due to the ineffective quality score assign-
ment in common TP CNVs (Additional file 1: Table S2).

Fig. 2 Analysis of TP CNVs and FP CNVs using in-house databases. a CNVQ ratio vs Database CNV count. b, c, d, e CNVQ distribution of FPs and
TPs for all the database CNV counts. f, g, h, i CNVQ distribution of FPs and TPs for database CNV counts < 5. CNVQ ratio = CNVQ of TP CNVs/CNVQ
of FP CNVs. Database CNV count represents the number of samples in which CNVs were found. CNV quality score is not reported by default in
CoNIFER. Therefore CNVs predicted by CoNIFER were not analyzed using the in-house database
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Thus, we excluded all the CNVs with high database
counts (≥ 5) and compared CNVQ distributions of TPs
and FPs (Fig. 2f, g, h, i). When considering low database
CNV counts (< 5), FP CNVQ distributions were in the
lower range of the CNVQ spectrum and TP CNVQ dis-
tributions were in the upper range. CNVQ values for
all four programs can be identified to differentiate FPs
and TPs. For example, in ExCopyDepth and Exome-
Depth, all the FPs were lower than CNVQ ~15 and ~22.
This confirmed our hypothesis and demonstrated the
possibility of using CNVQ in order to differentiate TP
and FP predictions.
In summary, the analysis of CNV quality scores and

in-house CNV databases, suggested that cnvScan is use-
ful in identifying TP and FP CNVs. Identifying clinically
relevant CNVs remains challenging due to the number
of TP CNVs identified per exome (Fig 1b). Therefore,
additional information is needed to help identify CNVs
with clinical significance.

CNV annotation
In order to assess the functional effect and clinical sig-
nificance of predicted CNVs, cnvScan provides an anno-
tation step which uses data from multiple external
databases (Table 1). These source datasets can be grouped
into three main categories: gene and functional effect

datasets, known CNVs from public databases and clinic-
ally significant datasets.
For each screened CNV, gene content (Gencode V.19)

[18], level of conservation (PhastCon score) [19], pre-
dicted probability of exhibiting haploinsufficiency (hap-
loinsufficiency score) [20] and likelihood of how well
genes tolerate functional variation (genic intolerance
score) [21] were annotated as functionally significant
information. PhastCon, haploinsufficiency and genic in-
tolerance scores are important to assess the biological
effect of novel CNVs that are not reported in public
CNV databases.
Known CNVs were identified using three datasets:

Sanger high-resolution CNVs [22], 1000 Genomes CNVs
[23] and Database of Genomic Variants (DGV) [24]. DGV
is a continuously updated, comprehensive catalogue of
CNVs. However, recent studies have identified challenges
with using DGV in a clinical setting [15]. Therefore, in
addition to DGV data, we extracted recently published
high-quality, manually curated CNVs from DGV [15] to
identify known non-disease causing CNVs. These were
defined as (1) at least two subjects in one study or (2)
at least two subjects each in two studies (inclusive map
and stringency map [15]). Thus, these three datasets
from clinically healthy populations can be used to filter
out common and non-disease causing CNVs predicted
from exome collection.

Table 1 Source datasets used for annotation

Source Extracted information Reference

Gene and functional effect datasets

Gencode V.19 Gene name (HGNC gene symbol)Gene typeGene IDs
(Ensemble) Transcript IDs (Ensemble) Exon counts
(Internal to CNVs) UTRs

http://www.gencodegenes.org/releases/19.html

PhastCon PhastCon element countPhastCon element score http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
phastConsElements100way.txt.gz

Haploinsufficiency
index

Haploinsufficiency score http://journals.plos.org/plosgenetics/article?id=10.1371/
journal.pgen.1001154

Gene
intolerance

Gene intolerance score http://chgv.org/GenicIntolerance/

Known CNVs

Sanger high
resolution CNVs

Sanger CNV count http://www.sanger.ac.uk/science/collaboration/copy-number-variation-
project

DGV DGV CNV countVariant typeVariant subtypePubmed
ID

http://dgv.tcag.ca/dgv/app/home

Curated high
quality DGV

CNVs from 2 stringency levelsCNV population
frequencies

http://www.ncbi.nlm.nih.gov/pubmed/25645873

1000 Genomes
CNVs

1000 Genomes deletion1000 Genomes insertions http://www.1000genomes.org/announcements/mapping-copy-number-
variation-population-scale-genome-sequencing-2011-02-03

