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l. An example by Robbins,

The Compound Decision Theory was introduced by Robbins [l]‘
and has been developed varticularly by him and Ester Samuel in
several papers (see for instance [3] )e To get an illustration of

thejconcept, we shall consider the following simple example, glven

|
' by Robbins in [1] .

Let Xjje00y% De independent random variables, each normally

1
distributed with variance 1 and with means el,...,en, respectively,

where Gi = +1 or =1, On the basis of xl,...xn

for every 1, whether the true value of 0; is 1 or =1, Let ST

we are to decide,

denote the set of all 2" possible paramecter points 9 = (el,...,en)

‘and let w(ggg) = % (no, of i for which 8i+ Gi) be the loss involved

when the true parameter point is 6 and the decision (Q:Q) is taken,
A simple and reasonable decision rule, when the loss function
is as above, seems to be the rule
R : estimate 6, by sgn(xi) P 1= 1,ee.,0.
The corresponding risk function L(R,8) = Ew(Q39) equals F(-i) =
= 0,1587 for all © , whe;e E is the cumulative normal distribution
function, R is the maximum likelihood estimator of 6 , and Robbins

‘~ > () . . 3 .
shows that R is the unique minimax decision rule.

2. The Bayes Case,

Supvose that in the example above theiei s are indepeﬁdent
random variables taking the values 1 and =1 with probabilities
p and 1l=-p, respectively, where p is known., Let u(xi) be the
conditional probability of estimating ei to be 1, given X, o The
corresponding risk

p{£(x-1) (1=u(x))ax + (1-p) e (x+L)ulx)ax,

where f is the normal density function, is minimized by the rule
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- R. : estimate ©., by sgn(x., = %lncljﬁyp)); =y
, b i i ‘
which has the risk .

' ~pY . -

h(p) = pF(-1 + 9;1n@~ p)) + (1-p>F(-1~»1r1n{(1 25)).

h(p) is less than F(-1) for p $ 0.5 and equal to F(~1) for p = 0,5,
and R_ will therefore be preferable to R in this case, unless
P = 0050

/ %, The Empirical Bayes Case.
[

If in the Bayes Case above p is unknown, and the n xis are
used to estimate p, then a decision rule corresponding to Rp,
“ with p substituted by the estimate of p, could be used.This would

be an example of an Empirical Bayes Case. See Robbins fé].

L, The case where the frequency of 61 s equal to 1 is known,
Suppose that the situation is as in section 1, except that
the frequency p = % (no. of 6{ s equal to 1) is known, Then the
rule Rplin section 2 minimizes the risk among all simple rules,
that is rules where the estimate of Qi . depends on xi only,
and the risk of this Rp is also h(p).

5o The Compound Decislon Case,

Let us denote the problem in section 1 of the present
paper as a Compound Decision Problem if it satisfies the
describtion of Robbins in [13: No relation whatever is assumed

WWV
to hold amon st the unknovm par eterg/hgi:_Then the frequency
P in section 4 is completely unknown, but may be estimated by

- - 12
means Of X,,e.s,X o The estimator v = #(1+X), where X = '52,"‘1 s
is unbiased for p. As v can take on values outside [0,1], it is
truncated at 0 and 1, and the resulting estimator
0 if v £0
vi={v if O0<v <1l
1 if v 21
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is substituted for p in Rp . Hence one gets the decision rule

.1 if X & -1
* ‘ - . -
R : estimate &; by sgn(x; = %1n((1-X%/(l+§j)) if =1Kx<1
1 0if X331

*
Let h(p,n) denote the risk function of R , where p equals
the frequency in section 4 o This risk function and the risk

function h(p) = lim h(p,n) for RP and the risk function F(=-1)
n3eo ‘ '

[ 4
~

for R are compared in the following table (see [l] leo

P F(=1) h(p) h(p,100) h(p,1000)
0,0 or 1,0| 0,1587 0] 00,0041
0.1 or 0.9 6.1587 0.0691 0.0763
0.2 or 0.8 0,1587 | 0.1121 041174
0.3 or 0,7 | 0,1587 | 0,1387 0.1439
O or 0.6 0,1587 0.1538 0.1591
0.5 0.1587 | 0,1587 0.1628 0.1591
Table 1.

