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ABSTRACT 

The proPerties of statistical methods based upon the 

likelihood function for a one-parameter exponential family 

are studied. It is shown that the maximum likelihood 

estimate of a certain function of the parameter is the 

best unbiased estimate, for hypotheses with one-sided 

alternatives the likelihood ratio test is the uniformly 

most powerful test, and for hypotheses with two-sided 

alternatives the likelihood ratio test rejects when the 

values of the sufficient statistic are outside an interval. 

Under certain conditions it is also shown the test of 

hypotheses with two-sided alternatives is uniformly most 

powerful unbiased. The properties of the tests also carry 

over to the confidence intervals based upon the ~ikelihood 

function. 
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1. INTRODUCTION 

It is well known that in many cases statistical methods based 

upon the likelihood function are optimal in various ways. The use 

of the likelihood function has also been advocated on more intuitive 

grounds, see, for example, Barnard (1965), Kalbfleisch and Sprott 

(1970). Here we shall consider the one-parameter exponential family 

8 E 0 , ( 1 ) 

where f(x,e) is a probability density with respect to a a-finite 

measure ~ over a Euclidean sample space, and 0 is a subset of 

the real line. We shall assume that 0 has interior points, and 

let o
0 

be the interior of n . With the above assumptions, the 

statistic T(X) is sufficient and complete. For examples and further 

properties of exponential families the reader is referred to Lehmann 

(1959, pp. 50-54). 

At various point we shall assume that the exponential family we 

are considering satisfy some of the following conditions 

A 1. The equation 

D~i ~ ~ = T(x) 

has a unique solution e with eEo for almost all x • 

A 2. f(x,e) is continuous j_n e for all x. 

A 3. The family of densities lf(x,e) : 8EOl is invariant under 

a group G of measurable transformations of the sample space and 

~ is absolutely continuous with respect to ~g- 1 for all gEG • 

Furthermore, the induced group G of transformations of 0 is 

transitive over 0 , and the transformations gEG are continuous. 

Throughout the whole paper we shall assume that A 1 holds. 

A 3 is not satisfied for discrete exponential families, but is 

satisfied for all non-discrete exponential families that the author 

is aware of. 
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In Section 2 it is shown that for a certain function of the para­

meter the maximum likelihood estimate (MI1E) is the best unbiased 

estimate. In Section 3 it is shown that for one-sided hypotheses the 
' 

likelihood ratio test (LRT) is uniformly most powerful, and for two­
hypotheses 

sided · I it is uniformly most powerful unbiased if all conditions 

A 1-3 are satisfied. Analogous results for confidence sets are 

given in Section 4. 

2. MAXIMUM LIKELIHOOD ESTIMATES 

Consider the integral 

J exp {e T(x)l d~-t(x) • (2) 

In Lehmann (1959, Theorem 9, pp. 52-53) it is proved that (1) con-

sidered as a function of the complex variable e = s + i~ is an 

analytic function in the region of parameter points for which sE0
0 

, 

and the derivatives of all orders with respect to e of the inte­

gral (2) can be computed under the integral sign. Using this result 

and observing that 

J exp !eT(x)} d~-t(x) = D(e) , 

we obtain 

E I T ( x) k l = D ( k ) ( e ) In ( e ) , e Eo 
0 

, ( 3 ) 

where D(k) (e) denotes the k·~th derivative of D(e) • Using (3) 

for k = 1 ,2 we also find 

Var { T ( x ) l = D" ( e ) I D ( e ) - I D ' ( e ) I D ( e ) l 2 , e EO 
0 

• ( 4 ) 

In the following we shall assume that (3) holds for all eEO 

for k = 1,2. 

In the proof of Theorem 1 we need the following 

Lemma~ D' (e) ID( e) is a strictly increasing function of 8 • 

Proof. The derivative of D'(e)ID(e) is found to be equal to 

Var{T(x)} , see (4), which is > 0 • 



- 4 -

" Theorem 1. (I) The MLE of 8 is the unique solution e of the 

equation 

D' (e )/D(e) = T(X) 1 (5) 

and (II) the MLE of D' (e )/D(e) is a best unbiased estimate of 

D1 (8)/D(8) • 

Proof. (I) The first derivative of f(x,e) w.r.t. 9 is 

D- 1 (e) exp{eT(x)l [T(x)- D'(e)/D(e)] • (6) 

Hence the clensi ty has a stationary point for e satisfy_ing ,(6). Since 

by Lemma 1 D' (e ) /D(e ) increases with 8 , it is seen from ( 6) that 

it must be a maximum. (II) The MLE of D'(e)/D(e) is T(X) by (5), 

and by (3) it is unbiased. Since the distribution of the sufficient 

statistic T(X) is complete, T(X) is also the unbiased estimate 

with minimum variance. 

Remark. The fact that D'(e)/D(e) increases with e (see 

Lemma 1 ) is useful in cases when we need to find the MLJE of e from 

(5) by numerical methods. 

An example could be the trml.cated binomial distribution with 

truncation point a 

P( X = x] = 
(~)px( 1 -p)n-x 

x = a+11 ••• ,n , 

which can be 1vri tten in the form ( 1) with 

e = log _E_
1 -p 

n(e) 

T(x) = X 

We find 

a 
r, 

i=O 

(7) 

(8) 
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We know from Lemma 1 that D' (e)/D(e) increases with 8 , but this 

result is not easily obtained directly from (8). The l1TLE ~ of e 
can now be found by numerical methods from the equation 

D'(e) _ 
D{"6) -X 

The MLE f> of p is then obtained from 

Estimation of parameters in truncated discrete distributions is 

important in some application. For literature on this problem, see 

a recent paper by Selvin (1971). 

