
STATISTICAL RESEARCH REPORT 
Institute of Mathematics 
University of Oslo 

ON THE WAITING TIME DISTRIBUTION OF 
BULK QUEUES 

by 

John Dagsvik 

No 8 

1973 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30906905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract 

The waiting time process of the n-th arriving group is 

considered for the general bulk queue·ing model GIX/Gy/1 • 

A generalisation of Lindley's waiting time equation is 

established. 

By a generalisation of Kingman's method [3], this equation 

is solved for the models GIX/E, y /1 
.K 

and ~x/GY/1 • 

When the service time is Erlang distributed ~' the 

results are applied to the case where the service- and the 

arrival groups are of constant size. 

Key words: Wendel projection, Group Waiting time, Restbatch, 

Waiting time equation, Erlang distributions, 

Hy~erexponential distribution, Stationary distri-

butions. 
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1. Introduction 

In the present paper we shall assume that customers arrive 

in groups en , n = 0,1,2, •••• The group size is a stochastic 

variable X , with probability distribution f(o) • The inter-

arrival intervals ~, n = 0,1, ••• are independent and have 

the same distribution a(o) • The service mechanism is described 

as follows: At the end of a service period the server accepts 

Y customers from the waiting line, or a smaller number if the 

line is shorter. Y is called the service group capasity. ~1e 

length of the service time B , has the distribution b(o) • 

We shall assume the existence of two integers m, 1 such that 

X~l,Y:5m. 

The most general works on bulk ~ueues seems to be those of 

Keilson [2], Cohen [1], Le Gall [5], Lambotte and Teghem [4]. 

They obtain the distribution of the queue length from which the 

waiting time distribution is derived. However, there exists no 

such results for general distributions a(o), b(o), f(o) and 

g(o) • Earlier works are restricted to the case where a(Q) 

or b(o) are the exponential distribution. Even if b(o) is 

exponential the analysis are only limited to bulk service models 

(Cohen [1], Le Gall [5]). 

2. The algebraic formalism. 

Let On denote the set of n x n matrices whose components 

are finite complex measures on the Borel subsets of the real line. 

According to Kingman [3] the product of two measures is defined 

as their convolution. An operator T ~ o1 ~ n1 is defined by 
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(2.1) 

where e is the measure 

if 

if 

and R+ = (0, oo) • 

0 E E 

0 t E 

This operator has the property that if X is a random variable 

with distribution 

v(E) = PriX E E}, 

then 

(Tv)(E) = Pr!X+ E E} • 

Kingman shows that 0 1 is an commutative algebra over the com­

plex field r. with identity e • Furthermore; he shows that 

the image 0~ and the kernel 0~ of T are both disjoint sub-

algebras of o1 • T is extended to 0 by T l v .. ! = {Tv .. l , 
n lJ lJ 

{vijl E On and multiplication in On is defined in the obvious 

way. With Ine as identity it is easy to verify that (~ has 

the same properties as o1 except that On is no longer commu­

tative. The norm on On is defined by 

II vii = max L:J ldv · ·I , 
j i lJ 

v = l v .. ! . lJ 

The set whose elements are Fourier-Stieltjes transform of ele-

ments from o1 w·e denote n1, and extend the definition to 

On in the obvious manner. 
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3. Group waiting timee 

We shall study the group waiting time process defined as 

follows: 

Definition 3.1 

By the group waiting tn1e Wn, n = 0,1,2, ••• we mean the 

waiting time (excludli1g service time) of the first customer from 

On who is taken into service. 

