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1. An example by Robbins. 

The Compound Decision Theory was introduced by Robbins [l] · 

and has been developed particularly by him and Ester Samuel in 

several papers (see for instance [3J ). To get an illustration of 

the: concept, we shall consider the following simple example, given 
I 

by Robbins in [1] • 

Let x1 , ••• ,xn be independent random variables, each normally 

distributed with variance 1 and with means e1' ••• ,en, respectively, 

where ei =+].or -1. On the basis of x1 , ••• xn we are to decide, 

for every i, whether the true value of G. is 1 or -1. Let JrL 
", ~ 

n denote the set of all 2 possible parameter points e = (e1 , ••• ,e ) - n 

·and let w(Q1,Q) ::: * (nop of i for which ej_ f e1 ) be the loss involved 

·-

I 
when the true parameter point is .§. and the decision (~=~) is taken. 

A simple and reasonable decision rule, when the loss function 

is as above, seems to be the rule 
,...., 
R : estimate e. by sgn(x.) ; i ·= 1, ••• ,n. 

~ ~ 

The corresponding risk function L(R,~) = EwC~;§) equals F(-1) = 
= 0.1587 for all~, where F is the cumulative normal distribution 

~ 

function. R ·is the maximum likelihood estimator of ~ , and Robbins 

shows that 'R is the unique minimax decision rule. 

2. The Bayes Case. 

Suppose that in the example above the e~ s are independent 
' ~ 

random variables taking the values 1 and -1 with probabilities 

p and 1-p, respectively, where pis known. Let u(x.) be the 
~ 

conditional probability of estimating ei to be 1, given xi. The 

corresponding risk 

p~f(x-1)(1-u(x))dx + (1-p))r(x+l)u(x)dx, 

where f is the normal density function, is minimized by the rule 

\ 

~ 
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estimate ei by sgn(x. 
]. 

~i-1-¥ ) . · 1 1'\.. -} ln ~ / p ) ; i .,. J · • · > 

which has the risk 

hCp) = pFC-1 + -tln(O.-PYp)). + (l-p)FC-l-tln~ 1-PYP)). 
h(p) is less than F(-1) for p f 0.5 and equal to F(-1) for p = 0.5, 

(" 

and Rp will therefore be preferable to R in this case, unless 

p = 0.5. 

3. Th~pirical Bayes Case~ 

If in the Bayes Case above p is unlmo'.vn, and the n x~s are 
]. 

used to estimate p, then a decision rule corresponding to Rp' 

with p substituted by the estimate of p, could be used.This would 

be an ex~~ple of an Empirical Bayes Case. See Robbins [2]. 

l±,. The case where the frequency of e~ s equal to 1 is lmown. 
~ 

Suppose that the situation is as in section 1, except that 

the frequency 1 p = - (no. of e~ s equal to 1) is kno~n. Then the n J. 

rule RP. in section 2 minimizes the risl~ among all simple rules, 

that is rules .where the estimate of e. , depends on x1. only, 
-]. 

and the risk of this Rp is also h(p). 

5. The Compound Decision Case. 

Let us denote the problem in section 1 of the present 

paper as a Compound Decision Problem if it satisfies the 

describtion of Robbins in [lj : No relation whatever is assumed 
.--.....___-- --

~o ho].~~~~---~ Then the frequency 

p in section 4 is completely unknown, but may be estimated by 

f 1 1 ( -) - 1 ~ means o x1 , ••• ,x11 • T 1e estimator v = ~ l+x , where x ::::-.::X. , 
n 1 J. 

is unbiased for p. As v can truce on values outside [o,~, it is 

truncated at 0 and 1, and the resulting estimator 

v'={: 
if v f 0 

if O<.v<l 

if v ~ 1 
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is substituted for p in Rp • Hence one gets the decision rule 

x. f --.1 
>t.. 

T.l • 
.LL • estimate [

-1 if 

by sgn(x1 
1 if 

~-ln(Cl-x)j (l+x))) 
x ~ 1 • 

if -l<x< 1 

* Let h(p,n) denote the risk function of R , where p. equals 

the frequency in section Lj. • This rish: function and the risk 

function h(p) = lim h(p,n) for Rp and the risk function F(-1) 
n~oa 

,-J 

for'R are compared in the following talle (see [1] ). 

p F(-1) h(p) h(p,lOO) h(p,1000) 

o.o or 1.0 0.1587 0 O.OOL}1 

o.1 or 0.9 0.1587 0.0691 0.0763 

0.2 or 0.8 0.1587 0.1121 0.1171+ 

0.3 or o.7 0.1:587 0.1387 0.1439 

o.L~ or o.6 0.1587 0.1538 0.1591 

0.5 0.1587 0.1587 0.1628 0.1591 

Table 1. 

