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Introduction

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN)

has established a new Particle Physics program covering high precision measurements of the

Standard Model as well as searches of new physics (Chapter 1). The objectives of this program

demand thorough consolidation and upgrades of both the accelerator and the detectors systems.

Chapter 2 presents the different detector upgrade strategies adopted by the four main LHC

experiments.

This PhD thesis combines detailed gas studies of LHC gas detector systems with detec-

tor system development, construction and characterization of the Insertable B-layer (IBL), the

ATLAS Pixel upgrade during LS1.

Within the LHC tracker upgrade programs, the ATLAS IBL is the first major upgrade of a

silicon-pixel detector. IBL improves the overall Pixel Detector performance, which is expected

to degrade with the increase of luminosity. Chapter 3 gives an overview of the IBL detector

system and some of the new technologies that have been developed to fulfill the demanding

requirements. This thesis work focuses on the IBL production phase, when it was necessary

to define and elaborate a rigorous Quality Assurance (QA) protocol for testing and qualifying

all detector components before the final integration and assembly stages. The IBL is the inner-

most sensing layer of the ATLAS experiment, detector efficiency and reliability are of crucial

importance. The work here presented is devoted to the QA for the IBL staves. The staves, each

holding 20 pixel modules, are the basic element for the assembly of the IBL detector. A total

of 18 staves have been qualified in terms of signal performance, noise and overall functionality.

Considering the amount of work, the importance of the task and the tight schedule, the activity

has been accomplished by an expert team where each member was responsible of testing some

of the staves. Chapter 4 is entirely dedicated to QA and the corresponding stave qualification

as well as studies related to detector components reliability in the ATLAS experimental condi-

tions. For the latter, a systematic study of wire bonds operated in ATLAS-like magnetic field

has been conducted.

The gas detector systems installed at LHC, and those being considered for their upgrade,

will be exposed to an unprecedented high radiation environment. Systematic studies are needed

to identify the key processes and gas parameters that affect their operation, and ultimately to

provide guidelines for the operation of gas systems and detectors at very high rates. Foreseen

upgrades of muon systems concern their read-out systems and the addition of new muon sta-

tions. It is therefore of prime importance to maintain the existing detectors in good operating

conditions. In this context, the gas systems play a crucial role as they provide the gas mixture,

which can affect the detector operation in many ways. Chapter 5 reviews the different solutions

adopted for gas systems and analyzers used to monitor the gas mixture. Starting from real issues
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occurred at the LHC experiments, the present thesis describes the limits of the standard anal-

ysis techniques and proposes new applications of a complementary gas monitoring tool based

on a single wire proportional chamber. Chapter 6 explores and proposes solutions to the key

problems that large systems will phase in the near future. Cost arguments and the need of reduc-

ing the greenhouse emissions will force the use of gas recirculation systems, and some of the

currently used greenhouse gases will be substituted with new environmentally friendly compo-

nents. These two aspects are important for the current systems but also have to be validated for

newly developed detector technologies. Studies of operating a GEM detector in a closed-loop

is used as example of a new detector technology that is planned for future upgrades of the LHC

experiments. Gas replacement is addressed considering the specific case of the Freon R134a

for RPC detectors.
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Chapter 1

High Energy Physics at LHC

The Standard Model (SM) theory has been successfully tested to an exceptional level of ac-

curacy by several experiments in the last decades. Nevertheless the SM presents some critical

shortcomings as the unification of all forces or the hierarchy problem of the Fermi scale. The

experiments taking place at CERN have been conceived to investigate the unanswered ques-

tions in the field of high energy physics. A new Particle Physics program has started with the

Large Hadron Collider (LHC) giving, as a main result, the discovery of the Higgs boson. This

achievement is only the beginning of an intense LHC Physics program to better understand the

SM and the physics beyond it.

1.1 Overview of Physics at the Large Hadron Collider

The SM combines special relativity and quantum mechanics providing a valid and detailed

framework for the description of Electromagnetic and Weak forces. It is a gauge theory based

on the symmetry group [1]:

G = SUc (3)⊗ SUWeak
L (2)⊗ UWeak

Y (1) (1.1)

where SUc (3) is associated to the color quantum, SUWeak
L (2) to the weak isospin andUWeak

Y (1)

to the hypercharge. In the SM, the fundamental constituents of matter are spin-1/2 particles,

called fermions. The fermions are divided into two groups, named quarks and leptons, which

can be divided into three families. Each family consists of weak isospin doublets in additions

to one or two weak isospin singlets:

lepton

(
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νe

)
L
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The stable matter observed in the universe is made of the first generation of fermions. For

each fermion, a corresponding anti-particle exists with exactly same coupling but with opposite

quantum numbers. The fermions interact among them through the exchange of spin-1 particles,

called gauge bosons, which arise from the invariance of the theory under gauge symmetries.

Four fundamental interactions are known: electromagnetic, weak, strong and gravitational.

Each different interaction is shaped by an independent gauge group and is mediated by different

bosons. The electromagnetic interaction, described by the Quantum Electro-Dynamics (QED)

theory, is mediated by the massless boson called photon. The weak interactions are mediated

by the massive W± and Z0 gauge bosons while the strong interactions are carried by gluons.

However in the ElectroWeak (EW) theory all particles are massless. In 1964 a mechanism,

called Higgs mechanism, was introduced to generate the masses of bosons and fermions through

the interaction with a scalar background field in the SM. As the W± and Z0 bosons are massive

and the photon is massless, the Higgs-mechanism must break the EW symmetry. This requires

the existence of an additional massive boson with spin 0, the so-called Higgs boson, whose

mass is an open parameter of the theory.

Even if nowadays the SM can be considered to give a self-consistent picture of the fun-

damental building blocks of matter and their interactions, it cannot be treated as the ultimate

theory since several questions, both theoretical and phenomenological, do not find an explana-

tion, as for example the CP violation theory, the Great Unification Theory and the dark matter

existence as well as the unknown values of several SM parameters. Many efforts have been

performed to accommodate these and other problems in a new theory that must contain the SM

as a lower energy limit. Several theories have been proposed but they must be verified experi-

mentally and nowadays there are not considerable confirmations. An example of an extension

of the SM theory is the Super Symmetry (SUSY) theory, which proposes a symmetry between

fermions and bosons linking the basic particles with the force-carrying particles. SUSY the-

ory potentially offers an elegant solution to the hierarchy problem, providing an excellent dark

matter candidate and unification of gauge couplings.

1.2 Physics highlights until first LHC long shutdown

The LHC [2] is a two rings superconducting hadron accelerator and collider installed in the

existing 26.7 km Large Electron-Positron (LEP) tunnel about 100m underground. It has been

designed to provide enough statistics for its rich physics program, covering both high preci-

sion measurements of the SM as well as search of new physics. To achieve its goals, LHC

nominally provides a center of mass energy of 14 TeV for proton-proton collisions created by

2808 bunches, consisting of 1.15×1011 protons each, with 25 ns bunch spacing at the design

luminosity of 1034 cm−2 s−1. The LHC can supply also PbPb and Pbp collisions that reach a

center of mass energy of 2.76 TeV and 5.02 TeV, respectively. Physics is exploited by four ex-

periments located in four different LHC interaction points: ATLAS [3], CMS [4], ALICE [5]

and LHCb [6]. The ATLAS and CMS experiments are general-purpose detectors, capable of

exploring all aspects of the LHC program, from heavy-ion collisions and forward physics to

Higgs boson physics and direct searches for new particles. The ALICE experiment is dedicated

to heavy-ion physics while LHCb is designed to maximize the LHC potential in beauty and
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charm physics.

In 2012, the LHC has been operated at 8 TeV centre of mass energy, compared to 7 TeV

in 2010-2011. Several milestones have been achieved before the first technical long shutdown

(started in 2012), mostly in terms of accelerator performance and physics analysis. At the end

of the first three-year LHC running period (2010-2013), the LHC delivered about 20.8 fb−1,

reaching a peak luminosity of 7.7×1033 cm−2 s−1 for ATLAS and CMS experiments and smaller

amounts to LHCb and ALICE experiments.

The major achievement of the ATLAS and CMS experiments is without any doubts the

observation of a new boson with a mass of 126GeV and Higgs-like properties in terms of

signal strength (July 2012) [7], [8]. The Higgs boson channels with the strongest sensitivity at

the LHC are the gluon-fusion and the vector-boson fusion channels, whereas the most promising

decay processes are the di-photon, the ZZ to four leptons and the leptonic WW channels. Both

experiments obtained the most significant deviations from the background-only hypotheses in

the ZZ and di-photon channels, as it can be seen from the excess found in the invariant mass

distributions of two photons (Figure 1.1(a)), as well as from the distribution of the local p-

value as a function of the hypothetical Higgs mass (Figure 1.1(b)). The Higgs boson mass has

γγ
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σ±

γγ

(a)
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Figure 1.1: (a) Invariant mass distribution in the di-photon channel of the CMS Higgs

search [8]. (b) Local p-values in the ATLAS Higgs searches. The dashed curve shows the

expected local p0 distribution for a Higgs boson at the corresponding mass while the horizontal

dashed lines indicate the p-values corresponding to significances of 1 to 6 sigma [7].

been measured to a remarkable precision: 0.43% in ATLAS and 0.34% in CMS. Similarly, the

production cross section relative to its SM prediction has been measured to about 15% precision

by each experiment. The data strongly prefer the spin-parity for a new particle to be consistent

with that of the vacuum (JPC = 0++), which is also the value predicted for the SM Higgs boson.

Besides the discovery of the Higgs Boson, the searches for physics Beyond-Standard Model

(BSM) are going on at LHC even if they have revealed nothing new so far. These searches can

be roughly divided into two large sectors: searches on SUSY particles and searches for other

particles and interactions beyond the SM [9]. Generic searches for squarks and gluinos tradi-

tionally cast in a constrained version of the minimal supersymmetric standard model (MSSM)
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however, up to now, results are not encouraging and different ways of casting searches for SUSY

are going on, as via the simplified model space (SMS) [10]. Several attempts to investigate new

physics are so numerous by now that a comprehensive summary is basically impossible.

Another important topic in the LHC researches is the flavor physics, which is lead by the

dedicated LHCb experiment. Several flavor physics highlights have been accomplished during

LHC Run 1 as, for example, the observation of new heavy beauty bound states (χb (3P ) bb̄

meson and Ξ∗
b baryon), the first evidence for the B0

s → μμ decay or the first observation of

direct CP violation in B0
s decays [9], [11]. At the same time, very successful PbPb (2010,

2011) and pPb (2013) runs brought a wealth of data and allowed ALICE, ATLAS, and CMS

to produce unprecedented and very exciting new results in heavy-ion physics as, for example,

detailed studies of jet quenching in PbPb collisions and dijet production in pPb collisions and

a number of other unique PbPb measurements (W and Z production, jet-photon correlations,

etc) [12], [13].

1.3 Future Physics program at high luminosity

The current LHC program foresees a delivery of proton-proton collisions with an integrated lu-

minosity of 3000 fb−1 at a center of mass energy of 14 TeV by around 2030 and PbPb collisions

with an integrated luminosity of at least 10 nb−1 at
√
sNN=5.5 TeV. Relative to current LHC

plans, these numbers correspond to a tenfold increase in statistics. These much larger energies

and integrated luminosities will open a huge unexplored phase for the search of new physics as

well as amounts of data for precision studies of the Higgs boson. Four major experimental lines

can be delineated [14]:

• precision tests of the role of the observed Higgs boson in the SM, including searches for

additional Higgs bosons

• direct searches for other BSM Physics

• precision tests of the SM in Heavy Flavour Physics and Rare Decays

• heavy Ion Collisions and the Physics of the Quark-Gluon Plasma

A major focus of the physics program is surely dedicated to the Higgs boson since precision

measurements of its properties will be possible thanks to the higher luminosity. In particular

the primary goals are the measurements of its couplings to fermions and bosons, its rare decays

and its self-couplings. The knowledge of these parameters will allow a better understanding

of the SM [15], [16] and the possibility to prove BSM Physics models [17]. As an example,

the measurement of the Higgs boson self-coupling and subsequent reconstruction of the Higgs

potential is a fundamental test of the Higgs mechanism described in the SM. Thanks to the

higher luminosity of the next years, also rare and invisible Higgs boson decay channels will be

studied giving a deep knowledge on the Higgs coupling couplings to elementary fermions and

bosons. The relative uncertainties on the total signal strength for some Higgs decay modes for

accumulated integrated luminosities of 300 and 3000 fb−1 are reported in Figure 1.2(a).

The future CERN Physics program is not only focused on the Higgs boson and its properties

as it has been demonstrated by the fact that LHC has already probed significant new regions of
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BSM parameter space. Figure 1.2(b) shows an estimate of the scales that can be probed at√
s=14TeV with 300 and 3000 fb−1 as a function of the mass scales being probed in today’s

searches [14]: the center-of-mass energies that can be studied increase by about 1 TeV thanks

to an extra factor of 10 in integrated luminosity. The relative gains are most significant for

new physics objects where current searches exclude only low system masses. A significant

problem arises with the low mass of the Higgs boson and its related hierarchy problem, which

can be studied only at high energy as well as SUSY and BSM theory. BSM Physics is an open

scenario with several theories being explored. The future LHC period at higher luminosity will

be essential in this search and in case new physics will be found, extended run periods will be

needed to measure the properties of new particles.

(a) (b)

Figure 1.2: (a) Relative uncertainty on the total signal strength for all Higgs final states in the

different experimental categories used in the combination, assuming a SM Higgs Boson with a

mass of 125 GeV. The hashed areas indicate the increase of the estimated error due to current

theory systematic uncertainties [15]. (b) Estimate of the system mass that can be probed in BSM

searches at the 14 TeV LHC with 300 or 3000 fb−1, as a function of the system mass probed so

far for a given search with 8 TeV collisions and 20fb−1 [14].

In parallel to Higgs studies and new physics searches, more precise SM measurements and

calculations as well as flavour and heavy ions physics will be of fundamental importances [18].

For example, sensitivity studies demonstrate that LHCb will be the leading experiment for

a wide range of important observables concerning rare decays and CP violation in charm

and beauty hadrons while heavy-ion physics will allow the studies of heavy-flavour particles,

quarkonium states, jets and their correlation with other probes, etc.

The future physics program implies upgrades on detectors, their electronics and DAQ as

well as on trigger to maintain or improve the performance. The requirements are driven by the

7



basic need to remain operational despite the increasing accumulated radiation dose and to deal

with higher occupancies from pile-up as well as by the need to trigger on and to measure the

physics channels of interest. The accomplishment of these conditions can be reached only with

a well-planned and systematic upgrade of the LHC detectors that has already start during the

LS1 and it will continue for the next 10 years.
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Chapter 2

The Detector Upgrade Program for the
LHC Experiments

In 2006, the European Strategy for Particle Physics was agreed for the decades to come and

an updated Strategy was adopted by the CERN Council in May 2013. The program sets the

priorities for European Particle Physics taking into account the Higgs boson discovery at LHC

in 2012 and the global energy frontier research landscape. It contains a key message towards

the accomplishment of the High Luminosity LHC program:

Europe’s top priority should be the exploitation of the full potential of the LHC,
including the high-luminosity upgrade of the machine and detectors with a view
to collecting ten times more data than in the initial design, by around 2030. This
upgrade program will also provide further exciting opportunities for the study of
flavour physics and the quark-gluon plasma.

An intense LHC upgrade program has already started at CERN for both LHC accelerators chain

and experiments. The extreme LHC performance foreseen for the next decades needs intense

consolidation and upgrades of the detectors as well as simulation studies to understand their

optimization as a function of the physics performance and goals.

2.1 The LHC Upgrade Phases

In 2012 with the final LHC running conditions, an integrated luminosity of about 30 fb−1 has

been accumulated with a peak luminosity of 7.7×1033 cm−2 s−1. Data collisions have been

recorded both at
√
s = 7 and 8 TeV leading to the major discovery of a 126GeV Higgs bo-

son [7], [8].

The LHC has been upgraded to the design energy of 13 to 14 TeV with an expected bunch

spacing of 25 ns and instantaneous luminosity of 1034 cm−2 s−1 during the first LHC Long

Shutdown (LS1, 2013-2014). The new parameters will allow to deliver ≥50 fb−1 before the

following shutdown. The current planning of upgrades foresees two other long shutdowns (LS2

and LS3) as it is visible in Figure 2.1, which shows a time line of the LHC upgrade phases.

During LS2 the injector chain and the LHC will be both improved with the integration

of Linac4 into the injector complex [19]. Potentially a further increased luminosity of about
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Figure 2.1: LHC long term schedule including performance projection until Phase 2. Three

technical long shutdowns are planned for 2013-2014 (LS1), 2018-2019 (LS2) and 2023-2025

(LS3) as well as a long technical stop at the end of 2016 (EYETS). The first three-year LHC

running period took place in 2010-2013 (Run1) at a center-of-mass energy of 8 TeV. During

2015-2018 (Run 2) and 2020-2022 (Run 3) the center-of-mass energy increases to 13-14 TeV.

After LS3, a luminosity 5 to 7 times the nominal is expected.
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2×1034 cm−2 s−1 will be delivered with the data resume in 2020 corresponding to 55 to 80

interactions per crossing (pile-up) with 25 ns bunch spacing. A total integrated luminosity of

about 300 fb−1 is expected before LS3, extending the reach for discovery of new physics.

During LS3 the LHC will be upgraded to High Luminosity-LHC (HL-LHC) to provide

more populated and denser bunches at the collision regions of ATLAS and CMS. Virtual peak

luminosities of 5-7×1034 cm−2 s−1 will be reached at the beginning of LHC fills, corresponding

to up to 200 interactions per crossing and a total integrated luminosity of about 3000 fb−1, a

factor 10 more than Run 3.

The LHC consolidation and upgrades are necessary to reach the extreme performance fore-

seen for the next decades. These achievements will be possible only with integration of new

features and replacement of several LHC machine components. Operation with increasing rates

and pile-up will become more and more challenging for the experiments. The major upgrades

of LHCb and ALICE will take place during LS2 with the redesign of read-out electronics and

the replacement of some sub-systems to improve precision measurements and to overcome the

limits set by detector constraints related to the increasing of integrated luminosity [20], [21].

The detector performance degradations due to the integrated radiation dose will also need to

be addressed for the HL-LHC era. ATLAS and CMS will require substantial upgrades to fol-

low the LHC improvements. A staged upgrade program through the long shutdowns is pro-

posed [22], [23], [24]. The major upgrades will take place in LS3 to replace systems due to

radiation damage, obsolescence or inability to read-out at HL-LHC data rates as well as to

maintain appropriate performance for physics in the very high pile-up environment.

In the next sections, a brief overview of the main LHC detectors upgrade programs, as

foreseen today, is provided.

2.2 Motivation and requirements for Tracker Upgrades

The identification and reconstruction of particles created during collisions at LHC is primarily

done by tracking detectors. Their characteristics and performance allow also the reconstruction

of short-lived particles such as charm and beauty mesons that would be impossible or rather

difficult with other types of detectors. Their tracking capability is fundamental for physics anal-

ysis and for its preservation at higher luminosity LHC phases, the four LHC tracking systems

need to be upgraded. The ATLAS and CMS tracking systems will suffer more the increased lu-

minosity since they were designed to operate efficiently up to an integrated luminosity of about

500 fb−1, which corresponds to the luminosity that will be accumulated at the end of Run 3.

The major reason of these upgrades is the longevity of the present trackers. The Pixel Detectors

(the innermost tracking detectors) are the first sectors of the tracker that will show limitations at

high rates and therefore they are being upgraded for both ATLAS and CMS experiments before

LS2.

ATLAS took advantage of the first shutdown period (Phase 0, 2013-2014) for the installation

of a new innermost barrel layer in the Pixel detector, the Insertable B-Layer (IBL) [25] as well

as for detector consolidation works, including a new inner detector cooling system, a diamond

beam monitoring, the replacement of the Pixel internal services, new power supplies for the

calorimeter and a new beam pipe. IBL is an additional 4th pixel layer, which is located between
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a new smaller radius beam pipe and the previous innermost pixel layer (B-layer). It will improve

the vertex resolution, secondary vertex finding and b-tagging, hence extending the reach of the

physics analysis. Moreover it will compensate for defects (irreparable failures of modules) in

the existing B-layer, assuring tracking robustness (Figure 2.2(a)). IBL has been installed at the

core of the ATLAS experiment in May 2014. A detailed overview of the IBL detector and of its

performance is given in Chapters 3 and 4.

The CMS strategy foresees a complete Pixel Detector upgrade [26] during the extended

winter technical stop in 2016-2017: the new detector will feature 4 barrel layers and 3 forward

discs, yielding on average one more spatial point measurement per track compared to the present

system, in the whole acceptance range. The goal of the upgraded Phase1 Pixel Detector is

to be fully efficient at a luminosity of 2×1034 cm−2 s−1, with less material and with four hit

coverage up to |η|< 2.5. The improvements of the Phase 1 Pixel detector have a net effect on the

expected performance: pattern recognition, track parameter resolution, vertexing, and b-tagging

performance of the upgraded detector are expected to be significantly better than in the current

detector (Figure 2.2(b)).

(a) (b)

Figure 2.2: (a) Efficiency for b-tagging-quality tracks with and without additional detector de-

fects as a function of the average number of pileup events, for a detector with and without IBL

for the ATLAS experiment [25]. (b) Tracking efficiency performance of the current CMS pixel

detector (blue squares) and upgrade CMS pixel detector (red dots) for tt̄ events [26].

Both ATLAS and CMS pixel detector upgrades will help to cope with the increased inte-

grated luminosity but they will be not enough for the LHC Phase 2. The ATLAS and CMS

trackers will be completely replaced during LS3 by pixel detectors made of hybrid pixel sen-

sors with smaller pixel size surrounded by large outer trackers also made of silicon sensors.

The baseline technology for the outer trackers is n-in-p planar sensor while for pixel detectors

several option are still under study, as thin planar silicon, 3D silicon sensor, CMOS, etc. The

basic requirements of the new trackers are: high radiation hardness (ultimate integrated lumi-

nosity considered 3000 fb−1), high granularity (efficient pattern recognition and tracking with

pile-up of 140-200), improved material budget with the consequence of improving the tracking

performance (Figure 2.3). The biggest changes compared to the current tracker are: an ex-

tension of the pixel system out to larger radii, more pixel hits foreseen in forward direction to

improve tracking and the use of smaller pixels and short inner strips to increase the granularity.

12



Furthermore, in the ATLAS case the Transition Radiation Tracker (TRT), made of 300000 gas

straw tubes, will be completely substituted by silicon detectors since the 5 to 10 times higher

detector occupancy will be beyond the TRT performance. An important point, common to both

experiments, is the low power electronics and ASICs: new complex chips in novel technologies

need to be developed.

(a) (b)

Figure 2.3: (a) Performance of b-tagging in tt̄ events, for a range of pile-up levels for the

proposed Phase-2 Tracker layout in comparison with the current ID for the ATLAS experi-

ment [23]. (b) Tracking efficiency as a function of η for the CMS tracker during Phase 1 and

2 [24].

The ALICE and LHCb tracker systems will be upgraded to cope with higher event rates

during LS2 [20], [21]. Indeed, ALICE will have to read out data related to each individual

interaction at a rate of 50 kHz for Pb-Pb collisions with the goal of having high precision mea-

surements of rare probes at low pT and a target recorded PbPb luminosity ≥10 nb−1. This

will require a new inner tracking system with higher rate capability and an upgrade of the rate

capability of the Time Projection Chamber (TPC). Furthermore a very low material budget is

necessary for high efficiency tracking of low pT . The new Inner Tracking System (ITS) [27]

will be made of seven layers of monolithic pixel detectors of very small pixel size (20×20μm2),

produced in a 0.18μm CMOS process. The TPC will be upgraded substituting wire detectors

with Gas Electron Multiplier (GEM) detectors [28]. On the other hand, LHCb is targeting op-

eration at a readout from 1MHz to 40MHz and at a luminosity of 2×1033 cm−2 s−1, a factor

of ten higher than the original design values. To achieve these results, a replacement of all FE-

electronics, event builder and new computing farm will be necessary. A further requirement will

be the change of some sub-detectors with silicon sensors. For example, the LHCb Vertex Loca-

tor (VELO) will adopt hybrid pixels with thin sensors and small pixel size (55×55μm2) [29].

For the large stations behind the magnet, scintillating fibers with SiPM read-out will replace the

existing straw tubes.

A common effort of all LHC experiments is also devoted to mechanics and cooling. The

material budget is crucial to avoid interaction and scattering into the mechanical parts of the

detector and the thermal management plays a crucial role due to the high power densities. Novel
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materials and technologies have been developed or are under study for material and cooling

improvements. For example, the two-phase CO2 cooling is the technology of choice for most

future trackers, as it is already for ATLAS IBL and LHCb VELO.

2.3 Motivations and Requirements for Calorimeter Upgrades

Calorimeters provide essential input for the precise measurement of basic physics objects and

complex global event topologies, as well as being vital to the triggering capabilities of all the

LHC experiments. For ATLAS and CMS, the very challenging HL-LHC environment imposes

a change in the input of the Level-1 trigger systems for more selective and sophisticated trigger

algorithms based on high granularity and high precision calorimeter information. This requires

both increased bandwidth and longer latency of the read-out systems. A common goal of the

four experiments is to provide the highest possible granularity and resolution information to

the trigger processors for handling the increasing pile-up. In the ATLAS case, the calorimetric

trigger will have an upgrade in Phase 1 to provide finer granularity, higher resolution and longi-

tudinal shower information for the Level-1 trigger decision. In the barrel region 10 super-cells

instead of 1 trigger tower will improve the trigger energy resolution and efficiency for selecting

electrons, photons, τ leptons, jets and missing transverse momentum while enhancing discrim-

ination against background and fakes (Figure 2.4(a)). The calorimeter systems of ALICE and

LHCb expect a read-out upgrade during LS2. A particular mention has to be addressed to the

CMS experiment where the replacement of the two calorimeter systems is planned [30]. Indeed

the performance of both the CMS end-cap Calorimeter ECAL (homogeneous PbWO4 detector)

and the Hadronic Calorimeter (sampling detector based on plastic scintillating tiles) would sub-

stantially degrade due to the radiation levels at the HL-LHC (Figure 2.4(b)). A R&D program

is underway to meet all challenges of replacing the end-cap calorimeters during LS3. Further-

more already in LS2, a change of photodetectors in hadron barrel and end-cap calorimeters is

foreseen.

(a) (b)

Figure 2.4: (a) Expected Level-1 rates for different algorithms and conditions: the current

Level-1 rate for non-isolated EM objects, for isolated EM objects, for isolated EM objects after

a shower shape Rη>0.94 cut applied in the ATLAS experiment [22]. (b)The extrapolation of the

response evolution of the CMS ECAL end-cap up to an integrated luminosity of 3000 fb−1 [30].
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2.4 Motivations and Requirements for large Gaseous
Detector Systems Upgrades

Gaseous detectors are widely used in the LHC experiments for tracking, trigger and particle

identification. The LHC muon systems are fundamental for muon identification and momentum

measurement and they have shown excellent performance during the first LHC run. Most of

the detectors used in muon systems are gaseous detectors either using wires (drift and wire

chambers) or without wires (resistive place chambers), which have been designed and built

to operate for about 10 years at LHC. Three major aspects need to be addressed for the future

operation of gaseous detectors at LHC: performance degradation (due to aging, high luminosity,

etc.), read-out electronic limitations (high rate, trigger scheme, etc.) and generation of fake hits.

Even if the detectors of muon systems will experience the least issues with integrated radi-

ation doses, a continuos monitoring of performance is necessary to verify their response under

higher particle fluxes and to spot any possible weaknesses or failures. Only in the forward

regions, where particle and background rates are higher, a replacement or addition of new de-

tectors is foreseen.

LHC high luminosity requires improved timing resolution and greater trigger sharpness,

which will exceed the capability of most of muon systems present electronics. The main af-

fected systems will be in ATLAS and CMS, particularly for the forward regions where the

accuracy of the pT measurements will be improved by installing additional detectors [23], [24].

On the contrary, ALICE and LHCb emphasize greater precision measurements and plan to max-

imize the number of recorded events by going to continuos read-out where hardware trigger

electronics will be taken over by software trigger algorithms [20], [21].

In the last decades a huge effort has been addressed to develop Micro Pattern Gaseous De-

tectors (MPGD). MPGDs offer several advantages for LHC experiments, as high rate capability,

high energy and space resolution, high granularity and fast collection time as well as very low

sensitivity to aging. Thanks to these features and the possibility to scale to large systems, several

MPGD technologies have been proposed for the LHC upgrades.

The ATLAS experiment has adopted two different gaseous detector technologies for its LS2

muon upgrade program: the MicroMegas (MM) for precision tracking and Small-strip Thin

Gap Chambers (sTGC) for the Level-1 trigger function. These detectors will constitute the

New Small Wheel (NSW) [31], which replaces the existing Muon Small Wheel (MSW). Indeed

it has been demonstrated that in the ATLAS experiment about 90% of the muon triggers in the

end-caps are fake or background dominated by low energy particles, which are created in the

material located between the MSW and the middle station, and they can be confused with real

high pT muons (Figure 2.5(a)). The installation of the NSWwill allow an improved tracking and

trigger capabilities satisfying the Phase 2 requirements. The MMs will cover an area of 1200 m2

with high granularity and rate capability due to small gas amplification region and small space

charge effect. A very good precision is crucial to maintain the current ATLAS muon momentum

resolution in the high background environment of upgraded LHC. The trigger improvement is

given by the sTGC thanks to their single bunch crossing identification capability with a good

timing resolution to suppress fakes.

