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Abstract  
 Background: Preoperative risk stratification is essential in tailoring endometrial cancer treatment, and biomarkers predicting lymph node metastasis and aggressive disease are aspired in clinical practice. DNA ploidy assessment in hysterectomy specimens is a well-established prognostic marker. DNA ploidy assessment in preoperative curettage specimens is less studied, and in particular in relation to the occurrence of lymph node metastasis. 

Methods: Curettage image cytometry DNA ploidy in relation to established clinicopathological variables and outcome was investigated in 785 endometrial carcinoma patients prospectively included in the MoMaTEC multicentre trial.  Results: Diploid curettage status was found in 72.0%, while 28.0% were non-diploid. Non-diploid status significantly correlated with traditional aggressive postoperative clinicopathological features, and was an independent predictor of lymph node metastasis among FIGO stage I-III patients in multivariate analysis (OR=1.94, p=0.033). Non-diploid status was related to shorter disease-specific survival (5-year DSS of 74.4%, vs. 88.8% for diploid curettage, p<0.001). When stratifying by FIGO stage and lymph node status, the prognostic effect remained. However, in multivariate regression analysis, preoperative histological risk classification was a stronger predictor of disease-specific survival than DNA ploidy.  Conclusion: Non-diploid curettage is significantly associated with aggressive clinicopathological phenotype, lymph node metastasis and poor survival in endometrial cancer. The prognostic effect was also observed among subgroups with (presumably) less aggressive traits, such as low FIGO stage and negative lymph node status. Our results indicate curettage DNA ploidy as a possible supplement to existing parameters used to tailor surgical treatment. 
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Introduction Endometrial carcinoma is the most common gynaecological malignancy in the western world with a reported lifetime risk of 2-3% (Jemal et al, 2010). In Norway, it constitutes 6% of all female cancers. A steady increase in incidence over the last decades has been observed (Cancer Registry of Norway, 2012), attributed to an ageing population and increasing incidence of obesity (Sorosky, 2012). In the United States, estimates by The American Cancer Society predict 52,630 new cases and 8,590 endometrial cancer deaths in 2014 (American Cancer Society, 2014; Siegel et al, 2014).  Abnormal uterine bleeding is the cardinal symptom of endometrial cancer. Essential preoperative diagnostic work-up includes histological verification by endometrial biopsy or curettage, in combination with a selection of imaging techniques to predict metastatic disease. Surgery remains the cornerstone in primary treatment; with curative intent it includes total hysterectomy and bilateral salpingo-oophorectomy, with or without retroperitoneal lymph node dissection and omentectomy, dependent on risk assessment based on tumour characteristics as well as patient operability (Amant et 

al, 2005).  Prognostic factors in endometrial cancer have been thoroughly investigated, the most important being age, the surgical FIGO stage (International Federation of Gynecology and Obstetrics), myometrial invasion, histological subtype and grade, and lymphovascular invasion (Amant et al, 2005; Creutzberg et al, 2000; Prat, 2004), serving as important determinants of tailoring postoperative treatment. Fortunately, the majority of endometrial cancer patients are diagnosed at a relatively early stage with disease presumably confined to the uterus. This is reflected by a generally favourable prognosis, with a 5-year relative survival of 84.4% reported for the period 2008-2010 in Norway (Cancer Registry of Norway, 2012), and 5-year disease-specific survival 



reported to 86.9% (Trovik et al, 2012). However, endometrial carcinoma is a heterogeneous disease with great variations in aggressiveness, exemplified by a recurrence rate after primary surgery among patients with presumed localized disease of 15-20% (Abeler & Kjorstad, 1991). Consequently, much effort has been made to individualize treatment by (preferably preoperatively) more accurately identifying patients with higher risk for poor outcome requiring more aggressive treatment, as well as identifying low-risk patients to avoid overtreatment (Salvesen et al, 2012). As reviewed by Salvesen et al, today’s preoperative risk assessment based on endometrial histology and imaging could be further augmented by preoperatively accessible biomarkers, such as curettage specimen hormone receptor status (Trovik et al, 2013), stathmin expression (Trovik et al, 2011) and DNA ploidy (Fredstorp-Lidebring et al, 2001; Mariani et al, 2000; Pradhan et al, 2012; Steinbakk et al, 2011) for tailored surgical treatment.  Assessment of DNA ploidy status has been shown to be of prognostic value in several epithelial cancers (Merkel & McGuire, 1990). For endometrial cancer patients, DNA ploidy postoperatively acquired from hysterectomy specimens has repeatedly been reported to be of prognostic importance, with aneuploidy or non-diploidy as a marker for aggressive disease (Larson et al, 1999; Lundgren et al, 2004; Pfisterer et al, 1995; Pradhan et al, 2012; Salvesen & Akslen, 2002; Susini et al, 2007; Wik et al, 2009; Zaino et 

