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Abstract

The waiting time process of the n~-th arriving group is
considered for the general bulk queueing model GIX/GY/1 .

A generalisation of Lindley's waiting time equation is
established.

By a generalisation of Kingman's method [3], this equation
is solved for the models GI%/E Y/1 ama BX/6%/1 .

When the service time is Erlang distributed Ek s the
results are applied to the case where the service- and the

arrival groups are of constant size.

Key words: Wendel projection, Group Waiting time, Restbatch,
Waiting time equation, Erlang distributions,
Hyperexponential distribution, Stationary distri-

butions.
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1. Introduction

In the present paper we shall agssume that customers arrive
in groups Cn s = 0,1,2,4e¢ o The group size is a stochastic
variable X , with probability distribution f(s) « The inter-
arrival intervals An sy = 0,1, are independent and have
the same distribution a(.) . The service mechanism is described
as follows: At the end of a service period the server accepts
Y customers from the waiting line, or a smaller number if the
line is shorter, Y is called the service group capasity. The
length of the service time B , has the distribution b(.) .

We shall assume the existence of two integers m, 1 such that
X<l,Y<m.,

The most general works on bulk gqueues seems to be those of
Keilson [2], Cohen [1], Le Gall [5], Lambotte and Teghem [47.
They obtain the distribution of the queue length from which the
waiting time distribution is derived. However, there exists no
such results for general distributions a(.), b(e.), f£(e) and
g(eo) + Earlier works are restricted to the case where a(s)
or b(e) are the exponential distribution. Even if b(.) is

exponential the analysis are only limited to bulk service models

(Cohen [1], Le Gall [5]).

2. The algebraic formalism.

Let Qn denote the set of n X n matrices whose components
are finite complex measures on the Borel subsets of the real line.
According to Kingman [3] the product of two measures is defined

as their convolution. An operator T : 01 - Q1 is defined by



(2.1)  ()(B) = v(®B.n RB") + v(-RN)e(B) , veaq,,

where € 1is the measure

(1 ir 0€m
«(B) =
Lo if O ¢ E

This operator has the property that if X is a random variable

with distribution

v(E) = Pri{X € E},
then
(Tv)(E) = Prix™ € B} .

Kingman shows that 0 is an commutative algebra over the com-

.]

plex field € with identity € « Purthermore, he shows that
the image QT and the kernel Q; of T are both disjoint sub-

algebras of O, » T is extended to 0 by T{vij} = {Tvij} )

{vij} € O, and multiplication in i is defined in the obvious
way. With Ine as identity it is easy to verify that Qn has
the same properties as 01 except that Qn is no longer commu~

tative. The norm on Qn is defined by

N

vl = m?x ?Jldvij} y Vo= {v,

The set whose elements are Fourier-Stieltjes transform of ele-
ments from 01 wWe denote 91, and extend the definition to

»

Qn in the obvious manner.



3. Group waiting time,

We shall study the group waiting time process defined as
follows:

Definition 3.1

By the group waiting time Wh sy . =0,1,2,40 we mean the
waiting time (excluding service time) of the first customer from
CIl who is taken into service,

It is convenient to work with the random variable Zn which
is defined as the time Cn spends in the queue until there is
no one ahead, except the ones being served. If Ln is the time
interval from the instant when Zn becomes zero and until the

last service group with customers from Cn starts, then the

sequence iZn} y . =0,1,2,.0s satisfies

(3.1) By = (B4 -A0"

with the initial condition ZO = 2z . We recognize the expression
above as an equation of the similar type as the waiting time
equation found by Lindley [6]. However, there is an importaht
difference: The random variables Zn and Ln are no longer
independent as in the model GI/G/1 .