The CMS experiment has the least robustness and redundancy in tracking and reconstruc-

tion capabilities for the high η region, where muon identification relies only on the Cathode
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Strip Chamber (CSC) system. The main challenge for triggering in this region at high lu-

minosity is high background rates. An intense R&D effort has led to the proposal of equip

two stations in the endcap region (GE1/1 and GE2/1) with triple Gas Electron Multipliers

(GEMs) [32]. The installation of 36 double-layered triple-GEM chambers in 1.55<|η|<2.18
during LS2 (GE1/1 system) and a second installation of two rings of double-layered triple-

GEM chambers in 1.6<|η|<2.45 during LS3 will reduce the trigger rate in this region thanks to

the improved momentum resolution (Figure 2.5(b)). The detectors will have to sustain back-

ground rates up to 105 kHz/cm2 at the instantaneous luminosity expected for Phase 2. Most of

triple-GEMs have a trapezoidal shaped area with a 3/1/2/1mm field gap configuration, which is

usually used with a CF4 based gas mixture to allow a fast signal collection.

(a) (b)

Figure 2.5: (a) η distribution of Level-1 muon signal L1_MU11 distribution of the subset with

matched muon candidate to an offline well reconstructed muon and offline reconstructed muons

with pT>10 GeV for the ATLAS experiment [31]. (b) Trigger rate distribution for high pT
muon candidate as a function of η in the scenario with and without GEM detectors for the CMS

experiment [32].

The third experiment using MPGD technology is ALICE, which will need to improve the

rate capability of its TPC. Nowadays the trigger rates are restricted to about 1 kHz due to the use

of Multi Wire Proportional Chambers (MWPCs) in the TPC. GEM detectors can be operated

in a continuous, triggerless readout mode, allowing an increase in event rate by a factor of 100.

Although charge amplification by GEM foils offers an intrinsic suppression of the ion backflow,

R&D studies have been necessary to reach a value well below 1%. ALICE will implement

GEM foils instead of MWPCs in the read-out planes with corresponding new electronics during

LS2 [28].

Besides the detectors upgrades, common topics for the four LHC experiments are related

to the gas mixtures used in such large systems and to greenhouse gas emissions, in particular

to their contribution to climate changes and for cost saving. Indeed, possible future restrictions

will be addressed on the use of C2H2F4 (R134a), SF6 and CF4. The C2H2F4 is the main com-

ponent of the Resistive Plate Chamber (RPC) gas mixture and it is used in ATLAS, CMS and

ALICE experiments, each one with a gas volume of about 15m3. Also the SF6 is a component

of the RPC gas mixture and even if its concentration is 0.3%, its contribution is relevant since it
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has a very high Global Warming Potential (GWP)1. The RPC gas mixture is recirculated in the

system, nevertheless about 5-10% of fresh mixture needs to be injected. The case of CF4, used

for GEM, CSC and RICH detectors at the LHC will be discussed in Section 5.5. In particular,

the CMS CSC system will be used as an example of reducing gas emission through the devel-

opment and operation of a dedicated recuperation plant (Section 5.6). New R&D studies have

started aiming in replacing expensive or high environmental impact gases. Section 6.3 describes

the tests for evaluating performance of RPC detectors operated with a new freon having a very

low GWP. However, years of R&D are still needed before any conclusion can be drawn about

the use of new gases at LHC.

2.5 Conclusion

The upgrade program of the LHC accelerator is setting important challenges to all detector

communities. In order to achieve the required performance, new detector technologies are being

developed and others will be used at large scale in the years to come. Two examples of detector

performance optimization are discussed in details in the present work: the IBL Detector and the

gaseous detectors (in particular CSC, GEM and RPC).

The IBL Detector is the example of the general pixel detector strategy for future upgrades.

New sensor technologies and front-end electronics have been developed as well as less invasive

services (CO2 cooling) and mechanical supports to reduce material budget. These detectors

will be operated until radiation damage effects will become too important and then they will be

replaced with newer generation detector technologies.

The case of gaseous detectors is quite different. In general, they are very large apparatus

and it is unthinkable to replace the full system. Therefore, the activity is addressed to the

optimization of gas mixtures and gas systems allowing to reduce operational costs and gas

emission maintaining or improving the detector performance. New layers of detectors will be

added, especially in the forward regions, where the increased particle rates will become an issue

for triggering and track reconstruction. These new detectors will benefit of all on-going R&D

studies about detector performance, improved gas recirculation, gas monitoring systems and

new environmental friendly gases.

1The GWP is a relative measure of how much heat a greenhouse gas traps in the atmosphere. It compares the

amount of heat trapped by a certain mass of the gas in question to the amount of heat trapped by a similar mass of

CO2.
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Chapter 3

The ATLAS Pixel Detector Upgrade
during the first LHC long shutdown

During the next years the ATLAS Pixel Detector will have to cope with an increase of lumi-

nosity, which will bring higher pile-up and radiation damage. The most affected layer will be

the innermost layer (B-layer), whose operation is critical to the full realization of the physics

capabilities of the ATLAS experiment. Good vertexing and b tagging performance have to

be ensured for the remainder of the LHC Phase 1 physics program. This can be accomplished

with the installation of a fourth layer of pixel modules inside the B-layer: the Insertable B-Layer

(IBL). The IBL will improve the overall Pixel Detector performance, compensating inefficiency,

radiation damage and losses of pixels by adding redundancy in the system for the LHC Run 2

and 3 periods. The refurbished Pixel Detector has been designed to operate efficiently up to

an integrated luminosity of 500 fb−1 that will be reached at the end of Run 3 when the ATLAS

tracking system will be completely replaced.

This chapter will briefly introduce the IBL Detector. The installation of a fully efficient

and functional detector has to be considered a “must” given the IBL location inside the ATLAS

experiment. A careful attention has been dedicated to the quality control and quality assurance

aspects, which will be described in detail in the next chapter.

3.1 Upgrade of the Pixel Detector during LS1

Before LS1, the ATLAS Pixel Detector [33], which is the innermost detector of the ATLAS

experiment, was made of 1744 modules, which were located in three barrel layers and three

end-cap disks on each side for a total of about 80 millions readout channels (Figure 3.1). It

provided three high-resolution measurements points in the pseudo-rapidity1 region 0 < η < 2.5,

reaching a resolution of 10 μm in Rφ and 110 μm in z.

An ATLAS Pixel Module has a 250 μm thick n+-in-n silicon sensor divided in 47232 pixels

with a nominal size of 50×400 μm2. Each of these pixels is bump bonded to one readout cell

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre

of the detector and the z-axis along the beam pipe. The x-axis points from the interaction point to the centre of

the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r,φ) are used in the transverse plane, φ
being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as

η = − ln tan(θ/2).
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Figure 3.1: Layout of the ATLAS Pixel Detector with 3 barrel layers and six disks, three for

each region [33].

of a front-end chip (FE-I3). A pixel module has 16 FE-I3, which are combined in one timing,

trigger control and readout by the Module Control Chip (MCC). The data transfer readout is 160

Mbit/s for the innermost layer (B-Layer), 80 Mbit/s both for Layer 1 and disks and 40 Mbit/s

for Layer 2 since the readout link speeds are tuned by design to the expected data rate.

The ATLAS Pixel Detector showed excellent performance over LHC Run 1; during 2012

the data taking efficiency was 99.9% 2 and the radiation effects observed during operation are

within expectations, the most visible being the change of leakage current and depletion voltage.

Despite the overall good performance, the number of disabled and problematic pixel mod-

ules increased from 1.5% to 5% during LHC Run 1, especially because of read-out issues (Fig-

ure 3.2(a)). The Pixel Detector readout system has to cope with an average pile-up of 20.7

interactions per bunch crossing (BC), which are already beyond the design specifications. In-

deed readout limitations would degrade Pixel Detector performance before radiation damage

does.

The Pixel Detector was extracted from the ATLAS Experiment during LS1 for an intensive

upgrade and consolidation campaign. The major upgrade was the installation of the new inner-

most layer IBL [25], which is described in Section 3.2. The extraction allowed other important

upgrades: the replacement of Pixel Service Quarter Panels (SQPs)3 with new Service Quarter

Panels (nSQPs) [34], the extended campaign to classify and repair non-working pixel modules,

the installation of a new Diamond Beam Monitoring [35] and the addition of hardware to double

the readout speed of Pixel Detector Layers 1 and 2.

The modules recovery obtained with the replacement of SQPs is outstanding: about 75%

of disabled modules were recovered on the surface. The Pixel Detector was re-installed into

the ATLAS Experiment in December 2013. After the reconnection of the services, few new

modules found faulty due to opening of HV or LV lines as well as the impossibility to data

2Data delivered during stable beams for 21.3 fb−1 pp-collisions and considered as good for physics by the data

quality criteria.
3The SQPs are installed with the detector and carry electrical power, cooling and optical data both into and out

of the detector. They also house the electro-optical converters (Optoboards), which enable bidirectional conversion

of electrical and optical signals.
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readout, as it is summarized in Figure 3.2(b). At the beginning of LHC Run 2, the total disabled

modules will be 33, about 2%.
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Figure 3.2: (a) Number of disabled modules of the Pixel Detector at the end of Run1 clas-

sified by type of failure. (b) Number of modules of the Pixel Detector to be disabled after

re-installation in ATLAS Experiment classified by failure mode (HV/LV/Data In/Data Out) and

the phase causing problems (Run1/Surface/After re-installation). Modules having performance

issues but being operable are not included [36].

3.2 The IBL Detector

The Insertable B-Layer [25] is the fourth layer added to the Pixel Detector between the new

beam pipe and the current innermost Pixel layer (B-layer). Thanks to IBL, the Pixel Detector is

closer to the interaction point, improving the overall ATLAS physics performance.

The achievement of an innovative and sophisticated detector has been possible only devel-

oping new read-out and sensor technologies, which will be able to cope with high radiation and

pixel occupancy.

A brief overview of the IBL characteristics and peculiarities will be provided in the next

sections.

3.2.1 Improvement of the ATLAS performance with the IBL

The IBL improves the overall performance of the Pixel Detector and ATLAS experiment by

enhancing the quality of impact parameter reconstruction for tracks (improving vertexing and

b tagging performance). Furthermore, even in case of a complete B-layer failure, IBL can

restore the full b tagging efficiency. The addition of a fourth layer will also help in mitigating

luminosity effects such as the increase of event pile-up, which leads to high occupancy and

readout inefficiency, and the large radiation doses accumulation thanks to a more robust pattern

recognition. Detailed simulations of the Inner Detector (ID) performance with and without IBL

have been performed. The IBL Detector has been fully integrated in the ATLAS ID software

and its response is based on the existing Pixel digitization algorithm [37]. In the simulation,

three substantial differences with respect to the Pixel Detector have been taken into account:
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wider range of particle incident angles in the Rφ plane, wider clusters in the z direction and

lower Time over Threshold (ToT) resolution.

The IBL is expected to improve the impact parameter as well as the primary and secondary

vertex resolutions. The most important parameter for b tagging performance is the impact pa-

rameter resolution, which is estimated using several algorithms. For IBL studies, the default

ATLAS impact parameter-based b tagging algorithm (IP3D) and secondary vertex based algo-

rithm (SV1) are used4 [38]. Figure 3.3 shows the impact parameter resolution at different η for

tracks in tt events with 2 GeV < pT < 4 GeV . The impact parameter resolution improves in

both planes. The deterioration towards higher pseudorapidity is due to the increase of cluster

size in the z-direction and to multiple scattering effects in the innermost materials and beam-

pipe. Figure 3.4 shows the d0 impact parameter significance distributions5 for b, c and light jets

Figure 3.3: Impact parameter resolution as a function of η for tracks in tt events without pileup.

Results with and without IBL are compared; (right) transverse impact parameter distribution d0
and (left) longitudinal impact parameter distribution z0 × sin θ with respect to the true primary

vertex position of the event [25].

in tt events reconstructed with and without IBL: a clear excess of tracks from b and c hadrons

is visible in the tail at positive significance, meaning a b tagging capability. Finally IBL will

improve also the resolution for the reconstructed primary vertex from 15 μm to 11 μm (RMS)

in x and from 34 μm to 24 μm in z.

3.2.2 IBL sensor and front-end technologies

The central performance and operational challenges for the IBL system provide severe and

difficult constrains on the IBL components:

• The high radiation dose foreseen in the LHC Phase 1 makes radiation hard technologies

mandatory. In the readout electronics a total ionizing dose of 250Mrad at the IBL end of

lifetime is expected.

4The IP3D tagger algorithm uses both the longitudinal and the transverse impact parameter. The SV1 tagger

uses the invariant mass of the fitted vertex, the ratio of energy in the vertex compared to the total energy in the

associated jet and the number of two-track vertices used for the inclusive vertex.
5The displacement between the primary vertex and the tracks reflects that tracks are not prompt tracks from the

primary vertex but they originate from a secondary particle decay. The displacement is quantified by the signed

transverse impact parameter significance (IP-Sig) Sd0 = d0/σd0 where σd0 is the error on the d0 measurement.
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Figure 3.4: Transverse impact parameter significance distributions, signed with respect to the

jet axis, for b, c and light jets from tt events without pileup. Compared are results with the

present ID (left) and with the IBL added (right) [25].

• The reduction of the geometrical inefficiency, especially along the z direction, can be

reached with an improvement of sensor using an active edge or a slim guard ring. A full

coverage in the φ angle can be obtained with modules with the same active width but with

only one row of front-end chips.

• The optimization of tracking and vertexing performance can be enhanced minimizing

the material budget both for modules and IBL materials. The sensor thickness has been

reduced to about 200μm and the front-end chip is 130 nm CMOS technology. A special

attention has also been addressed to electrical and mechanical parts as, for example, the

use of kapton flex for data and service transmission and CO2 as evaporative cooling. The

IBL radiation length is just 60% of the present Pixel B-layer.

• The tight tolerances and clearances of the IBL detector has to be taken into account also

for services. The whole IBL package is 7m long (a stave is 64 cm long) and the radial

clearance for insertion in the Pixel Detector is only 2mm.

IBL planar silicon pixel sensor design

The IBL planar sensor is an electron-collecting n+-in-n silicon sensor design fabricated by

CiS6 [39]. It has a thickness of 200 μm and it needs an adequate detection efficiency following

fluences up to 6·1015 neq/cm
2 while the ATLAS Pixel sensor is 250 μm thick and is specified

for a fluence of 1015 neq/cm
2.

The readout electrodes are n+-doped implants separated by modulated p-spray and a single

p+-doped high voltage pad at the back side. The p-spray is adopted to guarantee the inter-pixel

isolation and the p+ implantation is made as a single large high voltage pad opposite the pixel

matrix. The n+ implantation is segmented into a matrix of 160 columns and 336 rows of mainly

250×50 μm2 pixels surrounded by an inactive edge region. The pixels in the central double

column are enlarged to 450×50 μm2 to accommodate the region between the two front-end

chips. The outermost pixels are extended to 500 μm length overlapping the guard ring structure

by 250 μm. A bias-grid has been adopted to allow access to the sensor before flip-chip and to

6CiS Forschungsinstitut fur Mikrosensorik und Photovoltaik GmbH, Germany.
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avoid a floating potential on pixels having an open bump connection. It consists of metal lines

that provide the possibility to connect the bias dot to ground. Each pixel, the bias grid and the

outer guard are connected to the read-out chip via bump-bonds.

Particular care has been provided to the edge termination for minimizing the dead areas in

the IBL Detector. A 13 guard rings implantation with a total width of approximately 350 μm

is shifted into the active pixel region under elongated 500 μm wide edge pixels to minimize

the inactive edge to 200 μm while in previous ATLAS Pixel sensor 16 guard rings were used

in a more extended area (Figure 3.5). This implantation is used to generate a well controlled

potential drop from the high voltage pad to the sensor edge.

Figure 3.5: Comparison of the edge region of the current ATLAS Pixel design (upper) and

the IBL planar sensor design (lower). The difference in region with p+-doped guard rings is

visible for both Pixel and IBL sensor design as well as the minimization of the edge termination

area [39].

IBL 3D silicon pixel sensor design

The IBL Detector is the first large scale application of 3D sensor technology. IBL 3D sensors

are 230 μm thick produced with the Double-side Double Type Columns process with two n+

electrodes columns from the front side surrounded by six p+ biasing electrodes columns from

the back side [39]. The distance between the electrodes is 67 μm which leads to a faster charge

collection, lower charge trapping probability and lower bias voltages than planar sensors.

The sensors have been developed in cooperation with two different companies: CNM7

and FBK8. The two companies implemented similar processes for the sensor fabrication using

the double sided etching technique called Bosch-process, which allows to edge narrow pillars

through the silicon bulk. However in CNM sensors the columns do not traverse the substrate

but stop at a short distance from the surface of the opposite side whereas FBK sensors have

traversing columns (Figure 3.6).

An important feature of 3D sensors is the edge termination, which is different for the two

3D sensor types (Figure 3.7) [40]. FBK sensor has a slim edge, which consists of a multiple

fence of ohmic columns extending from the active area toward the scribe line. This structure

is intended to shape the electric field so that it is impossible for the depletion region spreading

from the outermost junction columns to reach the highly damaged cut region. In this way, no

7Centro National de Microelectronica, Barcelona, Spain.
8Fondazione Bruno Kessler, Trento, Italy.
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(a) (b)

Figure 3.6: 3D etched columns from the pixel sensor design of the (a) FBK and (b) CNM

fabrication facilities [39].

leakage current contribution from the highly damaged cut-line is present. In CNM sensor a

guard ring is implemented to drain any parasitic current coming from the edge. Since planar

guard-rings are not effective with 3D detectors, a viable solution is to realize a “3D guard-ring”

made of both junction columns and ohmic columns with fences that are at the bias voltage from

the ohmic side.

(a) (b)

Figure 3.7: (a) FBK temporary metal used for sensor selection on wafer. On the left, the metal

line termination on probing pads are outside the active region to avoid surface damage. The

slim edge of 200 μm is visible. (b) Corner picture of CNM 3D sensor showing the guard ring

surrounding the pixel matrix active area [40].

IBL front-end chip: FE-I4

The current 3-layer Pixel Detector read-out system is based on the FE-I3 integrate circuit

(IC) [33], which has a pixel granularity of 400×50 μm2 in a 250 nm feature size bulk CMOS

process, a size of 7.6×10.8 mm2 and it has been designed for 100 Mrad ionizing radiation.

At the IBL radius, the fluences expected are higher and the FE-I3 limitations, both in term of

radiation hardness and ability to cope with high hit rates, make this chip unusable for IBL [41].

A completely new readout chip, the FE-I4 IC [42], is used for IBL: it is radiation tolerant up to

250 Mrad and it has a high efficiency versus luminosity. The FE-I4 is developed in a 130 nm
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feature size bulk CMOS process in view of future ATLAS high luminosity pixel applications. It

consists of an array of 80×336 pixels (total of 26880 pixels) with a pixel size of 250×50 μm2

giving a total area of 20.2×18.8 mm2. The active over inactive area fraction passes from 74% to

89% with a 2 mm high periphery while the power consumption is kept at 26 μW/pix (for FE-I3

is 75 μW/pix).

Each pixel holds an analog and digital circuitry [43]. The FE-I4 analog front-end is imple-

mented as a 2-stage amplifier optimized for low power, low noise and fast rise time, followed by

a discriminator (Figure 3.8). Hits are discriminated at the level of a tunable comparator with an

adjustable threshold. Charge is translated to Time over Threshold (ToT) with a proportionality

factor that the user can tune by changing the return to baseline behavior of the pixel. The feed-

back currents of the amplifier stage can be adjusted to have all pixels of the matrix affected all

at once. A local tuning for each individual pixel is also possible through an additional current

adjustment using the 4-bit FDAC, which allows the fine tuning of the ToT response, and the

4-bit TDAC, which allows the fine tuning of the threshold response.

Figure 3.8: Analog pixel section schematic for the IBL FE-I4 [39].

For test purposes and calibration, a test charge can be injected at the pre-amplifier input

through a set of two injection capacitors (Cinj1, Cinj2) using a voltage step defined by the cali-

bration voltage (Vcal). The injected charge is given by

Q [e] = Cinj [F ] · Vcal [V ] · 1

e [C]
(3.1)

with e being the elementary charge. Hits can also be injected to an OR element after the dis-

criminator to test the digital part of the pixel. The output of the analog readout chain of each

pixel can be disabled using an AND connected to the discriminator output and the enable bit

(EN) on each pixel. The output (HitOut) can be connected to the HitOR bus, which is routed to

each pixel of the matrix and can be used for test purposes enabling the self trigger operation of

the chip.

The FE-I4 pixel array is organized in double columns as the FE-I3 chip even if the readout

architecture is very different. Four independent analog pixel channels share a common digital
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logic cell (memory and logic block) called Pixel Digital Region. Thanks to this structure, hits

are stored close to the analog readout chain and they are processed only if a trigger signal

is received (in the FE-I3 chip the buffering of pixel hits is grouped per column pair in the

chip periphery). This is an advantage as it enables the FE-I4 chip to work at much higher hit

rates than FE-I3 chip. The digital region can store up to five events for four pixels while each

pixel holds his own set of five ToT counters. For each event, a counter clocked at 40 MHz

keeps track of the time elapsed since the event took place with 25 ns resolution and the charge

information belonging to this specific time stamp is stored in the buffers for all pixels connected

to the 4-pixel digital region. When an external trigger arrives, it is distributed to all the regions

simultaneously within 2 ns, then the transfer of the hit data to the end of chip logic starts

and latency counters and buffers memories are deallocated. If the counter exceeds the latency

without a trigger, the event is erased.

3.2.3 IBL Layout

Module concept

An IBL module consists of a silicon sensor bump bonded to one or two FE-I4 readout chips,

depending if the 3D (single chip) or planar (double chip) sensor technologies are used. The

choice between double and single chip module is related to the different yields of the planar and

3D fabrication processes. A flexible PCB, called module flex, is glued on each sensor and wire

bonds connect it to the FE-I4, allowing data and services transmission.

The pixel cells on the IBL sensor are connected to the readout channels on the front-end

through fine-pitch bump bonds. For each readout chip, 26880 SnAg solder bumps have to be

done with a pitch of 50 μm and a failure rate less than 10−4. The critical parameters for the

bonding process are the large size of the read out chip and the requirement of a much thinner

chip where open bumps can occur at the corners due to the chip bending. This challenge has

been overcome modifying the bonding process used at the IZM company9 [44]. A support

glass wafer is glued to the backside of the readout chip to create the necessary thickness for the

bump bonding process. After the operation, the support is detached with a laser exposure that

dissolves the polyimide glue.

A high failure rate of IBL modules occurred in the first IBL batches during the production

in 2012. Two types of failure categories have been defined: “opens”, which are large areas of

disconnected bumps, and “shorts”, which are areas or single bump defects distributed over the

module. In the second case the chip failure rate reached about 85%. The problem was related

to excessive flux in the flip chip process and it was solved by changing the bonder and using a

flux-free flip chip. The original issue was not observed in later batches.

After the flip-chip process, a flex hybrid (called “module flex”) is glued with an epoxy

glue (UHU EF 3000) on the back of the sensor to provide the connection between the readout

electronics and the external services. This module flex is a two copper layer flex circuitry of

130 μm thickness with passive SMD10 components loaded on it. Two types of module flexes

are built to be compatible with SC and DC modules. The last step of the module dressing is the

9Fraunhofer-Institut fur Zuverlassigkeit und Mikrointegration, Gustav-Meyer-allee 25, 13355 Berlin, Germany.
10Surface Mounted Device.
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wire bonding of readout chip and sensor to the module flex using 25 μm diameter aluminum

wires. Figure 3.9 shows photos of dressed IBL single chip and double chip modules.

(a) (b)

Figure 3.9: Photo of a dressed IBL (a) single chip and (b) double chip modules. The flex

extension is present to allow testing the module prior to its loading on the stave.

Stave layout

A bare stave is a 64 cm long object based on carbon foam material. It provides a path for the

heat generated in sensors and front-end chips to the cooling CO2 fluid boiling at low temper-

ature in the cooling channel, which consists of a 1.7 mm diameter titanium pipe inserted in

the carbon foam. Due to material budget and space constraints the services have to be tightly

integrated with the stave itself. This requirement is accomplished gluing a so called “stave flex”

on the opposite side of the stave. A single stave is served by two flexes, which provide the

electrical connection of all modules to the end of stave card. A stave flex is a mixed multi-layer

circuit, which holds four copper layers for signal links and high voltage lines and two additional

aluminum layers for supply voltage and return lines.

Each stave holds 20 IBL modules: 12 Double Chip planar sensors, which cover the region

−2 < η < 2, and 8 Single Chip 3D sensors, which are located at both ends of the stave (4 on

each side) for a total of 32 FE-I4 chips (Figure 3.10).

Figure 3.10: Layout of an IBL stave showing the modules placement [25].
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Design concept of the IBL Detector

The IBL Detector consists of a cylindrical layer formed by 14 staves, which are arranged around

the new ATLAS beam-pipe and tilted by 14° to ensure complete coverage in φ and to coin-

cide with the Lorentz angle11 in the 2 T solenoidal magnetic field of the ATLAS experiment

(Figure 3.11). The new ATLAS Be beam pipe (X/X0�0.003), designed considering the new

Figure 3.11: Cross section of the IBL layout in r φ view [25].

machine and physics requirements, has a radius of 23.5 mm allowing the insertion of a new

layer to the pre-existing Pixel Detector. In this configuration the Pixel Detector becomes closer

to the interaction point, moving from 50.5 mm to 32.7 mm. The clearance available between

the beam-pipe and IBL is 9 mm, decreasing the distance to the interaction point. Staves and

services are packed inside a 12 mm envelope along the 7m IBL long structure. The main IBL

layout parameters are summarized in Table 3.1.

3.3 IBL stave production and construction

The IBL Detector components were built, assembled and tested in several institutes. Two par-

allel starting workflows describe the processes: the production, construction and testing of IBL

modules, and the production and quality control of mechanical parts (mainly carbon staves and

flexes). Once all components have been qualified, they are shipped to an assembly point where

the modules are loaded on bare staves and wing flex are connected to these modules.

11An electron or a hole moving in an electric field experiences, in the presence of a magnetic field B, the Lorentz

force F = ±e (E+ v ×B) with the sign of the charge carrier under consideration. The drift direction will deviate

from the direction of the electric field by the Lorentz angle θL.
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Parameter Value

Number of staves 14

Number of modules per stave (single/double FE-I4) 32/12

Pixel size (φ, z) 50, 250 μm
Module active size WxL (single/double FE-I4) 16.8×20.4 / 40.8 mm2

Coverage in η, no vertex spread |η| < 3
Coverage in η, 2σ (=112 mm) vertex spread |η| < 2.58
Active z extent 330.15 mm

Geometrical acceptance in z (min, max) 97.4, 98.8%

Stave tilt angle in φ 14°

Overlap in φ 1.82°

Center of the sensor radius 33.25 mm

Sensor thickness (planar silicon) 200 μm
Sensor thickness (3D silicon) 230±15 μm

Table 3.1: Main layout parameters of IBL Detector [25].

3.3.1 Single module qualification

One of the key steps in the IBL construction is the Quality Control (QC) of the IBL modules

that have to be integrated on staves. The QC is essential to avoid the loading of a bad module

or a module that could develop a failure during operation in the ATLAS experiment since at

that point there will be no opportunity to repair or substitute any module. Sufficient information

must be gathered to select the modules that are more likely to operate in ATLAS with acceptable

efficiency and performance.

Several tests are performed at different stages of the assembly procedure:

• Preliminary electrical tests are executed just after the assembly to check if all wire bond

connections have been done properly.

• Basic properties of the module are checked at room temperature. A preliminary module

tuning is performed with a reference threshold of 3000 e− and 9 BCs ToT at 20000 e−.

• The module undergoes a thermal stress procedure where ten temperature cycles between

-40°C and +40°C are done. After that, the basic electrical tests done in the first step are

executed again. A comparison between before and after thermal cycles is carries out.

• The module is completely calibrated, including an 241Am source scan. The electrical tests

are performed at about -10°C.

A ranking procedure and module selection has been settled referring on sensor properties,

electrical performance and mechanical problems. Each of these categories is divided into spe-

cific issues to which a penalty score is related. A requirement of less than 1% of pixel defects

per front-end has been established for the QC procedure.

Figure 3.12 shows the yield of IBL module production for sensor types (planar PPS, CNM,

FBK) and per production batch groups. The module failures are divided into three main cate-

gories: “B.B. Fail.” stands for large bump-bonding failure, “Bare Fail.” stands for the module

not assembled due to mainly mechanical damages and “Other Fails.” stands for both electrical
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and sensor failures discovered after assembly. A large fraction of bad modules is present in

batch L1 because of serious bump bonding issues (Section 3.2.3) and about 15 % of the mod-

ules have issues in a regulator on FE-I4 chips which are not tested before bump-bonding. Apart

from bump-bond failure, the average qualification yield is 75% for the planar PPS, 63% for

CNM and 62% for FBK.
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Figure 3.12: Yield of IBL module production divided for sensor types, planar (PPS) and 3D

(CNM and FBK), and production batch group [36].

3.3.2 Stave assembly

The qualified IBL modules, bare staves and flexes are collected at the “stave assembly point”.

Basic functionality tests are performed to check for any possible damage occurred during trans-

portation. Each bare stave goes through a metrology survey before and after ten thermal cycles

to crosscheck that the IBL specification of 350 μm planarity is fulfilled.

After the quality checks of each component, the module loading procedure is executed fol-

lowing the steps summarized in Figure 3.13. The qualified bare stave is installed in the loading

tool providing all required reference points (Figure 3.13(a)) and the flex tail of each IBL module

is cut (Figure 3.13(b)). A 70 μm layer of thermal grease is deposited on the stave and modules

are sequentially glued using a module spacers to guarantee a 250 μm gap between neighbor-

ing modules (Figure 3.13(c)). After loading all modules, the stave-flex wings are glued to the

module flexes by means of clamps (Figure 3.13(d)) and a weight of about 20 g is positioned

during the curing time. As final steps, wire-bonding between module flex and stave-wings is

performed (Figure 3.13(e)) and a pull-test is done to verify its quality (Figure 3.13(f)).

The final IBL stave goes through a series of QC electrical tests to verify the functionality of

each individual module. In the QC procedure, ten thermal cycles (between -40°C and +40°C)

are expected for each IBL stave. However in this set-up the humidity cannot be fully controlled.

After this observation no thermal cycles were done anymore. This decision was taken in the

middle of the staves assembly and so the first 10 production staves were exposed to thermal

cycles.
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Sequence of module loading procedure for an IBL stave.

