

ON THE WAITING TIME DISTRIBUTION OF BULK QUEUES

by

John Dagsvik

 $\bar{\alpha}$

Abstract

The waiting time process of the n-th arriving group is considered for the general bulk queueing model $GI^{X}/G^{Y}/1$.

A generalisation of Lindley's waiting time equation is established.

By a generalisation of Kingman's method [3], this equation is solved for the models $\left. \mathrm{GL}^X/\mathbb{E}^{-Y}_k/1 \right.$ and $\left. \mathbb{E}^{-X}_k/\mathbb{G}^{Y}/1 \right.$.

When the service time is Erlang distributed $\mathbb{E}_{\mathbf{k}}$, the results are applied to the case where the service- and the arrival groups are of constant size.

Key words: Wendel projection, Group Waiting time, Restbatch, Waiting time equation, Erlang distributions, Hyperexponential distribution, Stationary distributions.

Contents

 $\hat{\alpha}$

1. Introduction

In the present paper we shall assume that customers arrive in groups C_n , $n = 0,1,2,...$. The group size is a stochastic variable X , with probability distribution $f(\cdot)$. The interarrival intervals A_n , $n = 0,1,...$ are independent and have the same distribution $a(\cdot)$. The service mechanism is described as follows: At the end of a service period the server accepts Y customers from the waiting line, or a smaller number if the line is shorter. Y is called the service group capasity. The length of the service time B , has the distribution $b(\cdot)$. We shall assume the existence of two integers m, 1 such that $X \leq 1$, $Y \leq m$.

The most general works on bulk queues seems to be those of Keilson $[2]$, Cohen $[1]$, Le Gall $[5]$, Lambotte and Teghem $[4]$. They obtain the distribution of the queue length from which the waiting time distribution is derived. However, there exists no such results for general distributions $a(\cdot)$, $b(\cdot)$, $f(\cdot)$ and $g(\cdot)$. Earlier works are restricted to the case where $a(\cdot)$ or $b(\cdot)$ are the exponential distribution. Even if $b(\cdot)$ is exponential the analysis are only limited to bulk service models (Cohen [1], *Le* Gall [5]).

2. The algebraic formalism.

Let Ω_n denote the set of $n \times n$ matrices whose components are finite complex measures on the Borel subsets of the real line. According to Kingman [3] the product of two measures is defined as their convolution. An operator $T : \Omega_1 \rightarrow \Omega_1$ is defined by

 -1

$$
(2.1) \quad (\text{TV})(E) = \nu(E \cap R^+) + \nu(-R^+) \varepsilon(E) , \quad \nu \in \Omega_1 ,
$$

where *e* is the measure

$$
\epsilon(E) = \begin{cases} 1 & \text{if } 0 \in E \\ 0 & \text{if } 0 \notin E \end{cases}
$$

and $R^+ = (0, \infty)$.

This operator has the property that if X is a random variable with distribution

$$
\nu(E) = \Pr\{X \in E\},\,
$$

then

$$
(\text{TV})(\text{E}) = \text{Pr}\{\text{X}^+ \in \text{E}\} .
$$

Kingman shows that Ω_1 is an commutative algebra over the complex field C with identity C . Furthermore, he shows that the image Ω_1^+ and the kernel Ω_1^- of T are both disjoint subalgebras of Ω_1 . T is extended to Ω_n by $T\{v_{i,j}\} = \{Tv_{i,j}\}$, $\{v_{i,j}\}\in\Omega_n$ and multiplication in Ω_n is defined in the obvious way. With $I_n \varepsilon$ as identity it is easy to verify that Ω_n has the same properties as Ω_1 except that Ω_n is no longer commutative. The norm on Ω_n is defined by

$$
\|\nu\| = \max_{j} \sum_{i} |\Delta \nu_{i,j}| \quad , \quad \nu = {\nu_{i,j}} \quad .
$$

The set whose elements are Fourier-Stieltjes transform of elements from Ω_1 we denote Ω_1 , and extend the definition to $\hat{\Omega}_n$ in the obvious manner.

3. Group waiting time.

We shall study the group waiting time process defined as follows:

Definition 3.1

By the group waiting time W_n , n = 0,1,2,... we mean the waiting time (excluding service time) of the first customer from C_n who is taken into service.

It is convenient to work with the random variable Z_n which is defined as the time C_n spends in the queue until there is no one ahead, except the ones being served. If L_n is the time interval from the instant when Z_n becomes zero and until the last service group with customers from C_n starts, then the sequence $\{Z_n\}$, n = 0,1,2,... satisfies

$$
(3.1) \t Z_{n+1} = (Z_n + L_n - A_n)^+ ,
$$

with the initial condition $Z_0 = z$. We recognize the expression above as an equation of the similar type as the waiting time equation found by Lindley [6]. However, there is an important difference: The random variables Z_n and L_n are no longer independent as in the model GI/G/1 •

Consider now the servicing of the n-th arrival group C_n . Service may be performed in one or several groups. The last service group which has customers from C_n will be called the n-th rest batch. The rest batch may be filled with customers from C_n or there may be places available for customers from C_{n+1} .

 $-3 -$

We define two random variables T_n and J_n , as follows: If the n-th restbatch can accept s customers and contains only $t \leq s$ customers from C_n , then $|J_n| = s-t$. If the n-th restbatch contains customers from C_{n-1} ; $J_n = -|J_n|$. Otherwise $J_n = |J_n|$. T_n is the number of customers which can be accepted from C_{n+1} in the first service group with customers from C_{n+1} . We define $J_{-1} = T_{-1}$; the capasity of the initial service group.

If $S(T_{n-1})$ denotes service time of C_n , excluding the service time of the n-th rest batch, we realize that $Z_n > 0$ implies that

$$
(3.2) \quad L_n = \begin{cases} S(T_{n-1}) + B\delta(0, T_{n-1}) = S'(T_{n-1}) & \text{when} \quad J_n \ge 0 \\ 0 & \text{when} \quad J_n < 0 \end{cases}
$$

 $T_{n-1} = J_{n-1}$, and

since C_n will have to wait an extra service period when $J_{n-1} = 0$, $J_n \ge 0$. When $Z_n = 0$ the first service group from C_n has capacity Y and C_n must wait for the time W_n before service starts, hence

(3.3)
$$
L_n = \begin{cases} S(T_{n-1}) + W_n & \text{when } J_n \ge 0 \\ 0 & \text{when } J_n < 0 \end{cases}
$$

and $T_{n-1} = Y$.