Congider now the servicing of the n-th arrival group Cn .
Service may be performed in one or several groups. The last
gservice group which has customers from Cn will Dbe called the
n-th rest batch, The rest batch may be filled with customers

from Cn or there may be places available for customers from

C

n+1



We define two random variables Tn and Jn , as follows:

If the n~th restbatch can accept s customers and contains

only % <s customers from C_  , then |Jnl = s-t . If the
n-th restbatch contains customers from Cn-1 Pd, = -\Jn[ .
Otherwise J = |d | « I, is the number of customers which can
be accepted from Cn+1 in the first service group with customers

from C .4 « We define J_q = T_, 5 the capasity of the initial
service groupe.

If S(Tn_1) denotes service time of C_ , excluding the
service time of the n-th rest batch, we realize that ZIl >0

implies that

- \
(3.2) I = /S(Tn'1)+B6(O’Tn—1) =5 (Tn_1) when Jn >0
: i‘ 0 when J, <O,

and T4 o= .

since Cn will have to wait an extra service period when
Jn__1 =0 , Jn >0 . When Zn = 0 +the first service group from

Cn has capacity Y and Cn must wait for the time Wh before

service starts, hence

-
- S(T ., )+W when J_ >0
(3°3) Ln - n-1 n n =

0 when Jn < 0,

and Tn_1 =Y ,

We define matrices of distribution functions
U (6) = {05 (£)8(3,00} , v, (6) = {v;(+)a(5,0)} , K(%) = {K, ]

and H(t) = iHij}

]

for i,j = -(m-2),-(m-1),.e0,m=1



by

iy .
U, (t) = Priz <%, 9 _, =i},

Vo (t) = Priw, <%, 3,_, = i},

(Pris'(z,_,) <t, d=i|9,_,=3,% >0} when i3>0

Kij =

Pri0 < t, J=i|J,_,=jl | when i <O ,
~

Er{S’(T ) <t,d —1[ 1—3,2 =0} when i >0

ij —

0 when 1 <0 .

If u is the probability distribution of a random variable X ,
LU* denote the distribution of (-X) .

Let

M, = Z+8' (T, _y)-Ays Ty = W eS(Y)-A, Dy = {3 =1, I _,=3} -

Considering the possible events between the n-th and the

n+1-th arrival we find

(3.8 a) U;H(t) 'g:Pr{(Zns.Ah)+5 t, Z, >0, Dij} when i <O ,

]

i + +
(3.8 b) Un+1(‘t) = Z[Pr M, < t,5, >0,D; }+PriNn_<_ t,Zn=O,Dij

when i>0,

(3.9 a) v, (%) = j_Jz}[Pri(Zm+f>(o,JH)B-AH)+ < t,Zy-4) > 0,D, )

+
Pr{(Zn+B-An) < t,2,-A <0,Z >0 Dla}]

when i <0 . (3.9 a) can be written



.}

Vi
J

2 (8) = sj[Pr{(zn-An)Ha(o,Jn)B < t, Dy

.}

-Pr{6(0,J,)B < t,(Zn—An)"' = 0, Dy

N

+ .-

~Pr{B < t,(2,~4)" =0, %, >0, D;,}]

= (O Dyl evl (0))) (1)

+ % Pr{(z -4 +B)" < t, 2, >0, Dyt
J

When 1 > O the expression is more complicated;

(3.9 b) Vi, (t) = ?[PriMn+Bb(O,Jn) <t M >0, 2, >0, D]

.}

+Pri( +B)" <t, M <O, Z, >0, Dy

+Priun+Ba(o,Jn) <t, N >0, 2, =0, Dij}

bl .

+
+Pr{(Nn+B) <t, N, <0, Z, =0, Dij

If (3.9 b) is rewritten in the same way as (3.9 a) we obtain

vi o (6) = (*0 )yl —evd (0)))(x)
+ s[Pr{(M+B)* <%, 2, >0, D, .}
]

J

+ Pr{(Nn+B}+ <%, 2, =0, Dij}], i>0.