Clinically relevant information

OMIM morbid
map

OMIM diseasePubmed ID http://www.omim.org

DECIPHER DECIPHER development disorder genes https://decipher.sanger.ac.uk/ddd#ddgenes

ClinVar ClinVar diseaseHGVS name of the variant http://www.ncbi.nlm.nih.gov/clinvar/
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Clinically significant information was obtained from
OMIM morbid map [25], Deciphering Developmental
Disorders (DECIPHER DDD) [14] and ClinVar [26] CNVs.
Thus the cnvScan annotation step provides information
that can be used to assess the functional effect and the
clinical significance of each predicted CNV.

Implementation and evaluation of cnvScan
cnvScan was developed to improve the clinical utility of
CNV predictions. We propose a three-stage approach
to implement cnvScan and detect clinically significant
CNVs: (1) CNV prediction, (2) cnvScan screening and
annotation and (3) CNV filtration and disease-causing
variant detection.
CNVs can be predicted from any program and the

resulting CNVs used as input. Then cnvScan evaluates
the CNV prediction quality and provides functional and
clinical annotation. Finally, CNV filtration can be per-
formed to detect rare, high-quality clinically relevant
CNVs. Common and non-disease causing variants within
the initial prediction can be filtered using cnvScan annota-
tions (eg. Sanger high-resolution, DGV high quality and
1000 genomes data). To exclude low quality CNVs, CNV
quality scores (from prediction programs) and CNVQs
(from cnvScan) can be used as filtration parameters.
cnvScan was designed to considerably improve the

time and effort required to detect disease-causing vari-
ants. To assess this, we implemented cnvScan with
CNVs predicted from exomes used in the previous
stage of the study (TP and FP CNVs from 17 exomes of
PIDD patients). The total number of CNVs used in the
cnvScan run was 1742 (ExCopyDepth predictions). Fol-
lowing the cnvScan run, the first filtration step identi-
fied 1004 (57.63 %) CNVs as common non-disease
causing CNVs. CNVs were then filtered using CNV
quality scores and CNVQs ranging from 10 to 40
(Fig. 3a). CNV quality score filtration showed decreases
in FP counts compared to TP counts. Filtration on both
scores (CNV quality scores and CNVQs) showed a
steep decline in FP CNV counts (~170 to ~10) com-
pared to TP counts (~80 to ~40).
We then calculated the FP/TP CNV ratio and studied

how the ratio changes when implementing cnvScan over
a range of quality scores. Fig. 3b indicates that CNV
quality score and CNVQ can effectively filter out FP
CNVs while retaining TP CNVs. For example, lower FP/
TP CNV ratios (< 1) were observed for higher CNV
quality score and CNVQs (> 18). Finally, we compared
the filtration efficiency (CNV quality score and CNVQ
filtration) for all the programs used in our study. FP/TP
count ratio curves showed that cnvScan is effective in
reducing FPs predicted by ExomeCopy, ExCopyDepth
and ExomeDepth (Fig. 3c). A comparison of FDR of

these programs (Fig. 3d) showed an improved perform-
ance for the combination of ExCopyDepth and cnvScan.
The in-house database used in the cnvScan run con-

tains CNVs from the PIDD exome collection (n = 64).
During cnvScan implementation, the database CNV
count was not used as a filtration parameter to identify
FPs since this could exclude disease-causing variants,
which were predicted from multiple samples. However,
the database CNV count improved the differentiation of
TP and FP CNVs (Fig. 2). Thus, we wanted to test how
the application of the database CNV count could im-
prove the cnvScan filtration process (Additional file 1:
Figure S7). All the programs showed low FP/TP count ra-
tios (with low FDRs) when database CNV counts were used
as an additional parameter in the cnvScan filtration.
When comparing all the programs (Additional file 1:
Figure S7a, b), a combination of ExomeDepth and
cnvScan showed the lowest FP/TP count ratio (< 0.5)
with FDR ~0.4.
In cnvScan filtration, XHMM didn’t show a decrease