A total of 20 staves have been produced loading 400 modules. Fourteen staves out of the

production have been assembled around the beam pipe to build the IBL detector, which has

been installed in the ATLAS experiment in May 2014. In the next chapter, an overview of the

stave quality assurance and selection will be discussed.

Figure 3.14: Insertion of the IBL detector in the ATLAS experiment.
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Chapter 4

IBL staves quality assurance and
reliability of detector components

Particle detectors at LHC are very complex apparatus and access for interventions is very dif-

ficult and limited after their installation. This is especially true for inner detectors, which are

located in the center of the experiments, as it is the IBL case for which an exceptional relia-

bility is demanded. The control of all construction processes from beginning to end is a very

difficult task due to the complexity of the technologies and the spread of the activities in many

universities and research centers. In these conditions, a robust Quality Assurance (QA) is nec-

essary to guarantee the achievement of a good result. QA is a tool to prevent mistakes or defects

during construction and to guarantee the quality requirements. Well defined testing protocols

are established for achieving the necessary homogeneity in the selection of the best materials

for the assembly of components and final detector. In parallel to the detector QA, the reliabil-

ity of all single detector constituents has to be ensured for the final operation. In this respect,

systematic studies have been conducted to understand the behavior of wire bonds in the AT-

LAS magnetic field and to prevent possible damages due to wire bond oscillations induced by

alternating currents.

4.1 Quality assurance and performance of the IBL produc-
tion staves

The QA of IBL staves [45] needs to be a reliable process allowing to select the best staves for

integration into the ATLAS experiment. The outcome of the stave QA procedure provides a

deeper understanding of the assembled detector. A total of 18 production staves are considered1

for the IBL integration and included in the QA results. The global characterization of the staves

allows to select the best 14 for the detector assembly.

The stave QA procedure has been developed for testing the IBL production staves in the

more efficient and systematic way. Figure 4.1 shows the time flow necessary to perform the QA

tests. The QA of each stave includes a detailed optical inspection, electrical functionality and

1Two staves out of the 20 produced were rejected a priori due to the very low quality of several modules caused

by the occurrence of an accident. The performance of these two staves will be not discussed in this work.
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reception tests, calibration in different environmental conditions, data taking with radioactive

sources as well as a classification of pixel failures.

Day 1

Power up & 
Reception 

test
Installation

Optical 
inspection

Warm 
tuning & 

source scan

Cold tuning 
& thermal 

cycles
Removal

Optical 
inspection

Day 2 Day 3 Day 4

Figure 4.1: Time flow for the tests needed to qualify an IBL stave.

4.1.1 Experimental set-up

The QA set-up has been built at CERN for testing two staves simultaneously2. It uses as much

as possible services and readout components of the final detector. Figure 4.2 shows a schematic

view of the stave QA stand. Three main blocks can be identified: Detector Control System

(DCS), Data Acquisition (DAQ) system and the environmental box hosting two staves.

Figure 4.2: Schematic view of the IBLQA set-up. Three main blocks can be identified: Detector

Control System (DCS) in red, Data Acquisition (DAQ) system in green and environmental box

containing two staves (plus cooling system) in grey [45].

The environmental box, made of aluminum sheets covered inside with insulating foam, is

flushed with dry air to keep the inside dew point below the temperatures of staves and cooling

2In the following, the two testing positions inside the set-up will be called SR and CR side.
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pipes. The minimum dew point achieved during operation is -26°C. As additional safe-guard,

the staves are kept in a smaller plastic box flushed with N2 at both extremities. A linear mo-

tor, installed inside the box between the two staves, holds a mechanical support for two 90Sr

radioactive sources. The distance between the two sources corresponds to the distance between

six front-end chips, meaning that two chips can be irradiated at the same time. Figure 4.3 shows

an overview of the set-up where two connected staves and the mechanical support with two 90Sr

sources are visible.

(a) (b)

Figure 4.3: Stave QA test stand pictures showing the (a) outside and (b) inside of the environ-

mental box.

The cooling system uses CO2 as main refrigerant as it is in the final IBL cooling system.

The cooling plant, named TRACI (Transportable Refrigeration Apparatus for CO2 Investiga-

tion) [46], uses a concept called 2PACL (2-Phase Accumulator Controlled Loop), which is a

pumped 2-phase loop where the saturation temperature is controlled in an accumulator filled

with liquid and vapor. The circulating CO2 in the loop is condensed and sub cooled in a heat

exchanger cooled by an external cold source and it is sent in parallel to two IBL staves via a

dedicated circuit. The TRACI cooling power is 100 W allowing a temperature operation range

from -40°C to 25°C. Each IBL stave dissipates about 30 W during normal operation. How-

ever, given the dimension of the environmental box, the heating dissipation cannot be neglected

and the temperature operation range is restricted between -20°C and 25°C. The TRACI is also

equipped with an interlock system for safe operation of staves: the cooling system cannot be

switched on if the doors of the environmental box are open and in case of CO2 temperature

close to the dew point (within 10°C).

The DAQ system and the powering supply are connected to the stave through an End-Of-

Stave (EOS) Printed Circuit Board (PCB). Unlike the DCS, the DAQ is not as the IBL final

one but it consists of a new readout system based on a high speed, parallel and modular system

based on Advanced Telecommunications Computing Architecture (ATCA) technology. The

main hardware components are:

Reconfigurable Cluster Elements (RCE) It is the primary computational element responsible

to send and receive data from the IBL front-end chips. Each RCE contains a Power-PC

System-on-chip running the operating system. A single RCE board contains two RCEs,
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each of which is interfaced with half stave. The RCE board communicated with the HSIO

board via optical transmission.

High-Speed Input-Output (HSIO) board It is the intermediary step between the optical sig-

nals sent-out and received-by the RCE and the electrical signals sent-out and received-by

the FE-I4s. Each HSIO serves one half stave and it is connected to two RCEs through

separate fibers. The HSIO performs the buffering and multiplexing of the data sent to or

coming from the chips as well as the 8b/10b decoding of the front end (FE) data. It is also

responsible for generating and sending the clock signal to the FE and for formatting and

sending cyclic and external triggers to the FE-I4B.

A dedicated DAQ software has been developed to interface with the front-end chips. The user

interface is a ROOT-based GUI [47]. Each front-end chip can be singularly configured with the

DAQ providing the final histograms and results. All tuning values can be set up individually in

the GUI and a collection of scans can run automatically. The GUI accepts also command line

as input allowing to run Unix scripts in between two scans. This feature is used to run the C++

software developed to operate the linear motor.

A schematic of module layout, mapping and powering modularity has been implemented to

allow a easy identification of FE-I4 and powering group (Figure 4.4). The stave is divided into

two main regions called “A side” and “C side”, each one having 6 planar and 4 3D modules for

a total of 16 FE-I4 chips. Groups of four FE-I4 chips are powered in parallel (this represents

a powering group for the DCS) and have a Negative Temperature Coefficient (NTC) sensor to

monitor the modules temperature.

Figure 4.4: Schematic view of module layout, mapping and powering modularity for an IBL

stave [45].

4.1.2 Optical Inspection

A detailed optical inspection is performed at the beginning and end of the QA procedure. High

resolution pictures of each chip are taken to spot any major damage or eventual debris that might

have been left on the stave during assembly or wire-bonding. These pictures can be compared

by eye to the ones collected during the modules QC or stave assembly to identify the source of

any problem.
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After, the stave is inspected with an optical microscope: each wire bond and bond pad are

carefully controlled. Irregularities are classified as following:

Misaligned module Two neighboring modules are not well aligned on the z-axis (Figure 4.5(a)).

This problem comes from a bad alignment during the stave assembly and nothing can be

done at the QA level.

Loose wire bond A wire bond is attached on the module in a place where it should not be. The

wire bond can easily be removed by means of tweezers or Kapton tape.

Lifted wire bond A wire bond is detached on one foot. Usually multiple wire bonds are con-

nected on each pad, so it is not a critical problem if one of them is disconnected.

Bent wire bond A wire bond is in contact with something and it gets bent (Figure 4.5(b)). The

bent wire bonds are left as they are since their functionality is not affected by this type of

damage.

Broken wire bond on HV ring Each HV-ring has three or four wire bonds to provide HV to

the sensor3. It rarely happens that one of these wire bonds is pulled out. Given the

redundancy, nothing is done in this case but for future modules it was decided to increase

the number of wire bonds on the HV ring.

Residues Different types of debris can be found on module flex (usually hairs, dust, textile

wires). Normally they are left on the module.

The outcome of the microscope inspection is recorded in a table where the number of problem-

atic wire bonds are pointed out for the different regions of the modules. The optical inspection

is repeated after the qualification tests.

(a) (b)

Figure 4.5: (a) Example of misaligned module found in ST11 module C6. (b) Example of bent

wire bonds on the FE-flex region in ST16, module C6-2.

3The number of wire bonds depends if the chip has been wire-bonded at universities of Genova or Bonn.
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4.1.3 Electrical functionality

After the optical inspection, the stave is connected to cooling lines and electrical services (HV,

NTC, DAQ, LV and sense lines of LV power regulators).

The electrical functionality tests are performed for front-end chips and sensors. The FE-I4

consumption before and after configuration is an important parameter for verifying the chip

functionality during detector operation. The chips, grouped in one DCS group, are powered

on-off between 0 V and 2.1 V ten times in about 400 s. In case of faulty modules, the current

consumption varies significantly between cycles. The modules pass the test as long as the

current is well below 2 A and above 0.8 A4. No major deviations from the standard operation are

found except for some DCS groups where a large discrepancy from the standard unconfigured

current values is known from the production sites.

An important step of the electrical functionality studies is to verify the behavior of current

as a function of bias voltage (IV curves) for the sensors. The measurement of the breakdown

voltage is a very powerful tool for sensor testing since almost all possible problems in the sensor

production process lead to a deviation of the IV curve from the expected behavior. Also defects

on the ohmic side or problem located on the p-side can be easily spotted with IV curves. For

un-irradiated modules, the measured current can be dominated by surface effects until the bias

voltage exceeds the breakdown voltage.

The power supply lines are grouped in one DCS group (Figure 4.4) meaning that it is pos-

sible to verify the IV curves only for grouped modules (four 3D modules or 2 planar modules).

This can be considered as a limitation since the HV to be applied to a DCS group has to be the

depletion voltage of the less performing sensor. In the QA procedure, the HV is increased in

20 steps from 0 V to 100 V for 3D sensors and from 0 V to 200 V for planar sensors since the

breakdown voltage of 3D silicon sensors is very low in comparison to planar. A 20μA current

limit has been set for all IV measurements. The typical operation voltage is 20V for 3D sensors

and 80 V for planar sensors.

Figure 4.6 shows the IV characteristics of all powering groups divided by sensor type. The

planar sensors deplete at about 50V and most of them have a breakdown voltage above 200V

as well as very low leakage currents (below 5μA). Only few DCS groups present breakdown

voltages below 200V and currents of the order of 10-20μA that are by the way still inside the

accepted QA region. The worst IV curve comes from the DCS group M1A of ST11, which has

nevertheless been selected for the final IBL detector. The FBK sensors present a rather steep

and consistent break down behavior with breakdown voltages between 30V and 40V, except for

M4A of ST10 where it is below 20V. On the contrary, 3D CNM sensors show a rather smooth

break down behavior overall a large voltage range (0-100V) with sometimes currents at around

20μA already below 20V. The lower FBK breakdown voltage with respect to CNM sensors is

mainly due to the different full-through versus partial column designs. Furthermore the CNM

ohmic behavior is probably due to the slim-edge being too close to the 3D guard-ring, which

effectively connects the ohmic side to ground (Figure 3.7). This behavior is already observed at

the production and assembly sites. Anyway, the sensors are fully depleted as verified by source

scans and the currents are not extremely high at operational voltages, making these modules

suitable for operation in the IBL detector.

4Usually the un-configured current is 1.1 A while the configured current is 1.5 A for each powering group.
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Figure 4.6: IV curves of 17 staves (stave 20 is excluded due to lack of data) for (a) planar, (b)

FBK and (c) CNM sensors [45].

4.1.4 Functional tests

For each QA procedure step, several scans are executed for every single module at the pixel

cell level. The scans are a series of test injection commands and read out. They can be divided

as [48], [49]:

Digital scan It tests the digital part of the pixel cell injecting 50 pulses into each pixel by-

passing the analog part. It can detect failures in the global and pixel registers that may

affect the proper configuration of the module.

Analog scan It tests the analog part of the pixel cell injecting 50 pulses into each pixel.

Threshold scan It injects various defined charges into the analog pixel cell for 50 times. Every

time that the injected charge is seen by the electronics, the event is counted as a hit.

During the test both capacitors on the pixel are used. The efficiency method is applied:

the number of collected hits versus the injected charge is recorded. Ideally a step function

should appear while in practice a curve like the one shown in Figure 4.7(a) is reported

since some injected charges are below the threshold while some others are not. The best

way to describe this function is the error function, which is a convolution of the ideal step

39



function with the Gaussian pixel noise distribution:

ferror (x) =
1√
2π

x∫
0

e−t2dt (4.1)

with t = x−μ
σ

. The threshold is defined to be the charge for which the hit efficiency is

50% while the noise σ of a pixel is inversely proportional to the steepness of the transition

from no detected hits to full efficiency. The noise can be calculated, for example, between

the 30% and 70% points of the error function as:

σ =
Q70% −Q30%

f−1
error (70%)− f−1

error (30%)
(4.2)

where ferror is the error function normalized to 1 and Q is the injected charge.

ToT scan It injects repeatedly a fixed charge of 16000 e− into each pixel. The Time over

Threshold (ToT) is defined as the time in which signal is above threshold and it is pro-

portional to the deposited charge, as it is visible in Figure 4.7(b). The ToT is measured in

units of bunch crossings, i.e. 25 ns.

(a) (b)

Figure 4.7: (a) Schematics of an example of S-curve with the method to select the threshold and

noise. (b) Overview of the ToT method to defined the charge [50].

Crosstalk scan It injects a high charge into the pixel in the row below and the row above a

pixel and it enables the readout only for the pixel in between. The procedure is repeated

for each pixel.

Noise scan It sends random triggers at a high rate (about 50 kHz depending on the DAQ sys-

tem) to the configured chip and it records the number of hits for each pixel. The result is

an upper limit of the noise hit probability for every pixel:

Noise Occupancy =
Occupancy

Sensitive time [BC]
(4.3)
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where the sensitive time in BCs is given by the number of triggers send to the module

times the trigger multiplication mode set in the front-end.

Selftrigger scan The front-end are set into self trigger mode with the HitBus signal acting as

an input to the command decoder for automatic triggering. During the scan, the chip is

configured.

4.1.5 Reception tests

A set of scans is executed to get a preliminary overview of the stave functionality and as an

indication of possible damages occurred during the transport. The measurements are taken at

22°C with the same configuration file used at the assembly point. Before starting reception

tests, the trend of the sensor leakage current is monitored for about 10 min to ensure stability

over time. A verification of the chip configurability is also performed.

Once the correct operation of the stave is verified, the following scans are performed: digital

scan, analog scan, threshold scan, ToT scan, crosstalk scan and threshold scan with HV off. A

specific focus is given to differences in number of digital or analog dead pixels to spot possible

problems due to transportation. Figure 4.8(a) shows the results of the analog scan comparison

for one stave. For each chip, the number of bad analog pixels are divided into two categories:

pixels identified already bad at the assembly site and pixels that appear bad at the QA. Usually

the number of analog bad pixels is of the order of 5 for chip at the assembly site. After the

transportation a couple of more analog bad pixels is found. Considering the number of pixels

for each chip (26880), such a small difference is negligible. Similar results are obtained for the

digital scans. Only some modules have about 0.1% more digital or analog bad pixels that can

just be attributed to statistical fluctuations.

A comparison of the threshold scans and its noise before and after transportation is also

performed to verify the chips tuning and performance. An example of the difference in the

threshold noise for each chip is shown in Figure 4.8(b). A higher noise on 3D modules on A

side of the set-up is visible and it is due to the HV bias supply line serving the 3D modules on

the CR A-side, which has a 0.2V noise. In general, sensitivity to such external noise is observed

for 3D modules, especially for FBK. Figure 4.9 shows the pixel by pixel threshold and noise

for several production staves. Only a small shift in the per pixel threshold is observed and it can

be explained by different operational environments of the two laboratory set-ups. The threshold

noise shows a significant offset for some powering groups due to the noise on HV supply lines

of the A side. Finally, a comparison of the threshold scan without HV is done to roughly check

if a huge area of pixels have been disconnected since a pixel that is no longer connected to

the sensor is not affected by the higher noise present when the sensor is not fully depleted. In

general, no major differences in stave performance or bad pixels are found after the comparison.

4.1.6 Calibration

The calibration is a key phase of the QA since it allows to set the working point in terms of

threshold and charge response as well as to have a uniform pixels response. Indeed, without

calibration and tuning it would be impossible to distinguish between electronic noise and ion-

izing particle as well as to determine the amount of deposited charge in a pixel matrix. The
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Figure 4.8: (a) Number of pixels identified as bad analog at the assembly site and number of

new bad pixels appeared at the QA set-up. (b) Difference in the noise value obtained with the

same configuration file at the University of Geneva and CERN as a function of the chip number

for ST18.
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Figure 4.9: Pixel by pixel (a) threshold and (b) noise residuals between the stave loading and

stave QA sites. Only eight staves are used for this comparison [45].

calibration will have to be done many times during IBL lifetime to compensate for radiation

damages. For example, the threshold will have to be lowered as the charge collection efficiency

decreases with increasing radiation damage.

The calibration capabilities of IBL chips are tested at 22°C, which is the temperature at

which most QA tests are performed, and at -12°C, which is the ATLAS Pixel Detector operating

temperature. Furthermore the IBL staves are exposed to two thermal cycles between 22°C and

-12°C to identify potential not well functioning modules. The module tuneability is tested for

reference thresholds of 3000 e− at 22°C (warm tuning) and 1500 e− at -12°C (cold tuning). The

ToT is tuned to 10 BC for a reference minimum ionizing particle (mip) charge of 16000 e−.
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Threshold and ToT tuning

The threshold setting is a trade-off between the need to have a high enough signal above the

threshold and the need to have a low noise hit occupancy, crucial to avoid fake hits that degrade

the performance of the pattern recognition algorithms. The threshold and feedback current are

widely distributed over the pixel matrix due to process variations. Their tuning procedure is an

iterative process of threshold and feedback current adjustments since both influence each other.

Figure 4.10 shows an example of a threshold distribution of pixels before and after tuning where

it is visible the large spread of the untuned chip while a tuned threshold distribution typically

has a standard deviation of less than 100 e−.
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Figure 4.10: Threshold distribution of pixels before and after tuning for an IBL chip for 3000 e−

threshold tuning at 22°C powering group temperature [45].

The threshold can be tuned globally or individually for each pixel. The discriminator thresh-

old for each pixel is controlled via two global 8 bit digital to analog converters (DACs) at the

chip level allowing the shift of the threshold for all pixels at the same time. A 5 bit DAC at

the pixel level is used for fine tuning of each pixel after the global DACs are tuned. Multiple

charge injections are performed at the target threshold and the number of hits resulting from

these injections are counted for a given set of global and pixel DAC settings. The global or

pixel DAC is shifted until the optimal value achieves a hit efficiency closest to 50%.

The ToT tuning is done after the threshold tuning as the discriminator threshold affects the

measured ToT along with the feedback current of the amplifier. Similar to the discriminator

threshold, the preamplifier feedback current is controlled via a 8 bit global DAC for all pixels in

a chip and a 4 bit DAC per pixel. The ToT mean value is calculated for a given set of global and

pixel ToT DAC settings. The global or pixel DAC is shifted until the optimal value achieves the

set ToT.

Threshold and ToT scans

After the threshold and ToT tuning, threshold and ToT scans are performed to verify that the

tuning is correct. Figure 4.11 shows the threshold distribution of a FE-I4 chip after a successful

tuning procedure. Most of the pixels are tuned to the target value of 3000 e− (Figure 4.11(a)).

Only one pixel (channel 8715 in Figure 4.11(b)) out of 26880 channels has a threshold of

1000 e− demonstrating the very good tuning procedure and threshold tuneability of the chip.

43



The threshold scan provides also informations on the electronic noise (called Equivalent Noise

Charge, ENC). A noise below the threshold dispersion level of 200 e− is usually required.

Figure 4.12 shows the noise distribution of the same chip. The mean value of the gaussian fit is
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Figure 4.11: Threshold distribution of a FE-I4 chip (A1-1- in ST18) after a successful tun-

ing procedure for reference threshold of 3000 e− at 22°C. (a) Fit of the threshold values

and (b) threshold values as a function of pixel channels, where channel number is calculated as

(row+col)×336.

around 130 e−, which is a very good value for an un-irradiated module. Only few pixels have an

ENC very different from the mean value (Figure 4.12(b)). It has to be noticed that the ENC is

higher for the first and last channels, which correspond to the first and last chip columns where

long planar pixels are present. In the case of 3D sensors, the external pixels do not have a higher

noise since their size is equal to the size of internal pixels. However the 3D mean noise value

is higher than for planar because of a larger pixel capacitance, which has been calculated to be

(110±4) fF for planar pixel cell, (170±2) fF for CNM and (200±8) fF for FBK pixel cell [51].

Figure 4.13 shows the ToT distribution of the same FE-I4 chip. The majority of pixels gives

a ToT response of 10 BC when a charge of 16000 e− is injected and only some of them have

a slightly different ToT as it is visible in Figure 4.13(a) (blue or red pixels). The gaussian fit

mean value of the ToT distribution is 9.99 BC with a standard deviation of 0.11 BC, which

corresponds to only 176 e− (Figure 4.11(a)). Similar results are obtained for the tuning at

-12 °C.

Results for tuning at warm and cold temperatures

The final results obtained for the calibration of 18 IBL production staves to the reference thresh-

old of 3000 e− at 22 °C and 1500 e− at -12 °C are reported in Table 4.1. Both tunings are

performed for a 10 BC ToT response at 16000 e−. Planar long pixels are listed separately as

they show a higher noise due to their larger pixel size. The standard deviation of the threshold is

slightly higher for planar long pixels. The obtained values can be considered excellent remem-

bering that the minimal dispersion value is 40 e−, as dictated by the precision of the injection

circuit [43].
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Figure 4.12: Noise distribution of a planar module (A1-1- in ST18) after a successful tuning

procedure for reference threshold of 3000 e− at 22°C.
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Figure 4.13: ToT scan response to 16000 e− injected for a FE-I4 chip (A1-1 in ST18) after a

successful tuning procedure for reference threshold of 3000 e− and ToT tuned to 10 BC for a

reference mip charge of 16000 e− at 22°C. (a) ToT scan 2D map for all FE-I4 channels and (b)

fit of the ToT values.

The threshold and noise distributions of the different types of pixels have been investigated

for all 18 production staves for both tunings. Figures 4.14 and 4.15 show the threshold and noise

distributions obtained for the 18 production staves during the QA for the 3000 e− threshold

tuning at 22 °C and for the 1500 e− threshold tuning at -12 °C, respectively. In both threshold

distributions a bump of about 30 planar long pixels is present at a threshold of 1000 e− and

500 e− respectively, and some planar pixels have a threshold value away from the mean value.

In particular, a pronounced peak is present around 2150 e− for the 1500 e− tuning that is not

present in the 3000 e− tuning: this peak is an artifact of one mask step in the threshold scan,

where noisy pixels bias the s-curve. By re-doing the threshold scan and injecting in less pixels

per mask step, the incorrect measurement can be avoided. Due to time constrains during the

QA, having understood the feature and having obtained good results for the 3000 e− tuning, it

was decided to not re-do the tuning for these particular FE-I4 chips.
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Tuned Threshold Pixel Type Std. Dev. [e−] Noise [e−] Threshold over Noise

3000 e− at 22°C

Planar Normal 37 123± 10 25± 2

Planar Long 58 146± 15 21± 2

3D FBK 39 171± 25 18± 2

3D CNM 40 149± 15 20± 2

1500 e− at -12°C

Planar Normal 42 129± 13 12± 1

Planar Long 47 149± 16 10± 1

3D FBK 46 171± 25 9± 1

3D CNM 41 146± 16 10± 1

Table 4.1: Threshold calibration summary for different pixel types for 18 staves. Listed values

are the standard deviation of the threshold, mean noise and its standard deviation, and mean

threshold over noise and its standard deviation [45].

The threshold noise distribution is similar for both tunings (Figure 4.14(b) and 4.15(b)).

As already seen in Section 4.1.6, the 3D sensors have a higher noise than planar sensors. In

particular, in the QA calibration a threshold noise of about 125 e− is present for planar normal

pixels while 3D FBK and 3D CNM pixels have a threshold noise of about 170 e− and 150 e−,

respectively. A particular remark has to be done for the higher noise (around 300 e−) of FBK

pixels, which is primarily due to two modules located on staves 14 and 20 at the highest η

position. These two staves were not chosen for IBL (as it will be discussed in Section 4.1.9))

and by taking into account only the 14 selected staves, the higher noise peak of FBK pixels

disappears. Furthermore it has to be considered that ST14 and ST20 were tested on the CR-

side of the QA set-up where a 0.2 V noise is present on the A-side (where primarily FBK are

installed).
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Figure 4.14: (a) Threshold and (b) noise distributions after tuning all pixels to a target threshold

of 3000 e− at 22 °C module temperature for 18 production staves [45].

Figures 4.16(a) and 4.16(b) show the threshold and threshold noise distributions, respec-

tively, for all 18 production staves as a function of chip number for the 1500 e− threshold

tuning at -12 °C. In general, it was possible to tune every chip to the desired threshold and the
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Figure 4.15: (a) Threshold and (b) noise distributions after tuning all pixels to a target threshold

of 1500 e− at -12 °C module temperature for 18 production staves [45].

average threshold noise is below the expected values foreseen. As usual, an exception is the

threshold noise for the 3D modules on the A Side of the set-up (mainly FBK but also CNM

were tested on this side) due to a noisy HV line. However the noise for 3D sensor is set below

180 e−.
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Figure 4.16: Average (a) threshold and (b) threshold noise distributions for all 18 production

staves as a function of chip number for the 1500 e− threshold tuning at -12 °C. The plots show,

for each chip position on the stave, the mean and scatter of the 18 data points (one from each

stave). The error bars show the RMS spread, while the solid boxes show the minimum and

maximum values [45].

The key parameter in the tuning is the threshold over noise, which determines the quality of

the IBL modules with respect to their operability at a given discriminator setting. The bigger

this factor is the less contamination of noise hits in the sample of physics hits will be recorded

during collisions. Figures 4.17(a) and 4.17(b) show the threshold over noise distributions of

pixels for 3000 e− and 1500 e− tunings respectively. Considering that the physics occupancy

in the ATLAS Pixel B-layer was about 5×10−4 hits per pixel per BC at the end of Run1, an

expected physics occupancy of 10−3 hits per pixel per BC is expected for IBL in early operation.

47



A threshold over noise value higher than 5 would ensure that the noise contamination in physics

hits from IBL would be less than 0.1%. The threshold over noise distribution is a bit higher for

planar sensors than for 3D sensors, especially the planar normal sensors have the highest value

(25±2 for the 3000 e− tuning). The FBK distribution presents a small peak around 10, which

is due, as for the noise distributions in Figure 4.14(b), to two modules located on staves 14 and

20 and it disappears taking into account only the selected 14 staves. One can notice that the

threshold over noise value is reduced to half from the 3000 e− to the 1500 e− tuning for all

types of sensor. The fraction of noisy IBL pixels is less than 0.03% for the 1500 e− tuning, a

factor two less than that for the current Pixel Detector.
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Figure 4.17: Threshold over noise distribution of pixels for (a) 3000 e− and (b) 1500 e− tunings

respectively [45].

The last calibration parameter to check is the ToT. Figure 4.18 shows the ToT distribution

averaged over all 18 production staves as a function of chip number for the 1500 e− threshold

tuning at -12 °C. The average ToT value is distributed around 10 BC for all FE-I4 chips with a

mean dispersion of 0.2 BC. Only two chip positions (A2-2 and A6-2) present a larger deviation

from the mean value that can be attributed to two chips of two different staves.

A further investigation on the noise of 3D sensors have been performed, especially taking

into account their testing position in the QA set-up since their noise can be affected by external

sources. Figure 4.19(a) and 4.19(b) show the noise distributions of FBK and CNM pixels for

the different HV bias lines in the QA set-up. Both types of sensor present a sensitivity to the

noisy HV line (CR-A Side) with a more pronounced effect for FBK sensors. If the 3D FBK

pixels in the CR-A Side are excluded, the FBK mean noise is reduced to 160 e−. No difference

in noise is observed for the planar pixels when biased with this noisy HV line.

4.1.7 Source scans

The module performance, including the verification of the tuning and the analysis of charge

collection in the sensor, can be studied through the detector response to radiation. This can be

done using cosmic ray particles or radioactive sources. The rate of cosmic hits is about 6×10−7

hits per pixel per second, which is too low for achieving good statistics during the limited time

available for the QA. The use of radioactive source is therefore compulsory.
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Figure 4.18: Average ToT distribution as a function of chip number for all 18 production staves.

The pixels were tuned to 1500 e− target threshold and to a 10 ToT target response for 16000 e−

at -12 °C [45].
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Figure 4.19: Threshold noise distribution of (a) FBK and (b) CNM pixels for different HV bias

lines in the QA set-up [45].

In the QA set-up two 90Sr radioactive sources of 28.8 MBq each are available. They are

collimated sources and they are positioned at a distance of about 10 cm from the modules to

obtain an uniform irradiation of the module. 90Sr decays via 90Y into 90Zr under emission of

electrons with end-point energies of 546 keV and 2.28 MeV. The higher-energy electrons can be

considered as minimum ionizing particles (mips) while the lower-energy electrons will deposit

more charge than a mip. The charge deposited by mip electrons is expected to be about 18 ke−

in silicon. Source scans can be performed using an external trigger or in selftrigger mode.

The use of selftrigger is needed in case of γ-source while an external trigger is preferable for

β-source to select only electrons simulating mip.