al, 1998). However, only few studies have assessed the value of DNA ploidy in preoperatively available curettage specimens, both in terms of prognosis (Fredstorp-Lidebring et al, 2001; Mariani et al, 2000; Pradhan et al, 2012; Steinbakk et al, 2011) and in relation to lymph node status (Mariani et al, 2005). As results from multivariate analysis are conflicting (Mauland et al, 2014; Terada, 2012), the clinical value of DNA ploidy assessment needs further validation. 



On this background, we have investigated DNA ploidy in curettage specimens in relation to a panel of clinicopathological variables, lymph node status and outcome for women diagnosed and treated for endometrial cancer in the prospective, international multicentre trial MoMaTEC1 (Molecular Markers in Treatment of Endometrial Cancer).   



Materials and methods 

Study cohort With Regional Ethics Committee approval, a total of 1046 consenting patients in the MoMaTEC1-trial  (Molecular Markers in Treatment of Endometrial Cancer, Clinical Trial identifier NCT00598845) were included in this study. The study has acquired approval of The Norwegian Data Inspectorate (961478-2), Norwegian Social Sciences Data services (15501), and Regional Committees for Medical and Health Research Ethics (REKIII no. 052.01). A total of 402 endometrial cancer patients were prospectively included when treated at the Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway, from May 2001 through March 2011. Nine other centres contributed with 644 patients treated for endometrial carcinoma prospectively included at their institutions. Sampling was performed by pipelle or dilatation and curettage as per routine for each contributing centre. Formalin-fixed paraffin-embedded tumour tissue from curettage specimens was collected from all participating institutions.  Clinicopathological data, including age at diagnosis, FIGO stage according to 2009 criteria, histology (type and grade) from hysterectomy specimens, and treatment modalities were recorded. Preoperative curettage histology reports were routinely categorized as either high-risk (standardly comprising histological type reported as non-endometrioid, or histological grade 3 endometrioid carcinoma) or low-risk (standardly comprising other histological diagnoses including grade 1 or 2 endometrioid carcinoma, hyperplasia, and benign endometrium). All precision samples selected for DNA ploidy analysis as later described were investigated for presence of malignant tissue by one of the co-authors (MP), irrespectively of the preoperative routine histological diagnosis. Complying with the aim to evaluate DNA ploidy impact in a patient group treated routinely in a prospective multicentre setting, routine histological reports for grading 



and subtyping were applied from the participating centres. Follow-up data with records of recurrence and survival was collected from patient records and correspondence with physicians responsible for outpatient controls.  
DNA ploidy analyses  Haematoxylin and eosin stained slides from individual curettage specimen were evaluated to identify tissue areas with highest tumour grade. From the selected area, one or two 1 mm cylinders were punched out using a custom made precision instrument (Beecher Instruments) depending on the curettage tissue depth. Prepared monolayers were stained with Feulgen-Schiff as previously described by (Pradhan et al, 2006). The nuclear DNA content was measured using the Ploidy Work Station (PWS) Grabber version 1.4.12 (Room 4 ltd, UK) and a Zeiss Axioplan microscope equipped with a 546-nm green filter and a black and white high-resolution digital camera (Axiocam MRM, Zeiss). DNA ploidy histograms were created based on Integrated Optical Density of the nuclei using PWS Classifier (vs 3.06.03, Room 4 ltd, UK). DNA ploidy histograms were classified as diploid (one G0/G1 peak and G2 less than 10%), aneuploid (DNA Index (DI) 1.06-1.89, 2.11-3.79 or >4.2), tetraploid (DI 1.90-2.10) or polyploid (DI 3.8-4.2). A detailed description of the procedure, DNA content measurement, and histogram classification criteria is given elsewhere (Pradhan et al, 2006). Samples with less than 200 nuclei, and samples with poor technical quality were not classified.  
Statistical analysis  For statistical analysis, SPSS, Statistical Package for the Social Sciences, version 20.0 (IBM, Chicago, IL, USA) was applied. Associations between categorical variables were explored using Pearson’s chi-square test, and odds ratios (OR) for lymph node 