Since Zn > 0 implies Wh = Zn+B6(O,Jh_1), the probability of

{(N'n+B)+ <t, 4, = 0} can be written

PriN +B)* < t, 2, = 0} = Pr{(W +B)* < 1}

n

{

¢ﬂwfﬂmﬂnum%qn}%ﬁ5w,%>ou

whence

(3.10 2) Ul =% T(a*Kij(Ug ~€0J(0)) when i<O

n+1 3
(3.10 b) UL, = '§[T(a*(Kij-b5(o’j)Hij)(UI{ ~e03(0)))
+ T(a*HijVﬂ)] when 1 >0
and
(3.10 ¢) Wi, = @1yl _eul (o))
+ ? T(a*bKij(Ug -eUJ(0))) when i <O ,
(310 a) Vi, = YOyl _eut (o))

+

;[T(a*b(Kij—bé(O’j)Hij)(Ug -eU3(0))]
J

J .
+ T(a*bHith) when 1 >0 .

Hence we have established a set of equation for Un and Vh .



Lemma 3.1
£(|j|+1) , when i <O
(1) K;. =
J r r-1 . . . .
Z b (£(g*)” ") (p+]i|)e(i+p)+e(0,i)f(|]])e
r>1 p>0
when i >0,
[T (%)) (p)g(i+p) , when i >0
(ii) H 29
when i <0,
(iii) bH;y =K;, when 13z0 .
Proof:

Let R(Jn—1)+1 denote the number of service groups with

customers from C . When Jn >0, d =3j#0, Zn >0,

n-1

R(J_ .,) must satisfy

n-1

R(3) R(3)-1
(3.11 a) T +X = 21 Y +|i] , X > 21 Y +]3|

because

R(J)
2 Y +1dl
1
customers are served in R(j)+1 groups and the rest of ¢, is
served in the n-th restbatch. When Jn_1 = 0 , the restbatch
is complete and Tn—1 =Y , so that
R(0) R(0)~-1

(3,11 b) J_+X = z TAY , £> % Y +Y .
? =1 s=1 °



By an elementary argument

Pr{R(J,_,)=r, Jn=i\Jn_1=ji=p§O(f(g*>r‘1)(p+lj1)g<i+p),

i>0, j£#0,r>1,

mmumpq,%ﬂwmﬁngu@ﬂ%@muwxizo,rzo,

. . . 6(0,]
Pris'(3,_,) < t|R(Z,_)=z, T =1|3__ =3, 5, >o0}= b7 00 d)(y) |

When Jn < 0, Zn > 0, the relation
X + |Jn‘ = ‘Jn..']l

must be valid. PFurthermore S(Y) is seen to have the same
distribution as S(0) . The theorem now follows easily.
It is convenient to introduce some further matrix notations.
= = = LI ? 1
Let F {Fij}, G {Gij}, E iEij}, K {K ij} and

v, = {V%j} be the matrices with entries

Fig = £(J-1), K';5 = 2 b° £ (£(e*)") (p+i)e(i+p),
r>0 p>0

fOI‘ i,j =O,1,2,...m-1 9

T . VL
and Fij K i3 0 for i,] = myeee m+(1=)"=1

G.. = g(i‘j)s E.. = T g(i+p)f(P*j)’ for i,J = 0,190'0m+(1—m)+‘1
1J 1] >0

vij = 8(i,0) for i,j = Oy1,eeer=1 .
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Lemma 3,2

(1) K' = E(eI-b6)7'T_

(eF_.., when 1<0, j>0
(11) Ky = J

bKij+6(O,i)Fije , when 1 >0, j>0.
Proof:

(ii) is seen immediately.

(1): since B6" = {(BG"), l=l £ (£(g*)")(p+j)e(i+p)},
p>0

i,J = 0,1,e0em~1, the theorem follows. Observe that ¢t =0

+ .
when r > m+(1-m)” , hence there is no convergence problem.

Remark?