In the QA procedure, 90Sr source scans are performed at 22°C with a 3000 e− threshold

and 10 BCs ToT at 16000 e− tuning using the selftrigger mode. The two 90Sr sources are fixed

on the mechanical support of the linear motor and they are moved along the stave in 18 steps:

in each step, the 90Sr source is over one chip and data are collected for 400 s to have enough

statistics.
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Source scan occupancy

Figure 4.20 shows an example of a source scan hit map for a planar module. The occupancy

distribution is uniform with about 150 to 200 hits per pixel. The regions with a lower number of

hits match precisely the areas where Surface Mounting Device (SMD) components are mounted

on the module flex PCB (Figure 3.9). The pixels in the external columns have a larger number

of hits than the mean value, as expected given their size (Section 3.2.2).

Column

10 20 30 40 50 60 70 80

R
ow

50

100

150

200

250

300

0

50

100

150

200

250

300

350

Figure 4.20: Source scan occupancy plot for a planar sensor on ST12 irradiated with 90Sr at

22°C with a 3000 e− threshold and 10 BCs ToT at 16000 e− tuning.

Even if 3D pixel cells have all the same size, FBK modules have an higher occupancy in the

external rows and columns. Figures 4.21(a) and 4.21(b) show the occupancy projection on the

columns and rows for a FBK module. The number of entries is not uniform distributed because

of SMD components, however it is visible a higher number of entries in external columns and

rows with respect to the internal ones. This is the result of the chosen slim edge fence design

of FBK (Figure 3.7(a)): the electric field does not reach the cut region but the charge collection

efficiency extends beyond the active area giving a higher occupancy for the external pixels [40].

The occupancy for external rows is higher than the columns because the charge collecting area

outside the active area is larger due to the difference pixel cell sides (250 μm × 50 μm).

In the CNM sensor design, a special “3D guard-ring” made of both junction and ohmic

columns is present (Figure 3.6). This guard ring drains any parasitic current coming from the

edge out of the pixels not allowing to collect the charge. In this case the occupancy for external

pixel cells is the same of the internal pixel cells.

The discrepancy in the number of hits recorded for the different pixel cell categories has

been quantified analyzing the 90Sr occupancy distribution for all planar and 3D pixel cells of

the 18 production staves. Figure 4.22 shows the number of hits acquired for each pixel during

the source scans. The planar pixel cells have been divided into “normal” and “long”. The mean

number of hits is 162±41 for the planar normal pixels and 240±64 for the long pixels. Their

ratio is 1.5±0.3 as expected since a long pixel has nearly double the length of normal pixel. For

the 3D sensors, the defined categories are “normal 3D” for all 3D pixel cells except the external

columns and rows that are divided into three categories for FBK and CNM sensors. The mean

occupancy of the FBK pixels in the outermost columns and rows is increased by 1.1±0.3 and

1.6±0.3, respectively. These values can be translated in an increase of the active area of 20% for

the external columns and 100% for the external rows. The 3D CNM external pixel cells have a
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Figure 4.21: (a) Projection of the occupancy plot on the columns and (b) projection of the

occupancy plot on the rows for a FBK sensor on ST11 irradiated with 90Sr at 22°C with a

3000 e− threshold and 10 BCs ToT at 16000 e− tuning. The number of entries is not uniform

distributed because of SMD components, however it is visible a higher number of entries in

both external columns and rows.

mean value of 163.5±42.5, which is very similar to the “normal 3D” mean value of 175.0±44.3.

In this case the difference is considered only due to statistic fluctuations. A difference of about

10 in the distribution mean value is also present between the “planar normal” and “normal 3D”.
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Figure 4.22: Occupancy distribution for (a) planar and (b) 3D pixel cells in 90Sr source

scans [45].

Charge collection

The charge collection in a silicon sensor is measured through the ToT. A ToT of about 10-

11 BCs is expected for the 90Sr source scans since the tuning has been performed at 10 BCs

ToT at 16000 e−. Figure 4.23(a) shows the distribution of the ToT for a module. A peak is

obtained at 4 BC, which is significantly below the expectation. This result can be explained
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looking at the number of hits per each event (Figure 4.23(b)). Excluding the events with zero

hits due to empty self-triggers, more than half of the total number of events has two or more

hits, which in most cases are due to a particle that, passing through the sensor, deposits a charge

in two or more pixels forming a cluster5.
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Figure 4.23: (a) ToT distribution of the pixel cells in a 90Sr irradiated chip. 1 BC ToT corre-

sponds to a deposited charge of about 1600 e− (considering a good calibration) and 14 BC ToT

is the overflow value of the chip. (b) Distribution of the number of hits per event. The events

with 0 hits are due to fake events caused by the selftrigger mode.

Figure 4.24(a) shows the cluster ToT where the energy deposited is calculated just summing

the ToT value of each fired pixel. The distribution of the single hit clusters has a maximum at

2 BC ToT, which disappears when taking into account only clusters with two hits and more.

This feature is caused by the use of selftrigger and by β particles energy. Indeed, the selftrigger

cannot be used to select events and therefore every hit is recorded including the noise, which

manifests itself in single pixel hits equally distributed on the module. Single pixel hits can also

be caused by a partially electrons charge deposit or by low-energy electrons, which cause a

longer tail of the measured signal distribution. Another possible explanation for the presence

of low energy entries is charge sharing: pixels which are not directly hit but see a small amount

of induced charge cause low energy entries in the histogram and lead to clusters of two or

more pixels. The distribution of clusters with more than one hit is used in the QA analysis

to exclude completely the noise and partially charge deposition contributions to the energy

spectrum. In this way also the single hit clusters caused by a real charge deposit of electrons

are rejected. However, given the QA purpose of source scans, the error is negligible. The

distribution of clusters ToT with more than one hit is fitted with a Landau distribution convolved

with a Gaussian.

The most probable cluster ToT value obtained from the Landau-Gaussian fit has been plot-

ted for planar and 3D sensors (Figure 4.25(a)). The 3D cluster ToT value of the distribution

peak maximum is slightly higher than for planar sensor. This shift is related to the difference in

the sensor thickness (200μm for planar and 230μm for 3D). Nevertheless this feature cannot

be observed for a single pixel since the ToT resolution is of 1 BC. The most probable cluster

5A cluster is defined as adjacent hits in the same trigger time.
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Figure 4.24: (a) Clustered ToT for single hit clusters and for clusters with more than one hit. (b)

Distribution of the number of hits per cluster.

ToT value has been plotted also as a function of chip position (Figure 4.25(b)) and no major dif-

ferences are observed. The mean most probable ToT value is 10.5±0.3 BC, which is consistent

with the given tuning of 10 ToT BC for 16000 e− charge.
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Figure 4.25: (a) Distribution over all chips and (b) average as a function of chip number for the

most probable cluster ToT value obtained from a Landau-Gaussian fit [45].

The fit results are used to compare the relative charge calibration of the chips to each other

while an analysis of the absolute charge calibration is not possible with this method. Fur-

thermore, as it will be discussed in the next section, source scans are also used to identify

disconnected bumps thanks to occupancy plots.

4.1.8 Pixel defects

IBL modules can present several types of pixel defects, which are categorized into three main

classes: defects pertaining to front-end, sensor or bump-bonding. A combined analysis of cali-

brations and source scans allows the classification of failing pixels into several sub-categories,

listed below:
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Digital and Analog Dead and Bad Pixels The quality of the digital and analog front-end cells

is checked through digital and analog scans. Two different cases of not-well respond-

ing pixel cell can occur: digital and analog dead pixels, which are common electronics

failures with an occupancy less than 1% of the injections, and digital and analog bad

categories, which appear in case of a low ohmic connection between pixels and they are

identified having an occupancy less than 98% or more than 102% of the injections.

Tuning Failed The fit of the s-curve can fail in case of a bad response from the injection circuit.

In this case, the tuning fails and the pixel cell is considered bad. If the ToT response is

0 or 14 BCs (overflow value of the chip), the pixel is classified as untunable. In the QA

tuning failed classification, a high discrepancy from the tuning target is allowed since

even the pixels that cannot be completely tuned can still be used for operation despite just

to a limited extend.

Noisy Pixel A noise scan is performed to measure the noise hit probability per bunch crossing

for each pixel. The noise occupancy is a very important quantity for operation since pixels

with high noise hit rate decrease the tracking performance. A pixel is masked during

operation and classified as a noisy pixel for the QA procedure if the noise occupancy

exceeds 10−6 hits per BC (the expected physics occupancy rate for IBL is about 10−3 hits

per pixel per BC in early operation).

Disconnected Bump The bump bond connections of the sensor to the front-end are rather sen-

sitive to mechanical stress and it is crucial to verify their integrity during all steps of the

production and QA. Several types of scans can be used to identify a disconnected bump.

The method used during the QA is to analyze the response from a source scan: if a so-far

good pixel shows no hits or an occupancy less than 1% of the mean occupancy value, the

bump is assumed to be disconnected.

Merged Bump A second type of connection damage is the merging of bumps. Merged bumps

still form a connection between sensor and FE, but two or more channels are merged

to a single connection decreasing the granularity in that part of the detector. This can

happen with non-uniform mechanical pressure during flip-chip process, module handling

or detector assembly. Several methods can be used to identify this type of defect, all

based on the fact that in a merged bump the charge does not pass through one pixel when

it has been injected but it goes also in a neighboring pixel, which results noisier since it

sees more sensitive area. In the QA procedure a merged bump is identified with an analog

failing pixel, which still gives a response in a crosstalk scan. Another method to identify

this connection damage is using source scans: a pixel shows no hits while the neighboring

has an occupancy that is almost twice with respect to the mean occupancy value.

High Crosstalk Ideally each pixel is an independent detector: whether current from the pixel

or charge in the pixel is measured, the electrical content and activity in one pixel does not

affect its neighbors (or any other pixels across the detector) and vice versa. In a real detec-

tor, this is not the case since electrical signals can couple to another through direct means,

such as charge spilling from one pixel to its neighbor, or indirectly through capacitance

or inductance (as for example too large bumps, small separation between sensor and FE
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electronics, pouring of glue in the sensor-FE interstitial region, etc.). This phenomena is

called “crosstalk” and it can lead to an increased fraction of double and triple hits, which

may have to be taken into account in the position reconstruction algorithms. In the QA

procedure, a pixel is considered having a high crosstalk when it records a signal with an

injection of 25 ke− in the neighboring pixel cells.

Table 4.2 summarizes the pixel failures and the scans needed for their identification. The

QA pixel failure classification is exclusive, meaning that only one category of failure is used

per pixel in the order listed in Table 4.2.

Failure Name Scan Type Criteria

Digital Dead Digital Scan Occupancy < 1% of injections

Digital Bad Digital Scan Occupancy < 98% or > 102% of injections

Merged Bump Analog Scan Occupancy < 98% or > 102% of injections

Crosstalk Scan Occupancy > 80% of 25 ke− injections

Analog Dead Analog Scan Occupancy < 1% of injections

Analog Bad Analog Scan Occupancy < 98% or > 102% of injections

Tuning Failed Threshold Scan s-curve fit failed

ToT Test ToT response is 0 or 14 BCs

Noisy Noise Scan Occupancy > 10−6 hits per BC

Disconnected Bump Source Scan (90Sr) Occupancy < 1% of mean Occupancy

High Crosstalk Crosstalk Scan Occupancy > 0 with 25 ke− injection

Table 4.2: Classification of pixel failures for the QA procedure [45].

The classification and amount of pixel defects is crucial for the qualification of IBL staves.

During the staves integration it is important to consider where the pixel defects are distributed

along a stave and in which quantity. For these reasons, a complete study on pixel defects has

been performed for all production staves with the final goal of using the pixel defects as one of

the criteria for the stave selection.

Analysis of pixel defects at the module level

The QA analysis for pixel defects have been performed individually for each module and then

for each stave. The number of bad pixels per chip is shown in Figure 4.26. The IBL target

required was to have less than 0.37% pixel defects for each chip. Some chips have a larger

number of bad pixels since the IBL constraint was shifted to higher value at the end of the

production due to a shortness of modules. Nevertheless 73% of all chips on 18 staves have less

than 0.1% of bad pixels.

An interesting study, which can be useful also for better optimization of future module

production, is related to possible correlations between pixel defects and their location on the

chip. In this case, pixel defects have been divided mainly into two categories: disconnect bumps

(mainly due to mechanical features) and other defects (due to problems in sensor and chip). The

fraction of disconnected pixels over all chips as a function of the geographical pixel position

is shown in Figures 4.27(a) and 4.27(b) for 3D and planar sensors, respectively. Disconnected

bumps are clearly located in the corners of the chip that is already known being a weak point in

the bump-bonding process. Similarly, disconnected bumps are located in the outer columns and
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Figure 4.26: Distribution of bad pixel fraction per chip for 18 staves [45].

rows of the chip. Planar modules have a larger number of disconnect bumps just in the middle

of them (columns 80 and 81) since two FE-I4 chips are bump bonded to one planar sensor. It

is also to be noticed that some areas of disconnected bumps are generated only from one chip.

Figure 4.28 shows the total fraction of bad but not disconnected pixels as a function of chip row

and column numbers for 18 staves. Pixel failures other than disconnected bumps are distributed

over the whole chip or can appear in form of columns, as a results of the interconnection scheme

of pixels.
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Figure 4.27: Total fraction of disconnected pixels on (a) 3D and (b) planar modules as a function

of chip row and column numbers for 18 staves [45].

Analysis of pixel defects at the stave level

Besides the pixel failures distribution over the chip, it is useful to see their distribution along

the stave. Figure 4.29 shows the total number of bad pixels as a function of η. A clear increase

of the number of bad pixels with the increment of η values is visible. This feature is explained

by the chosen strategy to load the best modules into the central region of a stave. Furthermore,

considering that at the highest η values only 3D modules are present, it is easy to conclude

that the average quality of planar modules is better than 3D modules. This is also visible in
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Figure 4.28: Total fraction of bad but not disconnected pixels as a function of chip row and

column numbers for 18 staves [45].

Figure 3.12 where the yield of IBL 3D modules production results already lower than for planar

modules.
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Figure 4.29: Total number of bad pixels as a function of η for all 18 production staves [45].

An overview of the total number of bad pixels for each stave is shown in Figure 4.30(a).

The two dashed lines indicate marks at 0.1% and 0.2% of total bad pixels per stave as the IBL

specification requires a stave to be below 1%. All staves are well below this cut, 80% of staves

are below 0.2% and 50% of those staves are even below 0.1%. Figure 4.30(b) summarizes

the total number of bad pixels divided per failure category. About 50% of failures are due

to disconnected bumps, the other 50% are distributed between a pixel being analog dead or

its tuning being impossible. The exact numbers of pixel defects per category and stave are

collected in Table 4.3.

4.1.9 Selection of the 14 best staves

Since all 18 production staves have passed the QA criteria, the 14 best staves to be installed

around the new ATLAS beam-pipe have to be selected. The main concern for the stave selection

is the coverage efficiency of the geometrical acceptance in terms of bad pixels since during IBL

operation these pixels will need to be masked. The stave quality is ranked taking into account the
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Stave Digital Analog Disconnected Merged Untuneable Noisy Crosstalk Total

ST01 6 389 272 3 232 11 98 1011

ST02 10 255 54 3 117 15 125 579

ST03 6 375 473 0 182 21 178 1235

ST04 2 201 254 0 275 8 59 799

ST05 2 207 172 0 183 4 33 601

ST06 6 206 337 0 147 9 29 734

ST09 8 360 476 3 167 8 88 1110

ST10 16 179 304 0 141 3 3 646

ST11 10 196 159 0 155 8 37 565

ST12 15 172 169 0 166 7 13 542

ST13 9 127 205 0 336 6 35 718

ST14 4 161 1364 0 330 7 11 1877

ST15 5 222 350 0 259 20 8 864

ST16 1 237 414 1 187 15 24 879

ST17 2 214 598 0 229 5 4 1052

ST18 13 161 902 1 178 2 9 1266

ST19 10 163 543 0 228 11 16 971

ST20 14 224 1051 0 535 13 302 2139

Total 139 4049 8097 11 4047 173 1072 17588

Table 4.3: Overview of the number of different bad pixel categories for the 18 staves [45].
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Figure 4.30: Number of bad pixels (a) per stave and (b) for 18 production staves.

geometrical acceptance inefficiency due to bad pixels where the η-weighted bad pixel fraction

V is defined as

V =

∑
i ∈ bad pixels cosh

−1(ηi)∑
i ∈ all pixels cosh

−1(ηi)
(4.4)

the factor cosh(ηi)
−1 is the weight of the geometrical acceptance of the pixel i measured in

the η-φ coordinate system. A low score indicates a small bad pixel ratio. This weighting

scheme is preferred to simply sum-up the bad pixel ratios as it enhances the pixels in the central

rapidity region and suppress them in the forward rapidity region. In addition to the geometrical

acceptance in the η-φ plane, other factors have been taken into account for the stave ranking

more related to mechanical and engineering constrains. In particular, the difference between the

minimum and maximum height of staves, i.e. planarity, has been considered for their integration

around the beam-pipe with the restriction to have the best planarity in the first and last integrated

stave due to installation necessities. Table 4.4 summarizes the stave position in the IBL detector,

the score obtained for each stave and the planarity. The production staves that have not been

selected are ST01, ST03, ST14 and ST20. In total 168 planar, 60 3D CNM and 52 3D FBK

sensor modules are mounted on the 14 staves that form the IBL Detector.

The two-dimensional distribution of bad pixel ratios has been plotted as a function of η and

φ (Figure 4.31(a)). Stave overlap is taken into account in this plot and the ratio is computed

as the number of bad pixels per total number of pixels in a unit cell. The higher ratio of bad

pixels is distributed uniformly on φ at high η regions as expected from the results obtained in

Section 4.1.8. Nevertheless the operational fraction of pixels in the η-φ plane can be considered

well distributed with only few exceptional channels with an operational fraction around 95%.

The total bad pixel ratio of the integrated IBL staves is 0.07% for |η| < 2.5 and 0.09% when

considering the full eta range. The corresponding numbers for the four not installed staves are

0.16% and 0.18%, respectively (Figure 4.31(b)). The number of operational channels in the

final IBL detector is 99.9%.
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Position Stave Number of bad pixels Score Planarity [μm]

#01 ST17 1052 1.01 114

#02 ST02 579 0.44 205

#03 ST19 971 1.13 266

#04 ST09 1110 1.00 229

#05 ST18 1266 0.94 336

#06 ST04 799 0.69 235

#07 ST13 718 0.56 224

#08 ST10 646 0.62 243

#09 ST11 565 0.58 298

#10 ST12 542 0.62 314

#11 ST16 879 0.82 329

#12 ST06 734 0.79 290

#13 ST15 864 0.84 325

#14 ST05 601 0.68 189

n/a ST01 1011 1.04 224

n/a ST03 1235 2.48 223

n/a ST14 1877 1.11 218

n/a ST20 2139 2.01 237

Table 4.4: Ranking and loading order overview of the 14 IBL staves. The position is sequential

around the beam pipe. The cooling pipe of the stave in position 01 is at φ = −6.1◦, subsequent
staves are displaced by 25.7◦ in φ. The score is determined by the number of bad pixels, each

of which is weighted according to the position on a stave. A lower score thus translates into a

higher quality stave. The planarity shows the difference between the minimum and maximum

height of a stave. For completeness, the bottom four lines show numbers for the staves that were

not chosen for installation. For the stave loading around the beam pipe, not only this score but a

uniform η−φ bad pixel distribution and engineering constraints are also taken into account [45].
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Figure 4.31: (a) The bad pixel fraction in the η-φ plane for the 14 IBL staves. It represents

the inefficiency map of the IBL as it is installed. (b)Average bad pixel ratio distribution as a

function of η for installed and not installed production staves [45].

4.2 Studies of IBL wire bonds operation in a ATLAS-like
magnetic field

In parallel to the stave QA, it is important to qualify the reliability of detector components under

specific operation conditions that will be found in the ATLAS experiment. In this context, a

particular attention has been addressed to the effects of magnetic field on wire bonds that could

potentially have a critical impact on IBL.

A typical wire bond of 2mm length in a 2 T magnetic field, having a 100mA current pass-

ing through it, can suffer a maximum force of 4·10−4 N, which is three orders of magnitude

smaller than the minimum force needed to break a wire bond. However, the wire can start to

oscillate if the current passing through it has an AC component with frequency close to the

wire’s mechanical resonance frequencies. This oscillation depends on several factors as wire

length, wire orientation angle with respect to B-field, current, B-field strength, etc. Depending

on oscillation amplitude and number of cycles, the wire can also cross the material elastic limit

and micro-cracks can develop at the heel leading to possible failures of the bond [52].

The IBL modules have wire bonds connecting the FE to module-flex and the stave-flex to

module-flex [25]. Several of these wire bonds transport an AC current, which amplitude varies

depending on the wire functionality. Studies have been conducted to identify potential dangers

of resonant wire bond vibrations in a 2 T magnetic field . Two different solutions for wire bond

protection against damage have been tested.

4.2.1 Experimental set-up

IBL wire bonds connecting flex and FE-I4 are tilted with respect to the B-field at orientation

angles between 50° and 90°. Depending on this angle, a wire carrying current experiences a

Lorentz force, whose components can be parallel (90° orientation angle) or perpendicular (0°

orientation angle) to the wire plane. In the IBL case, the force has both components while in

the case of, for example, the ATLAS Pixel Detector in the disk region the force is maximum
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and perpendicular to the wire plane (most dangerous orientation).

Only few IBL wire bonds, namely digital and analog voltage regulator wire bonds, can

draw a high current [53]. For each regulator pad 2 or 3 wire bonds are present. They are the

longest and most bended wires on the module. Furthermore, even if there are 2 or 3 wire bonds

connected, it is a known feature of low resistance parallel connections that the sharing of current

among them is not well defined: thus the worst case is when all the AC current component is

passing through one of the three wires. Usually the analog current is larger but constant while

the digital current varies with configuration and chip activity (hits and trigger). The configured

currents are about 300mA (DC) and 100mA (AC) for analog and digital regulator wire bonds,

respectively. The worst IBL case is 100mA AC current passing through one wire. This current

can be dangerous only if its frequency is close to the mechanical resonance frequency.

A dedicated set-up (Figure 4.32) has been assembled to reproduce the IBL wire bond oper-

ation conditions. Special test boards able to simulate the 370μm step present between FE and

flex, have been used to bond 25μm diameter IBL-like FE-flex wires with different lengths6 l

(1.5mm, 2.0mm, 2.8mm) and orientation angles (50°-90°). The board can be fitted into the

two poles of the electromagnet, which produces a 2 T B-field perpendicular to the board. In

these conditions the IBL configuration is fully reproduced.

Sine and square waves with an AC current amplitude varying between 0 and 100mA are

produced by a waveform generator and sent to the wire bonds. The wires are monitored with a

CCD camera and a stroboscope is used to make the wire movement easily visible.

Figure 4.32: Schematic view of the experimental set-up used to test IBL-like wire bonds in 2 T

magnetic field.

6IBL shortest and longest wire bonds are about 1.5mm and 2.8mm long respectively. A value in between,

namely 2.0mm, has been also used for the test.
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4.2.2 Modeling approach for wire bonds fatigue

In a simplified view, a wire bond can be considered as a loaded beam that can oscillate in three

dimensions. The natural frequencies depend on the wire bond length, diameter and loop height.

However several factors can play an important role as for example the wire’s material and the

ultrasonic bonding process, which defines the final shape of the wire and the local deformations

of the heel region.

A one dimension Finite Element Analysis (FEA) simulation has been performed to address

the search of resonance frequencies in the experimental tests for different wire bond lengths

(Table 4.5) [54].

Wire Length (mm)
Resonance Frequency (kHz)

1 2 3 4 5

1.5mm 23.77 68.94 74.65 145.64 147.12

2.0mm 12.75 37.32 40.62 78.72 79.61

2.8mm 8.92 24.16 26.61 52.32 52.83

Table 4.5: Resonance frequencies for different wire lengths obtained with a 1D FEAmodel [54].

On the contrary, the empirical measurement of the fatigue threshold is extremely difficult

and so, as approximate result, a numerical simulation has been performed, based on the vibra-

tion amplitude required to increase the plastic strains in the heel section of the wires used. The

analysis is done in three steps:

Simulation of the effects of the ultrasonic bonding process. Instead of simulating the motion

of the bonding tool, a rigid body has been used to compress the ends of the wire with a

shape that replicates a deformed profile equivalent to the one observed in IBL-like wire

bonds (Figure 4.33). A special attention has been given to the region of wire’s foot and

heel since it is known to be the weakest point during oscillation.

(a) (b)

Figure 4.33: (a) Simulation of the bond foot obtained with the ultrasonic bonding process. (b)

Deformation in the foot region after the bonding simulation [54].
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Thermal loading to account for Joule heating effects. After the accomplishment of the bond-

ing process, the thermal stresses induced by the Joule heating effect have been included.

The accumulated plastic strains obtained after the two steps are not negligible and they are

considered as a reference point for the estimation of the vibration amplitude that induces

an increase of this plastic strain.

Estimation of the oscillation amplitude to increase the plastic strains. A static load is ap-

plied to the wire in the direction perpendicular to the wire’s plane: this load creates a

deformation pattern equivalent to that of the first resonance mode. After each load in-

crement, the plastic strain of every element within the heel region is compared to the

one obtained after the thermal loading. When the critical load increment is identified,

the corresponding vibration amplitude is obtained by the lateral displacement of the node

located at the top of the wire.

Two different wire thicknesses in the foot region have been simulated since wire bonds

have not all the same foot shape, which depends on the operator doing the bonding. As typical

values, 11μm and 17μm thickness have been used . For a wire of 2.8mm length, which is the

maximum bond’s length used in the IBL detector, the vibration amplitudes obtained are 42μm

and 45μm respectively.

4.2.3 Experimental studies of resonant wire bond oscillations

The results obtained from the FEA simulation provide well defined resonance frequencies de-

pending on the resonant mode and wire’s length (Table 4.5). Nevertheless the bonding is not

completely reproducible and each wire has small mechanical differences.

The resonance frequencies have been found experimentally on wires of different lengths

bonded with the same bonding machine, i.e. using same setting parameters. The resonance

frequency is defined as the frequency at which the oscillation amplitude reaches the maximum

value. The spread of the resonance frequencies obtained testing several wires with the same

length is about 1%, revealing a good reliability of the bonding machine. The first resonance

frequency obtained for 1.5mm, 2mm and 2.8mm are 25740Hz, 15600Hz and 9550Hz respec-

tively. These values are not in complete agreement with FEA simulation: a shift of about 10% is

systematically observed. This can be explained by the simplified model used on the simulation

where not all wire’s characteristics have been included.

The resonance frequency ν is proportional to l−2 and the amplitude to l4. The second,

third and so on resonance frequencies are not visible with the present set-up. The square of

the oscillation amplitude is proportional to the power spectrum of oscillations that can be fitted

with the Lorentzian peak [55]:

p =
(γ2/4)H

(ω − ω0)
2 + (γ2/4)

(4.5)

where H is the peak height, ω0 the resonance frequency, γ the full width half maximum

(FWHM) of the peak. Figure 4.34 shows the oscillation amplitude as a function of the fre-

quency obtained experimentally for a 2.8mm wire. The amplitude has its maximum at the

resonance frequency and it halves changing the frequency of ±50Hz. The range at which the
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oscillation is still present is ±2% of the resonance frequency with an amplitude about a factor

7 less.
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Figure 4.34: Oscillation amplitude expressed in wire diameter (25μm) as a function of the

frequency for a wire of 2.8mm length.

Systematic studies have been conducted changing duty cycle and rise time of the AC current

square wave passing through the wire. Indeed the electrical signal passing through the digital

regulator wire bonds of an IBL module has a relative long rise time and it can have a duty

cycle of about 5%. In this situation the power transmitted to the wire bond is different and

consequently the oscillation amplitude changes. Figure 4.35(a) shows the oscillation amplitude

and the root mean square (RMS) of the current as a function of the duty cycle for a 2.8mm wire

in a 2 T B field with a square wave current of 20mA peak to peak. The maximum amplitude

is obtained with a 50% duty cycle while it clearly decreases following the reduction of the

RMS current. A drop of 75% of the initial amplitude is obtained at very low duty cycles.

Figure 4.35(b) shows the variation of the oscillation amplitude as a function of rise time obtained

testing 2.8mm wire bonds at a resonance frequency of 9800Hz. A rise time equal to 0μs means

a perfect square wave while 50μs is equivalent to a triangular wave. In the latter case, a decrease

of the oscillation amplitude of about 35% is visible.

Since the IBL current passing through regulator wire bonds can be a mix of a sine and square

wave, the Fourier harmonics plays an important role in identifying the range of frequencies at

which the wire bond oscillates in a B field. The amplitude of the Fourier harmonics for a square

wave are:

Y (ν) =
∞∑

k=−∞

1

2
sinc

(
k

2

)
δ

(
ν − k

T0

)
for k �= 0 (4.6)

where T0 is the signal period, ν is the frequency and sinc (t) = sin(πt)
πt

with sinc (0) = 1.

Indeed the oscillation amplitude at the resonance frequency is higher (about 1.3 times) for a

sine wave with respect to a square wave since the first can be considered like the first harmonics

of the square wave. At the frequency of the third harmonics the wire bond oscillates even if

the amplitude is about three times smaller than at the resonance frequency, in agreement with

theory. At higher harmonics, the wire bond still oscillates but its amplitude is negligible and

not anymore visible with the present set-up. The resonance frequency can also be considered
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Figure 4.35: (a) Oscillation amplitude at the resonance frequency and RMS current as a function

of duty cycle sending a square wave to a 2.8mm wire bond in a 2 T B-field (orientation angle

∼30°). As indication, a 30% duty cycle means the signal is on 30% of the time and off 70% of

the time. (b) Oscillation amplitude at the resonance frequency as a function of rise time. The

rise time on the x-axis takes into account only the leading edge (trailing edge has the same

value).

as one of the "n" harmonics and therefore oscillations are present at lower frequencies (one

third, one fifth, etc. of the resonance frequency) when a square wave is used. The oscillation

amplitude diminishes with the decrease of the frequency since the square wave with frequency

1/n times the resonance frequency contains the resonance frequency only as the n harmonics,

whose amplitude is given by 4.6. In the case of wires of 2.8mm length with an AC current of

100mA peak to peak, a frequency of ν/3 or ν/5 still generates an oscillation amplitude quite

large that could cause damage to the wire. When the frequency is reduced by at least a factor

seven, the amplitude is relatively small or almost invisible in the set-up.