It is convenient to work with the random variable Zn which 

is defined as the time en spends in the queue until there is 

no one ahead, except the ones being served. If Ln is the time 

interval from the instant when Zn becomes zero and until the 

last service group with customers from On starts, then the 

sequence iznl , n = 0,1, 2,... satisfies 

( 3.1) 

with the initial condition z = z • 
0 

We recognize the expression 

above as ru1 equation of the similar type as the waiting time 

equation found by Lindley [6]. However, there is an important 

difference: The random variables Zn and Ln are no longer 

independent as in the model GI/G/1 • 

Consider now the servicing of the n-th arrival group On • 

Service may be performed in one or several groups. The last 

service group which has customers from en will be called the 

n-th rest batch. The rest batch may be filled with customers 

from On or there may be places available for customers from 

0n+1 • 
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We defDLe two random variables Tn and Jn , as follows: 

If the n-th restbatch can accept s customers and contains 

only t < s customers from Cn , then jJnl = s-t • If the 

n-th restbatch contains customers from en_1 ; Jn = -\Jnl • 

T is the number of customers which can n 

be accepted from en+1 in the first service group with customers 

from en+1 • We define J_1 = T_ 1 ; the capasity of the initial 

service group. 

If S(Tn_ 1) denotes service time of en , excluding the 

service time of the n-th rest batch, we realize that Zn > 0 

implies that 

when 
(3.2) 

when 

J > 0 n-

J < 0 ' n 

since en will have to wait an extra service period when 

Jn-1 = 0 ' Jn ~ 0 • When zn = 0 the first service group from 

en has capacity y and en must wait for the time wn before 

service starts, hence 

when 

when 

and Tn_ 1 = Y • 

Jn 2: 0 

J < 0 ' n 

We define matrices of distribution functions 

and H ( t) ::. l Hi j} 

for i,j = -(m-2),-(m-1), ••• ,m-1 , 

{K .. } 
lJ 
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by 

uni(t) = Pr{Z < t, J 1 = il, n - n-

~n· (t) = Pr{W < t, J 1 = i}, n - n-

~ r'r\S' (T,-1) ::;t, Jn=i \Jn-1=j 'Zn > Oj when i > 0 

K .. 
J.J 

Pr{O ~ t, Jn=J.!Jn-1=J} when i < 0 ' '-
,..,. 

= ~ lir!S' (Tn_1 ) ~ t, J =i\J 1=j,Z =0} when i > 0 n n- n 
H .. 

J.J 
l - 0 when i < 0 • 

If ~ is the probability distribution of a random variable X , 

~* denote the distribution of (-X) • 

Let 

Considering the possible events between the n-th and the 

n+1-th arrival we find 

(3.8 b) ui+1 (t) = L:[Pr{M+ < t,Z > O,D .. }+Pr!N+< t,Z =O,D .. } ] n . -11 - n J.J n- n J.J 
J 

when i :::; 0 , 

+ Pr{ (Z +B-.A )+ < t,Z -.A < O,Z > O,D .. } ] n n - n n - n J.J . 

when i < 0 • (3.9 a) can be written 
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+Pr{(Z -A)++B < t, 
n - sn > o, D .. } 

l.J 

-Pr{B < t,(Z -A)+= O, Z > 0, D .. } J - n -n n l.J 

= ((bo(O,i)_b)(ui -eui (o)))(t) 
n+1 n+1 

+ L Pr{(Z -A +B)+< t, Zn > 0, D1.J.}. 
j n n -

When i ~ 0 the expression is more complicated; 

(3.9 b) v~ + 1 ( t ) = ~I Pr { ~ + B c ( o , J n) ~ t, ~ > o , z > o , D. . l 
J n l.J 

+Pr{ (M +B)+_< t, M < 0, Z > 0, D .. } 
-"'h -"'h - n l.J 

+Pr{(N +B)+< t, N < 0, Z = 0, D1.J.}]. n - n- n 

If (3.9 b) is revvritten in the same way as (3.9 a) we obtain 

vi (t) = ((bc(O,i)_b)(ui -€Ui (o)))(t) 
n+1 n+1 n+1 

+ ~[Pr{ (Mn+B)+ :5 t, Z > O, D .. } 
J n l.J 

+ Pr{ (N +B)+ < t, Z = 0, D .. }], i > 0 • 
n - n l.J 
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Since Zn > 0 implies 