in FP CNVs (FP/TP ratio > 3, FDR > 0.8) for quality
scores between 10 and 40 (Fig. 3c, d). Therefore XHMM
predictions were filtered using scores ranging 10–100
(Additional file 1: Figure S8). When high scores (> 50)
were applied in filtration, XHMM showed an improved
performance with low FP/TP ratio (< 1) and FDR (~0.4).
Since CoNIFER doesn’t report CNV quality scores with
the default settings, cnvScan filtration efficiency of
CoNIFER was not studied. However, CoNIFER predic-
tions followed by cnvScan run are still useful to obtain
functional and clinical information for predicted CNVs.
cnvScan implementation and evaluation demonstrated

the ability to reduce the FP CNV count and FDR in
CNV prediction. This can improve the time and effort
required to detect clinically significant CNVs from com-
putational predictions. We then applied cnvScan in a pa-
tient exome collection to test the performance of our
improved method.

Clinical utility of cnvScan
Having evaluated the efficiency of cnvScan, we wanted
to study how cnvScan implementation can improve
disease-causing CNV detection. We predicted CNVs
using ExCopyDepth on 64 PIDD patient exomes and
the resulting CNVs were assessed and annotated using
cnvScan (Methods section).
Since we are interested in PIDD-causing variants, we

selected only the CNVs (n = 769) predicted to affect
known PIDD genes (n = 475). Next, cnvScan filtration
steps were applied to detect PIDD-causing variants from
this PIDD call set.
The first filtration step that remove common and non

disease-causing variants, identified 210 (27.3 %) CNVs.
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The second filtration step was performed to filter out FP
CNVs using two CNV quality thresholds: a low-stringency
threshold (CNV quality score and CNVQ > 10; n = 101
CNVs) and a high-stringency threshold (CNV quality
score and CNVQ > 40; n = 4 CNVs). Thus by removing
common CNVs and using a high-stringency quality filter,
we removed 99.47 % of CNVs.
To detect PIDD-causing variants, the functional and

clinical annotations provided in cnvScan were examined
manually. Three patients with PIDD-causing variants
(two patients from the same family with a deletion in

MAGT1 and one patient with a deletion in NCF1) were
identified from both the low- and high-stringency fil-
tered sets. Both deletions were evaluated genetically and
clinically to assess the phenotype in the respective
families.
Defects in MAGT1 function are known to cause X-linked

immunodeficiency, and in one pedigree we detected a
deletion in MAGT1 in the proband and his uncle (III.1
and II. 2; Fig. 4a, c). The deletion was confirmed by
exaCGH of the proband’s mother (II.1) who is an obli-
gate carrier (Fig. 4b). Deletions affecting NCF1 are

Fig. 3 Analysis of cnvScan filtration efficiency. a TP and FP count vs quality score used for filtration. ExCopyDepth score: default quality score of
the CNV from ExCopyDepth. cnvScan score: CNVQ from in-house database (b) FP/TP ratio vs quality scores used for filtration (Comparison of
cnvScan efficiency using ExCopyDepth predictions). FP/TP ratio: False positive CNV count/True positive CNV count. c Comparison of cnvScan efficiency
of four CNV prediction programs. Scores used for filtration: default CNV quality score from prediction programs and CNVQ from in-house
database. d Comparison of the cnvScan efficiency in reducing FDR of four prediction programs (FDR of prediction programs vs cnvScan
scores). CoNIFER results were not filtered using cnvScan as CNVQ is not reported in the default state
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know to cause recessive chronic granulomatous disease
[27]. We detected a deletion in a 71 year old female
with chronic granulomatous disease. The predicted de-
letion was confirmed by MLPA [27] to be homozygous
and span the entire gene (data not shown).
We also wished to test the performance of cnvScan

with the other four programs (Table 2). ExomeCopy,
ExomeDepth and XHMM predictions followed by
cnvScan also detected the three PIDD-causing CNVs,
thus cnvScan can improve disease variant identifica-
tion in other pipelines.