Even if the matrices involved are defined m dimensional they
are understood to be m+(n-m)¥ dimensional with the undefined
entries equal to zero.

By the substitutions Q = iQik}, P = i?ik}, where

Il n

(3.12 a) Q¥ = (v} +(e-p2( 1)y (u2 —evl(0)))5(x,0)

and
(3.12 b) BIE = (Ul ~6(O,i)§(U£r+U£))b(k,O) ,
i,k = O,1,ooo’m-1 s

it is possible to write (3.10) on the form



(3.13 2) U, = 2@*$, v, 19 )+2(ax] . |(B -2, (0))),

(313 D) Qupq = T(@¥0[ T [vpyy 40 )+T (%] 171 |(,-e2, (0))),

whence theorem 3,3 follows.

Theorem 3.3

Let

B = .

- |
i |

Vop-19n |

and assume that Uo(t) = I2m_1e(z+t), Vo(t) = IZm_1e(w+b) .
Then U, and V, are uniquely determined by (3.13) and
(3.14) Pe1 = T(a*K1(Ih-EIh(O)))+T(a*K2)3n(O), n=0,1,s00 ,
where

. T(Im~vm)(F+bK'),(Im—vm)K' . M'O,(Im-vm)K”}
1 [ !

bvm(F+bK'), bva' L_o, bva'

Equation (3.14) is called the waiting time equation.

Corollary 3.4

When the trafic intensity p = E(X)E(B)/E(Y)E(A) is less
than unity the stationary distribution P = 1lim %% exists and
n-»co
is determined by

(3.15) P = T(a*K1(iLeﬁ(o)))+T(a*K2)§(o) .
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A proof of the existence of the stationary distribution is given
i [7] ana [2].

We will assume that the customers in an arrival group are
ordered and the queuvedisiplin is first come first served.
Let Wﬁ be the waiting time of customer nr. p in Cn given

that Cn contains at least p customers. Let
D _ D
Iy = Priwh <t} .

The problem of finding Tﬁ can be solved by the following argument:

If Cn contains exactly p customer then obviously

Hence we must have
P _ 1 -
Ty" = Dla¥yK'ovo, 4Q )+T(a*vy, K (B -¢B (0))) ,

where K'p and Kp are K' and K respectively, when £(e)

is replaced by &(p,yo) «

4. The model GIX/EkY/1.

Within this model it is possible to obtain solutions of the
waiting time equation (by using the approach suggested in [3]
PePe 312-313), Let ee; 8 € ¢ , denote the complex exponential

measure defined by

¢y (B) = j exp(-6x)ax , if Re 6 >0 ,
®nrt
ee(E) = f pexp(-6x)dx , if Re 5 <O ,

#n-R*



- 1% -

The following lemma is proved in the same way as the analogous

results in [3] p.p. 312-313.
Lemma 4,1

n
. n n n-k k
(1) €g, B ee+(1 B)k§1B e,

where

n
. ny _ k
(i1)  I(a%e)) = k§1(ep-€)vn_k+€ ,

where
* -Ny m

vy = [ S agay)
o)

By the introduction of the generating functions

b () = nEOIi(t)Xn p oy (8) = T vpp 1@ (6)x"

—— —

o /wx\‘ |~ n

(3.14) is transformed to the equivalent equation

(4.1) T, = xT(a*K1(Ex-ewx(o)))+xT(a*K2)$X(o)#§o .
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By the transformation

w, = (eI ~bG)™ (b (y -V, (0)e)+p. )
we get

(4.2 1) Y, = x(I~v ) T(a*(F(y, ey, (0))+Ew ) )+B,
(4.2i1) @X-b(GwX+¢X-e¢X(o))=xvmm(a*b(F(¢X-e¢X(o))+EwX)+vao .

By assumption b = eﬁ . Assume that (4.2) has a solution of

hyperexponential type; i.e,

!