We define matrices of distribution functions and $H(t) = {H_{i,i}}$ for $i, j = -(m-2), -(m-1), ..., m-1$. $U_n(t) = {U_n^{\text{i}}(t)\delta(j,0)}$, $V_n(t) = {V_n^{\text{i}}(t)\delta(j,0)}$, $K(t) = {K_{1,i}}$

by
\n
$$
U_{n}^{i}(t) = Pr\{Z_{n} \leq t, J_{n-1} = i\},
$$
\n
$$
V_{n}^{i}(t) = Pr\{W_{n} \leq t, J_{n-1} = i\},
$$
\n
$$
K_{i,j} = \begin{cases} Pr\{S^{\dagger}(T_{n-1}) \leq t, J_{n} = i|J_{n-1} = j, Z_{n} > 0\} & \text{when } i \geq 0 \\ Pr\{O \leq t, J_{n} = i|J_{n-1} = j\} & \text{when } i < 0 \\ Pr\{S^{\dagger}(T_{n-1}) \leq t, J_{n} = i|J_{n-1} = j, Z_{n} = 0\} & \text{when } i \geq 0 \\ 0 & \text{when } i < 0 \end{cases}
$$

If $~\mu~$ is the probability distribution of a random variable X, μ^* denote the distribution of $(-X)$. Let

$$
M_n = Z_n + S' (J_{n-1}) - A_n, \quad N_n = W_n + S(Y) - A_n, \quad D_{i,j} = \{J_n = i, J_{n-1} = j\}.
$$

Considering the possible events between the n-th and the n+1-th arrival we find

$$
(3.8 \text{ a}) \quad \mathbf{u}_{n+1}^{\mathbf{i}}(\mathbf{t}) = \sum_{j} \Pr\{(\mathbf{Z}_{n} - \mathbf{A}_{n})^{\mathbf{t}} \leq \mathbf{t}, \ \mathbf{Z}_{n} > 0, \ \mathbf{D}_{i,j}\} \quad \text{when} \quad \mathbf{i} < 0 \ ,
$$

(3.8 b)
$$
U_{n+1}^{i}(t) = \sum_{j} [Pr{M_{n}^{+} \le t, Z_{n} > 0, D_{i,j}} + Pr{N_{n}^{+} \le t, Z_{n} = 0, D_{i,j}}]
$$

when $i \ge 0$,

$$
(3.9 \text{ a}) \quad \mathbf{V}_{n+1}^{i}(t) = \sum_{j} [\Pr\{(\mathbf{Z}_{n} + \delta(0, \mathbf{J}_{n})\mathbf{B} - \mathbf{A}_{n})^{+} \leq t, \mathbf{Z}_{n} - \mathbf{A}_{n} > 0, \mathbf{D}_{i,j}\}
$$

+
$$
Pr\{(Z_n+B-A_n)^+ \le t, Z_n-A_n \le 0, Z_n > 0, D_{i,j}\}\}
$$

when $i < 0$. (3.9 a) can be written

 $-5 -$

$$
v_{n+1}^{i}(t) = \sum_{j} \Pr\{(Z_{n} - A_{n})^{+} + \delta(0, J_{n})B \leq t, D_{i,j}\}\
$$

\n-Pr $\delta(0, J_{n})B \leq t, (Z_{n} - A_{n})^{+} = 0, D_{i,j}\}$
\n+Pr $\{(Z_{n} - A)^{+} + B \leq t, E_{n} > 0, D_{i,j}\}$
\n-Pr $\{B \leq t, (Z_{n} - A_{n})^{+} = 0, Z_{n} > 0, D_{i,j}\}$
\n= $((b^{\delta(0, i)} - b)(U_{n+1}^{i} - eU_{n+1}^{i}(0)))(t)$
\n+ $\sum_{j} \Pr\{(Z_{n} - A_{n} + B)^{+} \leq t, Z_{n} > 0, D_{i,j}\}.$
\nWhen $i \geq 0$ the expression is more complicated;
\n(3.9 b) $V_{n+1}^{i}(t) = \sum_{j} \Pr\{M_{n} + B\delta(0, J_{n}) \leq t, M_{n} > 0, Z_{n} > 0, D_{i,j}\}$
\n+Pr $\{(M_{n} + B)^{+} \leq t, M_{n} \leq 0, Z_{n} > 0, D_{i,j}\}$
\n+Pr $\{(M_{n} + B)^{+} \leq t, M_{n} \leq 0, Z_{n} = 0, D_{i,j}\}$
\n+Pr $\{(M_{n} + B)^{+} \leq t, M_{n} \leq 0, Z_{n} = 0, D_{i,j}\}$
\n+Pr $\{(M_{n} + B)^{+} \leq t, M_{n} \leq 0, Z_{n} = 0, D_{i,j}\}$
\nIf (3.9 b) is rewritten in the same way as (3.9 a) we obtain

$$
V_{n+1}^{i}(t) = ((b^{\delta(0,i)} - b)(U_{n+1}^{i} - \epsilon U_{n+1}^{i}(0)))(t)
$$

+ $\sum_{j} [Pr\{(M_{n}+B)^{+} \le t, Z_{n} > 0, D_{j}^{i}\}]$
+ $Pr\{(N_{n}+B)^{+} \le t, Z_{n} = 0, D_{j}^{i}\}]$, $i \ge 0$.

