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ABSTRACT 

The one-way layout in the analysis of variance with 

unknown group variances is considered. A family of joint 

confidence intervals for all linear functions in the means 

with the property that the probability is 1 - a. that all 

confidence intervals covers the true values of the linear 

functions is found, Each confidence interval is natural 

in the sense that for a given linear function it is equal 

to an estimate of th:· s function plus and minus a constant 

times an estimate of the variance of the estimate. Hence 

the results are analogous to Scheffe's S-method of 

multiple comparison. 
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1. STATEMENT OF THE PROBLEM AND THE METHOD 

Consider the one-way layout with unequal group variances in the 

analysis of variance. Let the random variables Yij , j = 1, ••• ,ni 

i = 1, ••• ,k be independent with 
2 

E Y ij = ~i ' Var Y ij ·- cri • 

The means and the variances are all unlcnown. The problem is that 

of finding joint confidence intervals for all linear functions of 

the 

k 
,,, I = L c II 
'I' l' 1-"l' ' 

i=~ 

where the ci are known constants. A solution to this problem in 

the case when all cri are equal was given by Scheffe (1953). For 

other solutions see, e.gq Miller (1966) and Scheffe (1959). We 

shall now derive a solution which takes care of the possibility that 

the cr i may be unequal. 

A natural estimator of ·; is 

/:.. 
k 

'V = I: ciyi. 
j.=1 ' 
ni 

Y· ./n. where yi• =I: • 
j=1 lJ l 

The variance of ~ is 

k 2 2 
2 ci O'i 

O't. -· I: 
111 i=1 ni 

An estimate of this variance is 

where 

1\ 2 k 
crt. = I: * i=1 

2 . 2 c. s. 
l l 
n. 

l 
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'life shall prove that there exists a constant A such that the proba

bility is 1-~ that the values ~ of all the linear functions 

satisfy 

~ - MJ < ¢< f + A~ (1) 
~ - - IV ~ 

The constant A will depend upon a and the ni , but not upon 

unknown parameters. It is determined by the following. Let 

z (n1-1 ) , •• , z (nk -1 ) denote k independent :I?-dis tr i bu ted random 

variables all with one degree of freedom in the numerator and 

n 1-1, ••• ,nq-1 degrees of freedom in the denominator, respectively. 

Then A is determined by 

[ 
k 0] P ~ z(n.-1) <A~ = 

. 1 l -l= 
1-a, • 

k 
Since the exact distribution of ~ 

i=1 
z(n.-1) is difficult to 

l 

calculate, a simple approximation is proposed in Section 3. 

The approximate value of A is given by 

A
2 ~ aF (k,b) 

a 
where 

k n. -.1 2 k (n.-1) 2 (n.-2) 
(k-2)(~ _l_.) + 4-k ~ 

1 l 

{ni-3) 2{ni-5) i=1 n. 3 i=1 b l-
::: -k 

(ni-1)2(:n.i-2) k 
k L: i='1 ( ~i=1 

ni -1 
) 

(ni -3 )2 (ni -5) 
- n.-3 

l 

and 
2 k n.-1 

( 1 
l a = - b) r. n.-3 ' i=1 l 

2 

and F (k 'b) is the upper a-point of the F-distribution 
('(, 

k and b degrees of freedom. 

( 2) 

(3) 

(4) 

with 
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2 • PROOF OF THE ~1ETHOD 

To proof the main result of the previous section we need the 

following lemma. 

LE~IDU. Let d1 , ••• ,dk ~ z1 , ••• 1 zk and c (>0) be given real 

numbers. Then 

k 
r: 

i=1 
2 c2 d.z. < 

l. l. -

if and only if 

k 
l r: c. z. I 
i=1 l. l. 

k 
< c ( r: 

i=1 

c. 2 1/2 

d ~~ ) 
l. 

for all real numbers c1 , ••• ,ck. 