metastasis by binary logistic regression. For evaluation of prognostic impact, disease-specific survival (DSS) was defined as time from surgery until death from endometrial carcinoma, as documented from each patient’s responsible clinician. Univariate survival analyses were conducted by the Kaplan-Meier method with log-rank test for statistical significance, and multivariate survival analyses by Cox regression. All tests were two-sided, and results were considered statistically significant with a probability of less than 0.05.  



Results Of 1046 curettage samples, 236 samples were discarded due to lack of sufficient tissue material, being not measurable, or unclassifiable due to poor technical quality. Additional 25 patients had incomplete clinicopathological data upon study completion, leaving 785 patients for the final analysis. Follow-up information was available for 733 patients, with a mean follow-up among survivors of 38.4 months (range 0-96 months).   Of these 785 patients, 97.2% (n=763) were treated with primary hysterectomy and bilateral salpingo-oopherectomy, including lymph-node staging in 74.4% of the cases (n=584), 2.4% (n=19) were treated by curettage only, and 0.4% (n=3) by cytoreductive surgery. Lymph node sampling was predominantly pelvic, but included para-aortic dissection for a minority of patients (n=27). Performed lymph node dissection was significantly associated with younger age (82.6% of patients under 66 years vs. 66.5% of patients over 66 years, p<0.001), but showed no significant association to preoperative histological risk classification or curettage DNA ploidy (Supplementary table 1). Additionally, 33.6% of the patients (n=264) received adjuvant therapy, consisting of various combinations of radiation (n=115), hormonal treatment (n=13) and/or chemotherapy (n=171). The study complied with standardly applied treatment protocols for adjuvant therapy at the including centre, individually adjusted for each patient by the responsible physicians. Hormonal treatment was given to 13 patients due to high age (median 86 years) and/or inoperability. None of the patients had a prior history of endometrial cancer, and none received neoadjuvant radiation or chemotherapy.  Evaluating DNA ploidy from curettage samples, 72.0% (n=565) were classified as diploid, 20.6% (n=162) as aneuploid, 6.6% (n=52) as tetraploid and 0.8% (n=6) as polyploid. Dichotomizing patients according to diploid and non-diploid curettage 



specimens, aneuploid, tetraploid and polyploidy tumours were merged, constituting 28.0% of total patients included. Details for clinicopathological and demographic characteristics of the study cohort are presented in Table 1. Distribution of preoperative and postoperatively available clinicopathological findings in relation to DNA ploidy status are presented in Table 2. Non-diploid curettage specimen was significantly associated with high FIGO stage, non-endometrioid histological subtype in hysterectomy specimen, high histological grade in hysterectomy specimen, and high-risk curettage classification (all p<0.001). Associations between lymph node status, clinicopathological variables and DNA ploidy are presented in Table 3. Interestingly, patients with non-diploid curettage had significantly higher occurrence of lymph node metastasis compared to patients with diploid curettage (20.6% vs. 9.1% respectively, p<0.001). High-risk curettage classification was also associated with lymph node metastasis compared to low-risk curettage (24.8% vs. 8.6% respectively, p<0.001), in concordance with previously established research findings and clinical practice for identifying high-risk patients for more extensive lymphadenectomy. Biopsy reports were routinely categorized as either low- or high-risk for clinical risk stratification, as previously described (Trovik et al, 2011). Among patients with FIGO stage I-III, non-diploid curettage specimens significantly predicted the occurrence of lymph node metastasis both in univariate analysis (OR 2.73, 95% CI: 1.60-4.66, p<0.001) and in multivariate analysis when adjusted for reported preoperative curettage risk stratification (OR 1.94, 95% CI: 1.06-3.55, p=0.033)(Table 4). However, the long established high-risk histology classification had a similar association to positive lymph node status (OR 2.23, 95% CI: 1.20-4.13, p=0.011)(Table 4).  In univariate survival analysis, results from surgical staging incorporating final histpoathological diagnosis, FIGO stage, depth of myometrial infiltration, and lymph 