Conclusion
Computational CNV prediction from exome sequencing
data has shown high false positive CNV counts and thus
had limited applicability in clinical studies. In order to
improve the clinical utility of CNV prediction, we devel-
oped cnvScan to filter out false positive CNVs and to
provide clinically useful annotations.
We have demonstrated that CNV quality scores (de-

fault quality score from prediction programs and CNVQ
from in-house databases) can be used effectively to re-
duce false positive CNV counts. Functional and clinical

Fig. 4 Identification of PIDD-causing variants using cnvScan. a Pedigree with an affected uncle and nephew (II.1 and III.1). b aCGH confirmation
of the MAGT1 deletion in the obligate carrier II.2. c IGV screenshot showing the MAGT1 deletion (exon 3 to 8) in patient II.1 and III.1 in comparison
with the normal coverage of MAGT1 from a healthy male. The flanking exons (2 and 9) show normal coverage in II.1 and III.1, however there are
no reads covering exons 3–8, indicating a deletion of the region
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interpretation of predicted CNVs were improved with
the wide range of information provided by cnvScan an-
notation (gene content and functional effect, known
CNVs and clinically relevant information).
In summary, cnvScan enables researchers to use differ-

ent programs to predict CNVs and apply suitable filtration
thresholds to remove false positives and non-disease- cas-
ing variants. This reduces the time and effort required to
detect disease-causing CNVs and improves the clinical
utility of exonic CNV prediction.

Methods
Exome capture
Exome capture was performed using the Agilent SureSe-
lect Human All Exome capture kit v.5 (Agilent Tech-
nologies). DNA was extracted from whole-blood and
3 μg of DNA was prepared for exome sequencing
according to manufacturer’s recommendations. The
exome captured libraries were sequenced on an Illu-
mina HiSeq 2500 at the Norwegian Sequencing Centre
(www.sequencing.uio.no). Sequence alignment was per-
formed with NovoAlign (v2.07.17) [28] resulting in an
average coverage ~100x and 98 % of the bases covered
with at least 20x. Next, initial BAM files were realigned
and the base quality scores were recalibrated using
GATK (v2.4) [5]. After marking duplicates with Picard
(v1.74) [29], the final set of alignment data (BAM files) re-
quired for computational CNV prediction were generated.

CNV prediction
Computational CNV prediction was performed on exomes
from 17 patients with primary immunodeficiency (PIDD)
using ExomeCopy [6], ExCopyDepth [4], ExomeDepth [7],
CoNIFER [8] and XHMM [9]. These programs calculate
a CNVQ for each prediction, but CONIFER [8] does
not report this value by default. We thus changed the
CoNIFER source code to report normalized singular
values (SVD-ZRPKM [8]) for the left breakpoint of each
predicted CNV. Moreover previous studies have shown
that CoNIFER and XHMM report low CNV counts com-
pared to other prediction programs [4, 8, 9]. Therefore
CoNIFER and XHMM CNV predictions were performed

with low quality thresholds (Additional file 1: Text S2) to
generate a large CNV set needed for downstream analysis.

Input data for cnvScan
The main input file required for cnvScan is the CNV re-
sults file from the prediction program (Additional file 1:
Table S3).

CNV validation (exaCGH)
Following CNV prediction, CNVs were validated using a
custom CGH array (exaCGH) designed to capture ex-
onic regions [4]. Here, exaCGH was performed using 17
DNA samples from primary immunodeficiency patients
following Agilent protocol v.6.3. Agilent Genomic Work-
bench (v7.0) was used to call CNV regions which were
detected by at least four probes (with minimum average
absolute log ratio for deletion and duplication > =0.20).
All array results used for calculation of FP and TP had a
Derivative Log Ratio Spread (DLRS) values ranging from
0.19 to 0.42.
To identify TP and FP CNVs, we compared CNV pre-

dictions to exaCGH results. TPs are CNVs detected by
both methods. FPs are CNVs detected by the prediction
program but not by the array. In order to be conserva-
tive in FP identification, CNVs that have at least 4
probes in the exaCGH design were selected as the final
set of FP CNVs.
Finally we calculated the cumulative TP (cTP) and cu-

mulative FP (cFP) count to assess CNV quality scores.
Quality scores of TP and FP CNVs were sorted from
highest to lowest and cumulative TP and FP counts were
calculated for each quality score.
For the family studies, CNVs were confirmed by ei-

ther exaCGH or MLPA. MLPA was preformed by Dr
Dirk Roos and Mr. Martin de Boer at the Department
of Blood Cell Reasearch, Sanquin Blood Supply Organ-
ization, Amsterdam, Netherlands.