'y q; h (ql
(4.3) (wX) - (q?')e s (q%\ee-'
%o R

—_—
]

If U, = eUO(O) and V_ = eVO(O) , it follows from the definit-

~ (Im-vm)Uo)

il

ion of Ih that PO T
m o

;

Inserting (4.3) in (4.2) gives

€ql+ T ee_q5 = X(Im'vm).EOT(a*ee.(Fq5+Eq3))+X(Im-vm)que+

>0 7j J J
+(%n_\)m)Uo ’

(eIm-bG)qg+.2p(ee

. GgM+q!
s ai-e, p(Eql+ql))

J J

— 1
= vajEOT(a*beej(qu+qu))+xva(a*qug)+vmVO .

From Lemma 4.1 follows
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(404 1) eq'+ T e, q'-(I -v_)x T (Fq'+Eq")(a.e, +(1-o.)e)
°j>OejJ mmJ.)O J J Jej J

'X(Im-vm)Eq8€+(Im~vm)Uo =0,

(4.4ii) & ((eIm-B?G)qg—Bﬁqg)ee_-(eﬁ-e)qu-qu€+qg€

>0 J
- = (Ga"+a!)((1-.) ¥ BT (o6 )w (1-85)e)
j>o ‘*j J ' J r=1 J M J

k
~xv_ ¥ (Pql+Eq")pi(ase, +(1-a.)e)
milot T 5% ]

k
1 k %
-xvmjgo(qu+qu)((1-Bj)r§1sjnrj(ei_€)+(1_sj)€)

k
- i T - =
*pfagl 2 (e €Ny pte )y ¥, =0,

where

k
-I
Npns = ZBY_ °n-=C(-(e-)o
T3 gy d ST T J

The equations above imply that the coefficients of

€, (ei-e), r = 1’2,ou’k, and ee ? J = 1,2,..0 are zZero. Hence,
J
we are led to the equations

1-a .
(4.5 i) gl = jEO -—a-a_-l q5+x(Im-vm)qu+(Im-vm)Uo R

(4.511) a} = B35 (T mvy ) (T -p50)aY
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(4,51i1) (;m-G-xva)qg =

-

1=c
. _a Ky -k
Jéo(agggkvm(l Bj G) 1+Bj )qj+VmVO ’

(4:55v)  (8lm,)0ueyye pvpBlag = 2 [(8;=1087"

- - k
+(Bj"1)(ﬂrjqj1_8jr)vm(.1m-5j G)]q'j' y, T = 1,2,e0a5K ,

k :
(4.5 v)  ((T=xa F) (T~ 6)-xa B B)al = 04§ = 1,2,000
where Bj,j = 1,2,+¢¢« hk , are the roots of

(4.5vi)  det{(I -xaF)(I_-p“¢)-xap"E} ,

where h = m+(1-m)¥,

Observe that (4.5 iv-v) constitutes a set of 2kh equations.

Hence it is sufficient that (4.5 vi) has kh roots.

5. Special cases.

Unfortunately, the assumptions (4.3) are not always full-
filled., ZFor instance when Y =m > 1 . However, in this case
we are able to slighten the assumptions (4.3). Observe that

Y=m>1 implies G =0 . DLet
(5.1) &, = (F+bE) (§,-¢¥,(0))+Bp,

whence

(5.22) . = x(I ~v )T(a*§ )+(I -v )U_ ,
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(5.2b) P, = xva(a*b§X)+\)mVO

and

(5.3) 8, = x(F+bE)(I ~v ) (Ta*g _-eT(a*s_)(0))+xEv _T(a*bg )+BEv V .

We now suppose that (5.3) has a solution of the form

E§, =D €+ X e, P ,

0 g0 0y

that is; po,pj,j >0 , must satisfy

p e+ ¥ e, p. = x(F+bE)(I -v_) T T(a*e, )p.+xEv_ = T(a¥*be, )D.

° >0 85 S = e PG %
+xEva(a*b)po+EvmVO .