node status were, as expected, statistically significant predictors of disease-specific survival (DSS) (Table 5). Among preoperatively available information, age, DNA ploidy and histological risk classification showed significant associations. Patients with non-diploid curettage specimens had significantly shorter 5-year DSS compared to patients with diploid curettage (74.4% compared to 89.6% 5-year DSS, p<0.001) (Fig. 1A). A similar pattern was found when analysing FIGO stage I and II patients in isolation, with a 5-year DSS of 95.4% for diploid curettage, versus 86.3% for non-diploid curettage (p<0.001) (Supplementary table 2 and Fig. 1B). Noticeably, when viewing the subgroup of women with high FIGO stage (III and IV), no significant difference in ploidy-dependent survival was observed, with 5-year DSS for diploid and non-diploid curettage of 41.4% and 38.1% respectively (p=0.267).   Subgroup analysis was also performed according to lymph node status (Supplementary table 2). Comparing ploidy status isolated to patients with positive lymph node status (n=66), negative lymph node status (n=485) or unevaluated lymph node status (n=182), a significant reduction in 5-year DSS for non-diploid status was observed among the two latter. Five-year survival proportions for diploid vs. non-diploid curettages were 59.0% vs. 55.2% for patients with positive lymph node status (Fig. 2A, p=0.680), 95.5% vs. 88.3% for patients with negative lymph node status (p=0.003, Fig. 2B), and 80.5% vs. 47.2% for patients with unevaluated lymph node status (p<0.001, Fig. 2C). Furthermore, considering patients with FIGO stage I/II only and concomitant unevaluated lymph node status only, the prognostic effect of non-diploid status remained. Among lymph node unevaluated patients with localized disease, the survival proportions were significantly lower for patients with non-diploid versus diploid curettage, with 5-year DSS of 93.4% and 62.0% respectively (Fig. 2D, p=0.001). 



 Results from multivariate Cox regression analyses are listed in Supplementary table 3. Unadjusted for other parameters, non-diploid curettage was associated with a significant increase in risk of disease-specific death among FIGO stage I-III patients (unadjusted HR of 3.63, p<0.001). When adjusting for preoperatively available curettage risk classification, non-diploid curettage status did not remain significant, but showed a 62% increased risk of disease-related death (HR 1.62, 95% CI: 0.90-2.92, p=0.111). 



Discussion In endometrial carcinoma, DNA ploidy from hysterectomy specimens has repeatedly been reported to be of prognostic importance, with either aneuploid or non-diploid tumours associating with more aggressive phenotype (Larson et al, 1999; Lundgren et al, 2004; Pfisterer et al, 1995; Pradhan et al, 2012; Salvesen & Akslen, 2002; Susini et al, 2007; Wik et al, 2009; Zaino et al, 1998). However, results from multivariate analysis are conflicting (Mauland et al, 2014; Terada, 2012), where some studies demonstrate an independent effect on survival (Lundgren et al, 2004; Susini et al, 2007; Zaino et al, 1998), while others do not (Larson et al, 1999; Pfisterer et al, 1995). One prospective implementation study has shown an independent prognostic effect in a routine diagnostic setting (Wik et al, 2009). Furthermore, the vast majority of studies are performed on hysterectomy specimens, and only a few studies have assessed the value of DNA ploidy in curettage samples as a predictor of poor outcome (Fredstorp-Lidebring et al, 2001; Mariani et al, 2000; Pradhan et al, 2012; Steinbakk et al, 2011), or the relationship to lymph node status (Mariani et al, 2005). Of these, only one shows DNA ploidy in curettage specimens to be an independent prognostic factor, however results should be interpreted with care as DNA ploidy was only bivariately corrected for u-PA (urokinase plasminogen activator) or PAI-1 (plasminogen activator inhibitor type 1) (Fredstorp-Lidebring et al, 2001). Furthermore, a study exploring DNA ploidy and lymph node status for 82 endometrial cancer patients found no significant association (Mariani et al, 2005). Our study is thus an important supplement to this inconclusive exploration of the significance of curettage DNA ploidy status.  Noticeably, although the prognostic value of DNA ploidy in curettage specimens perhaps may be disregarded as inferior to hysterectomy samples, the strength of being preoperatively accessible before hysterectomy bears an immediate advantage as a 