 $\label{eq:3.1} \frac{1}{\sigma_{\rm{eff}}}\left(\frac{1}{\sigma_{\rm{eff}}}\right)$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

Since
$$
Z_n > 0
$$
 implies $W_n = Z_n + B\delta(0, J_{n-1})$, the probability of $\{(N_n + B)^+ \leq t, Z_n = 0\}$ can be written

 \sim

$$
\begin{aligned} &\Pr\{N_n + B\}^+ \leq t, \ Z_n = 0\} = \Pr\{(N_n + B)^+ \leq t\} \\ &\quad - \Pr\{(Z_n + S(Y) + (1 + \delta(0, J_{n-1}))B - A_n)^+ \leq t, \ Z_n > 0\}, \end{aligned}
$$

whence

(3.10 a)
$$
U_{n+1}^{i} = \sum_{j} T(a*K_{ij}(U_{n}^{j} - \epsilon U_{n}^{j}(0))
$$
 when $i < 0$,
\n(3.10 b) $U_{n+1}^{i} = \sum_{j} [T(a*(K_{ij} - b^{\delta(0,j)}H_{ij})(U_{n}^{j} - \epsilon U_{n}^{j}(0)))$
\n $+ T(a*H_{ij}V_{n}^{j})$ when $i \ge 0$

and

$$
(3.10 \text{ c}) \quad \mathbf{v}_{n+1}^{i} = (\mathbf{b}^{\delta(0,i)} - \mathbf{b})(\mathbf{u}_{n+1}^{i} - \epsilon \mathbf{u}_{n+1}^{i}(0))
$$
\n
$$
+ \sum_{j} \mathbf{T}(a * b \mathbf{K}_{ij}(\mathbf{u}_{n}^{j} - \epsilon \mathbf{u}_{n}^{j}(0))) \quad \text{when} \quad i < 0,
$$
\n
$$
(3.10 \text{ d}) \quad \mathbf{v}_{n+1}^{i} = (\mathbf{b}^{\delta(0,i)} - \mathbf{b})(\mathbf{u}_{n+1}^{i} - \epsilon \mathbf{u}_{n+1}^{i}(0))
$$
\n
$$
+ \sum_{j} \mathbf{T}(a * b(\mathbf{K}_{ij} - \mathbf{b}^{\delta(0,j)} \mathbf{H}_{ij})(\mathbf{u}_{n}^{j} - \epsilon \mathbf{u}_{n}^{j}(0)))
$$
\n
$$
+ \mathbf{T}(a * b \mathbf{H}_{ij} \mathbf{v}_{n}^{j}) \quad \text{when} \quad i \ge 0.
$$

Hence we have established a set of equation for U_n and V_n .

- 7 -

Lemma 3.1

(i)
$$
K_{ij} = \begin{cases} f(|j|+i) , & \text{when } i < 0 \\ \sum_{r \geq 1} b^r \sum_{p > 0} (f(g*)^{r-1})(p+|j|)g(i+p)+\delta(0,i)f(|j|) \epsilon \end{cases}
$$

when $i \geq 0$,

(ii)
$$
H_{ij} = \begin{cases} \sum_{r \geq 0} b^r \sum_{p > 0} (f(g*)^r)(p)g(i+p), & \text{when } i \geq 0 \\ 0 & \text{when } i < 0, \end{cases}
$$

(iii)
$$
bH_{ij} = K_{io}
$$
 when $i \ge 0$.

Proof:

Let $R(J_{n-1})+1$ denote the number of service groups with customers from C_n . When $J_n \ge 0$, $J_{n-1} = j \ne 0$, $Z_n > 0$, $R(J_{n-1})$ must satisfy

$$
(3.11 \text{ a}) \quad J_{n}+X = \sum_{s=1}^{R(j)} Y_{s}+|j|, \quad X > \sum_{s=1}^{R(j)-1} Y_{s}+|j|
$$

because

$$
\begin{array}{c}\nR(j) \\
\sum_{s=1}^{n} Y_a + |j| \\
\end{array}
$$

customers are served in $R(j)+1$ groups and the rest of C_n is served in the n-th restbatch. When $J_{n-1} = 0$, the restbatch is complete and $T_{n-1} = Y$, so that

$$
(3.11 \text{ b}) \quad J_{n}+X = \sum_{s=1}^{R(0)} Y_{s}+Y, \quad X > \sum_{s=1}^{R(0)-1} Y_{s}+Y.
$$

By an elementary argument

$$
\Pr\{R(J_{n-1})=r, J_n=i|J_{n-1}=j\} = \sum_{p>0} (f(g*)^{r-1})(p+|j|)g(i+p),
$$

 $i \ge 0, j \ne 0, r \ge 1,$

$$
\Pr\{R(J_{n-1})=r, J_n=i | J_{n-1}=0\} = \sum_{p>0} (f(g*)^T)(p)g(i+p), i \ge 0, r \ge 0,
$$

 $\Pr\{S^{\bullet}(J_{n-1}) \leq t \, | \, \text{R}(J_{n-1}) = r, \ J_n = i \, | \, J_{n-1} = j, \ Z_n > 0 \} = \, b^{r + \delta(0, j)}(t) \enspace .$

When $J_n < 0$, $Z_n > 0$, the relation

$$
x + |J_n| = |J_{n-1}|
$$

must be valid. Furthermore $S(Y)$ is seen to have the same distribution as $S(0)$. The theorem now follows easily.

It is convenient to introduce some further matrix notations. Let $F = {F_{i,j}}$, $G = {G_{i,j}}$, $E = {E_{i,j}}$, $K' = {K'}_{i,j}$ and $v_r = \{v_r^{\text{1J}}\}$ be the matrices with entries

$$
F_{ij} = f(j-i), K'_{ij} = \sum_{r \geq 0} b^r \sum_{p > 0} (f(g*)^r)(p+j)g(i+p),
$$

for $i, j = 0, 1, 2, \ldots m-1$, and $F_{i,j} = K'_{i,j} = 0$ for

 $G_{ij} = g(i-j), E_{ij} = \sum_{p>0} g(i+p) f(p+j),$ for $i, j = 0,1, \ldots, m+(1-m)^+-1$, $v_r^{\text{ij}} = \delta(i,0)$ for $i,j = 0,1, \dots r-1$.

Lemma 3.2

- (i) $K' = E(\epsilon I_m bG)^{-1}I_m$
- (i) K_{ij} $\left\{ \begin{aligned} &\epsilon\textbf{F} \\ &\epsilon\textbf{F} \end{aligned} \right.$ $\mathfrak{E} \mathbb{F}_{\bullet i,i}$, when $=$ $\begin{cases} e^{r}-i\\ -1\end{cases}$ $\delta E_{i,j}^{\dagger}$ + $\delta(0,i)F_{i,j}^{\dagger}e_{j}$ $i < 0, j \ge 0$ when $i \geq 0$, $j \geq 0$.

Proof:

(ii) is seen immediately. (i): Since $EG^T = \{ (EG^T)_{i,j} \} = \{ \sum (f(g^*)^T)(p+j)g(i+p) \},$ 10 p>0

i, $j = 0, 1, \ldots, m-1$, the theorem follows. Observe that $G^T = 0$ when $r > m + (1-m)^+$, hence there is no convergence problem.