( 5) 

(6) 

Proof. If (6) holds, it follows by using Schwarz's inequality 

that 

k 2 k 2 k 2 k 2 c. 
d.1/2z.) ci 

( c. z.) ( l. < (r )( L: d.z. ·) r :;:: r 1/2 r l. l. - i=1 l. l. i=1 .1 l. i=1 di i=1 l. 

from which we obtain (6). Conversely, if (6) holds for all c 'i 9 

it holds in particular for ci = dizi , from which we get (5). 
2 Using the Lemma with di = ni/si 9 zi = yi• - Ui and c = A 

we obtain the following theorem. 

THEOREM. [ 
k n . ( y . -!-! . ) 2 

P r l. J.• l. 

i:.:1 s. 2 
l. 

k k c.2s.2 1/2 k k 
p l r. c.y. - A( r. l. l. ) < r, Ci!J.i < r. 0 iyi• '·· i=1 l. l.. i=1 ni i=1 -- i=1 

k 2 2 1/2 c. s. 
c 1 1 ••• 1 ck J . + A ( r. l. l. ) for all 

i=1 ni 
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Since the distribution of is the same as the 

k 
distribution of ~ z(ni-1) , the statement above (1) in Section 1 

i=1 
is true. 

3. THE APPROXIMATION 

We will approximate the distribution of the random variable 

k 
v = ~ z(n.-1) 

. 1 l l= 

by the distribution of a F(k,b) , where F(k,b) is an F-distri-

buted random variable with k and b degrees of freedom. The 

constants a and b are determined so that the first two cumulants 

of v and aF(.k,b) are equal. The approximation gives the exact 

distribution when all ni tend to infinity. Furthermore, Morrison 

(1971) has compared the exact and approximate distribution in the 

case k = 2 , n 1 = n 2 , and shown that the approximation is 

excellent. 

The cumulants of v are 

k n.-1 
l = ~ n.-3 i=1 l 

k 2(ni-1) 2(ni-2) 
= I: 2 i=1 (ni-3) (ni-5) 

while those of aF(k,b) are 

ab 
= b-2 

2a2(k+b-2)b2 
= ----"--::::---'--

k(b-2)2(b-4) 

Solving a and b from the equations t~i = :x,i* 

get the solutions (3) and (4). 

i = 1, 2 , we 
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4 • AN EXAMPLE 

We shall use the data in Pearson and Hartley (1958~ p. 27). 

Here k = 2 , n1 = 1 0 , n2 = 1 5 , y 1 • = 7 3. 4 , y 2 • = 4 7. 1 , s 1 
2 

= 51 , 

2 s 2 = 141 • We shall suppose that we want to find confidence 

intervals for the difference ~ 1 - ~ 2 , as 

separately. We find a = 2.06 , b = 12.51 

well as for ~ 1 
and A = 2.31 • 

and ~2 

Note 

that the values obtained for a and b seem very reasonable. 

Using a = .10 we find that the confidence interval for ~ 1 - 1-! 2 
is [ 17.5 35.1] , for iJ.1 it is [ 68.2 , 78.6] and for ~2 it 

is [ 40.0 , 54.2] • 

The 90 percent confidence interval for 1.1. 1 - w2 obtained by 

Pearson and Hartley using a method. due to Welch (1947) is [ 19.8 , 

32.8 J . As should be expected, since this method is aimed only at 

that difference 1.1. 1 - iJ. 2 , this interval is smaller than the one 

obtained by the method of Section 1. 

If we actually wanted 3 confidence intervals and did not use 

the simultaneous method of Section 1, we could still do this and 

still have 90 percent probability that all three intervals were 

correct by increasing the confidence coefficient of each interval 

to 96.67 • Doing this we find that the confidence intervals for 

iJ. 1 and iJ.2 , using ordinary t-intervals, are [ 67.8 ' 79.0 J and 

[ 39.7 ' 54.5] 

[17.7 ' 34.9] 

, respectively. The interval for o. 1 - a 2 becomes 

(to find this I had to interpolate in the available .. ,., 
tables). It is seen rthat two intervals are slightly wider while 

one is slightly narrower than the intervals obtained by the method 

of Section 1. 
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