possible supplement to preoperative risk assessment and prediction of lymph node metastasis. In this regard, our perhaps most important findings are that, among our patient cohort without distant metastasis at diagnosis, DNA ploidy is an independent predictor of lymph node metastasis, corrected for routinely performed curettage histological risk stratification (OR 1.94, p=0.033). For this analysis we excluded cases with FIGO stage IV metastatic disease, as their distant metastasis can be detected during preoperative work-up, and as they have poor prognosis and are subjected to highly individualized treatment strategies also dependent on comorbidity. FIGO stage II and III cases were included to avoid selection bias due to postoperative upstaging in a population with a high proportion of patients subjected to staging lymphadenectomy. Curettage risk stratification showed a stronger trend towards positive lymph node status (OR 2.23, p=0.011), although it may be considered a more subjective parameter. In this regard, contemplating DNA ploidy and histological risk stratification with other curettage biomarkers such as p53 and hormonal receptor status would be of interest, in particular since the latter methods are more applicable in a routine diagnostic setting. In our subgroup analysis portrayed in Supplementary table 2, we illustrate that DNA ploidy could be of use in a subset of patients to prognosticate disease behaviour, such as patients with unevaluated lymph node status. Noticeably, DNA ploidy was not significantly associated with disease-specific survival for patients with aggressive phenotype such as high FIGO stage and confirmed positive lymph node status. However, for patients with a presumably less aggressive disease such as low FIGO stage or negative lymph node status, patients with non-diploid tumours had significantly shorter disease-specific survival. The observation among patients not subjected to lymphadenectomy, where non-diploid curettage status was associated with shorter disease-specific survival, supports a particular relevance for DNA ploidy assessment 



among patients with unevaluated lymph node status. Our findings could be confounded by patient operability; however, excluding patients with high FIGO stage did not alter the significance of our results (Fig 2D). Our data suggest that DNA ploidy evaluated in curettage specimens can represent an important clinical tool in risk stratification compared to surgical lymph node staging with documented short and long-term side effects (Amant et al, 2005; Salvesen et al, 2012). As noted, evaluation of DNA ploidy in postoperatively acquired hysterectomy samples may be viewed as superior to curettage specimens. This was exemplified in a comprehensive study by Pradhan et al. including patients with stage I and II endometrioid adenocarcinoma, concluding that analysis of hysterectomy specimen exceeded curettage specimens in predicting biological behaviour (Pradhan et al, 2010). As a possible explanation they postulate that the biology of the deep infiltrating parts of the tumour, of which samples are obtained after hysterectomy, are more important for recurrence development than the superficial part of the tumour, obtained by curettage. As a consequence of intratumoural heterogeneity, DNA ploidy classification may differ between hysterectomy and curettage specimens, as illustrated in a study comparing the two modalities (Pradhan et al, 2010). In an extensive study exploring the genomic landscape of primary renal cell carcinoma, Gerlinger et al conclude that the intratumoural heterogeneity undetected by single-tumour biopsy samples may present major challenges to personalized-medicine and biomarker development (Gerlinger et al, 2012). This also directly applies to endometrial cancer, where any curettage sample evidently is restricted to not only represent a distinct area of the endometrium, but also a limited fraction of a tumour with potentially heterogeneous characteristics. This is an aspect that must be taken into consideration when implementing curettage biomarkers into clinical practice, including the reproducibility challenges faced with the standardly 