Remark:

Even if the matrices involved are defined m dimensional they are understood to be $m+(n-m)^+$ dimensional with the undefined entries equal to zero.

By the substitutions $Q_n = {Q_n^{ik}}$, $P_n = {P_n^{ik}}$, where

$$
(3.12 \text{ a}) \quad Q_n^{\text{i}k} = (V_n^{\text{i}} + (b - b^{\delta(0, \text{i})})(U_n^{\text{i}} - \epsilon U_n^{\text{i}}(0)))\delta(k, 0)
$$

and

$$
(3.12 \text{ b}) \quad P_n^{\text{ik}} = (U_n^{-1} + U_n^{\text{in}} - \delta(0,1)) \sum_{r} (U_n^{-r} + U_n^{r}) \delta(k,0) ,
$$

$$
i, k = 0,1,...,m-1 ,
$$

it is possible to write (3.10) on the form

$$
(3.13 a) U_{n+1} = \mathbb{T}(a \star \begin{bmatrix} 0 \\ K \end{bmatrix} \vee_{2m-1} Q_n) + \mathbb{T}(a \star \begin{bmatrix} F \\ bK \end{bmatrix} (\mathbb{P}_n - \varepsilon \mathbb{P}_n(0))) ,
$$

 (3.13 b) $Q_{n+1} = T(a * b \begin{bmatrix} 0 \\ K \end{bmatrix} v_{2m-1} Q_n) + T(a * b \begin{bmatrix} F \\ bK \end{bmatrix} (P_n - \varepsilon P_n(0)))$,

whence theorem 3.3 follows.

 ~ 10

Theorem 3.3

Let

$$
\widetilde{P}_n = \begin{bmatrix} P_n \\ v_{2m-1} Q_n \end{bmatrix}
$$

and assume that $U_0(t) = I_{2m-1} \epsilon(z+t)$, $V_0(t) = I_{2m-1} \epsilon(w+t)$. Then U_n and V_n are uniquely determined by (3.13) and

$$
(3.14) \quad \widetilde{P}_{n+1} = \mathbb{T}(a * K_1(\widetilde{P}_n - \varepsilon \widetilde{P}_n(o))) + \mathbb{T}(a * K_2) \widetilde{P}_n(o), \quad n = 0, 1, \ldots
$$

•

where

$$
K_1 = \begin{bmatrix} (I_m - \nu_m)(F + bK^*) \\ (I_m - \nu_m)(F + bK^*) \\ (I_m - \nu_m)(F + bK^*) \\ (I_m - \nu_m)(K^*) \end{bmatrix}, K_2 = \begin{bmatrix} 0 \\ (I_m - \nu_m)(K^*) \\ (I_m - \nu_m)(K^*) \end{bmatrix}
$$

Equation (3.14) is called the waiting time equation.

Corollary 3.4

When the trafic intensity $\rho = E(X)E(B)/E(Y)E(A)$ is less than unity the stationary distribution $\widetilde{\textbf{P}}$ = lim $\widetilde{\textbf{P}}_{\mathbf{r}}$ $n\rightarrow\infty$ n exists and is determined by

$$
(3.15) \quad \widetilde{P} = T(a*K_{1}(\widetilde{P} - \varepsilon \widetilde{P}(0))) + T(a*K_{2})\widetilde{P}(0) .
$$

A proof of the existence of the stationary distribution is given in [7] and [2].

We will assume that the customers in an arrival group are ordered and the queuedisiplin is first come first served. Let W_n^D be the waiting time of customer nr. p in C_n given that C_n contains at least p customers. Let

 $\Gamma_n^p = \Pr\{W_n^p \le t\}$.

The problem of finding $\Gamma_n^{\mathcal{P}}$ can be solved by the following argument: If C_n contains exactly p customer then obviously

$$
\Gamma_n^{\ P} = \sum_{i} U_{n+1}^i .
$$

Hence we must have

$$
\Gamma_{n}^{P} = \mathbb{T}(a \ast \nu_{m} K^{\dagger} \nu \nu_{2m-1} Q_{n}) + \mathbb{T}(a \ast \nu_{2m-1} K_{p} (P_{n} - \varepsilon P_{n} (0))) ,
$$

where K^{\dagger} and K_{p} are K^{\dagger} and K respectively, when $f(\bullet)$ is replaced by $\delta(p, \circ)$.

4. The model
$$
GI^X/E_k^Y/1
$$
.

Within this model it is possible to obtain solutions of the waiting time equation (by using the approach suggested in [3] $p.p. 312-313$. Let e_{θ} ; $\theta \in \mathcal{C}$, denote the complex exponential measure defined by

$$
e_{\theta}(\mathbf{E}) = \int_{\mathbf{E} \cap \mathbf{R}^{+}} \theta \exp(-\theta x) dx
$$
, if Re $\theta > 0$,
 $e_{\theta}(\mathbf{E}) = \int_{\mathbf{E} \cap \mathbf{R}^{+}} \theta \exp(-\theta x) dx$, if Re $\theta < 0$,

 \sim μ .

Lemma 4.1

 $\sim 10^6$

(i)
$$
e_{\theta}e_{\mu}^{n} = \beta^{n}e_{\theta} + (1-\beta)\sum_{k=1}^{n} \beta^{n-k}e_{\mu}^{k}
$$
,

where

$$
\beta = \frac{\mu}{\mu - \theta} \quad .
$$

(ii)
$$
\mathbb{T}(a^*e_\mu^n) = \sum_{k=1}^n (e_\mu^k - \varepsilon) \gamma_{n-k} + \varepsilon ,
$$

where

$$
\gamma_{m} = \int_{0}^{\infty} \frac{e^{-\mu y} (\mu y)^{m}}{m!} a(dy) .
$$

By the introduction of the generating functions

$$
\psi_{\mathbf{x}}(\mathbf{t}) = \sum_{n \geq 0} P_n(\mathbf{t}) \mathbf{x}^n, \varphi_{\mathbf{x}}(\mathbf{t}) = \sum_{n \geq 0} \nu_{2m-1} Q_n(\mathbf{t}) \mathbf{x}^n.
$$

$$
\widetilde{\Psi}_{\mathbf{x}} = \begin{pmatrix} \Psi_{\mathbf{x}} \\ \varphi_{\mathbf{x}} \end{pmatrix} = \sum_{n \geq 0} \widetilde{P}_n \mathbf{x}^n
$$