!(Nn+B)+ ~ t, Zn = 0} 

W = Z +B6(0,J 1), the probability of n n n-
can be written 

Pr{N +B)+< t, Z = 0} = Pr{(N +B)+< tt n - n n - ~ 

-Pr{(Z +S(Y)+(1+&(0,J 1 ))B-A )+ < t, Z > 0}, n n- -11 - n 

whence 

(3.10 a) ui = 2:: T(a*K .. (Uj -e:Uj(O)) when i < 0 , n+1 j lJ n n 

(3.10 b) ui = L:[T(a*(K .. -bo(O,j)H .. )(Uj -e:Uj(O))) 
n+1 j lJ lJ n n 

and 

(3.10 c) 

+ T(a*H .. vj) J when i > 0 lJ n 

+ L: T(a*bK .. (Uj -e:Uj(O))) when i < 0 , 
j lJ n n 

Hence we have established a set of equation for Un and Vn • 
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~ f f ( I j I +i) , when i < 0 

l ~ br ~ (f(g*)r-1)(p+lj\)g(i+p)+o(O,i)f( \j j)e 
~ r,2:1 p>O 

when i > 0 , 

· r r 
when i > 0 

(ii) \

( ~ b ~ (f(g*) )(p)g(i+p) ' 
H .. = r>O p>O 

1.J 
0 when i < 0 , 

(iii) bH. . = K. when i > 0 • 
lJ lO 

Proof: 

Let R(Jn_1 )+1 denote the number of service groups with 

customers from en • 

R(Jn_ 1 ) must satisfy· 

vJhen J > 0 ' J 1 = j ~ 0 ' z > 0 ' n- n- n 

(3.11 a) 
R(j) R(j)-1 

J +X= ~ Y +\j\ , X> ~ Y +\j\ 
n s=1 s s=1 s 

because 

customers are served in R(j)+1 groups and the rest of en is 

served in the n-th restbatch. \'Jhen 

is complete and Tn_ 1 = Y , so that 

R(O) R(0)-1 

J 1 = 0 , the restbatch n-

(3.11 b) = ~ y +Y 
s=1 s 

X > ~ Y +Y • s s=1 
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By an elementary argument 

i ~ 0 , j ~ 0 , r 2 1 , 

When Jn <0, zn > o, the relation 

must be valid. Furthermore S(Y) is seen to have the same 

distribution as S(O) • The theorem now follows easily. 

It is convenient to introduce some further matrix notations. 

Let F = { F . . }, G = { G . . } , E = { E . . } , K 1 = { K' . .j and 
~J ~J ~J ~J 

~ = l~ij} be the matrices with entries r r 

F .. = f(j-i), K' .. = L: br L: (f(g*)r)(p+j)g(i+p), 
~J ~J r20 p>O 

for i,j = 0,1,2, ••• m-1 

and F .. = K' .. = 0 
~J ~J 

for 

G .. = g(i-j), E .. = L: g(i+p)f(p+j), for i,j = 0,1, ••• m+(l-m)+-1 , 
~J ~J p>O 

c(i,O) for i,j = 0,1, ••• r-1 
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Lemma 3.2 

(i) K' = E(ei -bG)-1I m m 

(ii) 

Proof: 

K .. 
~J 

I 1eF .. , when = -~J 

bK . . + 6 ( 0 , i ) F . . e 
~J ~J 

(ii) is seen immediately. 

i < 0, j 2: 0 

when i ~ 0, j > 0 • 

(i): Since E~ = f(EGr).J.}={ ~ (f(g*)r)(p+j)g(i+p)}, 
~ p>O 

i, j = 0, 1, ••• m-1, the theorem follov, s. Observe that Gr = 0 

when r > m+(l-m)+ , hence there is no convergence problem. 

Remark: 

Even if the matrices involved are defined m dimensional they 

are understood to be m+(n-m)+ dimensional with the undefined 

entries equal to zero. 