applied histological typing and grading (Salvesen et al, 2012). On the other hand, DNA ploidy may in this regard be characterized as a robust method taking intratumoural heterogeneity into account compared to other molecular markers, as a large amount of cell nuclei are measured with a high sensitivity of detecting subgroup aberrations. Tumour aneuploidy is a common genetic aberration in cancer reflecting a trait of genetic instability. Whether this aneuploidization is a cause or consequence of malignant transformation is uncertain (Holland & Cleveland, 2009). As opposed to structural chromosome rearrangements such as deletions, amplifications, or translocations, the role of whole-chromosome aneuploidy in cancer has received less attention (Gordon et al, 2012; Pellman, 2007). Aneuploidy has long been hypothesized as a promoter of tumourigenesis (Boveri, 1914). However, recent papers have shed light on the potential activation of oncogenes and inactivation of tumour suppressor genes leading to aneuploidy (Solomon et al, 2011), suggesting aneuploidy as a passenger of tumourigenesis. Aneuploidy is no obligatory trait of cancer, nor is cancer an obligatory consequence of aneuploidy. In concordance with other genetic instability, the pathways involved and the genetic context is of importance in developing the cancerous phenotype. The challenge remains to identify such genetic fingerprints, and translating results to individualize treatment, optimizing patient outcome. Our study is not without limitations. As noted, of the 1046 patients selected for DNA ploidy analysis, only 810 were successfully ploidy classified due to aforementioned reasons. This exclusion of 236 patients could cause a potential selection bias affecting our results. However, testing patients excluded from the study in terms of clinicopathological characteristics displayed in Table 1, no significant difference was observed in comparison to our final study cohort (all p>0.05, results not shown). Additionally, the proportion of patients unamenable for classification can limit the value 



of DNA ploidy assessment in routine use, calling for a method with higher rate of successful classification. Our approach of obtaining DNA ploidy material by punching out areas with highest tumour grade may pose a selection bias towards enriching for the more aggressive regions of the tumour in case of heterogeneity. However, this method allows small samples to be analysed, applicable to small endometrial biopsies. Our study cohort portrays a proportion of patients subjected to lymphadenectomy of 74.4%, illustrating a challenge complying with a staging procedure including lymphadenectomy in an elderly and often comorbid patient population. The extent of lymph node dissection was decided by the responsible surgeon, balancing patient comorbidity and risk involved in extended surgery. As expected, patients subjected to lymphadenectomy were significantly younger, while no other systematic biases were observed (Supplementary table 1). This suggests a selection bias of patients subjected to lymph node sampling based on age, but not the other investigated biomarkers.  In conclusion, our study demonstrates that non-diploid curettage samples are associated with aggressive phenotype, lymph node metastasis and poor disease-specific survival. With the significant association between DNA ploidy and lymph node status, DNA ploidy can be of interest preoperatively to identify high-risk patients for tailored surgical treatment. Furthermore, subgroups of patients with presumably less aggressive traits, such as low FIGO stage and negative lymph-node status from staging lymphadenectomy, have significantly shorter disease-specific survival in the case of non-diploid curettage sample. This prognostic effect was also observed among patients not subjected to staging lymphadenectomy. Our results indicate DNA ploidy as a possible supplement to existing parameters used to tailor surgical treatment such as curettage histological risk stratification. However, additional studies, and in particular a 



prospective randomized clinical trial, would be important to evaluate the effect of implementing DNA ploidy into routine clinical practice.  
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Titles and legends to figures 

 

Fig. 1: Disease-specific survival (DSS) for endometrial cancer patients related to 

curettage specimens classified according to DNA ploidy. A) DSS for all patients, 

grouped according to DNA ploidy (n=733). B) DSS for patients with FIGO stage 

I/II according to curettage DNA ploidy (n=623). Patients with aneuploid, 

tetraploid and polyploid tumors were merged due to similar survival, and 

classified as non-diploid. The number of cases followed by the number of 

endometrial carcinoma related deaths is given in parenthesis. P-values are by 

Kaplan-Meier estimation by the log-rank test.  

 

Fig. 2: Disease-specific survival (DSS) for endometrial cancer patients in relation 

to curettage specimen DNA ploidy and lymph node status. A) DSS for patients 

with positive lymph-node status (n=66); B) DSS for patients with negative lymph 

node status (n=485); C) DSS for patients with unevaluated lymph node status 

(n=182); D) DSS for patients with FIGO stage I/II and unevaluated lymph node 

status (n=152). Patients with aneuploid, tetraploid and polyploid tumors were 

merged due to similar survival, and classified as non-diploid. The number of 

cases followed by the number of endometrial carcinoma related deaths is given 

in parenthesis. All p-values are by Kaplan-Meier estimation by the log-rank test.  
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Table 1. Clinicopathological and demographic characteristics for 785 endometrial cancer 
MoMaTEC* trial patients. 
 