For p = 0.5, h(p,n) is always greater than F(~l), though
the difference is very small for large n. For any p 4 0.5, h(p,n)
is less than F(=~1) for large enough n, For p near 0 or 1, h(p,n)
is much less than F(-1), af least for n as large as 100,

If the case is as in sections 2 or 4, and p % 0.5, then the
rule RP is obviously préferable fo'ﬁl If the case is as in section

_'5, then Table 1 apparently shows that there are strong reasons

for applying ﬁ* instead of’EZ Intuitively, however, it seems very
unreasonable to mix the n problems together in the way that is
done in ﬁﬁ since the 9{ s have nothing to do with each.othef.
Below we shall give some-further arguments for gg; preferring ﬁ*
toﬁﬁ. These arguments agailnst ﬁ* are not applicable to the rule
suggeéted in the Empirical Bayes»Case; that is, when the problems

‘are presented to the statistician in random order.,
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6. Arguments for not applying R.

Consider first the asymptotic case where we assume that any

oeouence.l-ﬂ(el 0 +eoot, 0,4, vhere il<'iz< sesi , has a
1 2 n '
1imit as n= <o, Then the asymptotic risk of R is h(p), where p =.

= 1linm, —(G teeotO hﬁ Now it is possible to find a sequence of
na

methods, say RI ’ R;, ...étc, where R; is asymptotically
uniformly at least as good as R” » and where R:+1 is
asymptotically uniformly at least as good as R; y 1 = 1,2,ee0ctcCe
'This sequence runs as follows: Denote the original sequence of
>problems by (el,xl), (Ga,xa),...etc. Then Ri consists in
applying R¥ separately on the two subsequences of problems

(el,xl)’ (GB’XB) ’ (95,3(5) geoce

and
(e ,X ) (el_}’x ),(Grgx6),ooo.
Let py = limi (8;+65+eu0t #hland D, = 1im = (0,40, +eeetOy Fk),
1 lgeék. O2k-1*) 2 lvaak I 2k
Then p = %(p1+2p2), and because of the concavity of h(p), the

asymptotic risk of R; , hamely %(h(pl)+h(p2)), is less than h(p),
unless P1=P,, in which case %(h(pl)+(h(p2)) = h(p)e. Hence, if
pl.# Poy then RI is asymptotisally uniformly better than R?

The construction of R; ’ R;}...ctc.is obvious: The relaﬁion
between R;4l and R;_ is the same as the relation between Rf and
r¥ | i =1,2,...etc.

Let us nowconsider the more interesting case where n = 2k is
large but fixed, If the problems are presented to the staﬁistician
in random order, then this is not a Compound Decision Problem
according to the describtion of Robbins:"No relation whatever
is assumed to hold amongst the unknown parameters e;", because

randomization creates relations between the e{ 8, for instance



the relation that plﬁzpa . 27w with high probability, where

N YT R = 5 : '
12 ";k(91*63+"'+92k-IL)and Py=,5(0,9, *e0 o6, tk) Hence this

situation, where the ei's are presented in random order, should
rather be called an Empirical Bayes Case, .

ﬁow consider the case where the problems are not presented
in random order, but according to something else, for instance
acbording to time order..If we do not believe that Nature

randomizes the problems for us, then there is no reason why pl

‘should be near Py and if Py and p, are not close together, then

" »
the rule R;' is better than R, because if n = 2k is large, then

k 1s also large. Hgnce the very same sort of argument for preferring

ﬁi{gngi applies for preferring\gzbfgﬁgf and for preferring Rg

— /\N\__—/\/W\,»,

to Rir, where R; consists in applying the rule R* separately on -
each of the four subseguences of problems
(Gl,xl),(95,x5),(69,x9),...
(8,9%5) 5 (863%g)5 (05X ) 00
(GB’XB)’(97’X?)’(ell’xll)""
(GL}’X’.}) ’ (68,X8), (912,7(12) 3 eecee
" Continuing in this way, it is seen that there are always i

strong reasons for preferring R;;l to R: for any i, and finally

one gets that the perhaps most preferable rule is to apply the

v * N .
rule R separately on the n "subsequences" consisting of one problem

each, but that amounts to apply the rule R !

Fortunately, in practise there are often reasons to believe
some relations to hold between the unknown parameters Oi. In the
ekample above it may for instance be possible to stratify the n

original problems into strata where the frequency of ei 5 equal
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to 1 differ considerably from strata to strata. Then an Empirical

Bayes rule, constructed for each stratum separately, will

probably have lower risk than any of the rules?g,Ef ér Rg.
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