4.2.4 Protection of wire bonds against oscillations

The most critical point of a wire bond is the heel where the Al wire has been scratched and

bended during the bonding process. Indeed this is demonstrated by the fact that wire bonds

usually break at the heel when they are exposed to mechanical strains as, for example, oscilla-

tion.

The typical method to protect wire bonds against breakage is to encapsulate their feet and

heels. The ATLAS Semiconductor Tracker (SCT) and Pixel Detector applied the encapsulant

Dymax 9001-E-V.3.1 (called Dymax in the following) on their wire bonds [56]. The same

product has been tested on IBL-like wire bonds dropping it on the foot heel. The encapsulation

height varies from 35μm to 50μm, being the application done manually. A second solution

has been proposed to protect the whole wire against water contact or contaminants since it

has been demonstrated that IBL wire bonds can be corroded in a high humidity environment.

Urethan sprays are often used for standard PCBs to create a shield against dust, moisture and

contaminants. The polyurethan "CellPack Urethan D9201PU" (called Urethan in the following)

has been tested for the IBL case. The wire bond coating is done spraying manually the Urethan
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from the canister. The consequence is a not uniform coating with Urethan drops along the wire

and some areas not well covered.

Figure 4.36 shows the mean resonance frequency as a function of the wire bond length

for the three cases (bare, encapsulated and coated wire bond) where the dependence of the

resonance frequency to l−2 is visible. The resonance frequency of encapsulated wire bonds

is about 10% higher than bare case and, on equal terms, a higher current is necessary to get

them oscillating. This behavior leads to the assumption that the wire bond feet are protected

by Dymax, which shortens the wire’s length and lessens the heels movement. On the contrary

the resonance frequency of coated wire bonds is lower (between 2% and 10%) than the bare

case. The higher error bars are just due to a large spread of resonance frequencies because of a

different amount of Urethan covering the tested wires. In general, coated wire bonds oscillate

at higher currents than the bare case but lower than the encapsulation case, meaning that the

coating offers a vibration protection, which is by the way weaker than the encapsulant.
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Figure 4.36: (a) Resonance frequency as a function of wire bond length for bare, Urethan

coated and Dymax encapsulated wire bond. (b) Resonance frequency shift after the application

of urethan or Dymax to bare wirebonds.

4.2.5 Wire bond resistance against oscillations

The resonance frequency amplitude at which the wire oscillates is of fundamental importance

since, depending on it and on number of cycles, the wire can overcome the material elastic

limit and micro-cracks can develop at the heel. If the wire is left in oscillation mode at these

conditions, the cracks can further enhance until the wire breaks. The breakage always occurs at

the heel, in particular on the side where the first bond is done (for IBL case it is the upper bond).

Indeed during the bonding process, the wire is extremely stressed since after the cold welding

the wire is bended of about 45° before being driven to the second bond.

A first symptom of wire’s weakening is the drop of oscillation amplitude along time, which

can happen suddenly or after a certain number of oscillation cycles, and it is caused by the

development of cracks at the heel. At this stage a new resonance frequency can be obtained

decreasing the frequency of the current and the new oscillation amplitude obtained is lower

then the first one. This process can be repeated several times causing further damages on the
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heel wire until the wire breaks. The decrease of oscillation amplitude, and consequently the

shift in the resonance frequency, can be used as parameters to monitor the wire resistance to

oscillations.

The worst possible IBL scenario, that is an AC current of 100mA peak to peak through the

wire in 2 T B-field, has been tested on bare, coated and encapsulated wires of different lengths

and with several orientation angles with respect to the B-field. The wires are left in oscillation

for about 5 minutes, which has been estimated to be a reasonable time with respect to the

operation time in IBL. After this time the number of broken wires as well as the quantification

of the possible shift of resonance frequency are recorded. As a general remark, the oscillation

amplitude of wire bonds with lower orientation angles is higher. Table 4.6 summarizes the

results obtained. The 1.5mm wires are not affected by any decrease of amplitude and none

of them break in the three configurations. On the contrary, the 2.8mm wires are considerably

subjected to damages: all wires have a decrease of amplitude both in bare and coating cases and

30% of them suffer an amplitude decrease in case of encapsulation. Furthermore about 15% and

10% of wires break in the bare and coating case respectively. Despite that, 2.8mm wires do not

break if their feet are encapsulated, remarking the effectiveness of the Dymax. For the 2.8mm

wires, the resonance frequency shift has been estimated to be 4.6%, 3.4% and 0.3% for bare,

coated and encapsulated wires respectively. The coating solution provides an improvement in

term of protection with respect to bare wire bonds but it is not good as the encapsulation. This

disadvantage could be overcome if a better coating method covering completely and uniformly

the wire bond length is developed.

Wire’s length Type of test Wires affected (%)

Bare Coated Encapsulated

1.5mm
Decrease of amplitude 0 0 0

Broken wires 0 0 0

2.0mm
Decrease of amplitude 65 65 20

Broken wires 9 10 0

2.8mm
Decrease of amplitude 100 100 30

Broken wires 15 10 0

Table 4.6: Percentages of wires affected by an amplitude decrease or broken after 5min in

oscillation mode at 100mA AC current in the IBL configuration. The test has been performed

with wires of different lengths and in different conditions (bare, coated and encapsulated wire

bonds). A total of about 60 wire bonds have been tested.

Wire bonds have been tested also in a “disk orientation” mode with a B-field of 1.1 T. The

disk orientation is the worst case since the force applied to the wire is perpendicular to the wire

bond plane and has the maximum value. In this condition, also wires of 1.5mm can break with,

in general, half of the AC current used for the IBL case (“barrel orientation”).

4.2.6 IBL wire bonds during detector operation

An experimental set-up has been built to simulate as much as possible the operation conditions

of IBL wire bonds in the ATLAS magnetic field. The results provide useful information for the
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comprehension of the IBL wire bonds behavior being the real conditions well reproduced in the

experimental set-up. The worst IBL case is a 2.8mm wire with an AC current of 100mA at a

frequency close to its mechanical resonance frequency and with a higher orientation angle with

respect to the 2 T B-field. It has been demonstrated that in this case the wire gets irreparably

damaged after few oscillation cycles and it can easily break. Two types of wire bond protections

have been investigated: the classical encapsulation of the wire feet and the coating of the whole

wire. The last method is also useful to protect the wire against humidity or other possible

contaminants. Even if the encapsulation remains the best solution for oscillation protection, it

has not been implemented for IBL. This decision is due to the fact that at the time of the studies

most of the staves were already produced and the application of the Dymax was considered

too risky for the modules. The alternative solution against oscillations consists in avoiding the

currents with the frequencies at which the wire bond can oscillate. For the IBL detector a Fixed

Frequency Trigger Veto (FFTV) has been implemented for excluding potentially dangerous

frequencies.

4.3 The IBL Detector towards LHC Run 2

The staves QA has been an extremely important step in the production and final accomplishment

of the IBL Detector. The QA procedure has been systematically followed for the 18 production

staves holding 216 planar and 144 3D modules (576 FE-I4 chips) for a total of 15.5 M pixels.

Each module has been fully characterized through a series of tests, ranging from calibration to

source scans. The obtained results allowed the selection of the best 14 staves for the construction

of the IBL Detector, which has been successfully installed in the ATLAS experiment. The

results of the QA tests have not only been useful for the stave selection but also for a deep

comprehension of the new technologies adopted for the IBL Detector (as for example FE-I4

chip and 3D sensors). In addition, the detector tunings performed are a valuable input for the

final calibration and operation during LHC runs.

Systematic studies have been also conducted to identify the best conditions for the detector

operation in the ATLAS experiment. In particular, it has been demonstrated the vulnerability

of IBL wire bonds when an AC current with a frequency close to their mechanical resonance

frequency passes through them in presence of a high magnetic field. IBL-like situations have

been examined and all dangerous resonance frequencies have been identified experimentally.

Wire bond protections have been proposed and tested. The results obtained have been used for

the implementation of a trigger veto for the IBL operation. Furthermore these studies can be

considered a preliminary evaluation for the use of wire bonds in future silicon detectors.

The quality assurance and final commissioning have shown that the IBL Detector works ex-

tremely well with all FE-I4 chips operational and 99.9% of functional channels in the modules.

IBL has been successfully operated during several ATLAS global runs in the final conditions

(cold operation in 2 T magnetic field). The ATLAS Pixel Detector will join the LHC Run 2 with

a new layer and an improved configuration ensuring the best possible tracking performance.
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Chapter 5

Optimization of gaseous detector systems
operation at LHC

The LHC muon systems are very large apparatus and a meticulous work for the optimization

and monitoring of the present systems is ongoing permanently. One of the most critical and

important infrastructure for particle gaseous detectors is their gas systems. The present chap-

ter, after an introduction about the LHC gas system design, describes the standard techniques

adopted for monitoring the gas mixture composition as well as their impact on detectors. The

topic is even more important for systems where gas mixture is recirculated to contain opera-

tional costs and gas emissions. As it will be discussed, gas mixture recirculation can easily lead

to accumulation of impurities, which could affect detector performance. However gas recir-

culation is not always the solution. An alternative technique, implying the recuperation of an

expensive gas mixture component (CF4), is also described in this chapter.

5.1 Gas systems for detectors at the LHC experiments

At the LHC experiments, 30 dedicated gas systems deliver the proper gas mixture to the corre-

sponding detectors [57]. They are complex apparatus that extend over several hundred meters

and ensure an extremely high reliability in terms of stability and quality of the gas mixture de-

livered to the detectors. Indeed, the gas mixture is the detector’s sensitive medium and a correct

and stable composition is a basic requirement for good and safe long term operation. Gas sys-

tems, as well as gaseous detectors, are subject to severe requirements on design and components

to guarantee safe detector operation.

A modular design is adopted for the construction of the LHC gas systems. Every mod-

ule fulfills a specific function and it can be configured to satisfy needs of different detectors.

This modular and function oriented design is the key choice allowing effective construction

and it constitutes an enormous advantage for the maintenance. Modules are standardized and

the same industrial components are used to achieve equivalent roles. This allows maintaining

critical spares and fast repairs in case of any failure. Also the software control associated to

each module is standardized and it is developed for industrial Programmable Logic Controller

(PLC1). The gas system building blocks are located over three different levels (Figure 5.1): the

1A PLC is an industrial pc with basic functionalities.
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surface room (SG), the underground service room (US) and the experimental cavern (UX). Most

of the modules are located in SG since it is the most accessible location. A first gas distribution

into several channels is done in US, where the pre-distribution modules are located, while the

final gas distribution system to the detectors is located in UX, where also the experiment is

installed.

Mixer
module

Gas recuperation 
module

Gas supply
monitoring system

Distribution
module

LHC
Detectors

Purifier
module

Exhaust

Pre-distribution
module

Experimental cavern
(UX)

Underground service room
(US)

Surface room
(SG)

Pump
module

Figure 5.1: Schematic view of the main functional modules present in a LHC detector gas

system.

Each LHC gaseous detector has its proper gas system since the requirements can be very

different within the several detectors in the same experiment. Nevertheless a general description

of the main building blocks can be commonly accepted for all LHC experiments:

Gas supply monitoring system Each gas is provided by two independent supply sources: one

is in use while the second one is on stand-by and ready to automatically start when the first

source is empty. In case of dewars for cryogenic liquids, the back-up source is ensured

by a set of cylinders containing compressed gas. The gas supply monitoring system

controls the availability and quality of each primary gas supply before it goes into the gas

system. This implementation avoids the injection of contaminants into the gas system,

and consequently into the detectors. It also detects unavailability of a gas by monitoring

the supply pressure, the weight of low vapor pressure liquid, the gas flow as well as O2

and H2O concentrations.

Mixer module The primary task of the mixer module is to provide the suitable gas mixture.

The mixer module has up to four gas input lines equipped with Mass Flow Controller

(MFC)2, which are controlled via software according to the detector needs: the flow is

automatically tuned to guarantee the required replacement rate, to cope with detector’s

leak or gas recuperation efficiency, or even more to compensate for atmospheric pressure

2A MFC is a device used to measure and control the flow of fluids.
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changes. Two MFCs are installed in each line since, during particular phases, it might be

needed to supply different gases (for example for purging the detector when the standard

gas mixture needs to be evacuated, like at the beginning of a long shutdown period) or

standard mixture at very high flows (for example when the detector is going to be restarted

after a long shutdown, i.e. fast filling mode).

Gas distribution The distribution of the gas mixture to each single detector is done in several

steps. Once the gas mixture is prepared by the MFCs, it is sent to several pre-distribution

modules located in the US. Each pre-distribution module relates to a specific detector

sector of the experiment. Several gas parameters (as pressure, gas flow, etc.) can still

be modified via online software during LHC runs. Afterwards, the gas is sent in the

UX where the final distribution modules are located. Here pre-distribution lines are split

into several smaller lines, which finally supply each individual module of the complete

detector system. Depending on the design granularity, a module can be made of one or

more individual detectors. Since the distribution modules are located on the experiment,

they are subject to background radiation and intense magnetic fields. Therefore they

are designed with simplified electronic or manual systems, which do not require access

during operation. The supplied and return flows to each module are monitored with basic

flowmeters developed at CERN. Manual valves allow to adjust the flow to desired values.

Typical gas distribution systems are equipped with several hundreds of these flowmeters,

depending on the detector granularity.

Gas system operation modes In the simplest gas system, the mixture is exhausted to atmo-

sphere after being passed through the detector (open mode system). In case of large

detector volumes or use of expensive gases, the mixture can be collected after being used

in the detector and continuously re-injected into the supply lines (recirculation system,

closed loop mode). Gas recirculation systems allow to reduce operational costs by 90%

or more. However gas recirculation is a complex process where flows and pressures need

to be constantly regulated on the return lines of the detectors. Moreover since the renewal

period of the gas volume is longer, the accumulation of impurities becomes a typical is-

sue. The gas mixture coming out from the detectors is sent, by means of a pump module,

to the SG building, where a purifier system based on cleaning agents allows purification

of the gas mixture from possible pollutants. Then a small percentage of gas, which de-

pends on detector and system constraints, is sent to the exhaust line while most fraction is

dispatched to the pre-distribution modules. The fraction of gas mixture sent to the exhaust

is automatically replaced with fresh mixture coming from the mixer module. The range

of this fraction is typically between almost 0% and 10%.

Purifier module In the recirculation process several impurities can accumulate because of

leaks, gas supply quality, detector permeability to air, etc. The typical impurities are

N2, O2 and H2O. Other specific impurities can be created and then accumulated in the

closed loop (CL) under the combined action of electric field, charge multiplication and

high radiation background. For safe operation of detectors, it is mandatory to filter as

much as possible the impurities accumulated. This can be afforded installing cartridges

filled with suitable cleaning agents in the gas system: molecular sieves are used for wa-
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ter removal, metallic catalysts for oxygen absorption and other materials can be added

to filter specific impurities. Each purifier module contains two cartridges of typically 24

liters: during normal operation the gas mixture is passing through one column while the

other is being regenerated or it has just completed the regeneration cycle and it is ready to

be used. With this automated cycle, when a cartridge is saturated, a second one is ready

to be used avoiding interruption to the gas system operation. The purifier module is one

of the most complex in the gas systems both in terms of software logic and operability.

Several precautions have to be taken into account (details in Section 5.4).

Gas analysis module Each LHC experiment is provided with at least one gas analysis module,

which is used to continuously monitor critical mixture components or impurities through

automated cycles. The gas analysis module is equipped with O2 and H2O sensors as well

as Infrared (IR) analyzers to monitor the concentration of flammable gases. All analysis

modules are completely automated: they can be programmed to sample all gas streams

including references or calibration gases. Expert operators can trigger remotely the analy-

sis of specific lines at any moment. The software control is configured to generate alarms

and to exchange data with the specific detector DCS3. Two analysis modules, one in CMS

and one in LHCb, are instrumented also with Gas Chromatograph (GC) allowing for more

specific studies. In particular, GCs are used to monitor the mixture composition and the

presence of more complex impurities (Section 5.2).

Gas recuperation module Gas recuperation plants are used to recuperate expensive gases dur-

ing emptying of detector volumes (mainly during technical and long shut-downs) for

containing operational costs or they are used to reduce the level of impurities without

increasing the fresh mixture injection. Several recuperation plants have been built for the

LHC gas systems. In particular, they are used to recuperate Xe, C4F10, nC5H12 and CF4.

Unlike the building block modules, in this case all gas recuperation systems are different

from each other. A common point is the recuperation method: the mixture returning from

the detector is cooled down until the liquefaction point of the gas, then the liquid is recu-

perated and stored either in liquid or in gas phase. A different method has been developed

for the CF4 recuperation plant of the CMS CSC, as it is described in Section 5.6.

Each gas system is controlled by a PLC, which is located in a control rack with the crates

corresponding to all functional modules. These crates collect the module Input/Output (I/O)

informations that are then sent to the PLC through Profibus4, where the control software is

implemented. All measured values (pressure, flows, mixing ratios, temperatures, etc.) are

processed in the PLC and used to control the process as well as to generate alarms or interlocks

to the gas system operation. A user interface has been developed using standard PVSS5. It

allows to monitor the status of each gas system device, control active components, transfer to

3The Detector Control System (DCS) is a software tool used to supervise the individual detector components

as well as the common experimental infrastructure.
4PROFIBUS (Process Field Bus) is a standard for field bus communication in automation technology and was

first promoted in 1989 by BMBF (German department of education and research) and then used by Siemens.
5PVSS (http://www.pvss.com) is a control system suited for a wide variety of applications. It meets the highest

standards of all sectors, from traffic solutions to distribution networks for energy, water and gas.
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the PLC regulation set points and alarm thresholds. All relevant parameters are also published

using Data Interchange Protocol (DIP)6 allowing easy integration with specific DCS.

The gas systems construction started around 2000 with the first systems being in operation

in 2006. During the LHC Run 1, the gas systems were operated continuously until the start of

LS1. The LHC gas systems reliability during the last three years is greater than 99.95%, corre-

sponding to less than 1.5 hours of down-time per year per system (power-cuts and not-related

external failures excluded). The relatively long duration of LS1 has given a great opportunity

to review the existing detectors and related infrastructures. The consolidation program elabo-

rated for the gas systems is articulated around three main points: reduction of down time due

to periodic maintenance, required upgrade in functionalities needed to cope with the increase

of LHC performance and reduction of operational costs as well as impact on environment. For

example, circulation modules have been equipped with spare pumps allowing to perform peri-

odic maintenance without interrupting operation. Extensive leak search campaigns have been

also performed on primary supplies, distributions and detectors. This activity is complemented

by the conversion of open mode gas systems to recirculation.

5.2 Gas mixture monitoring

A crucial point of the gas system operability is the delivery of the correct gas mixture to the de-

tectors that can be affected by several factors, as, for example, the not correct functioning of the

MFCs or purifiers as well as contamination coming from the detectors themselves or the supply

bottles. These factors are controlled by specific instruments and human interventions until a

certain level. Indeed, the task becomes complex when many gas systems run continuously. The

faults cannot be always suddenly spotted, especially when they are related to “non-standard

cases”, and the consequences can be visible in detector operation and performance.

The gas analysis module present in each experiment is controlled through the general Gas

Control System (GCS) of the experiment. All gas sampling points from the different detectors

are connected to this rack and the software control is regularly scanning the selected gas lines

allowing the measurements of O2 and H2O concentrations [58].

The exact concentration of each gas component can be measured through dedicated analysis

instruments that it is not convenient to install in each system. A typical solution is the use of a

common gas chromatograph (GC) for all detector systems in a given experiment since the GC

can be installed in the gas analysis module allowing the measurements of the gas composition

for all gas analysis streams. CMS and LHCb are already equipped with permanent gas chro-

matography stations where the Agilent microGC3000 is connected to the selection manifold of

the standard analysis rack.

The GCs can have different columns that allow the separation and identification of several

components. The GCs used at LHC experiments are equipped with the following columns:

OV-1 Polar column, which separates hydrocarbons from C4 to C12, BTEX7, VOC8.

6DIP is a communication system which allows relatively small amounts of soft real-time data to be exchanged

between very loosely coupled heterogeneous systems.
7BTEX stands for benzene, toluene, ethylbenzene, and xylenes.
8Volatile organic compounds
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PPlotU Porous Layer Open Tubular column, which separates C1 to C4 hydrocarbons, CO2,

CH4, H2O, H2S, SO2, N2O.

MolSieve 5Å zeolite molecular sieve column, which separates permanent and noble gases: Ne,

H2, O2, Ar, N2, CH2, CO.

The regular monitoring of the gas mixture using gas chromatography stations allows identifying

the origin of potential problems like low quality of gas supply, outgassing material, drift in the

calibration of the MFCs or faults in some gas system components (pressure regulator, valves,

etc). Indeed, the GC sensitivity can reach the order of ppm for all types of gases analyzed.

Figure 5.2 shows an example of gas chromatograms for the CMS CSC detectors using two

different GC columns: the PPU (Figure 5.2(a)) can separate the three components of the CSC

gas mixture (Ar, CO2, CF4) while the MolSieve (Figure 5.2(b)) allows the identification of O2

and N2.

(a) (b)

Figure 5.2: (a)Gas chromatograms of the CMS CSC gas mixture in two analysis points. “CSC

mixer” is the GC analysis of the gas mixture after the mixer while “CSC supply to the detector”

is the GC analysis of the gas mixture sent to the detector after purification and the addition of a

small percentage of fresh gas. (b) The “CSC supply to the detector” contains a higher quantity

of both components coming from the CSC permeability to Air.

However, in some situations, GC analysis does not reveal complete information about gas

mixture composition, especially in relation with gaseous detector performance. Indeed GCs

are limited to concentration of the order of 1 ppm while negative effects on detectors can be

produced by much lower concentrations or by the main gases present in the mixture. Moreover,

GC analysis remains a quite complex and time consuming task: despite the availability of soft-

ware tools allowing automated integration, the human intervention is often required. Since the

promptness in detecting possible issues as well as the monitoring of real detector performance

are of vital importance, an alternative solution has been investigated.

A good candidate is Single Wire Proportional Counter (SWPC) detector [59], which can be

very sensitive to changes in gas mixture composition or to the presence of pollutants. These

detectors can be considered as a good complement in the use of the GC since they can be

continuously operated allowing the prompt detection of any gas variation, as it will be discussed

in detail in Section 6.1.
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5.3 Correlation between gasmixture quality and detector per-
formance

MFCs are key devices for the gas mixture preparation (Section 5.1). The gas flow passing

through the MFCs is regulated via software to provide each gas in the correct ratio. This pro-

cess is based on the correct MFC calibration. However, MFC calibration may degrade during

operation and checks have to be foreseen every one-two years. Periodic GC analysis of the

gas mixture can spot the occurrence of these faults. Figure 5.3(a) shows the trend of the SF6

concentration in the RPC gas mixture: a big deviation (from 0.30% to 0.45%) was detected in

April 2011, causing a change in the RPC performance (decrease of detector efficiency as shown

in Figure 5.3(b)) and a temporary increase of the HV working point of about 120V to recover

the standard operation conditions [60]. Similar problems have been observed also in few other

systems.

(a) (b)

Figure 5.3: (a) SF6 concentration in the CMS RPC fresh mixture. The red dots are the data of

April 2011 when a drift in the MFC flow was detected. (b) Mean efficiency of some CMS RPC

detectors as a function of the applied voltage in 2010 and 2011. The 2011 data correspond to

an increase of SF6 (from 0.30% to 0.45%): an increase of about 120V is necessary to operate

at the same operation conditions.

This example shows the importance of periodic calibration campaigns for the MFCs. During

LS1 most of the MFCs have been controlled and, in case of a deviation greater than 1% with

respect to the foreseen value, a new calibration has been performed. Figure 5.4 shows the

results obtained for several MFCs: important discrepancies were found especially for the high

flow MFCs used during the detectors filling phase. Furthermore even if MFCs are extremely

stable devices, they can suffer from the presence of impurities in the gas.

The low quality of the primary gas supplies is a critical issue: it happens very rarely but it

can have a serious impact on detector operation [61]. The typical example is Air contamination,

which can be present in all types of supplies. Usually the acceptable Air level is in the order of

100 ppm, however it can reach 7500 ppm in presence of faulty supplies. An abnormal presence

of Air is undesired since it causes an increase of detector dark current (RPC) and it has an

impact on gas gain and drift velocity (wire chambers). These changes affect detector calibration

parameters and eventually time and spatial resolutions.
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Figure 5.4: Deviation in percentage of the actual delivered flow with respect to the calibration

before (blue) and after (red) the adjustment.

A more difficult case happened in LHCb for the GEM detector system, which works in

open mode using an Ar/CO2/CF4 (45/15/40) gas mixture with a flow equivalent to about 7

chamber volumes per hour [62]. Figure 5.5 shows the correlation between the changeover of

CF4 cylinders and the gas gain fluctuation observed in the GEM detector. The gain fluctuations

are in coincidence with changes in the CF4 gas supplies even if not all changes affect the detector

performance. The gain fluctuations are correlated with quality composition of the CF4 gas

supplies despite GC analysis have not revealed any presence of impurities at the level of about

10 ppm.
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Figure 5.5: Luminosity-normalised average fill currents on two triple-GEM detectors during

LHC fills in 2012. A current fluctuation of +40% is present in fill 2700 and of -20% in fills

2805 and 3000 [62]. The changeovers between the two CF4 gas supply sides are indicated with

the “Supply 1” and “Supply 2” bars. The current variations seem to be correlated with CF4

bottle changes.

Several tests were performed on the LHCb GEM system to quantify the detector sensitivity

to variations in the gas mixture composition. The effects of changes in the mixture composition

have been verified by decreasing of 1% the CF4 concentration and increasing of 1% the Ar

and CO2 concentration respectively. A gain variation of about ±4.5% is visible in Figure 5.6,

which shows the current normalized to the luminosity for one GEM detector. Similar results
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have been obtained for other GEM detectors, with a maximum gain variation of the order of

7%. A 1% variation in the gas mixture composition was also easily detected with the GC. A

(a)

(b)

Figure 5.6: Gas gain variation during LHC run for a LHCb GEM detector related to a ±1%

variation in the three gas mixture components [62].

second test was carried out to verify the overall quality of the supply cylinders: a modification

on the GEM supply line allowed to operate one or both sides of the GEM system with premixed

gas (leaving the other side on the standard gas system). In few occasions, both during technical

stops and LHC run, half detector system was flushed with premixed gas mixture (with nominal

composition). In the first case, no changes in the detector current were observed for both sides

while during one LHC fill a sudden increase of gain of about 20% was detected in the half of

the detector flushed with gas from standard supplies. GC analysis did not reveal any changes

of the order of 100 ppm in the gas mixture composition. However the test demonstrated that

the supply cylinders contained some impurities, which produced a change in the detector gain,

without being visible with the standard chemical analysis. In these conditions, only monitoring

systems based on detectors (for example SWPC) can allow to detect changes in the mixture

with enough precision (Section 6.1).

5.4 Accumulation of impurities in gas recirculation systems

About 50% LHC gas systems are operated in gas recirculation mode, being mandatory in case

of large gas volumes or expensive gas mixtures. The quality of the gas mixture can deteriorate

in a closed loop system, especially impurities can accumulate because of radiation (inducing
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high detector counting rate), leaks or gas contaminations coming from the gas system or the

detectors themselves. Two methods can be used to reduce the presence of these impurities: the

injection of fresh mixture in the CL and the use of gas purifiers.

The fraction of fresh mixture in a CL should be as small as possible. It is usually needed

to compensate for leaks or to control the concentration of impurities that cannot be filtered (for

example N2). An example is the RPC systems where leaks are present at the detector level and

new fresh gas has to be injected to compensate Air accumulating in the detector.

Systematic studies have been conducted on the impurities that can be created inside the

RPC detector volume under the effects of high electric field and radiation [63], [64]. In these

conditions, complex molecules can break creating ions and then new molecules accumulate in

the CL. Figure 5.7(a) shows an example of the impurities created in a RPC detector under a

gamma irradiation producing counting rate of about 100Hz/cm2. The addition of purifiers with

different cleaning agents helps to reduce these impurities to a minimum level (Figure 5.7(b)).

(a) (b)

Figure 5.7: Superimposed gas chromatograms of the RPC gas mixture in different analysis

points: (a) the fresh mixture and the return gas from irradiated RPC or (b) the gas mixture in the

CL with and without the use of purifiers. Several impurities are visible and have been identified

with a Mass Spectrometer. Without purifiers the impurities concentration is higher and even

new signals appear [64].

A different mechanism is responsible for the accumulation of O2 and N2 in the CMS CSC

detector. In 2008, after few months of operation, GC analysis revealed a high Air concentra-

tion (greater than 2%) in the return gas mixture from the detectors. An extensive leak search

campaign was performed confirming that both detectors and gas system were gas tight. Indeed,

the source of contamination was eventually identified as due to diffusion through components

used for the construction of the detector. GC analysis performed on all return lines allowed

to identify the typology of detectors affected by the problem and finally the flow rate was ad-

justed in the system to maintain O2 and N2 concentration below required limits. O2 is currently

removed from the gas stream using a purifier module filled with Ni-Al2O3 catalyst while N2

cannot be filtered and therefore it accumulates up to concentration of about 1% (in case of 90%

gas recirculation). In this respect, the fresh mixture flow determines the N2 concentration in

the gas mixtures supplied to the detector that cannot be decreased to the leak level. The strat-

egy adopted for reducing operational costs and gas emission (CSC mixture contains 10% of
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CF4, which is expensive and a greenhouse gas) is to recover the CF4 from the exhaust of the

recirculation system, as it will be discussed in Section 5.6.