Characteristics Mean SD, min-max 
Age (years)  66.4 11.1, 28-98 
Paritya  2.2  1.4, 0-8 
   
Characteristics Number of cases Percentage 

Information available preoperatively   

Curettage DNA ploidy   

Diploid 565 72.0 

Aneuploid 162 20.6 

Tetraploid 52 6.6 

Polyploid 6 0.8 
   
Information available postoperatively   
Histological subtypeb    

Endometrioid carcinomac 656 83.8 
Serous carcinoma 56 7.2 
Clear cell carcinoma 31 4.0 
Carcinosarcoma 27 3.4 
Undifferentiated carcinoma/other 13 1.7 

   
Histological differentiationd   

Grade 1 281 36.0 
Grade 2 272 34.9 
Grade 3 227 29.1 

   
Myometrial invasione     

<50% 453 64.0 ≥50% 255 36.0 
   
FIGO stage (2009 revision)   

I 608 77.5 

II 58 7.4 
III 91 11.6 
IV 28 3.6 

   

Lymph node metastasisf     

No 512 87.7 

Yes 72 12.3 

   
 

SD: Standard Deviation. aParity information missing for 10 patients. bHistological subtype 
missing for 2 patients.  cIncluding cases with squamous differentiation. dHistological 



differentiation missing for 5 patients. eData for myometrial infiltration not available for 77 
patients. fLymph node status evaluated in 584 patients. *Molecular Markers in Treatment of 
Endometrial Cancer 



Table 2. Clinicopathological variables related to DNA ploidy in curettage specimens from 785 patients with endometrial cancer, classified as 
either diploid or non-diploid (aneuploid, tetraploid and polyploid). All p-values are by Pearson chi-square test.  
 
Variables Category Diploid Non-diploid P-value 
Age at primary treatment < 66 years 309 80.3% 76 19.7%  
 ≥ 66 years 256 64.0% 144 36.0% <0.001 
       
Information available preoperatively       
Curettage histology classificationa Low risk 499 83.2% 101 16.8%  
 High risk 63 35.0% 117 65.0% <0.001 
       
Information available postoperatively       
FIGO stage (2009) I / II 503 75.5% 163 24.5%  
 III / IV 62 52.1% 57 47.9% <0.001 
       
Histological subtypeb Endometrioid 530 80.8% 126 19.2%  
(Hysterectomy specimen) Non-endometrioid 35 27.6% 92 72.4% <0.001 
        
Histological gradec Grades 1 and 2  462 83.5% 91 16.5%  
(Hysterectomy specimen) Grade 3 101 44.5% 126 55.5% <0.001 
       
Myometrial infiltrationd < 50% 349 77.0% 104 23.0%  
(Hysterectomy specimen) ≥ 50% 173 67.8% 82 32.2% 0.008 
       
Lymph node metastasise No 381 74.4% 131 25.6%  
 Yes 38 52.8% 34 47.2% <0.001 
       
Recurrencef No 443 76.5% 136 23.5%  
 Yes 58 57.4% 43 42.6% <0.001 
       
aCurettage histological risk classification as either low risk (benign, hyperplasia or endometrioid grade 1-2) or high risk (comprising non-
endometrioid or endometrioid grade 3 histology). Curettage histology risk classification missing for 5 patients. bHistological subtype missing for 



2 patients. cHistological grade missing for 5 patients. dMyometrial infiltration not available for 77 patients. eLymph node status evaluated in 584 
patients. fRecurrence only evaluated in patients considered tumour-free after operation (n=680). 



Table 3. Lymph node status in 584 endometrial cancer patients subjected to lymphadenectomy in relation to clinicopathological variables and 
expression of biomarkers. All p-values by Pearson’s chi-square test. 
 