By the substitutions ~ = !Q~kl, Pn = {P~k}, where 

and 

(3.12 b) pik = 
n (u~i+u* -o(O,i)~(u~r+U~))6(k,O) 

r 

i,k = 0,1, ••• ,m-1 , 

it is possible to write (3.10) on the form 
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whence theorem 3.3 follows. 

Theorem 3.3 

Let 

and assume that U0 (t) = I 2m_ 1e(z+t), V0 (t) = r 2m_ 1e(w+t) • 

Then Un and Vn are uniquely determined by (3.13) and 

where 

- 0' ( Im -vm )K' -1 
• 

0, bv K' m 

Equation (3.14) is called the waiting time equation. 

Corollary 3. Llr 

_! 

When the trafic intensity p = E(X)E(B)/E(Y)E(A) is less 

than unity the stationary distribution "" "" P = lim P 
n~oo n 

exists and 

is determined by 



- 12 -

A proof of the existence of the stationary distribution is given 

in [7] and [2]. 
We will assume that the customers in an arrival group are 

ordered and the queuedisiplin is first come first served. 

Let wP 
n be the waiting time of customer nr. p 

that en contains at least p customers. Let 

rP = PrjwP < tl . n n-

in given 

The problem of finding rP can be solved by the following argument; n 

If en contains exactly p customer then obviously 

r P 
n 

i 
= ~ un+1 • 

~ 

Hence we must have 

where K' p and 

is replaced by 

KP are 

0 (p' 0) • 

4. The model GIX/Eky /1. 

K' and K respectively, when f(.) 

Within this model it is possible to obtain solutions of the 

waiting time equation (by using the approach suggested in [3] 

p.p. 312-313). Let e8; 8 E W , denote the complex exponential 

measure defined by 

e8 (E) = J eexp(-ex)dx , if Re e > 0 , 
EnR+ 

= J eexp(-ex)dx , 
En-R+ 

if Re e < 0 , 
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The following le~na is proved in the same way as the analogous 

results in [3] p.p. 312-313. 

Lemma 4.1 

(i) 

where 

n - .1:!:... 
~-" - p-e . 

(ii) 

where 

c::o 
-py ( )m 

Y m = J e m! l:lY a ( dy ) • 
0 

By the introduction of the generating functions 

(3.14) is transformed to the equivalent equation 
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By the transformation 

we get 

(4. 2 i) ¢ = x (I - v ) T (a* ( F ( ¢ - € $ ( 0 ) ) + Ew ) ) + P , 
X mm X X X 0 

(4.2ii) wx-b (Gwx +¢x-€1jix (0) )=xvmT(a*b (F( ¢x-e¢x (0) )+Ewx)+vmQo • 

By assumption b k = ell • Assume that (4.2) has a solution of 

hyperexponential type; i.e, 

(\ qqo~ ) e + ~ ( q~ \) e • 
>1 q. e. J_ J I J 

I ' 

If uo = e:U0 (o) a."ld V = eV (0) , 
0 0 

it follows from the definit-

rv rv r~-vm)Uo I ion of pn that p = 
0 

vmvo I 
I 

• 

Inserting (4.3) in (4. 2) gives 

(e:I -bG)q 11 + I: (e q'!-e b(Gq'!+qq) 
m o j>O ej J ej J J 

= xv I: T(a*be 6 (Fq~+Eql!))+xv T(a*bEq")+v V • 
mj>O j J J m o m o 

• From Lemma 4.1 follows 
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-x(T -v )Eq 11 e+(I -v )U = 0 , -m m o m m o 

(4.4-ii) 

k 
-xv 2.:: (Fq~+Eq 1!)((1-~.) 2.:: ~~fJ .(er-e)+(1-~~)e) 

mj>O J J J r=1 J r J 1-l J 

k r 
-xv Eq 11 ( 2.:: (e -e )yk +€ )-v V = 0 , 

m o r=1 1-1 -r m o 

where 

k 
fJ . = 2.:: ~-J.rYs-r' ~·=~<e.) • 
rJ s>r J J 

The equations above imply that the coefficients of 

e, (e~-e), r = 1 ,2, •• ,k, and e 8 .' j = 1 ,2,... are zero. Hence, 
J 

we are led to the equations 

(4.5 i) 
1-a. . 