Even if the use of purifiers is needed in a CL system, the cleaning agents can have collateral

effects during operation as, for example, the absorption of one or more main components of the

detector gas mixture. Figure 5.8(a) shows a typical problem at the beginning of the purifier cy-

cle in a system flushed with Ar/CO2/CF4 (40/50/10) gas mixture: the CO2 is almost completely

absorbed for about one hour, destabilizing the mixture composition for that time. Cleaning

agents can also release gases that are used during the regeneration. Figure 5.8(b) shows the

release of Ar by several types of molecular sieves at the beginning of their operation. Moreover,

in general, much gas is absorbed at the beginning of each run cycle producing a fast decrease of

the pressure in the high pressure storage buffer and therefore destabilizing the full gas system.

These problems can be overtaken modifying the standard operational sequence of the purifier

module by adding two preparation phases at the beginning of the purifier cycle. The first prepa-

ration phase slowly brings the column pressure to the same level of the high pressure buffer

in the gas system while the second preparation phase pre-saturates the cleaning agents in the

column with respect to the mixture components. In total 21 purifier modules have been imple-

mented in the gas systems of the LHC experiments and they perform according to expectations.

Time [min]

-200 -150 -100 -50 0 50 100 150 200

C
on

ce
nt

ra
tio

n 
in

 th
e 

M
ix

tu
re

 [%
 V

ol
]

0

10

20

30

40

50

60

70

80

90

100
Ar

4CF

2CO

(a)

Gas Volume Change in Purifier

0 250 500 750 1000 1250 1500 1750 2000

 [p
pm

]
2

A
r+

C
O

1

10

210

310

410
MS 3A
MS 4A
MS 5A

(b)

Figure 5.8: (a) CO2 absorption at the beginning of a purifier cycle. It is evident how the gas

mixture ratios are completely destabilized during this phase. (b) Ar release during the first

operation phase of a purifier. Ar is present in the material since it is used during the regeneration

process.

5.5 The use of greenhouse gases for particle detection at LHC

The use of some greenhouse gases is necessary to achieve the required detector performance

at the LHC experiments. Figure 5.9(a) shows their total fraction with respect to the total CO2

equivalent: the main contributions are due to C2H2F4, CF4 and SF6 having a GWP equal to

1430, 6500 and 23900 respectively. The reduction of emissions and operational costs is obtained

operating the detectors in recirculation mode. However the recirculation efficiency depends on
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the amount of leaks in the systems and on specific operation conditions. Figure 5.9(b) shows

the fraction with respect to the total of the equivalent CO2 emission for the gaseous detectors

operated with different recirculation efficiencies. The main contribution is obviously coming

from a recirculation lower than 90%. The gas emissions of recirculation systems account for

85% of the total CO2 equivalent emission at LHC since these systems have the largest gas

volumes.
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Figure 5.9: (a) Relative contribution in terms of CO2 equivalent from different gases used for

particle physics detection at CERN. The dominant contribution is due to the C2H2F4 used by

the large ATLAS and CMS RPC systems. (b) Fraction with respect to the total of the equivalent

CO2 emission for the gaseous detectors operated with different recirculation efficiencies. Only

a low contribution is due to the need to adjust the N2 concentration in the gas mixture (in red).

Figure 5.10 shows an overview of the CO2 equivalent emission for the most concerned LHC

detectors and the expected reduction at the end of LS1. These detectors account for about 98%

of the total emission where the main contribution comes from RPC (C2H2F4, SF6), followed by

CSC (CF4) and GEM (CF4). The ATLAS and CMS RPC contribute to a large amount despite

they are already operated in gas recirculation at the maximum possible level because of leaks

present in the detectors. During LS1 several actions have been taken to reduce the consumption

of greenhouse gases:

• An intense leak test campaign have been performed reducing the RPC leak rate by about

40%.

• The ALICE Muon Trigger (MTR) gas system has been upgraded from open to closed

loop.

• The CMS CSC system has been complemented with a complex CF4 recuperation plant,

which allows to recuperate about 80% of the CF4 present in the gas mixture that is sent

to the exhaust line.

Beyond these improvements, several R&D projects have recently started to find less im-

pactive gases in terms of cost and environmental effects. LHCb contributes to greenhouse

emission with the use of CF4 from GEM detectors, which use 45% of CF4 in their gas mixture.
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Figure 5.10: Overview of the greenhouse gas emission from the most concerned gaseous de-

tectors at the LHC experiments. These emissions accounts for about 98% of the total detector

emission at CERN. In green the expected reduction after the interventions scheduled during

LS1.

LHCb GEMs are currently operated in open mode because they were considered a small sys-

tem. Upgrade to gas recirculation is under evaluation (Section 6.2) and implementation will be

done in the near future. A second example of strategy to reduce greenhouse emission concerns

the R134a used in the RPC gas mixture as it will be discussed in Section 6.3. The procedure

necessary for replacing a gas component in a particle detector is known to be a long and delicate

process that may last for many years. Indeed, similar issues were already addressed in the past

by the RPC community when it was needed to substitute R13B1, banned for its contribution to

the depletion of Earth’s atmospheric ozone layer. In this occasion, the validation process of the

new gas mixture lasted for about 10 years [65]. While R&D activities are progressing, several

mitigation actions can already be undertaken. In particular, the quantity of gas lost should be

reduced by repairing as many as possible leaks. Also the research for advanced gas recuper-

ation plants should be supported to build and operate such systems even if the initial capital

investment is important (Section 5.6).

5.6 Example of gas recuperation: the CMS CSC CF4 recu-
peration plant

The CMS CSCs are operated with a three component gas mixture: 50% CO2, 40% Ar and

10% CF4. The CF4 prevents aging effects, such as the deterioration of the gas gain due to the

formation of deposits on the anode wires produced by polymerization of impurities present in

the gas mixture. Considering the very large detector volume (66 m3) and the use of an expensive

gas (CF4), the CSC gas system is operated in recirculation mode. Nowadays the percentage of

fresh mixture injected is set to 10% to cope with the detector permeability to Air (Section 5.4).

CF4 accounts for more than 90% of the total gas operational cost and therefore there is an

obvious interest in recuperating this component from the gas exhausted.

The concept of a recuperation plant based on CF4 warm separation has been considered as

a first option with respect to CF4 liquefaction for economical reasons. Extensive tests were per-
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formed over few years on single elements and, finally, on a small scale prototype to validate the

working principle [66]. During the years 2011-2012 the real plant was built and commissioned.

It comprises five modules with specific functions. The first four modules are for the CF4 recu-

peration, while the last one is used for the injection of the recuperated CF4 in the gas mixture

at the CSC mixer level. It was estimated that the plant cost should be paid back in 2-3 years of

operation.

The CF4 recuperation process is divided into four steps (Figure 5.13):

Phase 1: Membrane module for CO2 bulk separation. The first step is to reduce the CO2

concentration (50%) to a very low value (about 1%). This is achieved using a gas sep-

aration membrane, which consists of many thin straw tubes where the CO2 can diffuse

through the straw wall while the CF4 pass through without interacting (Figure 5.11).

(a) (b)

Figure 5.11: (a) Comparison of the gas chromatograms at the input (green line) and output (blue

line) of the membrane module. Most of the CO2 has been absorbed. The mixture composition

changes from CO2/Ar/CF4 (50/40/10) to CO2/Ar/CF4 (<1/60/40). (b) A zoomed view of the

CO2 peak: a small concentration of CO2 is still present (< 1%).

Phase 2: Molecular Sieve 4Å for CO2 residual separation. The CO2 has to be completely

removed from the gas mixture to ensure a pure recuperated CF4. A Molecular Sieve 4Å

cleaning agent9 is used to absorb CO2 efficiently without affecting the CF4 component

(Figure 5.12).

Phase 3a: Molecular Sieve 13X for CF4 adsorption and recuperation. The gas exiting the

MS 4Å column is a mixture of Ar (65%) and CF4 (35%), with some ppm of N2. The

mixture is sent to a second absorber module, filled with Molecular Sieve 13X (i.e. pore

size is about 10Å ), which absorbs only CF4 while Ar and N2 remain volatile and are

vented from the cartridge. The CF4 is therefore absorbed and then extracted from the

Molecular Sieve 13X pores.

Phase 3b: CF4 compression and storage. After the CF4 has been extracted from the cartridge,

it is compressed and stored into a battery of 12 cylinders suitable for pressurized gas.

9Molecular sieves are micro-porous alumina-silicate used as commercial absorbers. The electrical charge in-

teraction between the surface and the gas phase produces a Van der Waals force that retains some types of gas

molecules. The Molecular Sieve 4Å is expected to adsorb CO2 efficiently without affecting the CF4 component.
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(a) (b)

Figure 5.12: (a) Comparison of the gas chromatograms at the input (blue line) and output (green

line) of the CO2 absorber module. The Molecular Sieve 4Å does not absorb Ar and CF4. (b) A

zoomed view near the CO2 peak: the CO2 is completely absorbed by the purifier.

Figure 5.13: Overview of the different phases necessaries to separate the CF4 from the CMS

CSC gas mixture.

The end of the run cycle is set when the relative pressure inside the Molecular Sieve 13X

cartridge is equal to zero or to the pressure in the supply line to the module. In this method

the molecular sieve is not yet fully saturated and therefore CF4 continues to be adsorbed until

the end of the cycle, leaving only Ar in the empty space. Figure 5.14 shows the trend of the

recovered gas during Phase 3a: at the start-up of the recuperation the CF4 concentration is zero

and rapidly increases only when the pressure in the cartridge is below -800mbar. The main

impurity contained in the recuperated CF4 is N2 with a concentration of about 0.5%, which

results in 0.05% in the final gas mixture concentration.

The CF4 recuperation plant is operational since June 2012. A total of about 100m3, which

corresponds to a recuperation efficiency of about 70%, has been recuperated during LHC Run1
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Figure 5.14: Composition of the recovered gas during the recuperation process of Phase 3a. At

the beginning of the phase, the CF4 concentration is equal to zero (only Ar is extracted from

the empty spaces present in the molecular sieve) while after some time it reaches almost 100%.

The N2 concentration shows a peak after about 30min and after it decreases to about 0.5%.

and at the beginning of LS1. The quality of the recuperated CF4 has been analyzed with the GC:

the CF4 is pure at 90% with about 10% of Ar and few ppm of N2. An additional MFC has been

installed in the CSC mixer to allow the re-injection of the recuperated CF4 in the gas system

taking into account the Ar concentration [67]. During most of LS1 the CSC detectors have

been operated with reduced CF4 concentration to diminish the operational costs. Starting from

October 2014, the CF4 recuperated has been injected into the CSC gas system in a percentage of

5% and no change in the CSC performance has been observed, as it will be described in detail

in Section 6.1.5.

5.7 Strategies for consolidation of gas systems and detectors
working conditions at LHC

Gas mixtures and gas systems are key components for a successful operation of all gaseous

detectors. This is particularly important at the LHC experiments where muon systems are ex-

pected to work for many decades with an always increasing particle rate. In this context, the

monitoring of mixture composition and quality of gas supply are of primary importance, es-

pecially when gas recirculation or gas recuperation systems are used to contain operation costs

and gas emissions. These implementations represent the current strategy to optimize the present

systems ensuring reliable operation during Run 2 and future HL-LHC phase. However since

greenhouse gases with GWP greater than 1500 will be banned in the near future, more drastic

solutions are needed. Two R&D programs exploring new possibilities will be discussed in next

chapter.

Gas recirculation and recuperation systems might lead to the accumulation of certain impu-

rities, which require the presence of purifier modules together with the establishment of com-

plex cycle parameters relying on gas monitoring tools for their measurements (Section 5.2).

The use of several available analysis tools (O2, H2O analyzers and GC) has been discussed in

this chapter together with their advantages and limitations. Only by merging the information
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coming from different devices, a good understanding can be achieved. The present monitoring

techniques show two main critical points:

• the sampling mechanism introduces a delay to the moment in which the information is

available and therefore the potential problem can have already affected the detector gas

volume;

• the gas mixture chemical composition is not always the best indicator. It is possible to

have pollutants present in very low concentrations (< 1 ppm) that cannot be detected by

standard techniques and can nevertheless dramatically affect the detector performance

(i.e. impurities causing aging).

A complementary method, which overcomes these limitations, will be discussed in the next

chapter. It consists of adding a monitoring Single Wire Proportional Chamber that allows to

detect very low concentrations of impurities in a short time.
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Chapter 6

Optimization of gas systems and gaseous
detectors operation for the HL-LHC phase

As of today, the LHC muon system upgrades foreseen for the HL-LHC phase concern mainly

the read-out systems and the addition of new detector stations. Therefore it is of crucial impor-

tance to maintain the existing detectors in good operation conditions and to avoid any possible

source of damaging. As already discussed, one of the most crucial parameters is the gas mixture

composition. In the previous chapter, advantages and limitations of gas monitoring tools used

for the LHC gas systems have been discussed. A complementary solution, based on Single Wire

Proportional Chamber sensitivity to gas mixture variations and presence of pollutants will be

discussed in this chapter together with its applications at LHC experiments and R&D studies.

Beyond the gas mixture quality, the LHC gaseous detectors have to handle with the use of

greenhouse gases. New detector technologies, which have been selected for the future upgrades,

need to be validated for operation with gas recirculation. R&D studies addressing this topic for

the specific case of large GEM detector systems will be discussed in this chapter.

The RPC community is facing a different issue: the R134a, which is the main component

(∼95%) of the RPC gas mixture, will be soon banned. The evaluation of detector performance

with a new environmental friendly Freon will be here presented.

6.1 An online gas monitoring system for the LHC gas detec-
tors

The monitoring of the gas mixture at LHC is usually performed with O2 and H2O analyzers

as well as gas chromatograph when necessary. The GC cannot work continuously on one gas

stream, i.e. each gas line is analyzed every few days for practical reasons. However for many

gaseous detectors, a minimum variation in the gas mixture composition can cause a sudden

degradation of their performance. The present study is motivated by the need of developing

a system for continuos monitoring of the most critical gas streams. Single Wire Proportional

Chambers (SWPCs) are used since they revealed to be extremely sensitive to standard impurities

(O2, H2O, N2, etc.) as well as specific chemical components not detected by usual analysis tools

because of extremely low concentration (<1 ppm) and complexity [68], [69].
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6.1.1 Principle of signal formation and gas mixture composition

In this section the working principles of SWPC and the guideline for the definition of the gas

mixture will be briefly introduced [70], [71], [72]. In a SWPC primary electrons, created by the

passage of ionizing particles, drift towards the anode wire under the effect of the electric field.

Only when the electrons reach the region close to the anode where the electric field is very high

they can gain enough energy to produce secondary ionization (charge multiplication process).

The multiplication region is a very small volume close to the wire. For a cylindrical geometry,

the electric field is given by

E (r) =
V

ln
(
b
a

) 1
r

(6.1)

where V is the applied potential, a is the anode wire radius and b is the cathode inner radius. The

minimum electric field required to support avalanche formation is of the order of 105-106 V/m.

Therefore, for a typical SWPC (V∼2000V, a∼30μm, b∼30 cm), the multiplication region is

less than 10 wire radii, i.e. only 0.1% of the total detector volume.

Single wire chambers are proportional counters. The signal collected is proportional to the

primary ionization. The multiplication process is described by the first Townsend coefficient α,

which is the number of electrons produced by a single electron traveling 1 cm along a uniform

electric field. Conversely, α−1 is the electron mean free path for ionization in the gas. The

ionization cross section has a maximum for electron energies around 100 eV for most gases.

This energy is reached very close to the wire (tens of μm from the anode wire for anode voltages

in the kV range) where the avalanche can start. Electron attachment typically starts at electron

energies of 2-7 eV that occurs at about 1-2mm from the wire.

The Townsend coefficient summarizes the effect of excitation and ionization cross-sections

for electrons that have acquired sufficient energy in the field. It depends on the electric field

E. For intense electric fields, like close to the anode region, it is possible to assume α directly

proportional to E. Under this assumption the charge multiplication factor G can be written as

lnG =
ln 2

ln b
a

V

ΔV
ln

V

ln b
a
aEmin (ρo)

ρ
ρo

(6.2)

Since very often detectors are operated at atmospheric pressure and without temperature

control, it is of particular interest the effect on the gas multiplication factor induced by small

changes in the gas density. From 6.2 the following relation can be obtained

dG

G
= − λ ln 2

ΔV 2πε0

dρ

ρ
(6.3)

which contains a linear dependency between G and T/p

G = A
Ti

Pi

+B (6.4)

Equation 6.4 will be used in the following for temperature and pressure variation correction.

Charge multiplication is not only related to electric field, but also to the gas mixture used
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to operate the detector. Indeed the gas mixture is the medium in which ionization, drift and

amplification processes develop. Many gas mixtures are successfully used for wire chambers

where it is often possible to find a noble gas (typically Ar) mixed with a quench gas (inorganic

like CO2 or organic like hydrocarbons). These mixtures fulfill the basic requirement of having

the electron lifetime sufficiently long and to allow stable amplification process. Quench gases

are needed because excited noble gases can only return to the ground state through emission of

a photon. The minimum energy of the emitted photon is 11.6 eV for Ar which is well above

the ionization potential for any metal constituting the cathode. Photoelectrons can therefore be

extracted from the cathode and initiate a new avalanche. Moreover, ions of noble atoms will

drift to the cathode and are neutralized by extracting an electron. The balance of energy is either

radiated as a photon resulting in photoelectrons or by extraction of another electron from the

cathode. All these processes result in delayed spurious avalanches. Even for moderate gains, the

probability of these processes is high enough to create a permanent discharge. Weakly bound

polyatomic molecules can absorb photons over a wide range of energies through excitations

of rotational and vibrational levels. In conclusion, the addition of a quencher will allow the

absorption of the photons, which is essential for high gain and stable operation. When possible

organic quench gases are avoided since they are likely to produce long term worsening of the

detector performance (aging).

Another important choice for the gas mixture concerns the drift velocity and its dependence

on the electric field. For many applications is preferable to have high drift velocity (it improves

time resolution) and stability regardless the electric field. Ar/CF4 based mixtures fulfill these

requirements. The high electron drift velocity in CF4-based mixtures, which could also contain

a large fraction of a gas without dipole or quadrupole moments (like Ar, Xe, CH4, etc), is a

result of two effects.

The electron drift velocity is a function of the electric field, the concentration and the mo-

mentum transfer cross section σm. The momentum transfer cross section for CF4 has a very deep

minimum of 1.1×10−17 cm2 at electron energies of about 0.13 eV [73] as shown in Figure 6.1

(Ramsauer effect). Furthermore, the CF4 rotational excitation cross section is small because of

the absence of dipole and quadrupole momentums [74]. The large vibrational excitation cross

section, which increases rapidly in the energy region around 0.15 eV [75], [76] leads to high

energy losses of the electron. Moreover, the very strong inelastic scattering peaking at 0.25 eV

keeps the electron energy low, slightly above the gas thermal energy. Therefore, the electron

drift velocity is high only if electron energy is at the Ramsauer minimum. This effect exists also

in other gases. However, it is not so pronounced because the inelastic scattering cross sections

increase not so rapidly as in CF4 when increasing the electron energy (see, for example, [78]

and [79] for CH4 and C2H6, respectively).

An addition of CF4 to Ar results in cooling down the free electrons to energies near the

Ramsauer minimum leading to a strong increase in the electron drift velocity [80].

CO2, often used as a quench gas, has a large momentum transfer cross section (Table 6.2).

Thus, an addition of this gas to a fast gas can result in a considerable change of the electron

drift velocity. Furthermore, contaminants like N2 and O2 would only slightly change the drift

velocity; while the presence of water vapor in a concentration of one part per thousand could

result in a loss of the electron drift velocity by several percent.

Gases containing electronegative species (for example fluorine) are responsible of capturing
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Figure 6.1: Electron impact cross sections for CF4 [77] where σsc,t is the total scattering cross

section, σm is the momentum transfer cross section, σe,int is the total elastic scattering cross

section, σvib,dir,t is the total cross section for vibrational excitation, σvib,indir is the indirect elec-

tron scattering cross section through the negative ion resonances, σi,t is the total ionization cross

section, σa,t is the total electron attachment cross section, σdiss,neut,t is the total cross section for

production of neutral species.

Gas σm,min (×10−17 cm2) ε (eV)

CF4 1.1 0.13

Ar 1.5 0.3

Kr 6 0.6

Xe 15 0.7

CH4 10 0.2

C2H6 10 0.13

Table 6.1: Momentum transfer cross section and electron energy corresponding to the Ramsauer

minima in different gases. Gases H2O and CO2 are not presented here since the Ramsauer effect

is not pronounced in them (the Ramsauer effect occurs when the molecules have zero dipole and

quadrupole moments) [77].

Gas Ar CF4 CO2 CH4 N2 O2 H2O

σm×10−17 cm2 2 1.3 400 12 70 50 1700

Table 6.2: Momentum transfer cross sections of different gases measured at the electron-impact

energy of 0.13 eV, the mean electron energy in the counting gas Ar/CO2/CF4 (65/5/30) at a

distance of 2.5mm form the wire [77].

free electrons, limiting the avalanche growth. This effect can be described by an effective

ionization coefficient αN = α-η, where η is the probability of attachment per unit length.
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6.1.2 Experimental set-up

Single Wire Proportional Counter (SWPC) is the simplest gaseous detector geometry: a radial

electric field created by a wire under voltage ensures the conditions for the avalanche process to

start in presence of ionization from a particle passing in the gas volume. The SWPC geometry as

well as the electronics to acquire the signal are usually very simple. The relatively simple design

and their high sensitivity to any type of pollutants make SWPCs very attractive for mixture

monitoring purpose.

The detector chosen for this study is shown in Figure 6.2. The main body and the detector’s

windows are made in stainless steel 316L. The configuration of the electric field and the large

active volume are optimized for studying break-up and polymerization processes. Indeed the

detector’s geometry offers a large drift region where pollutants can effectively act through elec-

tron attachment, dissociative processes or catalytic behavior, giving a very sensitive detector

to impurities. The wire material and diameter can be freely chosen. During the present study

a 30μm diameter Tungsten Au-plated wire is used since the Au layer ensure a good chemical

stability with respect to most chemical reactions. Two 25μm thick stainless windows are used

to seal the chamber allowing radiation to pass through. The high voltage feedthrough needed to

ensure the electrical insulation between the wire and the main body of the detector are specifi-

cally designed for the geometry used. They are glass caps with inside a Kovar1 tube where the

wire passes through and it is fixed by clamping the two pins at the extremities. The gas tight-

ness of the detector is assured by custom-made “helicoflex” gasket inserted between the main

body and the windows as well as by glue deposition around the pin where the wire is clamped.

The use of glue represents the most critical step. Indeed glues can potentially outgas organic

chemical components that are then in direct contact with the gas mixture. Since the outgassing

components are often responsible for worsening the detector performance, the selection of the

glue is of vital importance. In this specific case, an epoxy glue (AW106+HV953U) has been

selected from literature [81] and re-validated in the present set-up. A dedicated box allows to

supply the high voltage (HV) and to read the electrical signal from the wire.

Figure 6.2: Photography of the SWPC used for the gas monitoring with highlight on the main

components.

1Kovar is a Nickel-Cobalt ferrous alloy designed to be compatible with the thermal expansion characteristics

of borosilicate glass. It allows direct mechanical connections over a large temperature ranges.
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The SWPC is irradiated with a 55Fe radioactive source having an activity of about 1MBq

and a round shape of 2 cm diameter. The radioactive source can be placed along the SWPC in

five different positions (Figure 6.3) allowing to irradiate different areas of the wire. 55Fe decays

in 55Mn emitting 5.9 keV photons. The 55Fe pulse height spectra, as well as the anode current,

are recorded every hour.

1 2 3 4 5

Figure 6.3: SWPC sketch with the possible position of the 55Fe source along the wire length.

The signal produced by the SWPC is amplified into two different stages and it is digitalized

using a multichannel analyzer (CAEN Waveform Desktop Digitizer DT57242). A C++ based

software has been developed for the data acquisition and analysis. The DAQ system records

also environmental parameters (temperature and atmospheric pressure) as well as several gas

parameters: detector operation pressure, mixture composition, gas flow, O2 and H2O concen-

trations.

Several gas mixtures have been used to characterize the SWPC. The basic gas mixture is

70% Ar and 30% CO2. CF4 has been added in several concentration to test the feasibility of

using SWPC as gas monitoring tool for gas mixtures containing CF4.

Preliminarily to any study about detector aging, it is mandatory to build a test set-up demon-

strating stable detector performance. This step can be achieved selecting only extremely clean

components. The gas system has been built with certified clean gas components3. A premixed

bottle has been used to minimize the complexity of the gas system limiting the number of com-

ponents used. Ar/CO2/CF4 (45/15/40) gas mixture has been chosen because it is the standard

for operation of GEM detectors, which offered the possibility of an immediate application of the

present study (Section 6.2). SWPC has been irradiated using a 55Fe radioactive source with an

activity of about 1MBq for about 10mC/cm of integrated charge4, recording the pulse-charge

2The DT5724 is a 4 Channel 14 bit 100 MS/s Desktop Waveform Digitizer with 2.25 Vpp single ended input

dynamics on MCX coaxial connectors.
3The pressure reducer and the rotamer have been O2 degreased while stainless steel pipes and connectors have

been washed in an ultrasonic bath and then rinsed with demineralized water.
4The expected accumulated charge for detector operated at LHC depends on their position in the experiment.

For example in barrel detectors the integrated charge over 10 LHC years is between 50 and 500mC/cm while in

endcap detectors is in general at least a factor 10 higher. The present test is aiming in identifying detectors able to

94



spectrum and all the parameters that can affect the detector behavior. The pulse-charge spec-

trum remains stable overall the working period (Figure 6.4) demonstrating that the detector and

the gas system do not contain components that could affect its performance.
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Figure 6.4: Normalized gain as a function of integrated charge for a SWPC working with a gas

mixture of Ar/CO2/CF4 (45/15/40).

6.1.3 SWPC behavior with variations in gas mixture concentration

SWPCs have been tested with different gas mixtures and in presence of standard pollutants,

as O2 and H2O, to quantify their sensitivity. The basic gas components for many detector

systems at LHC are based on a noble gas and CO2, with the exception of RPC and Cherenkov

detectors. Two Ar/CO2 mixtures as well as mixtures with the addition of CF4 have been studied.

The efficiency curves as a function of the high voltage are shown in Figure 6.5(a). A 15%

increase of CO2 in Ar/CO2 mixtures produces an increase of about 300V in the working point;

indeed CO2, being a quench gas (Section 6.1.1), absorbs photons limiting secondary avalanches.

The addition of CF4 to the mixture leads to a further increase in the HV working point since

the electron impact inelastic cross section in CF4 is higher than in Ar (this is due to the high

electronegativity of fluorine atoms, which capture electrons limiting the avalanche growth).

Figure 6.5(b) shows the gas multiplication factor obtained using different gas mixtures. The

full efficiency is usually achieved at a gas gain of about 104.

The SWPC charge-pulse spectrum is used to verify and quantify the detector performance.

Figure 6.6(a) shows an example of a charge-pulse spectrum of a SWPC operated with an Ar/CO2

(70/30) gas mixture. The main peak is given by the 5.9 keV photons while the smaller one is

the Ar escape peak5, located at an energy of about 3 keV. The mean of the spectrum’s main

peak, which is proportional to the SWPC effective gain, moves depending on temperature and

pressure variations (equation 6.4) as it is visible in Figure 6.6(b). For the following experimental

spot aging effects due to the presence of tiny concentration of impurities (below 1 ppm) and not to validate detector

operation for LHC conditions.
5If the energy of the incoming X-rays is greater than the absorption edge of the detector gas, it can produce

characteristic X-rays from the gas and produce what is termed an escape peak. For example, Ec for Ar is 3.2 keV

and any X-rays with higher energy can excite Ar-Ka X-rays (E = 2.95 keV). The production of characteristic X-

rays from the gas decreases the apparent energy of the incident X-ray and yields a separate peak offset towards

lower energy by 3.2 keV.
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Figure 6.5: SWPC (a) efficiency and (b) gas multiplication factor for two gas mixtures.

results, the mean peak value and the gain are always corrected by temperature and pressure

fluctuations.
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Figure 6.6: (a) Charge-height spectrum of a SWPC operated with an Ar/CO2 (70/30) gas mix-

ture. (b) Means of the pulse-height spectrum for a SWPC as a function of T/P for two gas

mixtures.

The sensitivity of SWPC to small changes in the gas composition has been studied for

Ar/CO2/CF4 (45/15/40) gas mixture, varying the CF4 concentration and maintaining constant

the Ar/CO2 fraction as well as the applied HV (Figure 6.7(a)). The mean of the pulse-charge

spectrum decreases with the increase of CF4 concentration since CF4 is an electronegative gas,

which captures free electrons and reduces the number of primary electron-ion couples. The

energy resolution6 remains basically constant. The parameters of the linear fit in Figure 6.7(a)

allow to quantify the SWPC sensitivity to small variation of the CF4 concentration. A variation

of±1% of CF4 implies a change of about±3% in the average pulse charge. Deviations of about

0.1% of CF4 concentration are still detectable with the present system.

6The energy resolution is defined as the Full Width at Half Maximum (FWHM) of the spectrum divided by the

mean value.

96



SWPCs are also very sensitivity to the presence of O2 and H2O in the gas mixture. Fig-

ure 6.7(b) shows the signal variation and energy resolution as a function of the O2 concentration

for a SWPC operated with Ar/CO2/CF4 (55/40/5) gas mixture. Being also O2 an electronegative

gas, it partially acts as CF4 resulting in a decrease of the pulse-charge. In addition, the higher

electron impact cross section for O2 (Table 6.2) is the cause of a higher SWPC sensitivity to this

gas. A variation of 100 ppm implies a decrease of about 7.5% of the pulse-charge mean value.
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Figure 6.7: (a) Pulse charge spectrum mean and energy resolution for SWPC as a function

of CF4 variation considering Ar/CO2/CF4 (45/15/40) as the base gas mixture (CF4 variation

equal to zero) and at constant electric field. (b) Signal variation and energy resolution of SWPC

spectrum as a function of O2 concentration for Ar/CO2/CF4 (55/40/5) gas mixture considering

150 ppm as the reference O2 concentration.