For p = 0.5, h(p,n) is always greater than. F(-1), though 

the difference is very small for large n. For any p =t 0.5, h(p,n) 

is less than F(-l) for large enough n. For p near 0 or 1, h(p,n) 

is much less than F(-1), at least for n as large as 100. 

If the case is as in sections 2 or 4, andp =\: o.$, then the 

rule RP is obviously preferable to R. If the case is as in section 

5, then Table l apparently shows that there are strong reasons 

* ~ for applying R instead of R. Intuitively, however, it seems very 

unreasonable to mix the n problems together in the way that is 

done in R~ since the ei s have nothing to do with each other. 
)f" 

Below we shall give some· further arguments for not preferring R r---

~ * to R. '£hese arguments against R are not applicable to" the rule 

suggested in the Empirical Bayes Case~ that is, when the problems 

are presented to the statistician in ~ order. 
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* 6. Arguments for not applying R .. 

Consider first the asymptotic case where we assume that any 

sea~encc 1(e. +C7. + ••• +·9-.+tV, where i 1 <i2 <····<-in, has a 
... J..n J.l J.2 ' J.n 

·~· 
limit as n-? CtO. Then the asymptotic risk of R is h(p), where p 

= lim.2~(e1+ ••• +6nfn). Now it is possible to find a sequence of 
n~ca 

~ ~ ~ 
methods, say R1 , R2 , ••• etc, where R1 is asymptotically 

~ );: 
uniformly at least as good as R , and where Ri+l is 

lie' 
asymptotically uniformly at least as good as R1 , i ::: 1,2, ••• etc. 

This sequence runs as follows: Denote the original sequence of 

..... 
applying R separately on the two subsequences of problems 

and 

(e2,x2),(e4,x4),(e6,x6), •••• 

= lim~f (e1+e3+ ••• +e2k_fk)and p2 = 
k-:)..a 

lim.2f: (G2 +e4+ ••• +e2 k.+. ie), 
k-:) .-0"'-

'l'hen p == t(p1 +~·p2 ), and because of the concavity of h(p), the 

asJ~ptotic risk of R~ , namely t(h(p1 )+h(p2 )), is less than h(p), 

unless p1=p2 , in which case ~(h(p1 )+(h(p2 )) == h(p). Hence, if 

~ ~ p1 ,:\= p2 , then R1 is asymptotically uniformly better than R. 

The construction of R~, R;, ••. ctc.is obvious: The relation 

between RI+J. and R~. is the same 

R* , i = 1,2, •• -.etc. 

:it: as the relation between R1 and 

Let us no~ticonsider the more interesting case where n = 2k is 

large but fixed. If the problems are presented to the statistician 

in ~~ order, then this is not a Compound Decision Problem 

according to the describtion of Robbins:"No relation whatever 

is assumed to hold amongst the.unknown parameters e.", because 
J. 

randomization creates relations between the 8i_ s, for instance 
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the· relation that P ......- p ·.-~· · ··: vn.· th high probability, where lrv-2 .· 

situation, where the e~ s are presented in random order, should 
J. 

rather be called an Empirical Bayes Case. 

How consider the case- where the problems are not presented 
,--~ 

in random order, but according to something else, for instance 

according to time order. If we do not believe that Nature 

randomizes the problems for us, then there is ~~ why p1 
·. ·~ 

should be near p2 , and if p1 and p2 are not close together, then 
)1.: X 

the rule R1 is better than R, because if n = 2k is large, then 

~ ~ ~ * 
~~r~~~ 
to R1'*-" , v1here R;. consists in applying the 

each of the four subsequences of problems 

(Gl,xl),(e5,x5),(99,x9), ••• 

(B2'~),(e6,x6),(elO'XlO), ••• 

(e3,x3),(e7,x7),(ell'xll), ••• 

(e4,x4),(e8,x8),(Bl2'xl2), •••• 

argument for preferring 
~·---./ ......___ ___ _,...___......__ '--/-- --

and for preferring R~ 

* rule R separately on 

Continuing in this way, it is seen that there are always :t 

* "t strong reasons for preferring Ri+l to Ri for any i, and finally 

one gets tha~ the perhaps most preferable rule is to apply the 
:t" . 

rule R separately on the n "subsequences" consisting of one problem 
r""J 

each, but that amounts to apply the rule R ! 

Fortunately, in practise there are often reasons to believe 

some relations to hold between the unknown parameters ei. In the 

example above it may for instance be possible to stratify the n 

original problems into strata where the frequency of e~ s equal 
J. 
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to 1 differ considerably from strata to strata. Then an Empirical 

Bayes rule, constructed for each stratum separately, will 

rJ ·t "*" probably have lower risk than any of the rules R, R or Ri. 
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