Exactly the same calculations as in the preceeding section give

(5.4 1) py = xa (B+p E)py 5 § = 1,2,000

. N ‘,k-I‘ _ _ _

(5.43.1) jEO{(pj 1)p‘_j ¥ 5(r,k) (1 c.j))E(Im V)
+(B.-1)pEn Bv_}p. =y, _Ev_Dp r=1,2 X

J j 'riTm’ T k-r~""m*o ? ey ’

L - _ -1 - E(I ~
(5.41ii) (Im'AEvm)po' ggq;j -1)(Im vm)+xEvm+xajh(Im vm)

-k
-xajﬁj E}IB+EVmVo .
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We shall now consider the case when both the arrival and the
service group capacity are of constant size; i.ee X =1,
Y=m. Assume first that m <1 , Then F =0 and
- -
X 0 ,szm
I 0]

—

k 1
Il—ﬁ G—xaBCE = IlfB
1~-m?

|

.
It follows that

(5.5) det(Il—BkG-XaBkE) = 1= (xa)"

From Lemma 1 in Takdcs [B] page 82 we conclude that (5.5) has
kl distinet roots fy = B(ej) y J = 1:2500e,k1 for TReg >0 .
Hence equations (4.5) have a solution. Assume that 1 <m ,

Then G =0 ,

+

kv _ _ m-1
Im-xa(F+B E) = S -

and

(5.6) det(I -xF-xap E) = 1-(xa) gt .

When p, is eliminated, (5.4ii) is a set of Xkl equations
because

‘0, 0
E=l \.
{10 O
Accordingly, (5.4) has a solution since (5.6) has k1 distinct
roots,
The stationary solution is obtained by multiplying (4.5) and

(5.4) by 1-x and let x tend to 1- .
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6. The model EkX/GY/1 .

The "key" to the solution is the fact thatthe assumption a = e%

enables us to express the operator T in a special form

Lemma 6,1

Suppose W € Q; « Then

k
P((e*) ) = (e%)ur(s-e*) T a (e¥)T

r=1

where
o, = ((e¥)fu)(~ RT) .

Proof:

For k =1 the Lemma reduces to equation (72) in Kingman [3],
Assume (6.1) valid for Xk = 1,2,+4. p » Since T(e*)T =¢ we

get
T((e*)P*NL) = m(e*1((e*)Pu)) .

Now v = T((e*)Pu) € O implies
T((e*)P+1u) = T(ey v) = e¥v+(e-e*)a! ,

where &' = (e¥)(~ RY) .

Obviously T(e*v)(~ R*) = (e*v)(~ R*) which yields a' = Cogq *

Hence, by the assumption

1Y -
P(e*v) = (e*)P T u+(e-e*) T o.r(e*)p+1 Ti(e-e*)a o
r=1 p

and the Lemma follows by induction.
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With p = K1$x and e = e, application of (6.1) on (4.1)

gives (with I = Izm_1)

k
(6.,2) (eI—-xa*K1)'1§'X = x(e-e*) Z1ar(e*)k'r+xT(a*(K2—K1))WX(O)¥§O .
Ir=

Tet AX = eI-}:a*K1 .

Inserting t = 0 gives an expression for Oy s viz.,
(6.3) . = (eI-x(a*(K,-K,))(0))y,~F (0) .

Since [la%K ||l < 1 , LI (xa*K, )" exists when |x| <1 .

X r> 0
Thus (6.3) and (6.2) are equivalent to

(6.4) Y -y (0) = —1(§ (e~e, *¥)P (0))+(e-e,*) _1k£1 ( *)k-r
4) Yymely = Dy (Epmle=e,®)F, €=e)\* /oy r=1“r €A

—e %y (Te-x (e, ) 1K, )Y, (0)
If k=1, t =0 determines 7,(0) by
(6.5)  (ey*n]" (eI~x (e, *)*'K,) (0)7,(0) = (a1 (B ~(e=e,*)B_(0)))(0) .