(3.14) is transformed to the equivalent equation

$$
(4.1) \quad \widetilde{\psi}_x = x \mathbb{T} (a * K_1(\widetilde{\psi}_x - \varepsilon \widetilde{\psi}_x(0))) + x \mathbb{T} (a * K_2) \widetilde{\psi}_x(0) + \widetilde{P}_0.
$$

By the transformation

$$
\omega_{\mathbf{X}} = (\varepsilon \mathbf{I}_{\mathbf{m}} - \mathbf{b} \mathbf{G})^{-1} (\mathbf{b} (\psi_{\mathbf{X}} - \psi_{\mathbf{X}} (\mathbf{0}) \varepsilon) + \varphi_{\mathbf{X}})
$$

we get

$$
(4.2 i) \psi_{\mathbf{X}} = \mathbf{x} (\mathbf{I}_{\mathbf{m}} - \mathbf{v}_{\mathbf{m}}) \mathbf{T} (\mathbf{a}^{\ast} (\mathbf{F} (\psi_{\mathbf{X}} - \epsilon \psi_{\mathbf{X}} (\mathbf{0}))) + \mathbf{E} \mathbf{w}_{\mathbf{X}})) + \mathbf{P}_{\mathbf{0}} ,
$$

$$
(4.2ii) \t w_x-b(Gw_x+\psi_x-\varepsilon\psi_x(0))=xv_mT(a*b(F(\psi_x-\varepsilon\psi_x(0))+Ew_x)+v_mQ_0.
$$

By assumption $b = e^k_\mu$. Assume that (4.2) has a solution of hyperexponential type; i.e,

$$
(4.3) \quad \begin{pmatrix} \psi_{\mathbf{X}} \\ \omega_{\mathbf{X}} \end{pmatrix} \; = \; \begin{pmatrix} \mathbf{q}^{\mathsf{T}}_{\mathsf{O}} \\ \mathbf{q}^{\mathsf{T}}_{\mathsf{O}} \end{pmatrix} \; \boldsymbol{\epsilon} \; + \; \frac{\mathbf{h}}{2} \left(\begin{pmatrix} \mathbf{q}^{\mathsf{T}}_{\mathsf{J}} \\ \mathbf{q}^{\mathsf{T}}_{\mathsf{J}} \end{pmatrix} \; \boldsymbol{\mathrm{e}}_{\mathsf{J}} \; \boldsymbol{\cdot} \right)
$$

If $U_0 = \varepsilon U_0 (0)$ and $V_0 = \varepsilon V_0 (0)$, it follows from the definition of \tilde{P}_n that $\tilde{P}_0 = \begin{pmatrix} (I_m - v_m)U_0 \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$. $v_{\rm m}$ V_o / •

Inserting (4.3) in (4.2) gives

$$
\epsilon q_o^{\dagger} + \sum_{j>0} e_{\theta_j} q_j^{\dagger} = x (I_m - \nu_m) \sum_{j>0} T(a * e_{\theta_j} (Fq_j^{\dagger} + Eq_j^{\dagger})) + x (I_m - \nu_m) Eq_0^{\dagger} e + (I_m - \nu_m) U_0 ,
$$

$$
(\epsilon I_m - bG)q_0'' + \sum_{j>0} (e_{\theta_j} q_j'' - e_{\theta_j} b(Gq_j'' + q_j'))
$$

= $xv_m \sum_{j>0} T(a*b e_{\theta_j} (Fq_j' + Eq_j')) + xv_m T(a*bEq_0'') + v_m V_0$.

• From Lemma 4.1 follows

$$
(4.4 \text{ i}) \quad \epsilon q_o^{\prime} + \sum_{j>0} \epsilon_{\theta} q_j^{\prime} - (\mathbb{I}_m - \nu_m) x \sum_{j>0} (\text{Fq}_j^{\prime} + \text{Eq}_j^{\prime\prime}) (\alpha_j \epsilon_{\theta} + (1 - \alpha_j) \epsilon)
$$

$$
-x (\mathbb{I}_m - \nu_m) \text{Eq}_0^{\prime\prime} \epsilon + (\mathbb{I}_m - \nu_m) U_0 = 0 ,
$$

$$
(4.4ii) \sum_{j>0} \left(\left(\varepsilon \mathbb{I}_m - \beta_j^k G \right) q_j^n - \beta_j^k q_j^* \right) e_{\theta_j} - \left(e_{\mu}^k - \varepsilon \right) G q_0^n - G q_0^n \varepsilon + q_0^n \varepsilon
$$

$$
- \sum_{j>0} (Gq_j + q_j) ((1-\beta_j) \sum_{r=1}^k \beta_j^{k-r} (e_{\mu}^r - \epsilon) + (1-\beta_j^k) \epsilon)
$$

$$
-xv_{m} \sum_{j>0} (Fq_j^{\dagger} + Eq_j^{\dagger}) \beta_j^k (\alpha_j e_{\theta_j} + (1 - \alpha_j) \epsilon)
$$

$$
-xv_{m} \sum_{j>0} (Fq_j^{\dagger} + Eq_j^{\dagger}) ((1 - \beta_j) \sum_{r=1}^{k} \beta_j^k \eta_{rj} (e_{\mu}^r - \epsilon) + (1 - \beta_j^k) \epsilon)
$$

$$
-x\nu_m \text{Eq}^{\text{''}}_{\text{O}}\big(\sum_{r=1}^k (e_\mu^r - \varepsilon)\gamma_{k-r} + \varepsilon\big) - \nu_m V_{\text{O}} = 0 \quad ,
$$

where

$$
\eta_{rj} = \sum_{s \ge r}^{k} \beta_j^{-r} \gamma_{s-r} , \alpha_j = \alpha(\theta_j) .
$$