q' = 2.:: ...:__:..;:]_ q ~+x(I -v )Eq"+(I -v )U , 
o j>O aj J m m o m m o 

(4.5ii) 



- 16 -

(4.5iii) 

(4.5iv) 

+(f3.-1)(n .a:: 1 -~~J.t~)v (I-f3~G)]q'!, r = 1,2, ••• ,k, 
J rJ J J m · m J J 

(4. 5 v) 

where ~j'j == 1,2, ••• hk , are the roots of' 

where h = m+(l-m)+. 

Observe that (4.5 iv-v) constitutes a set of' 2kh equations. 

Hence it is sufficient that (4.5 vi) has kh roots. 

5. Special cases. 

Uni'ortunately, the assumptions (4 .• 3) are not always full-

filled. For instance when Y = m > 1 • However, in this case 

we are able to slighten the assumptions (4.3). Observe that 

Y = m > l implies G = 0 • Let 

whence 
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and 

(5.3) 

We now suppose that (5.3) has a solution of the form 

s = p e+ L: e8 P. 1 
X 0 j>O j J 

that is; p0 ,pj,j > 0 , must satisfy 

p e+ L: e8 p. = x(F+bE)(Im-~ ) L: T(a*e 8 )p.+xE~ L: T(a*be 8 )P~ 
o j>O j J m j>O j J mj>O j J 

Exactly the same calculations as in the preceeding section give 

(5.4 i) p. = xo. . (F+~ ~E) p. , 
J J J J 

j = 1,2, ••• ' 

L: {(p.-1)P~-r~.-o(r,k)(1-o..))E(I -~) 
j>O J J J J m m 

( 5 • 4 iii ) ( I - xEv ) p = I: { (a. -:- 1 -1 ) ( I - ~ ) + xEv + :xa . E ( I - v ) m m o j J m m m J m m 

k l -xa. -~. E p.+E~ V • 
J J J m o 
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We shall now consider the case when both the arrival and the 

service group capacity are of constant size; i.e. X o 1 

Y = m • Assume first that m < 1 • Then F = 0 and 

It follows. that 

r -~ 
0 ,xcc:sn l 

. 11-m' 0 I 
L ..; 

From Lemma 1 in Takacs [8] page 82 we conclude that (5.5) has 

kl distinctroots 13-=P(e.), j=1,2, ••• ,kl for Ree>O., 
J J 

Hence equations (4.5) have a solution. Ass~~e that 1 < m • 

Then G = 0 , 

and 

When p0 is eliminated, (5.4ii) is a set of kl equations 

because 

-- -1 
~1 o , o I 

E = • 
l I 1 , 0 
L ; 

Accordingly, (5.4) has a solution since (5.6) has kl distinct 

roots. 

The stationary solution is obtained by multiplying (4.5) and 

(5.4) by 1-x and let x tend to 1- • 
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The "key" to the solution is the fact thatihe assumption a 

enables us to express the operator T in a special form 

Lemma 6.1 

Suppose Then 

k k k k r T((e*) ~) = (e*) ~+(e-e*) ~a (e*) - , 
r=1 r 

where 

Proof: 

For k = 1 the Lemma reduces to equation (72) in Kingman [3]. 