When k > 1 lew

)k-r 9 r = 1,2,olo,k-1 y

Q
I

(e-ex*)(ek*

o = ek*(eI-x(ek*)k-1K2) ,

w]
Il

(B, - (e-e,)B_(0))

= I -1
E. = (eh*) K1AX .
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Thus, (6.4) can be written

1

k-1
~ - ~ -1 -
(6.6) ¥y = (eI-AX1CX)¢X(O)+ L cd 'a +0°'D .

r=1I‘X r X

Furthermore (EJWX)(O) = 0. leads to

k
(6.7 1) «y = (B;(07'-0,))(0)¥,(0)+

-1
r51(chr)(0)ar+EjD ;

j=1,2,ooc,k-1 9

k-1
(6710 (516 O, (0) = T o (0 +(22)(0)
Ir=

which determines Gy jJ = 152544+ k=1, and %X(O) .

7. The stationary solution

In this section we shall demonstrate how the stationary solution
of (6.2) can be obtained by use of the Fourier-Stieltjes trans-

form. In the stationary case we have
~ k k-r ~
(7.1)  (eT-a%K,)B = (e-e,*) I a,.(e;*) T +1(ax(K,-K, ))F(0) ,
r=1
where now
ap = (e,¥EK.F)(0) .

After the introduction of the Fourier transform an equation ana-

logous to (6.6) is obtained

-~ ~ a k=14
(7.2) A1(z)(§(z)-§(0)) = -01(z)§(0)+ N cr(z)ar .

r=1
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Let % ©be defined by

whence

~ ~ ~ FS ~ k"1a. -~
(7.3) det(a,(2))(B(2)-2(0))= -n(2)C,(2)P(0)+ T c (2)n(z)a, .
=1
Suppose that det A1(z) has k T00ts 2,,Z5jess,%, » Then

?(O),a1,...,ak_1, are determined except for a constant by

~ ~ ~ k_1A ~
(7.4) %(21)01(21)P(O) = r§1%(zi)cr(zi)ar , 1 =1,2,e00 k o

Premultiplicating (7.2) by

f- -
| 0
' Vm?

0
| Y2V

-

gives an equation where both sides become zero when z =0 ,

By l'Hospitals rule,

k-1
z

Vo .
r=1 T

(7.5) (amE,)'(0)(B-B(0)) = uC," (0)B(0)-1

~

Consider (a*uﬁ1)'(0)§(o) .

The process {Jn} is recurrent and therefore Jn converges in

distribution to J , say. Since
vk, = (bva,vm(K—F))

and
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vpK(t) = (ke (£),k, (8D, eeelp , (£))

where
k.(t) = k..(%
5(t) z 13(8)
it follows that

(;*Evmﬁ)'(o) = i(E(S8'(J))|J=3)-1iE(A)+iE(B) .
Thus
(@%K, )" (0)B(0) = v (a%bK) " (0)B(0)+v, (a*K)" (0)v,y_,@(0)

=i ? E(S'(§))|J=3)Pr(J=])~-iE(A)+iE(B) .

By (3.11) we find

E(S'(J)=A+B) = (p-1)E(A)+E(B) = kA~ 1(p-1)+E(B) .
Equation (6.12) therefore reduces to

A AN k"1
(7.6) E(B)-k(1-p) = -1A(a*pK)' (0)B(0)+v,_,Q(0)-2 21uar .
Ir=

Together with (7.4) we have a set of k+1 matrix equations to
determine the k+1 unknowns B3(0), CyroeesGy_q o

It is known that a probability distribution can be approximated
by a linear combination of Erlang distributions. From Lemma 6,1
it is clear that the results in the last section can be geheral-
ized to the case when a(o.) 4is a linear combination of Erlang
distributions. Accordingly, it is possible to obtain approxi-

mate solutions of the waiting time equation for general af(.) .
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