The equations above imply that the coefficients of $e, (e_{\mu}^{T}-\varepsilon), r = 1,2,...,k,$ and e_{β} , j = 1,2,... are zero. Hence, J we are led to the equations

$$
(4.5 i) q_0' = \sum_{j>0} \frac{1-\alpha_j}{\alpha_j} q_j' + x (I_m - \nu_m) \mathbb{E} q_0'' + (I_m - \nu_m) U_0,
$$

$$
(4.5ii) \quad q_j^* = \beta_j^{-k} (I_m - \nu_m) (I_m - \beta_j^k G) q_j^*,
$$

$$
(4.5iii) \quad (I_m - G - x\nu_m E)q_0'' = \sum_{j>0} \left(\frac{1-\alpha_j}{\alpha_j \beta_j} k \nu_m (I - \beta_j^k G) - 1 + \beta_j^{-k} \right) q_j'' + \nu_m V_0,
$$

$$
(4.5iv) \qquad (\delta(r,k)G+xy_{k-r}v_mE)q_0'' = \sum_{j>0} [(\beta_j-1)\beta_j^{-r} ,
$$

$$
+(\beta_{j}-1)(\eta_{r,j}\alpha_{j}^{-1}-\beta_{j}^{-x})\vee_{m}(\mathcal{I}_{m}\beta_{j}^{k}G)]q_{j}^{n}, r=1,2,...,k
$$

$$
(4.5 \text{ v}) \quad ((I_{h} - x\alpha_{j}F)(I_{m} - \beta_{j}^{k}G) - x\alpha_{j}\beta_{j}^{k}E)q_{j}'' = 0 \quad , \quad j = 1, 2, \dots ,
$$

where
$$
\beta_j
$$
, $j = 1, 2, \ldots$ hk, are the roots of

$$
(4.5\text{vi}) \quad \det\{(\mathbf{I}_h - x\alpha \mathbf{F})(\mathbf{I}_m - \beta^k \mathbf{G}) - x\alpha \beta^k \mathbf{E}\},
$$

where $h = m + (1-m)^+$.

Observe that $(4.5$ iv-v) constitutes a set of 2kh equations. Hence it is sufficient that (4.5 vi) has kh roots.

5. Special cases.

Unfortunately, the assumptions (4.3) are not always fullfilled. For instance when $Y = m > 1$. However, in this case we are able to slighten the assumptions (4.3). Observe that $Y = m > 1$ implies $G = 0$. Let

$$
(5.1) \quad \zeta_{X} = (F + bE)(\psi_{X} - \varepsilon \psi_{X}(0)) + E \varphi_{X}
$$

whence

$$
(5.2a) \psi_{\mathbf{x}} = \mathbf{x} (\mathbf{I}_{\mathbf{m}} - \mathbf{v}_{\mathbf{m}}) \mathbf{T} (\mathbf{a} \star \mathbf{g}_{\mathbf{x}}) + (\mathbf{I}_{\mathbf{m}} - \mathbf{v}_{\mathbf{m}}) \mathbf{U}_{\mathbf{0}} ,
$$

$$
(5.2b) \quad \varphi_{\mathtt{x}} = x \nu_{\mathtt{m}} \mathtt{T}(a \textbf{*} b \textbf{s}_{\mathtt{x}}) + \nu_{\mathtt{m}} V_{\mathtt{0}}
$$

and

$$
(5.3) \quad \mathbf{g}_{\mathbf{x}} = \mathbf{x}(\mathbf{F} + \mathbf{b}\mathbf{E})(\mathbf{I}_{\mathbf{m}} - \mathbf{v}_{\mathbf{m}})(\mathbf{T}\mathbf{a} \cdot \mathbf{g}_{\mathbf{x}} - \mathbf{c}\mathbf{T}(\mathbf{a} \cdot \mathbf{g}_{\mathbf{x}})(0)) + \mathbf{x} \mathbf{E} \mathbf{v}_{\mathbf{m}} \mathbf{T}(\mathbf{a} \cdot \mathbf{b} \mathbf{g}_{\mathbf{x}}) + \mathbf{E} \mathbf{v}_{\mathbf{m}} \mathbf{V}_{\mathbf{0}}
$$

We now suppose that (5.3) has a solution of the form

$$
\mathbf{S}_{\mathbf{x}} = \mathbf{p}_{0} \mathbf{\epsilon} + \sum_{j>0} \mathbf{e}_{0} \mathbf{p}_{j} \quad ,
$$

that is; $p_{0},p_{j},j>0$, must satisfy

$$
P_0^{\epsilon + \sum e} e_j P_j = x(F + bE)(I_m - v_m) \sum_{j>0} T(a*e_{\theta_j}) P_j + xEv_m \sum_{j>0} T(a*be_{\theta_j}) P_j + xEv_m T(a* b) P_0 + Ev_m V_0
$$

Exactly the same calculations as in the preceeding section give (5.4 i) $p_j = x\alpha_j (F+\beta_j^k E)p_j$, $j = 1,2,...$,

$$
(5.41.1) \quad \sum_{j>0} \left\{ (\beta_j - 1) \beta_j^{k-r} \alpha_j - \delta(r, k) (1 - \alpha_j) \right\} E(I_m - \nu_m)
$$

$$
+(\beta_j-1)\beta_j^{k} \eta_{rj} E v_m \} p_j = \gamma_{k-r} E v_m p_0 , \quad r = 1, 2, \ldots, k ,
$$

(5.4iii)
$$
(I_m - xEv_m) p_o = \sum_{j} \{ (\alpha_j^{-1} - 1) (I_m - v_m) + xEv_m + x\alpha_j E(I_m - v_m) \}
$$

$$
-x\alpha_j \beta_j^{k} E\} p_j + Ev_m V_o \cdot
$$

We shall now consider the case when both the arrival and the service group capacity are of constant size; i.e. $X = 1$, $Y = m$. Assume first that $m < 1$. Then $F = 0$ and

$$
I_{1} - \beta^{k} G - x \alpha \beta^{k} E = I_{1} - \beta^{k} \begin{bmatrix} 0 & , x_{0} I_{m} \\ I_{1-m} & 0 \end{bmatrix}.
$$

It follows. that

$$
(5.5) \det(\mathbf{I}_1 - \beta^k G - x\alpha \beta^k E) = 1 - (x\alpha)^m \beta^{k1}.
$$

From Lemma 1 in Takacs $[8]$ page 82 we conclude that (5.5) has kl distinct roots $\beta_{j} = \beta(\theta_{j})$, j = 1,2,..., kl for Re $\theta \ge 0$. Hence equations (4.5) have a solution. Assume that $1 \le m$. Then $G = 0$,

 $\overline{}$

$$
\mathbf{I}_{m} - x_{\alpha} (\mathbf{F} + \beta^{k} \mathbf{E}) = \mathbf{I}_{m} - x_{\alpha} \begin{bmatrix} 0 & , \mathbf{I}_{m-1} \\ \beta^{k} \mathbf{I}_{1}, & 0 \end{bmatrix}
$$

and

$$
(5.6) \det(\mathbf{I}_{m} - x_{\alpha} \mathbf{F} - x_{\alpha} \beta^{k} \mathbf{E}) = 1 - (x_{\alpha})^{m} \beta^{k}.
$$

When p_{0} is eliminated, (5.4ii) is a set of kl equations because

$$
E = \begin{bmatrix} 0 & 0 \\ I_1 & 0 \end{bmatrix}.
$$

Accordingly, (5.4) has a solution since (5.6) has kl distinct roots.