3. LIKEI~IHOOD RATIO TESTS 

We need the following 

IJenuna 2. The MLE e ( T (x)) of 8 is a strictly increasing func­

tion of T(x) • 

~oof. Equation (5) defines ~(T(x)) implicitly as a function 

of T(x) 

D' (~(T(x)) - T(x)D(~(T(x)) = 0 

The derivative o.f ~(T(x)) with respect to T(x) exists and is 

given by 

e I ( T (x) ) ::: [D" ( e ( T (x) ) ) /D ( 8 ( T (x) ) ) -I D I (.~T (x))) /D ( e ( T (x) ) ) } 2 ]-1 

which is > 0 by (4). 

Theorem 2. The level a. LHT of 

H : 9 ::: 8
0 

against K : 9 > 8 
0 

is UMP if a. is a possible 

level of the LRT. 

Proof. The LRT rejects H if 

s,tp f(x,e) 

L(x) 
e<e o 

- _......;...";!!".,----,.- < constant. -sup f(x,e) 
e 



The set of possible levels for a LRT is 

{y ~ y = sup P8 {L(X)<cl for some c > o} 
8~80 

If X is a discrete random variable the above set will not usually 

contain all nrunbers between 0 and 1 • 

We have that 

sup f(x,e) = D(§)-1 exp {eT(x)! 
e 

where ~ is the solution of (5). If 

sup f(x,e) = D(§)- 1 exp {~T(x)l 
e~e 0 

and hence L(x) = 1 • 

If S > 8
0 9 then 

sup f(x,e) = f(x,e
0

) 

e~e 0 

8 < e , then also 
- 0 

since, by I1E:-mrrna 1 D'(e)/D(e) is an increasing function of e , c.:md 

then by (6) increases when e increases to A 

8 • 

this case 

and 

The derivative of log L(x) w.r. t. ~r(x) is 

D~iit~f~~·tt e' (T(x))+e 0 -e(T(x))-T(x)e'(T(x)) • 

By (5) D'(@(T(x)))/D(e(T(x))) = T(x), and (11) reduces to 

e
0 

- ~(T(x)) • 

Hence in 

(9) 

( 10) 

( 11 ) 

( 12) 

Since we are considering the case ~(T(x)) > e
0 9 the derivative is 

negative 
/and hence L(x) is a decreasing ftu1ction of T ~) • To reject when 

L(x) < constant is therefore equivalent to rejecting when 

T(x) > constant. 
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By Lehmann (1959~ pp. 68-69) this is the UMP test of H against K • 

Theorem 3. The LRT of 

H : 8 = 8 against K ~ 8 ~ 8
0 is of the fogm~ Reject when 

T(x) < c1 or T\x) > c2 

where c
1 

and c
2 

are related by 

log {D(9(c2 ))/D(e(c1 ))} = c2e(c 2 )-c 1e(c 1 ) • 

Proof. The LRT rejects H if 

f~x~e 0 ) 
L(x) = sup f(x~e) <constant 

e 
Here L(x) is equal to (9), and the derivative 

given by ( 12). Let t 
0 

be the number such that 

( 13) 

( 14) 

( 15) 

of log l IJ (x) l is 

e(to) = eo • 

Then the derivative of" log !L(x) l is positive when T(x) < to 

and negative when ~r(x) > t Jo • It follows that L(x) as a function 

of T(x) has a maximum at to and decreases when T(x) decreases 

or increases from to • By ( 15) the form of the rejection region 

must be af3 given in the theorem. From ( 10) and ( 15) we get ( 14). 

Theorem 4. Under assumptions A2-3 the LRT test of 

H: e = 8 
0 

against K : e ..1, e 'F 0 

is UMP unbiased. 

Proof. It has been shown by Spj0tvoll ( 1971) that the confiderwe 

sets 

s(x) = !e f 
-su....;p~~~~ > c l ( 16) 

e 
for e , are unbiased. Here c is determined so that 

P9 !eES(T(X))l = 1-a. • Hence the test which rejects the null hypo­

thesis when e 
0 

~ S ( TX)) is also unbiased. That e 
0 

~ S ( T (X)) is 

equivalent to 

f(x,e
0

) 

sup f(x,e) < c 
e 

which by Theorem 3 is equivalent to T(X) < c1 and T(X) > c2 • 



- 8 -

To prove that this test is UMP unbiased it is enough to show (see 

Lehmann (1959), p. 127) that the test is of the form reject when 

( 17) 

where 8 1 ~ 8
0 

and k1 and k2 are suitably chosen constants. 

The equations 

i = 1 ,2 

have always a solution with respect to k1 and k2 • With these 

k1 and k2 the region ( 13) .is of the form ( 17) •. ·The theorem 

is proved. 

4. LIKELIHOOD RATIO CONJ)IIDENCE SETS 

The author (1971) has defined a 1-a. likelihood ratio confidence 

set (LRCS) to be a confidence set of the form (16) where c is the 

largest nmnber such that P9 {~ES(T(X))I > 1-a -

Corresponding to Theorem 3 and 4 we have 

Theorem 5. The 

[c1 (T(X)), c2 (T(X))J 

1-a. LRC,S for 

where 

is of the form 

and c2 satisfy (14).: 

Theorem 6. If A2-3 hold, then the LRCS is UMP unbiased. 

The LRCS in a family of distributions with one real parameter is 

not necessarily an interval when this family is not an exponential 

family. .An example is the Cauchy distribution, see Spj0tvoll (1971, 

Example 3). 

Hudson (1968) has studied. the LRCS for a binomial p. 
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