Variable Category Lymph node negative Lymph node positive P-value 
       
Age < 66 years 279 87.7% 39 12.3%  
 ≥ 66 years 233 87.6% 33 12.4% 0.959 
       
Information available preoperatively      
Curettage histology classificationa Low risk 406 91.4% 38 8.6%  
 High risk 103 75.2% 34 24.8% <0.001 
       
Curettage DNA ploidyb Diploid 381 90.9% 38 9.1%  
 Non-diploid 131 79.4% 34 20.6% <0.001 
       
Information available postoperatively      
Histological subtypec Endometrioid 446 91.8% 40 8.2%  
(Hysterectomy specimen) Non-endometrioid 64 66.7% 32 33.3% <0.001 
        
Histological gradec Grades 1 and 2  384 93.0% 29 7.0%  
(Hysterectomy specimen) Grade 3 127 75.1% 42 24.9% <0.001 
       
Myometrial infiltrationd < 50% 334 97.7% 8 2.3%  
(Hysterectomy specimen) ≥ 50% 157 79.7% 40 20.3% <0.001 
       
 
aCurettage histological risk classification as either Low risk (benign, hyperplasia or endometrioid grade 1-2) or High risk (comprising non-
endometrioid or endometrioid grade 3 histology). bNon-diploid comprising aneuploidy, tetraploid and polyploidy curettage. cHistological subtype 
and grade missing for 2 patients. dMyometrial infiltration available for 539 patients.  



Table 4. Prediction of lymph node metastasis based on curettage histology and curettage specimen DNA ploidy in 568 lymph node sampled 
patients with endometrial cancer FIGO stage I, II or III in the MoMaTEC* multicentre trial. Univariate and multivariate odds ratios (OR) by 
logistic regression. 
 
Variable n Univariate OR 95% CI P Multivariate OR 95% CI P 
Curettage histology classificationa        

Low-risk 441 1   1   
High-risk 127 3.04 1.76-5.24 <0.001 2.23 1.20-4.13 0.011 

        
Curettage DNA ploidyb        

Diploid 412 1   1   
Non-diploid 156 2.73 1.60-4.66 <0.001 1.94 1.06-3.55 0.033 
        

 

aCurettage histology classified as low-risk (benign, hyperplasia or endometrioid grade 1-2) and high risk (non-endometrioid or endometrioid 
grade 3). bNon-diploid classification comprising aneuploid, tetraploid and polyploid curettage. *Molecular Markers in Treatment of Endometrial 
Cancer 



Table 5. Disease specific survival for 733 endometrial cancer patients related to 
clinicopathological variables and curettage specimen DNA ploidy. All p-values by Kaplan-Meier 
survival analysis with log-rank significance test.  
 
Variable n Number of deaths 5-year survival P 
     
Age     

<66 360 21 93.0%  
≥66 373 56 77.0% <0.001 

     
Information available preoperatively   

Curettage histologya     

Low-risk 569 34 91.3%  

High-risk 161 43 62.4% <0.001 

     

Curettage DNA ploidyb     

Diploid 529 38 89.6%  

Non-Diploid 204 39 74.4% <0.001 
     
Information available postoperatively   
FIGO Stage     

I-II 623 29 93.3%  
III-IV 110 48 38.0% <0.001 
     

Myometrial infiltrationc     
<50% 429 17 94.4%  
≥50% 227 37 76.8% <0.001 
     

 Histological type     

Endometrioid 618 37 91.3%  

Non-endometrioid 115 40 52.7% <0.001 

     

Histological graded     

Grades 1-2 517 25 93.0%  

Grad 3 214 52 67.4% <0.001 

     

Lymph node metastasise     

Negative 485 22 93.7%  

Positive 66 20 55.7% <0.001 

     

     
 
aCurettage histological risk classification as either low risk (benign, hyperplasia or endometrioid 
grade 1-2) or high risk (comprising non-endometrioid or endometrioid grade 3 histology). 
Information is missing for 3 patients. bNon-diploid curettage status includes aneuploid, tetraploid 



and polyploidy samples. cMyometrial infiltration missing for 77 patients. dHistological grade 
missing for 2 patients. eLymph node metastasis evaluated in 551 patients with follow-up 
information.  
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