CNV screening
CNV screening is the initial analysis performed after
reading the input files. This provides metadata that de-
scribes the quality of each CNV call. The reported

Table 2 cnvScan implementation

Program CNV count in PIDD call set cnvScan filtered CNV count PIDD-causing CNV count

ExCopyDepth 769 58 (Low stringency) 4 (High stringency) 2

ExomeCopy 2782 477 (Low stringency) 180 (High stringency) 2

ExomeDepth 729 40 (Low stringency) 2 (High stringency) 2 (Low stringency) 1 (High stringency)

XHMM 151 51 (Low stringency) 49 (High stringency) 2

Low stringency parameters: CNV quality score > 10, CNVQ > 10 and not reported in public CNV datasets (Sanger high resolution CNVs, 1000 Genome CNVs and
high quality DGV dataset)
High stringency parameters: CNV quality score > 40, CNVQ > 40 and not reported in public CNV datasets (Sanger high resolution CNVs, 1000 Genome CNVs and
high quality DGV dataset)
CoNIFER failed to predict PIDD-causing CNVs from these exome sets
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metadata are: CNV quality score assigned by the predic-
tion program and CNVQ from cnvScan.
In-house database was designed to identify FP CNVs

predicted due to technical artifacts in the reference ex-
ome collection. Thus, in-house database should contain
CNVs predicted from the reference collection used in
the prediction program. A method and script used to
generate the in-house CNV database is discussed in
Additional file 1: Text S1. Therefore, cnvScan users can
create in-house CNV databases from reference exome
collections used in their studies.
Previous studies have shown that the use of male and fe-

male samples in the same reference collection influence
the CNV prediction in X and Y chromosomes [4, 9]. Thus
performance evaluation of CNV screening was completed
by excluding CNVs in X and Y chromosomes.

CNV annotation
In order to interpret the functional effect and study
clinical significance of the CNV, predicted CNVs were
annotated with data from external databases (Table 1).
Annotation process use public databases that contain
CNVs detected from multiple platforms (eg. DGV
CNVs) and CNVs predicted from different programs
(with different length distributions [4]). Since break-
points of these CNVs can vary depending on the ori-
ginal platform or computational program used, we
search for at least 1 bp overlap between predicted CNV
and the source dataset. Links to source datasets need
for annotation process are described in wiki page in
https://github.com/PubuduSaneth/cnvScan.

CNV filtration
Following the cnvScan analysis, CNVs can be filtered to
generate a set of high-quality rare CNVs. This CNV set
can be further examined to identify clinically significant
CNVs. Filtration is performed based on candidate gene
lists (gene based filtering) and parameters reported in
cnvScan analysis (variant based filtering). Separate
scripts for gene and variant based filtering are available
in our git repository.
cnvScan is written in python programming language

and all the scripts are available via our git repository
(https://github.com/PubuduSaneth/cnvScan).

Ethical approval and consent to participate
This project has been approved by the regional ethical
committee in Norway (REK: 2014/1270 Kartlegging av
genetiske årsaker til primær immunsvikt og immundys-
regulering) and all the participants provided a formal
written consent to participate in the study.

Consent to publish
All the participants provided a formal written consent to
publish.

Availability of data and materials
Genomic data of a person is considered sensitive data
under the Norwegian Personal Data Act §2, point 8 and
protected under Nordic data protection laws. Therefore the
PIDD patient data (discussed in the article) cannot be made
available in public data repositories. However, we have pro-
vided a dataset (CNV result files and CNV database gener-
ated from 14 exomes from 1000 genomes project) to test
cnvScan at our github repository (https://github.com/Pubu-
duSaneth/cnvScan/wiki/cnvScan-implementation).

Additional file

Additional file 1: Table S1. Statistical methods used to calculate CNV
quality scores. Table S2. CNVQ ratio for common TP CNVs. Table S3.
Format of the cnvScan input file. Figure S1. Overview of cnvScan
algorithm. Figure S2. CNV length vs Quality score for five CNV
prediction programs. Figure S3. GC % vs Quality score for five CNV
prediction programs. Figure S4. Length of simple repeats internal to
CNVs vs Quality score for five CNV prediction programs. Figure S5a.
Coverage of duplications vs Quality score for five CNV prediction
programs. Figure S5b. Coverage of deletions vs Quality score for five
CNV prediction programs. Figure S6. TP and FP counts in the in-house CNV
database. Figure S7. Comparison of filtration efficiency using default quality
score, CNVQ, database CNV count. Figure S8. Filtration efficiency of XHMM.
Text S1. In-house database creation. Text S2. Thresholds used in CoNIFER
and XHMM predictions. (PDF 2191 kb)
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