The stationary solution is obtained by multiplying $(4,5)$ and (5.4) by $1-x$ and let x tend to $1-x$.

6. The model
$$
E_k^X/G^Y/1
$$
.

The "key" to the solution is the fact that the assumption $a = e^k_\lambda$ enables us to express the operator T in a special form

Lemma 6.1

Suppose $\mu \in \Omega_m^+$. Then

$$
\mathbb{T}((e^*)^k \mu) = (e^*)^k \mu + (e^- e^*) \sum_{r=1}^k \alpha_r (e^*)^{k-r} ,
$$

where

$$
\alpha_{r} = ((e*)^{r} \mu) (\sim \mathbb{R}^{+}) .
$$

Proof:

For $k = 1$ the Lemma reduces to equation (72) in Kingman [3]. Assume (6.1) valid for $k = 1, 2, \ldots p$. Since $T(e^*)^T = \varepsilon$ we get

$$
\mathbb{T}((e^*)^{p+1}\mu) = \mathbb{T}(e^*\mathbb{T}((e^*)^p\mu)) .
$$

Now $v = T((e^*)^p \mu) \in \Omega_m^+$ implies

$$
\mathbb{T}((e\ast)^{p+1}\mu) = \mathbb{T}(e^{\ast}_{\lambda} v) = e^{\ast}v + (e-e^{\ast})a^{\dagger},
$$

where $\alpha' = (e^{\star}\nu)(\sim \text{IR}^+)$.

Obviously $\mathbb{T}(e^{\star}\nu)(\sim R^+) = (e^{\star}\nu)(\sim R^+)$ which yields $\alpha' = \alpha_{p+1}$. Hence, by the assumption

$$
\mathbb{T}(e^{\mathbf{H}}\mathbf{v}) = (e^{\mathbf{H}})^{p+1}\mathbf{u} + (e - e^{\mathbf{H}})\sum_{r=1}^{p} \alpha_r (e^{\mathbf{H}})^{p+1-r} + (e - e^{\mathbf{H}})\alpha_{p+1}
$$

and the Lemma follows by induction.

With
$$
\mu = K_1 \tilde{\psi}_x
$$
 and $e = e_\lambda$ application of (6.1) on (4.1)
\ngives (with $I = I_{2m-1}$)
\n(6.2) $(\epsilon I - x a * K_1) \tilde{\psi}_x = x(\epsilon - e *) \sum_{r=1}^k \alpha_r (e *)^{k-r} + x \Gamma(a * (K_2 - K_1)) \tilde{\psi}_x(0) + \tilde{Y}_0$.
\nLet $\Delta_x = \epsilon I - x a * K_1$.
\nInserting $t = 0$ gives an expression for α_k , viz.,
\n(6.3) $x\alpha_k = (\epsilon I - x(a * (K_2 - K_1)) (0)) \tilde{\psi}_x - \tilde{Y}_0 (0)$.
\nSince $||a * K_1|| \le 1$, $\Delta_x^{-1} = \sum_{r \ge 0} (x a * K_1)^r$ exists when $|x| < 1$.
\nThus (6.3) and (6.2) are equivalent to
\n(6.4) $\tilde{\psi}_x - e \tilde{\psi}_x(0) = \Delta_x^{-1} (\tilde{Y}_0 - (e - e_x *) \tilde{Y}_0 (0)) + (e - e_x *) \Delta_x^{-1} \sum_{r=1}^{k-1} \alpha_r (e_x *)^{k-r}$
\n $-e_x * \Delta_x^{-1} (I e - x (e_x *)^{k-1} K_2) \tilde{\psi}_x (0)$.
\nIf $k = 1$, $t = 0$ determines $\tilde{\psi}_x(0)$ by
\n(6.5) $(e_x * \Delta_x^{-1} (e I - x (e_x *)^{k-1} K_2) (0) \tilde{\psi}_x(0) = (\Delta_x^{-1} (\tilde{Y}_0 - (e - e_x *) \tilde{Y}_0 (0)))(0)$
\nWhen $k > 1$ let
\n $\alpha_x = (e - e_x *) (e_x *)^{k-r}$, $x = 1, 2, ..., k - 1$,

$$
C_{x} = e_{\lambda} * (eI - x(e_{\lambda} *)^{k-1} E_{2}) ,
$$

$$
\mathbb{D} = (\widetilde{P}_{0} - (\epsilon - e_{\lambda} *)\widetilde{P}_{0}(0)),
$$

 $\mathbb{E}_{\mathtt{j}}~=~(\mathtt{e}_{\lambda}\!\star)^{\mathtt{j}}\mathbb{K}_{\mathtt{j}}\mathtt{\Delta}_{\mathtt{x}}^{-1}~~\centerdot$

 $\label{eq:2.1} \frac{1}{2} \int_{\mathbb{R}^3} \left| \frac{d\mu}{d\mu} \right|^2 \, d\mu = \frac{1}{2} \int_{\mathbb{R}^3} \left| \frac{d\mu}{d\mu} \right|^2 \, d\mu = \frac{1}{2} \int_{\mathbb{R}^3} \left| \frac{d\mu}{d\mu} \right|^2 \, d\mu.$

Thus, (6.4) can be written

$$
(6.6) \quad \widetilde{\psi}_x = (\varepsilon I - \Delta_x^{-1} C_x) \widetilde{\psi}_x (0) + \sum_{r=1}^{k-1} c_r \Delta_x^{-1} \alpha_r + \Delta_x^{-1} D \quad .
$$

Furthermore $(\mathbb{E}_{j}\widetilde{\psi}_{X})(0) = \alpha_{j}$ leads to

$$
(6.7 i) \alpha_j = (E_j(\Delta_X^{-1} - C_X)) (0) \widetilde{\psi}_X(0) + \sum_{r=1}^{k-1} (E_j c_r) (0) \alpha_r + E_j D,
$$

$$
j = 1, 2, \ldots, k-1 ,
$$

$$
(6.7ii) \quad (\Delta_X^{-1}C_X)(0)\tilde{\psi}_X(0) = \sum_{r=1}^{k-1} c_r(0)\alpha_r + (E_j D)(0)
$$

which determines α_{j} , $j = 1,2,...$ k-1, and $\widetilde{\psi}_{X}(0)$.