6.1.4 SWPC behavior in presence of impurities

SWPCs are also very sensitive to the presence of pollutants, which can be released by external

components (for example parts of the gas systems) or by the detector material itself. These pol-

lutants can drastically affect the detector operation eventually leading to irreversible worsening

of its performance. Systematic studies have been conducted to qualify gas system materials and

glues used for sealing the SWPC.

Effects of detector assembly material outgassing

In the SWPC used for these studies between the pins and the internal Kovar tube of the HV

feedthrough there is only a metal-metal contact that cannot ensure leak tightness (Figure 6.2).

Usually an epoxy glue is applied to close these channels. Two different materials, which are

already known to outgas, have been tested to quantify the aging effects and to be a reference for

future studies: the epoxy glue Araldite AW103 with the hardener HY991 and a soldering paste

Sn/Pb+Ag without flux. Figure 6.8 shows the trend of the normalized gas gain as a function of

the integrated charge for the two materials. In the case of AW103+HY991, the gas multiplica-

tion is stable up to an integrated charge of about 0.5mC/cm. After, the gain decreases suddenly

by about 20% and then it stabilizes. The gain drop is caused by the outgassing of epoxy glue,
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which releases pollutants inside the detector gas volume. The SWPC is left under irradiation

for a period equivalent to 3mC/cm integrated charge. The radioactive source is then moved to

a different position along the wire (position 4 in Figure 6.3). As it happened before, after an in-

tegrated charge of 0.5mC/cm, the gain starts to decrease until a stable normalized gain of 0.9 is

reached. The lower gain drop can be explained with the decrease of the epoxy glue’s outgassing.

The movement of the radioactive source to two different wire positions demonstrates that radi-

ation is needed to accelerate aging phenomena (in this case an accumulated charge of 0.5mC

is enough to see the aging effects). A similar test has been performed for the soldering paste

(Figure 6.8(b)). The gas gain starts to decrease after an integrated charge of about 1mC/cm

until a stability is reached at a normalized gain of 0.8. In this case, the radioactive source is

moved to the bottom of the SWPC7 and the normalized gain does not restore demonstrating that

the radioactive source position with respect to the wire sides does not have an influence.
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Figure 6.8: Normalized gain as a function of integrated charge when the (a) glue Araldite

AW103-1 with the hardener HY991 and the (b) soldering paste Sn/Pb+Ag without flux are used

in the SWPC.

Figure 6.9 shows the pulse-charge spectra respectively at the beginning of operation, during

the gain decrease phase and when a normalized gain of 0.8 is reached. The first pulse-charge

spectrum has the well-known Gaussian distribution shape while the second spectrum shows a

first indication of aging effect with the deterioration of the resolution as well as the shift of the

main peak to lower values. When the aging process carries on, an asymmetry in the pulse-charge

distribution appears due to the development of a second peak at lower charge with respect to

the initial main peak. The charge difference between the two peaks could also increase with

further irradiation. When the radioactive source is moved in a different position along the wire,

the pulse-charge distribution is restored to the gaussian shape.

As expected, the aging effect is localized to the portion of wire irradiated. It is easy to

argue that the gain drop is induced by a change of the wire diameter through deposition of

pollutants. The presence of a second peak in the pulse-charge distribution is caused by a non

uniform covering of the anode wire surface. Furthermore, the contaminant layer could affect the

gas gain through an increase in the surface resistivity of both anode wire and cathode (Malter

effect).

7The SWPC has two windows, allowing radiation on both side of the detector.
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Figure 6.9: Evolution of the pulse-charge spectrum during aging process.

The aging tests with the Araldite AW103 and the soldering paste demonstrate the sensitivity

of the SWPC to the minor presence of pollutants and allowed to quantify the effects. Aging ap-

pears only after a couple of days of operation when an integrated charge of about 0.5-1 mC/cm

has been accumulated. The gas gain loss observed is about 20-25%, after which a stable op-

eration is achieved. The effects of the movement of the source along the wire denote how the

aging process in the SWPC affects only the irradiated area.

After the aging validation test, a two component epoxy paste adhesive, namely AW 106 with

the hardener HV 953U (also known as Araldite 2011), has been tested for the application around

the pin connector since it is known to not produce outgassing from previous studies [81]. The

SWPC does not show any sign of aging after an accumulated charge of 20mC/cm demonstrating

the high reliability of this component for gaseous detector construction.

Qualitative analysis with scanning electron microscope (SEM) and energy-dispersive X-

ray spectroscopy (EDS) detector have been performed on the wire and cathode window of the

SWPC tested with the Araldite AW103+HY991. A new clean wire has been used as reference.

A detailed observation at high magnification has been performed along the entire wire length.

In the two sites exposed to the 55Fe radiation (source positions 3 and 4 in Figure 6.3) several

areas with a different surface tomography with respect to the overall wire surface were found

(Figure 6.10).
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(a) (b)

Figure 6.10: SEM images at (a) 200 x and (b) 1000 x for a zone of the wire located in position

3. The bright area is mainly Au while the dark area is a carbon layer. The bright area spot has a

dimension of about 100μm and it corresponds to the irradiated area [82].

The SEM and EDS analysis on the SWPC wire revealed the presence of a uniformly dis-

tributed pollution of carbon with presence of fluorine along all wire except in the irradiated

areas where the EDS analysis is very similar to the one performed on the clean reference wire

(Au coated W wire). The SWPC wire diameter has been estimated to be about 31μm where the

carbon deposit is present and 30μm in the irradiated area (the diameter of the reference clean

wire is 30μm). The pollution along the wire has been created by the outgassing of the epoxy

glue as it was already found in [83]. On the contrary, in presence of radiation, the CF4 acts as

an etching additive removing the deposition of contaminants.

The inner part of the SWPC cathode window presented white areas, as shown in Figure 6.11.

The chemical composition has been studied by EDS analysis and compared with a reference

analysis of a clean region. EDS analysis on clean region matches the expected composition

(stainless steel 316L) while the EDS analysis in the polluted area shows traces of Potassium

and Zinc, probably due to the presence of these materials in the cleaning bath used to wash the

detector components after machining.

Figure 6.11: Visual appearance of the SWPC window surface and location of the sites of interest

(SOI) where EDS analysis have been performed.

The deposits found on both anode and cathode of SWPC have been created during the

avalanche process. Indeed, the aging phenomena are very complex physical and chemical

100



processes involving a huge variety of variables as the cross-section, the electron and photon

energies, the electrostatic forces, the dipole moments, the chemical reactivity of atoms and

molecules, etc. The plasma chemistry is usually considered as a starting point to explain aging

processes. However, similarity between plasma chemistry and avalanche process are most often

qualitative.

Effects of gas system components

The detector materials are not the only elements that could affect the detector operation. The

gas system plays an important role since it could deliver a wrong gas mixture as well as release

different types of pollutants. The clean gas system used for the previous tests has been modi-

fied inserting a not-degreased flowmeter in the gas stream line going to the detector. In these

conditions, the SWPC has been irradiated with the source in position 3 (Figure 6.12). The gas

gain starts to decrease after an integrated charge of 0.5mC/cm until a stable normalized gain

is reached at 0.7. The gain drop is caused by the insertion of the not-degreased flowmeter that

releases impurities. If this flowmeter is substituted with one degreased and the source is moved

to a different position along the wire not affected by the aging, the gas gain stays stable at its

initial value. The test is useful to demonstrate the importance of having a clean gas system and

it can be reproduced to evaluate each gas system component that has to be installed in the LHC

experiments.
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Figure 6.12: Normalized gain as a function of integrated charge during the test of a gas system

component (a not-degreased flowmeter). The SWPC has a gain drop due to pollutants released

by the flowmeter. The test has been stopped and the not-degreased flowmeter has been replaced

with a degreased one. The source was then moved to position 4 and no gain loss is observed.

Summary of processes leading to aging phenomena

The typical physical processes that play an important role in the aging phenomena are [77]:

Production of photons Photons are responsible for the secondary electron emission processes.

The typical processes responsible for the photon production are electron-atom collisions

in the avalanches (e−+A → e−+A∗ → e−+A+γ), positive ion-electron recombination

at the cathode (A+ + cathode (e−) → A+ γ) and positive ion-electron recombination in

the avalanches (e− + A+ → A∗ + γ).
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Secondary electron emission The secondary electron emission processes are responsible for

the creation of positive feedback mechanisms and avalanche growth. Their typical exam-

ples are photons producing secondary electrons through photoelectric effect, avalanche

photons interacting with the gas as well as the Malter effect [84].

These two mechanisms can cause several processes in the gas volume:

Dissociation Dissociation refers to the formation of molecular fragments under the impact of

electron, photon or heat. In a typical avalanche process, electrons and photons have

enough energy to break the typical molecular bonds.

Polymerization Plasma polymerization refers to the formation and deposition of polymeric

material under the influence of a plasma. The reactive species formed by dissociation

propagate into the volume where monomers are added to a growing polymer chain and

then two radicals combine. The radicals do not carry net electric charge, they often have

large dipole moment, are attracted by electrodes and they are chemically very active. The

polymers are usually resistant to most chemicals and have excellent adhesion to surfaces.

Etching Etching refers to a complex set of chemical process in which gas-phase species react

with a substrate to form volatile products [85], [86].

Considering the gas mixture used for the SWPC, some qualitative information on the pos-

sible reactions occurred during operation can be extracted. Ar and CO2 do not produce poly-

merization unless a hydrocarbon contamination is present. On the contrary CF4 can play an

important role both in the polymerization and etching starting from the dissociative attachment

via the following processes

CF4 + e → CF3 + F− (6.5)

CF4 + e → CF−
3 + F (6.6)

occurring with approximately equal probability and from dissociative ionization:

e+ CF4 → 2e+ CF+
4 → 2e+ CF+

3 + F (6.7)

Other processes can occur in presence of CF4 as the reaction of HF when water or hydrocar-

bons are present or resistive metal fluorides on nearby electrodes, making a very complicated

chemistry. Nevertheless, according to plasma chemistry, CF4 is an excellent etching additive

and therefore it should help to remove possible polymerization deposits. Also O2 can produce

etching through formation of O3.

O2 and H2O, which are usually present in the gas mixture as contaminant (with concentra-

tion of hundreds ppm), can start new processes. The attachment of electrons to free molecular

oxygen, which is a high electro-negative gas, is described by two processes: two-body and

three-body attachment. In the first case, the reaction is

e− +O2 → O−∗
2 → O +O− (6.8)
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having an electron threshold energy of 3.6 eV. In case of lower electron energies other mecha-

nisms are available where the excited oxygen molecule can de-excite by exciting a third body

or transfer the release energy kinetically. O2 usually reacts with hydrocarbons and end products

can be CO, CO2, H2O, H2, which being stable and volatile are not responsible for polymeric

layer formation. In presence of CFn components (n=1, 2, 3), the O2 can increase the fluorine

production as [87]:

CFn +O2 →

⎧⎪⎪⎨
⎪⎪⎩

COF2

CO

CO2

⎫⎪⎪⎬
⎪⎪⎭+ F, F2 (6.9)

where, for example, CO and CO2 are removed by gas flow. H2O can limit the Malter effect

by increasing the cathode surface conductivity. H2O does not polymerize and its large dipole

moment cools electrons with less than 1 eV. However, in presence of fluorine, the following

reaction can occur

H2O + F → HF +OH (6.10)

and even if hydrofluoric acid (HF) itself is not very reactive when reacting with H2O, it is re-

sponsible in general for etching, in particular towards glass material (if present in the detector).

The present study allowed to reproduce and quantify aging processes due to known prob-

lematic components as well as to build a clean and sensitive8 set-up for real gas monitoring

application, particularly for the LHC experiments.

6.1.5 Monitoring of CMS CSC gas mixture

The first application of the SWPC as monitoring tool has been implemented in the CMS ex-

periment for the Cathode Strip Chamber (CSC) operated with Ar/CO2/CF4 (40/50/10). The

monitoring of CSC gas mixture is particularly important because gas recirculation and recuper-

ation systems are used. Indeed:

• gas recirculation requires mixture purification and therefore the necessity to control func-

tionality and effectiveness of the purifier modules;

• the quality of recuperated CF4 (Section 5.6) must be granted for a safe and long-term

detector operation.

Two SWPCs have been installed: after the mixer and on the supply line to the detector

(i.e. after purifier module and injection of the small fraction of fresh mixture, Figure 6.13).

This configuration allows to monitor the fresh gas mixture injected and the one sent to the

detectors. The new monitoring system is used in parallel with standard analysis tools (O2 and

H2O analyzers and GC).

The two SWPCs are irradiated with a 3MBq 109Cd radioactive source emitting gammas of

22 keV (83%). The counting rate observed for each SWPC is about 400Hz. Figure 6.14(a)

8The sensitivity to gas mixture variations depends on the gas type varying from 100 ppm (O2) and 0.1% (CF4).

In presence of pollutants causing aging the set-up sensitivity is below 1 ppm for all tested materials.
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Figure 6.13: Schematic view of the CSC gas system. The position of the two SWPCs is in-

dicated in the schematic. SWPC “After Mixer” is located right after the mixer to analyze the

fresh gas mixture injected into the gas system while SWPC “Supply to the Detector” is located

after the purifier and the fresh mixture line to analyze the gas that is directly injected into the

detector.

shows the pulse-charge spectrum obtained at the efficiency plateau. A clear signal is visible and

the mean value can be used for monitoring the detector performance.

Signal Amplitude [ADC counts]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r o

f E
ve

nt
s

0

20

40

60

80

100

120

(a)

High Voltage [V]

1600 1800 2000 2200 2400 2600 2800

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

SWPC After Mixer

SWPC Supply to the Detector

(b)

Figure 6.14: (a) Pulse-height spectrum of a SWPC irradiated with a 109Cd radioactive source.

The 22 eV gamma peak is clearly visible. (b) Efficiency of the two SWPCs used for the gas

monitoring in the CMS CSC gas system. The names “After mixer” and “Supply to the Detector”

refer to their position in the gas system.

After the installation of the new fourth CSC endcap layer (ME4), the SWPCs set-up has been

employed to re-tune and monitor the purifier module. Figure 6.15(a) shows the normalized gain

of the two monitoring chambers. The SWPC “After Mixer” has a stable gain while fluctuations

between 0.65 and 1.15 are visible for the SWPC “Supply to the Detector”. This behavior can
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be easily correlated to instability in the O2 concentration9 produced by a malfunctioning of the

purifier module (Figure 6.15(b)).
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Figure 6.15: (a) Normalized gas gain as a function of time for the two SWPCs installed in

the CMS CSC gas lines (“After Mixer” and “Supply to the Detector”). The SWPC “Supply

to the Detector” has fluctuations in the gas gain. (b) Trend of SWPC normalized gain and O2

concentration in the gas mixture “Supply to the Detector” where the purifier cycles are also

indicated.

Detailed tests have been conducted to find the new best settings for optimizing the purifier

functionalities. Figure 6.16 shows a schematic view of the purifier module with the main pa-

rameters highlighted. The CSC purifier hosts two 24 l cartridges filled with Ni-Al2O3 catalyst,

mainly devoted to O2 absorption. This type of cleaning agent is usually regenerated at high

temperature by flushing H2. It has been found that a temperature of 240°C combined with an

increase of about 30% in H2 flow and in regeneration time allowed to restore good performance.

Also the amount of gas mixture, which is passing through the purifier, has been increased by

20%.

The stability of the normalized gain during the first period of Figure 6.17 confirms the

effectiveness of the new settings. Starting from these conditions, the use of recuperated CF4 is

possible. The two SWPCs show stable performance all along the period in which recuperated

CF4 is used (Figure 6.17). Nevertheless a minor increase in the gas gain for the SWPC “Supply

to the Detector” is visible and it can be explained with the presence of a small concentration of

Ar in the recuperated CF4 (Figure 6.18(a)). An adjustment of the main Ar flow injected from

the mixer will be needed at the LHC restart after LS1 to balance for this Ar contamination in

the recuperated CF4 (Figure 6.18(b)).

The quantity of recuperated CF4 was about 100m3 and it was injected into the system for

about two months. A 70% reduction of the operational costs and a 99.7% reduction of the

CO2 equivalent emission have been achieved. The CSC muon system as well as the monitoring

SWPCs showed stable behavior all along this test period, which represents the first attempt of

using recuperated CF4 for CSC detectors.

9The level of fluctuations observed for the normalized gain is in agreement with the SWPC gas gain sensitivity

to O2 as discussed in Section 6.1.3.
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Figure 6.16: Schematic view of the CSC purifier module. The parameters modified for a better

purifier cycle are indicated.

Figure 6.17: Normalized gas gain as a function of time for the two SWPCs installed in the CMS

CSC gas lines (“After Mixer” and “Supply to the Detector”) during the periods “before injection

of recuperated CF4”, “during injection of recuperated CF4” and “after recuperated CF4”.

6.2 Studies of GEM detector operated in gas recirculation
system

Gas Electron Multiplier (GEM) [88] detectors are operational in the LHCb and TOTEM exper-

iments as well as in the COMPASS experiment at the Super Proton Synchrotron (SPS). In the

upgrade program foreseen for LHC Phase 2 (Section 2.4) large GEM systems are planned to

be installed in the CMS and ALICE experiments. Also an upgrade of the existing LHCb-GEM

system is scheduled. Given the increase, both in number and size, of the new GEM systems,

more attention to operational costs and gas emission to the atmosphere is needed. A dedicated

R&D study has been started to evaluate performance of GEM detector operated with CF4 based

gas mixtures in gas recirculation.
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Figure 6.18: (a) Gas chromatogram of the recuperated CF4: the presence of Ar in a concen-

tration of 12% is visible. (b) Gas chromatogram of the CSC gas mixture before and during the

injection of recuperated CF4. A clear difference in the CF4 peak is visible.

6.2.1 GEM working principle

The GEM is a 50μm thick insulating Kapton foil, clad on each side with a thin copper layer

(5μm) and chemically perforated with a high density of holes. The holes have usually a bi-

conical structure with an external diameter of 70μm and internal of 50μm and a pitch of

140μm. All the GEM foil parameters can be changed depending on the experiment purpose. A

suitable voltage (300-500V) is applied between the two metal sides to generate a high electric

field inside the holes (about 100 kV/cm). Electrons and ions released by ionizing radiation in the

gas mixture are guided into these holes, which act as multiplication channels where avalanches

can start developing (Figure 6.19(a)). The major advantage of GEM detectors is the separation

between gas amplification and readout stage, resulting in a fast readout signal. A single GEM

detector is made of a GEM foil between two flat parallel electrodes (the upper electrode plays

the role of cathode while the lower one is the anode). A detector with two or three piled-up

GEM foils (double-GEM or triple-GEM detector respectively, Figure 6.19(b)) is more conve-

nient for obtaining higher effective gains and low discharge probability, without requiring too

high voltages applied to each single GEM foil. The gas mixture used to operate a GEM de-

tector is usually10 based on Ar and CO2 with the possibility to add CF4 if a fast drift velocity

is needed. However, the addition of a strong electronegative gas requires operation at higher

voltages. Furthermore the presence of fluorine, with related high reactive radicals, can produce

long term aging effects that need to be evaluated. Indeed etching on the holes of GEM foil was

observed with inappropriate gas flow rate conditions inside the detector [89].

6.2.2 Experimental set-up

The experimental set-up reflects as much as possible the detector operation conditions at the

LHC experiments in terms of gas system. The triple-GEM detectors used at the LHCb experi-

ment and foreseen for CMS have gap sizes, starting from the cathode, of gd=3mm, gt1=1mm,

gt2=2mm, gi=1mm (Figure 6.19(b)). A 10×10 cm2 triple-GEM has been built with the above

configuration using Kapton GEM foils with holes of 70μm and a pitch of 140μm, each foil

10Special cases are present, where GEM are operated in particular conditions. For example, in the case of the

upgrade of ALICE TPC the gas mixture for GEM is Ne/CO2/N2 (90/10/5) [28].
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Figure 6.19: (a) Qualitative scheme of a single-GEM detector operation together with the 2D

map of electric field lines and equipotential lines in proximity of the GEM holes. (b) Cross

section of the triple-GEM detector. ED, ET1, ET2 and EI are the drift, the first and the second

transfer and the induction fields respectively; gD, gT1, gT2 and gI are the drift, the two transfer

and the induction gaps respectively.

having a capacitance of about 5.8 nF. The read-out board is a commercial printed circuit board

(PCB) electrode, finely segmented to obtain good spatial resolution in two dimension. The

HV partition has been specifically chosen for the 3/1/2/1mm configuration where the electric

fields between GEM foils are about 3.5 kV/cm. A HV filter has been used to minimize possible

voltage fluctuations.

Given the purpose of the test, the signal is not acquired for each single read-out strip but

directly on the third GEM foil while the current is recorded on the read-out pad through a

Picoamperometer Keithley 6517A. The signal acquired from the third GEM foil is amplified

with a home-made preamplifier11 and a ORTEC 572A amplifier. The signal is digitized using

the CAEN Digitizer DT5724. A custom-made DAQ software has been developed to record

pulse-charge spectrum, detector current, gas and environmental parameters. The gas and envi-

ronmental parameters are obtained from a closed loop gas system developed in the contest of

this R&D.

Triple-GEM operation in gas recirculation mode implies the use of a gas system allowing to

simulate real operation conditions at the LHC. The operation principles are the same illustrated

in Section 5.1 and a simplified sketch of the small CL system is visible in Figure 6.20. A

mixer composed of three MFCs provides the gas mixture, which is split into two lines for

detectors operating in open and closed mode, respectively. Each main gas line is divided into

several sub-lines supplying well defined gas flows to several detectors by means of manual

flowmeters. For closed mode operation, O2 and H2O sensors are installed at the output of the

detectors. The O2 sensor is the Panametrix O2x1, based on electrochemical process, and the

H2O sensor is the Vaisala Dewpoint Transmitter DMT242, based on capacitive measurements.

A bubbler filled with water12 is installed on the return line after the detectors to avoid any risk

11The preamplifier used does an integration and amplification of the input signal.
12Bubblers are usually filled with oil. In this case the choice of water is dictated by the need of avoiding all

108



Figure 6.20: Schematic view of the small replica of a LHC closed loop gas system developed

for laboratory and R&D studies.

of detector over-pressure in case of wrong manipulation or failure of components related to

the pressure regulation. A buffer is used to attenuate the gas pressure fluctuations caused by

the pump while a forward-pressure regulator is installed to create a by-pass flow around the

pump needed to adjust the pump gas flow capacity to the flow requested in the recirculation

loop. The gas mixture collected through the pump is sent to a set of cartridges, which can be

filled with different cleaning agents. The purified gas is then sent back to the detector and a

small fraction of fresh mixture can be re-injected. The gas system is equipped with relative

and absolute pressure sensors and temperature sensors. Gas and environmental parameters are

recorded using a Pico ADC-24 Precision Data Logger with a software based on C++ specifically

developed for this application. The main feature of the developed software is its interfacing with

the detector DAQ allowing a completely synchronized data acquisition in a single output file.

A SWPC (SWPC1) has been installed after the mixer in parallel to the the fresh gas mixture

line to monitor the gas mixture composition and the presence of contaminants. The triple-GEM

detector has been placed in the CL gas system as it is shown in Figure 6.20 and in a parallel gas

line a second SWPC (SWPC2) has been installed. The scope of the SWPC2 is to monitor the

gas mixture concentration and the presence of impurities and contaminants that can be created

and accumulated during gas recirculation. As seen in Section 6.1, SWPCs are the ideal tools for

detecting any type of gas problems (both on detector performance and gas system operation).

The gas system developed allows to operate GEM and SWPC2 in open mode or in closed loop

with the possibility to choose different recirculation rates.

The gas system is completed with the integration of specific gas analysis tools. A GC allows

the analysis of the gas mixture composition after the mixer and in the gas line after the detectors

operated in recirculation mode. A Mass Spectrometer (MS) is complementary used to identify

pollutants, which are not easily recognized with the GC. A Ion Specific Electrode (ISE) station

has been implemented to search and quantify the presence of F− ions, which are created inside

the detector gas volume (Section 6.1.4) and could accumulate during closed loop operation.

possible source of contaminants, like oil vapors.
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The window of the triple-GEM detector used in the present study is permeable to Air. In

order to proceed with the CL validation test, it has been decided to close the detector in a box

flushed with N2 allowing to minimize effects due to permeation of O2 and H2O in the detector

active volume. A further reduction of O2 and H2O concentration can be achieved using specific

cleaning agents (Section 6.2.4). During the test it has been decided to flush the triple-GEM

detector with about 10 detector volume/h, similarly to LHCb.

6.2.3 Calibration of the triple-GEM detector to gas variations

The triple-GEM detector has been tested with Ar/CO2 (70/30) and Ar/CO2/CF4 (45/15/40) gas

mixtures before starting operation with the new gas recirculation system. The basic idea is to use

the data acquired as reference for the afterwards operation. The efficiency curves as a function

of the high voltage are shown in Figure 6.21(a). The use of the gas mixture containing CF4

implies an increase of about 800V in the total applied voltage that is also visible for the gain

curves in Figure 6.21(b). The operation condition is achieved at a gas gain of about 104. The
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Figure 6.21: Triple-GEM (a) efficiency and (b) gas multiplication factor for the two more stan-

dard gas mixture compositions.

triple-GEM signal acquired from the third GEM foil is analyzed generating the charge-pulse

spectrum, which is used to monitor the detector performance, similarly to SWPC. Figure 6.22(a)

shows an example of charge-pulse spectra of the triple-GEM operated with the two gas mixtures

tested. The shift of the peak mean charge between the two gas mixtures is due to the presence

of CF4, as it has already been seen for the efficiency curves. The gas gain correlation for

temperature and atmospheric pressure variation has been established (Figure 6.22(b)). The

mean of the pulse-charge spectrum increases with the increasing of T/Patm following equation

6.4. The values of the fits have been used to correct the gas gain in the following measurements.

During recirculation mode, O2 and H2O concentrations increase. In particular, O2 can enter

in the gas system through leaks, bad quality of supply bottles (Air contamination) and, in the

case of the triple-GEM used, through the permeability of some detector components. A sys-

tematic test has been performed to quantify the triple-GEM sensitivity to the presence of O2.

Figure 6.23 shows the variation of the pulse-height spectrum mean value using as reference
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Figure 6.22: (a) Pulse-charge spectra for triple-GEM detector operated with Ar/CO2 (70/30) and

Ar/CO2/CF4 (45/15/40) gas mixtures. (b) Means of the pulse-height spectrum for a triple-GEM

detector as a function of T/P for two gas mixtures.

an O2 concentration of 240 ppm. The energy resolution is also plotted. The mean value de-

creases almost linearly with the increase of the O2 concentration, being O2 an electronegative

gas. On the contrary the energy resolution is not affected and it stays almost constant at about

30%. Comparing the signal variation at different O2 concentrations for SWPC (Figure 6.7(b))

and triple-GEM (Figure 6.23), it can be easily seen that the SWPC is about seven times more

sensitive than GEM (sensitivity of 7%/100 ppm and 1%/100 ppm respectively), remarking the

utility of SWPC to identify the presence of pollutants. On the other hand, the triple-GEM can

find a more suitable place in detector application since it is less affected by small variations in

gas mixture concentrations, which can occur in complex experiments.
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Figure 6.23: Variation of the triple-GEM pulse-height spectrum mean value and energy resolu-

tion as a function of O2 concentration in a Ar/CO2 (70/30) gas mixture.

6.2.4 Operation of triple-GEM detector in a closed loop gas system

The operation of gaseous detectors in recirculation mode is a critical procedure since several

parameters, as detector pressure or gas pollutants, play an important role and they can drasti-
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cally affect the detector performance. Before testing the triple-GEM in closed loop, longevity

tests have been performed using the CL gas system operated in open mode to avoid any pos-

sible gas contamination or changes in gas parameters as well as to certify the reliability of the

gas system itself. The triple-GEM stability over time has been analyzed for two different gas

mixtures, recording the current and the pulse-charge spectrum. At the same time SWPC1 and

SWPC2 have been used to monitor the fresh gas mixture (SWPC1) and the gas system operation

(SWPC2).

Open mode operation in Ar/CO2 gas mixture

In the first operation period, the triple-GEM and SWPCs have been operated with Ar/CO2

(70/30) gas mixture collecting a total integrated charge of 1.3mC/cm2 and 2mC/cm, respec-

tively. Figure 6.24 shows the triple-GEM normalized gain corrected for temperature and pres-

sure changes as a function of the integrated charge. The gain is constant over the whole opera-

tion period for the triple-GEM and SWPCs confirming that no aging or gas effects are present.
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Figure 6.24: Normalized gain as a function of integrated charge for the triple-GEM detector

operated with Ar/CO2 (70/30) gas mixture. The gain has been corrected for temperature and

pressure variations using the parameters of the fit obtained in Figure 6.22(b).

Open mode operation in Ar/CO2/CF4 gas mixture

Afterwards the triple-GEM and SWPCs have been operated with Ar/CO2/CF4 (45/15/40) gas

mixture. Even in this case the triple-GEM normalized gain, corrected for temperature and

pressure changes, is stable along the whole operation period (Figure 6.25). Only a localized

drop gain of 0.5% for GEM (and SWPC2) is visible after about 1mC/cm2, which is due to

on-going small modifications on the set-up that caused a pressure variation.

Closed loop operation in Ar/CO2/CF4 gas mixture

After a stable time in open mode with Ar/CO2/CF4 (45/15/40) gas mixture, the gas system

has been turned into recirculation mode without using the purifiers. The decision to not use

any cleaning agent is motivated from the need to understand the maximum level of impurities
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Figure 6.25: Normalized gain as a function of integrated charge for the triple-GEM detector

operated with Ar/CO2/CF4 (45/15/40) gas mixture. The gain has been corrected for temperature

and pressure variations using the parameters of the fit obtained in Figure 6.22(b).

that can accumulate in the CL. During the test, different fractions of gas recirculation have

been tested monitoring all gas parameters as well as GEM and SWPCs performance. The

different quantities of recirculated gas are handled by adjusting the fresh gas injected into the

system. The bubbler assures a constant pressure inside the gas system allowing to expel the

same amount of gas injected into the system. In the first operation period a recirculation of

about 65% has been used since it is a percentage easily achievable with the gas system and it

allows to understand how the gas parameters can change in recirculation mode. After a period

of integrated charge similar to the one obtained in open mode, the recirculation fraction has

been increased up to 95% in three steps (80%, 90% and 95%) and then put back to about 50%

to have a term of comparison with the former results. Figure 6.26 summarizes the triple-GEM

performance, expressed in term of the normalized gain, during the different recirculation mode

periods (data have been corrected by temperature and atmospheric pressure variations). The

increase of recirculation fraction implies a decrease in the normalized gas gain until about 0.65

for 95% of recirculated gas. This effect is not due to deterioration of the detector itself but to the

changes of several gas parameters during recirculation. This statement is easily demonstrated

by restoring a low level of recirculation (about 50%): the normalized gain is back to 1.