Assume (6.1) valid for k = 1,2, ••• p • Since T(e*)r = e we 

get 

Now v = T((e*)P~) E o; implies 

T((e*)P+1\--L) == T(et v) = e*'v+(€-e*)a' , 

where cr.' = ( e*v) (,.,.. IR +) • 

Obviously T(e*v)(~ R+) = (e*v)(~ R+) which yields a' = ap+1 • 

Hence, by the assumption 

T(e*v) = (e*)P+ 1 ~--L+(e-e*) ~ a (e*)P+1-r+(e-e*)a 
r=1 r p+1 

and the Lemma follows by induction. 
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With ~ = K1~x ru1d e = eA application of (6.1) on (4.1) 

gives (with I= I 2m_ 1) 

(6.2) 
k 

(~I-xa*K1 )$x = x(e-e*) ~ ~ (e*)k-r+xT(a*(K2-K1 ))~ (0)+~ • 
r=1 r x o 

Let t:.x = e:I-xa*K1 • 

Inserting t = 0 gives ru1 expression for ~k, viz., 

Since !Ja*K111 ::;: 1 , L'. - 1 = ~ (xa*K1 )r exists when !xI < 1 • 
x r> 0 

Thus (6.3) and (6.2) are equivalent to 

If k = 1 , t = 0 determines ~x(O) by 

When k > 1 let 
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Thus, (6.4) can be written 

(6.6) 

Furthermore (E.~ )(0) = aJ. leads to 
J X 

j = 1 '2' ••• 'k-1 ' 

which determines aj' j = 1,2, ••• k-1, and $x(O) 

1. The stationary solution 

In this section we shall demonstrate how the stationary solution 

of (6.2) can be obtained by use of the Fourier-Stieltjes trans-

form. In the stationary case we have 

k 
(7.1) (~I-a*K1 )~ = (~-eA*) ~ ar(eA*)k-r+T(a*(K2-K1 ))P(O) , 

r=1 

where now 

After the introduction of the Fourier transform an equation ana­

logous to (6.6) is obtained 

(7.2) 
.... 
L~ 1 (z)(P(z)-P(o)) 

... k-1 .... 
= - c 1 ( z )P ( o ) + ~ c ( z )o. _, • 

r=1 r I 
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Let x. be defined by 

AA A 

x.A 1 = det ll 1 , 

whence 

Suppose that det tl 1 (z) has k roots z 1 ,z2 , ••• ,zk. Then 

P(O),a 1 , ••• ,ak_1 , are determined except for a constant by 

(7 .4) 
A A k-1A A 

~(z1.)C 1 (z 1.)P(O) = ~ R(z.)c (z.)a 
r=1 1 r 1 r 

i=1,2, ••• k. 

Premultiplicating (7.2) by 

u = 

gives an equation where both sides become zero when z = 0 • 

~ l'Hospitals rule, 

(7. 5) 
A A A A A k~1 

(a*vK1 )' (o) (P-P(O)) = uc1 '(o )P(o )-i I: ua, • 
r=1 r 

A .... 
Consider (a*UK1 ) 1 (0)P(O). 

The process !Jnl is recurrent and therefore Jn converges in 

distribution to J , say. Since 

and 

uK1 = (bv K,v (K-F)) m m 
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= (k (t),k1(t), ••• ,k 1(t)) , o m-

k.(t) = L: k .. (t) , 
J . lJ 

l 

it follows that 

A "' A 

(a*bvmK)'(O) = i(E(S'(j))jJ=j)-iE(A)+iE(B) • 

Thus 

= i '"E(S'(j))jJ=j)Pr(J=j)-iE(A)+iE(B) • 
j 

By (3.11) we find 

E(S'(J)-A+B) = (p-1)E(A)+E(B) = kA- 1 (p-1)+E(B) • 

Equation (6.12) therefore reduces to 

A Ah k-1 
(7.6) E(B)-k(1-p) = -iA(a*bK)'(O)P(O)+v 2 1Q(O)-A L: u~ • 

m- r=1 r 

Together with (7.4) we have a set of k+1 matrix equations to 

determine the k+1 un1mowns 'P(o), a. 1 , • •. ,a.k_ 1 • 

It is known that a probability distribution can be approximated 

by a linear combination of Erlang distributions. From Lemma 6.1 

it is clear that the results in the last section can be general­

ized to the case when a(o) is a linear combL~ation of Erlang 

distributions. Accordingly, it is possible to obtain approxi­

mate solutions of the waiting time equation for general a(a) • 
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