1. The stationary solution

In this section we shall demonstrate how the stationary solution of (6.2) can be obtained by use of the Fourier-Stieltjes transform. In the stationary case we have

$$
(7.1) \quad (\varepsilon I - a * K_1) \widetilde{P} = (\varepsilon - e_\lambda *) \sum_{r=1}^k \alpha_r (e_\lambda *)^{k-r} + \mathbb{T}(a * (K_2 - K_1)) \widetilde{P}(0) ,
$$

where now

$$
\alpha_{r} = (e_{\lambda}^{r} f_{\lambda}^{r} \tilde{f})(0) .
$$

After the introduction of the Fourier transform an equation analogous to (6.6) is obtained

$$
(7.2) \quad \hat{\Delta}_1(z)(\tilde{\mathbb{P}}(z)-\tilde{\mathbb{P}}(0)) = -\hat{C}_1(z)\tilde{\mathbb{P}}(0)+\sum_{r=1}^{k-1} c_r(z)\alpha_r.
$$

Let x be defined by

$$
\widehat{\mu}\widehat{\Delta}_1 = \det \widehat{\Delta}_1 ,
$$

whence

$$
(7.3) \det(\Delta_1(z))(\widetilde{P}(z)-\widetilde{P}(0)) = -\hat{\lambda}(z)\widetilde{C}_1(z)\widetilde{P}(0) + \sum_{r=1}^{k-1} c_r(z)\hat{\lambda}(z)\alpha_r
$$

Suppose that det $\Lambda_1(z)$ has k roots z_1, z_2, \ldots, z_k . Then $\widetilde{P}(0), \alpha_1, \ldots, \alpha_{k-1}$, are determined except for a constant by

$$
(7.4) \quad \hat{\kappa}(z_{\underline{i}}) \hat{c}_1(z_{\underline{i}}) \tilde{P}(0) = \sum_{r=1}^{k-1} \hat{\kappa}(z_{\underline{i}}) \hat{c}_r(z_{\underline{i}}) \alpha_r, \quad i = 1, 2, \dots k.
$$

Premultiplicating (7.2) by

$$
\mathbf{v} = \begin{bmatrix} v_{m} & 0 \\ 0 & v_{m} \end{bmatrix}
$$

gives an equation where both sides become zero when $z = 0$. By l'Hospitals rule,

$$
(7.5) \quad (\hat{a}*\nu\hat{K}_1)!(0)(\hat{P}\hat{P}(0)) = \nu\hat{C}_1!(0)\hat{P}(0) - i\sum_{r=1}^{k-1} \nu\alpha_r.
$$

Consider $(a * v \hat{K}_1) * (0) \hat{P}(0)$.

The process ${J_n}$ is recurrent and therefore J_n converges in distribution to J, say. Since

$$
\nu K_1 = (\nu v_m K, v_m (K-F))
$$

and

$$
\nu_{m}K(t) = (k_{0}(t), k_{1}(t), ..., k_{m-1}(t)),
$$

where

$$
\mathbf{k}_\mathbf{j}(\mathbf{t}) = \underset{\mathbf{i}}{\boldsymbol{\Sigma}} \; \mathbf{k}_{\mathbf{i}\mathbf{j}}(\mathbf{t}) \;\; ,
$$

it follows that

$$
(\hat{a} * \hat{b} \vee_{m} \hat{k}) \cdot (0) = i(E(S \cdot (j)) | J = j) - iE(A) + iE(B).
$$

Thus

$$
(\hat{a}*\hat{u}_1)!(0)\hat{P}(0) = \nu_m(\hat{a}*\hat{b}\hat{k})!(0)\hat{P}(0) + \nu_m(\hat{a}*\hat{k})!(0)\nu_{2m-1}\hat{Q}(0)
$$

\n
$$
= i \sum_{j} E(S'(j))|J=j)Pr(J=j) - iE(A) + iE(B).
$$

\nBy (3.11) we find
\n
$$
E(S'(J)-A+B) = (\rho-1)E(A) + E(B) = k\lambda^{-1}(\rho-1) + E(B).
$$

Equation (6.12) therefore reduces to

$$
(7.6) \quad E(B)-k(1-\rho) = -i\lambda(\widehat{a}*\widehat{b}K)^{\dagger}(0)P(0)+\nu_{2m-1}Q(0)-\lambda_{\sum_{r=1}^{k-1}U\alpha_r}.
$$

Together with (7.4) we have a set of k+1 matrix equations to determine the k+1 unknowns $\widetilde{P}(0)$, α_1 ,..., α_{k-1} .

It is known that a probability distribution can be approximated by a linear combination of Erlang distributions. From Lemma 6.1 it is clear that the results in the last section can be generalized to the case when $a(\cdot)$ is a linear combination of Erlang distributions. Accordingly, it is possible to obtain approximate solutions of the waiting time equation for general $a(\cdot)$.

References

- $[1]$ Cohen, J.W. (1969). The single server queue. North-Holland Publishing Company.
- [2] Keilson, J. (1962). The general bulk queue as a Hilbert problem. J. R. Statist. Soc. B, 24 , 344-359.
- [3] Kingman, J.F.C. (1966). On the algebra of queues. J. Appl. $Probab. 3, 285-326.$
- [4] Lambotte, J.P. and Teghem, J.L. (1969). Modéles d'attente M/G/1 et GI/M/1 á arriveés et services en groupes. Springer-Verlag, Berlin.
- [5] Le Gall, P. (1962). Les systemes avec ou sans attente et les processus stochastigues. Dunod, Paris.
- [6] Lindley, O.V. (1952). The theory of queues with a single server. Proc. Camb. Phil. Soc. 48, 277-283.
- [7] Miller, R.G. (1959). A contribution to the theory of bulk queues. J. R. Statist. Soc. B, *Z1'* 320-337.
- [8] Takacs, L. (1962). Introduction to the theory of queues. Oxford University press. London.