Both SWPCs have been closely monitored during the recirculation test. The SWPC1 gain is

stable along the whole period confirming that the fresh mixture injected into the gas system is

correct and it does not contain impurities, which would have affected the detector performance.

On the contrary, the SWPC2 gain starts to constantly decrease when the system is switched

to recirculation mode. Indeed SWPC is very sensitive to the gas mixture composition and the

presence of contaminants (Figure 6.7) and its behavior matches with the increasing of O2 and

H2O concentrations inside the recirculated gas mixture.

The GEM gain shift can be correlated and quantified with the variation of the O2 and H2O

concentrations as well as presence of further impurities. Figure 6.27(a) shows the trend of gas

gain and O2 concentration as a function of the recirculation rates. The O2 is present in a level

of 100 ppm in open mode while its concentration increases in closed loop with the increase

of the recirculation fraction. The O2 accumulation is due to a reduced gas replacement. It

has been shown that the triple-GEM gain changes of about 10% with an increase of 1000 ppm
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Figure 6.26: Normalized gain as a function of integrated charge for the triple-GEM detector

operated with Ar/CO2/CF4 (45/15/40) gas mixture during different rates of recirculated gas.

The gain has been corrected for temperature and pressure variations using the parameters of the

fit obtained in Figure 6.22(b).

of O2 (Figure 6.23), so other effects have to be taken into account for the gain drop under

recirculation. Indeed also the H2O concentration increases with the fraction of recirculated gas

(Figure 6.27(b)) suggesting a correlation between gas gain and presence of H2O.
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Figure 6.27: On the left y-axis the normalized gain as a function of the recirculation fraction for

the triple-GEM detector operated with Ar/CO2/CF4 (45/15/40) gas mixture while on the right

y-axis the (a) O2 and (b) H2O concentrations obtained during the different recirculation periods.

While the O2 and H2O concentrations have been constantly monitored during the recircu-

lation periods using O2 and H2O analyzers, the only way to monitor the N2 concentration is

through dedicated measurements with the GC. Figure 6.28 shows the trend of gas gain and N2

concentration as a function of the recirculation rates. As for O2 and H2O, the N2 concentration

increases with the recirculation fraction, reaching about 4.5% with 95% of recirculated gas. In-

deed N2 enters inside the gas system from the triple-GEM detector, which is enclosed in a box

flushed with N2 since some of its materials are permeable to Air. However, the gas gain varia-

tions as a function of N2 cannot be quantified since no dedicated studies have been performed.
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Figure 6.28: Normalized gas gain and N2 concentration as a function of recirculation fraction

for the triple-GEM detector operated with Ar/CO2/CF4 (45/15/40) gas mixture.

A dedicated study has been performed using the ISE station to quantify the presence of flu-

oride ions in the gas mixture. The ISE station measures free fluoride ions in aqueous solutions

using a sensing element bounded into an epoxy body. When the sensing element is in contact

with a solution containing fluoride ions, an electrode potential develops across the sensing ele-

ment. This potential, which depends on the level of free fluoride ions in solution, is measured

against a constant reference potential with a digital meter. The fluoride ions are created from

the CF4 in presence of radiation (Section 6.1.1) and they obviously accumulate inside the gas

mixture during recirculation. The fluoride accumulation rate is about 1.8 ppm/day at 95% re-

circulation while it goes down to 0.75 ppm/day at 50% recirculation. As previously said, the

accumulation of F− should always be avoided since etching effects can occur modifying the

GEM holes diameters.

Closed loop operation with mixture purification

It has been demonstrated that the triple-GEM detector can work well with gas recirculation. The

worsening of the performance is only due to the accumulation of contaminants inside the gas

system and the triple-GEM gain is back to the original value by flushing with fresh gas mixture.

The use of purifiers inside the closed loop is therefore needed. The first cleaning agent used is

MS4Å , which mainly absorbs H2O and O2 in smaller quantities. Figure 6.29 shows the trend

of the triple-GEM gas gain when the purifier is added to the gas system and the recirculation

fraction is changed from 50% to 95%. The gain decreases until it stabilizes at about 0.8. This

drop is due to the increase of the O2 concentration caused by the change of the recirculation

fraction and by O2 absorption incapability of the purifier. Nevertheless the comparison between

the gas gains at 95% of recirculation with and without purifier shows a good improvement:

with the purifier the triple-GEM gain is back at around 0.8 instead of 0.65. Even the fluoride

accumulation rate decreases to 0.31 ppm/day.

This test confirms the necessity of gas purification module for the operation of triple-GEM

detector in closed loop. In real system is even more important the use of two dedicated purifiers

for O2 and H2O removal. A good understanding of the process has been achieved, representing

an important step forward for the design of the large GEM system for the future LHC upgrades.
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Figure 6.29: Normalized gain as a function of integrated charge for the triple-GEM detector

operated with Ar/CO2/CF4 (45/15/40) gas mixture with different recirculation rates with and

without the use of purifier in the gas system.

6.3 Studies for the replacement of the R134a in RPC systems

The Resistive Plate Chamber (RPC) detectors can contribute to the general strategy of green-

house gas reduction by moving to gases with lower GWP. RPCs are operational at LHC in the

ALICE, ATLAS and CMS experiments where they are widely used for the muon trigger systems

thanks to their fast time resolution (∼1 ns) and suitable space resolution (∼1 cm).

A RPC is a particle gaseous detector using a constant and uniform electric field (∼5 kV/mm)

produced by two parallel electrodes plates. Figure 6.30 shows a schematic view of a typical

double-gap RPC [90]. The detector is made of two electrodes of a high bulk resistivity mate-

rial13, which is needed to confine the charge multiplication, taking place inside the detector, in

a small area. On the outside electrode surfaces a semi-conductive layer is deposited, which is

transparent to the electric pulse created inside the counter because of high surface resistivity.

This allows to detect the induced signals on the pick-up strips (made of conductor material) that

are electrically isolated from the conducting foil by means of an insulating layer. The gap be-

tween the two electrodes is usually about 2mm. Several gaps can be used together to assemble

a RPC detector creating a multi-gap RPC. The gaps are filled with a well defined gas mixture

at atmospheric pressure with a gas flow of about 0.3-1 volume changes/h, depending on the ra-

diation level. The gas mixture is usually based on C2H2F4 (R134a) with the addition of iC4H10

(quencher gas) and SF6 (electronegative) to control the formation of secondary avalanches.

RPC detectors can be operated in two different modes defined by the charge of the pulse

signals:

avalanche where the amplification of the signal inside the gap is small and proportional fol-

lowing the Townsend mechanism.

streamer where a number of large nonlinear effects are added to the linear mechanism. In-

deed the number of free electrons can exceed the limit of the Raether condition and new

photoionization processes, due to recombination and excitation phenomena, ionize the

13The material used for the electrodes is usually High Pressure Laminate (HPL) with 1010−11 Ω cm bulk resis-

tivity.
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Figure 6.30: Cross-sectional view of a double gap RPC.

gas molecules around the avalanche region developing secondary avalanches along the

avalanche axis. These avalanches are all close and they move forward to the electrode

until the formation of one charge filament, the streamer. The streamer is not a direct

evolution of the first avalanche but rather a late discharge stage.

Operation in avalanche mode is required if the detector has to sustain a high incoming particle

rate (already above 100Hz/cm2). The voltage drop produced by ionizing particles is propor-

tional to the pulse charge: large pulse charge produces significant voltage drop, which brings

the detector out of the efficiency region. Moreover, with the use of resistive electrodes, small

charge pulse produces a voltage drop that is confined in a small detector region (∼mm2) leaving

the remaining surface fully efficient.

During LHC Run 1, the RPC systems performance was remarkable [91]. Table 6.3 sum-

marizes the main features of the RPC systems installed at LHC. Both ATLAS and CMS RPC

systems have a gas volume of 16m3 filled with C2H2F4/iC4H10/SF6 (95.2/4.5/0.3) gas mixture,

which is recirculated for about 90% of the total flow. The ALICE experiment employs RPC

for Muon Trigger (MTR) and Time Of Flight (TOF), which gas volume are 0.3m3 and 18m3

respectively. In the MTR case, the system is operated in open mode14 while TOF RPCs are

working in closed loop. The big gas volumes as well as the costs and GWP of the gas mix-

Experiment ATLAS CMS ALICE (MTR) ALICE (TOF)

Material HPL HPL HPL glass

Layout single-gap double-gap single-gap multi-gap

Surface (m2) 4000 4000 140 170

Gas volume (m3) 16 16 0.3 18

Gas system operation closed-loop closed-loop open-mode closed-loop

Table 6.3: Summary of the main parameters of the RPC gas systems at LHC during Run 1.

ture have made the closed loop operation mandatory. During LHC Run 1, the RPC systems in

ATLAS and CMS faced the appearance of several leaks in the detector itself, mainly caused by

broken gas connectors. This issue did not affect RPC operation but it implied using a larger

fraction of injected fresh mixture with, consequently, an increase of costs and greenhouse emis-

sions. During LHC LS1 an intense leak search campaign has been performed, repairing the

leaks by substituting the gas connectors or gluing some broken parts.

14The MTR RPC system has been converted in closed loop system during LHC LS1.
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However, in view of long term operation, the use of R134a will become critical. The Eu-

ropean Union (EU) will start to phase out refrigerants with GWP higher than 150 in the near

future15. In principle, R134a will always remain available for research applications. Once the

industrial production will move on alternative gases, the R134a price will probably increase and

the production capacity will be very limited. Taking into account these considerations, the only

possibility for containing the RPC detector operational costs in the future is to move towards

alternative gases, which are used or going to be widely used by industry as replacement of today

banned gases. R1234yf and R1234ze started to be employed in the automotive air conditioning

from several companies and, therefore, they are suitable candidates.

R1234yf (2,3,3,3-tetrafluoropropene) and R1234ze (1,3,3,3-tetrafluoropropene) are two struc-

tural isomers of a hydrofluorooleofin (HFO) based on the propene structure (Figure 6.31). Sim-

ilarly to the R134a, the new freons contains fluorine atoms as electronegative species and there-

fore they are going to suppress formation of large charge pulses. Given the hydrocarbon struc-

ture, the new freons may also have some quenching capacities. However, they are certainly

more reactive with respect to R134a due to the presence of a double C-bound. This is con-

firmed by the fact that they are currently classified as A2L, i.e. “slightly flammable” gases16.

(a) (b) (c)

Figure 6.31: Chemical structure of (a) R134a (1,1,1,2-Tetrafluoroethane), (b) R1234yf (2,3,3,3-

tetrafluoropropene) and (c) R1234ze (1,3,3,3-tetrafluoropropene).

The RPC communities have started to investigated the possibility of moving to alternative

gases. Test results with the use of R1234yf will be discussed in the next sessions as input for

further investigations on the use of different freon-based gas mixtures.

6.3.1 Experimental set-up

The performance of RPCs using different gas mixtures have been studied thanks to a dedicated

set-up (Figure 6.32). Two standard HPL RPCs with a gas gap of 2mm, a surface of about

80×100 cm2 and read-out strips of 2.1 cm wide have been used for the tests17. Two scintillators,

covering an area which corresponds to seven readout strips, are used for coincidence allowing

detection of cosmic rays. The signal acquired from each strip is directly sent to two CAEN

15Outright ban of refrigerants with GWP higher than 150 was planned to start in 2011 and then postponed.

Several nations in EU and USA have already banned these gases while others have started a gradual phase out.
16The flammability classification is based on the ANSY/ASHRAE standard 34-2007 for designation and safety

classification of refrigerants.
17Two RPC have been used to have a term of comparison. In the following section, only results related to one

RPC will be shown since the data of the second RPC were identical.
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Digitizers V172018 for the readout of channels from both RPCs as well as the acquisition of the

trigger signal from the scintillators system. The DAQ software used is the CAEN WaveDump

software, which directly stores the RPC signal in ADC units as a function of time. The digitized

signal is acquired for 10 μs with a 12 bit ADC resolution and ±1.25 V range19.

R134a

iC4H10

SF6

R1234yf

scintillator

scintillator

RPC 1

RPC 2

x 7

x 7

Coincidence
RPC 1 RPC 2

V1720
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GC/MS
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PPU
MS5A

Mixer
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Figure 6.32: Schematic view of the set-up used to test RPCs with the new freon R12344yf. The

DAQ system has been simplified showing only the two main electronics components.

The RPCs are tested in open mode flushed with about 0.3 volume/h. The gas mixture is

obtained by MFCs and it can be freely changed using C2H2F4, iC4H10, SF6 and R1234yf (no

humidification of the gas mixture is done during the test). GC analysis are regularly performed

to verify the gas mixture correctness.

The measurements are taken at different voltages and various gas mixtures are tested. For

each set of raw data, a “baseline analysis” is executed to remove noise fluctuations and to ne-

glect any overshoot of the signal. The RPC signal parameters considered for the analysis are the

pulse amplitude and the pulse charge. In case avalanche and streamer signals are present, the

maximum pulse amplitude is taken from the streamer, otherwise from the avalanche. Therefore

the maximum amplitude gives information about the presence and development of the avalanche

towards streamer pulses. Usually the detector signal is studied through the pulse charge since it

gives information not only on the pulse amplitude but also on the pulse duration; in this way the

total charge involved in the process can be extracted. A signal is identified as avalanche if its

integrated charge is below 5 pC while above it is considered a streamer. Once the RPC signal

18The V1720 is a 1-unit wide VME 6U module housing a 8 Channel 12 bit 250MS/s Flash ADC Waveform

Digitizer and featuring 2Vpp single ended input dynamics.
19In this case 1ADC unit corresponds to 0.5 mV.
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parameters have been extracted from the data, the second analysis step computes the follow-

ing informations: efficiency, average charge and event frequency for avalanche and streamer

regions as well as average total charge. The efficiency is the intrinsic efficiency including the

geometrical efficiency. The high voltage correction usually applied for temperature and pres-

sure changes has not been used in this work since no significant variations have been observed

during the test period. The average charge is calculated integrating the prompt signal spectrum

obtained from the pulse charge distribution. The value obtained is the induced charge on the

strips, which represents only a small fraction (about 5%) of the total charge created inside the

gas gap.

6.3.2 RPC performance with R1234yf: a new environmental friendly Freon

The RPC performance has been studied for several gas mixtures containing different concentra-

tions of R1234yf. The new Freon was used to substitute one of the three mixture components

at the time for evaluating its quenching and electronegative capacities. RPC operation at LHC

with a R1234yf based gas mixture represents the final objective of these studies.

Replacement of R134a and SF6 with R1234yf

The first test has been performed eliminating completely the R134a and SF6
20 since the main

goal of the RPC Freon replacement is to avoid any greenhouse gases. The RPCs have been

operated with R1234yf/iC4H10 (95/5) and R134a/iC4H10 (95/5) gas mixtures to have a direct

comparison between the two freons. The use of R1234yf as main gas component requires op-

eration at much higher applied voltages with respect to R134a. During the test the efficiency

remains very low (Figure 6.33). Further studies need to be performed increasing the applied

voltage to clarify if a good efficiency can be achieved. Indeed, as a fist investigation, it was de-

cided to explore several gas mixture possibilities without taking the risk of damaging detectors

and related components. In conclusion, the results of this first test show that a direct substitution

between R134a and R1234yf is not possible (or at least it will require a much higher applied

voltages with a direct implication on the power supplies and protection in the experiments).

Replacement of SF6 with different concentrations of R1234yf

An approximative quantification of the R1234yf electronegativity can be performed by using

it instead of SF6 in the same concentration of the standard RPC gas mixture. Figure 6.34

shows the RPC efficiency as a function of the applied voltage using the standard gas mixture

R134a/iC4H10 (95.2/4.5) with the addition of 0.3% SF6 or R1234yf. In this condition a good

efficiency is reached for both gas mixtures and the required applied voltage remains at nor-

mal values. However, the fraction of streamers in the case of R1234yf is higher with respect

to the standard gas mixture at equal efficiencies (Figure 6.35(a)) and, therefore, operation in

pure avalanche mode cannot be established. Indeed this demonstrates that SF6 is more elec-

tronegative than R1234yf. Pulse charges (Figure 6.35(b)) are very similar between the two gas

20The GWP of R134a and SF6 is 1430 and 23900, respectively.
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Figure 6.33: RPC efficiency as a function of the applied high voltage for the R1234yf/iC4H10

(95/5) and R134a/iC4H10 (95/5) gas mixtures.

mixtures for the avalanche signals while a clear separation is present for the streamers. Ad-

ditionally, the cluster size has been calculated (Figure 6.36): it does not show any particular

difference between the two gas mixtures (about 2 at full efficiency).
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Figure 6.34: RPC efficiency as a function of the applied high voltage for the R134a/iC4H10/SF6

(95.2/4.5/0.3) and R134a/iC4H10/R1234yf (95.2/4.5/0.3) gas mixtures.

Further tests have been performed varying R1234yf concentrations from 0% to 2.5% but no

significant improvement has been observed (Figure 6.37). An applied voltage above 10000V is

always required to reach good efficiency. Increasing the concentration of R1234yf does not help

in controlling the fraction of streamers, which remain very high (more than 40%) compared to

the standard RPC gas mixture.

Replacement of iC4H10 with R1234yf

The quenching properties of R1234yf have been investigated testing mixtures based on R134a

with the addition of 5% iC4H10 or 5% R1234yf. Figure 6.38 shows the efficiency curves ob-

tained. The addition of R1234yf implies a shift towards higher applied voltages, however a good

efficiency can be still achievable. Figure 6.39(a) shows the fraction of avalanche and streamer

pulses versus the detector efficiency: the R134a/iC4H10 mixture remains the best option for op-
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Figure 6.35: Avalanche and streamer (a) probability and (b) pulse charge as a function of RPC

efficiency for the R134a/iC4H10/SF6 (94.7/5/0.3) and R134a/iC4H10/R1234yf (94.7/5/0.3) gas

mixtures.
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Figure 6.36: Cluster size as a function of RPC efficiency for the R134a/iC4H10/SF6 (94.7/5/0.3)

and R134a/iC4H10/R1234yf (94.7/5/0.3) gas mixtures.

High Voltage [V]

8000 8200 8400 8600 8800 9000

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

 Streamer⋅⋅⋅
 Avalanche⎯

0% R1234yf
0.2% R1234yf
0.3% R1234yf
0.6% R1234yf
1.2% R1234yf
2.5% R1234yf
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eration in avalanche regime. The use of 5% R1234yf leads to already more than 50% streamer

signals at an efficiency of about 0.6. The pulse charges are very similar for both avalanche and

streamer signals with a slightly increase in the case of R1234yf for streamers (Figure 6.39(b)).

On the contrary the cluster size is significantly higher for the R134a/R1234yf (95/5) mixture.

These effects can be an indication of lack of quenching gas. Indeed, secondary avalanches

produced by photons spread around in the gas gap increasing also the pulse spatial size.
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Figure 6.38: RPC efficiency as a function of the applied high voltage for the R134a/iC4H10

(95/5) and R134a/R1234yf (95/5) gas mixtures.
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Figure 6.39: Avalanche and streamer (a) probability and (b) pulse charge as a function of RPC

efficiency for the R134a/iC4H10 (95/5) and R134a/R1234yf (95/5) gas mixtures.

R1234yf and Ar based gas mixtures

Since a complete replacement of R134a with R1234yf is not possible and mixtures with high

R1234yf concentration require very high applied voltages, the addition of Ar has been consid-

ered as an alternative solution to facilitate the charge multiplication even if it is expected to

cause an increase of streamer signals21 Three different gas mixtures have been tested using a

21A gas mixture based on Ar as main component is not suitable for operation at high particle rates. Indeed, the

reduction of the electronegative gas leaves the possibility to the creation of large charge pulses from which the
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fixed iC4H10 concentration (5%) and reducing the amount of Ar (42.5%, 32% or 21%), being

R1234yf the remaining part. Figure 6.40 shows the RPC efficiency as a function of the applied

voltage for the three mixtures. In the case of R1234yf /Ar (74/21) the efficiency is almost zero

up to very high applied voltages as it is for the R1234yf/iC4H10 (95/5) mixture (Figure 6.33).

With the increase of Ar concentrations, the efficiency increases, as expected, reaching the max-

imum value at 42.5% of Ar. However Figure 6.41(a) shows that the detector is working in
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Figure 6.40: RPC efficiency as a function of the applied high voltage for three gas mixtures

based on different concentrations of R1234yf and Ar and 5% of iC4H10.

streamer mode. Indeed streamer signals are predominant already at efficiencies above 0.2. The

streamer pulse charges for R1234yf/Ar(52.5/42) are also a factor 2 higher with respect to the

standard gas mixture (Figure 6.35(b)). Therefore the Ar based gas mixtures examined in this

test are not suitable for RPC operation in avalanche mode.
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Figure 6.41: Avalanche and streamer (a) probability and (b) pulse charge as a function of RPC

efficiency for three gas mixtures based on different concentrations of R1234yf and Ar and 5%

of iC4H10.

detector needs a relatively long time to recover.
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Review of the results

The first tests performed using R1234yf confirm that the RPC gas mixture replacement is not an

easy task. It has been demonstrated that the RPC detector can work with R1234yf, reaching also

good operation efficiencies in some cases (for example in mixtures containing Ar). However,

the sine qua non condition for LHC operation is to work in avalanche mode, given the rate

capability required. This is not completely achieved with the gas mixtures tested in this work

and the standard RPC gas mixture remains the best option. These tests can be considered a

starting point for future investigations and as guideline for testing also different Freon gases.

6.4 Summary

Results obtained using SWPC as gas monitoring tool are very encouraging. SWPCs provide a

higher and faster level of sensitivity with respect to the classical gas analyzers. The first appli-

cation in the CMS CSC gas system has given outstanding results and fundamental information

for the tuning of the purifier parameters adding stability and reliability to the detector opera-

tion. The SWPC monitoring system is suitable for its installation in several LHC gas systems.

Indeed it can be used with different gas mixtures, it runs automatically and its results can be

easily integrated in detector DCS and produce automatic warnings.

Beyond the gas mixture monitoring, muon systems will have to consider carefully the

adopted gases, especially if greenhouse gases are used. Most of the gas systems are already

working in gas recirculation. One of the remaining open mode systems is the LHCb-GEM,

which can already benefit of the GEM R&D studies performed in view of the large GEM sys-

tems foreseen for the muon upgrades. Indeed, results show that triple-GEM detector can be

operated in CL where gas purification modules are needed to control the presence of contami-

nants (O2, H2O, N2, F
−).

Concerning the reduction of greenhouse gas emission, RPC detectors are already working

in CL with a recirculation fraction of about 90-95%. The suppression of R134a production

entails the search of a replacement. R&D studies have started using new Freons developed

for the R134a replacement in industries. It has been demonstrated that RPC detectors can be

operated with new Freons although the finding of a new gas mixture allowing stable operation

in avalanche mode at LHC experiments still requires a long R&D phase.
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Conclusions

The LHC Physics program and the consequent improvement of the LHC accelerator perfor-

mance set important challenges to all detector systems. The increase of luminosity will lead to

higher radiation doses, particle rates and pile-up limiting the performance of the current sys-

tems due to tracking inefficiency and radiation-induced effects. The present work delineates

the strategies adopted to improve two different types of detectors: the replacement of precision

trackers with ever increasing performing silicon detectors and the improvement of large gaseous

detectors by optimizing their operating gas mixture (cost saving and reduction of greenhouse

gas emissions are also important factors).

Upgrade of silicon tracking systems

The ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon tracker at LHC. The

IBL makes use of new pixel and front-end electronics technologies as well as lower material

budget, state-of-the art services and a novel thermal management approach. All these inno-

vations required complex developments together with strict Quality Control (QC) and Quality

Assurance (QA) protocols during construction and installation phases. After QC, bunches of 20

modules are mounted on a carbon-fibre mechanical support to form the basic element for the

IBL detector assembly, i.e. the stave.

A compact setup has been designed and built for a thorough QA sequence, which has been

developed and followed to characterize the 18 produced staves. The main results are:

• Each module has been fully characterized performing electrical tests, calibrations and

radioactive source scans. Similarity and differences between planar and 3D sensors have

been analyzed quantifying, for example, the equivalent noise charge and charge collection

efficiency.

• High threshold over noise ratios have been obtained for all types of modules at warm and

cold operation (22°C and -12°C respectively). These values are essential in determining

the quality of IBL modules: the bigger this factor is, the less noise contamination is

present during data acquisition. The fraction of noisy IBL pixels is less than 0.03% for

the 1500 e− threshold tuning while, as a comparison, in the current Pixel Detector this

value is 0.06% for 3500 e− threshold.

• A detailed classification and identification of bad pixels has been performed as major

information for the stave ranking. The IBL target to have less than 0.37% of bad pixels

per chip has been achieved for most of the modules. All staves are well below the target

cut of 1% bad pixels and 80% are even below 0.2%.
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The 18 staves qualified according to the QA criteria correspond to 216 planar and 144 3D

modules for a total of 15.5 M pixels. The results obtained allowed the selection of the best 14

staves for the assembly of the IBL Detector, which has been successfully installed in the centre

of the ATLAS experiment in May 2014. The QA results and the final commissioning of the

full system have demonstrated that the IBL Detector performs extremely well with 99.9% of

functional channels in the modules.

In parallel to the stave QA, the reliability of the IBL wire bonds has been investigated

under operation conditions close to the real ones. In an intense magnetic field wire bonds

oscillation and consequent breaking can occur if time varying currents pass through them at

the wire’s mechanical resonance frequency. The dangerous resonance frequencies have been

identified experimentally and two methods for protection have been tested. The results of the

resonance frequencies studies have been used for the implementation of a trigger veto for the

IBL operation.

Since its installation, the IBL has been successfully operated stand-alone, together with the

existing Pixel system and in ATLAS global runs that include all detectors. IBL will now join

the LHC Run 2 as part of the ATLAS Pixel Detector ensuring the best possible tracking per-

formance. The IBL project can be considered as case example for future silicon detectors at

LHC experiments. Entire tracking systems will be replaced during LS2 in ALICE and LHCb,

and during LS3 in ATLAS and CMS. Their common objective is to ensure higher radiation

hardness, higher granularity and lower material budget to maintain and improve physics perfor-

mance at very high luminosities. The IBL highlights the challenges in the design, construction

and testing phases of new, very sophisticated detectors.

Upgrade of large gaseous detector systems

Muon systems at the LHC experiments are very large apparatus of the order of several thousands

square meters. During the HL-LHC phase, the present detectors will be pushed close to their

limits and a strategy to recover good operation conditions consists in:

• adding redundancy, i.e. more detector planes with improved performance, where particle

rate becomes unmanageable;

• ensuring good operation conditions for the long-term conservation.

Concerning the latter point, infrastructures as the gas systems play a fundamental role. The

gas mixture is the active medium where charge multiplication and signal formation take place.

Quality and composition of gas mixtures are therefore essential for avoiding unrecoverable

degradation of detector performance, i.e. aging phenomena. Several aspects of gas systems

operation that are central for HL-LHC have been studied:

• The importance of robust gas quality monitoring tools has been established, studying sys-

tematically real life examples of LHC detectors that have suffered a temporary loss of

performance due to bad gas quality. It has also been demonstrated that gas quality mon-

itoring is even more crucial in detector systems where gas recirculation and recuperation

plants are used. Gas recirculation and recuperation may add complexity to operation,

however they will need to be part of the overall muon systems strategy for HL-LHC in

order to contain operational costs and gas emissions.
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• A complementary method, based on Single Wire Proportional Counters (SWPCs), has

been established for real-time monitoring of gas mixture quality and detector performance

of large gaseous detector systems at LHC. This system overcomes the main limitations of

standard gas analysis techniques, i.e. the delay between the moment in which the prob-

lem occurs in the gas and the relevant information is available, as well as the sensitivity

to gas impurity concentrations. Thanks to the large drift volume and to the use of intense

radioactive sources, which accelerate plasma chemistry processes, the SWPCs reveal to

be very sensitive to pollutants that can affect the detector performance, even at concen-

trations below the ppm level. In this work, SWPCs have been employed successfully for

monitoring the CMS Cathode Strip Chambers (CSCs) gas mixture composition during

the use of recuperated CF4. The performance of the CF4 recuperation system, first ever

built in HEP, has been studied in detail using the gas analysis techniques described, which

demonstrated that the mixture with recuperated CF4 meets the requirements for safe CSC

operation.

• The reduction and eventual replacement of greenhouse gases is one of the important chal-

lenges for the muon systems in the near future. A change of gas mixture is a years-long

process, as it requires multitude of short- and long-term studies and performance eval-

uations for a specific detector technology and geometry. In the case of Resistive Plate

Chambers (RPCs), R134a and SF6 (the main components of the current mixtures at LHC)

will soon be completely banned. A new environmentally friendly Freon of new genera-

tion has been tested measuring key parameters for RPCs operation at LHC. Encouraging

results have been obtained for operation at low particle rates.

• As for the gas reduction strategy, the particular case of CF4 for GEM-based detectors has

been analyzed. Currently all GEM detectors in HEP are operated with open mode gas

systems where all gas is exhausted to atmosphere after being used. This operation mode

can be rather impracticable for very large GEM systems, as they are being planned for

the upgrade of the CMS muon system at HL-LHC, for instance. Successful operation

of GEM detectors in gas recirculation has been achieved. GEM sensitivity to common

impurities (O2, H2O, N2) has been measured and the necessity of using gas purification

modules has been confirmed.
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