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1. Introduction. 

Consider an experiment with mixture, that is an experlinent where 

the property studied does not depend on the total amount in the 

mixture, but only on the proportions of the factors. The property 

studied is called the response. 

Denote the i-th factor by xi and suppose that we are 

studying a q-component mixture with 

x. > 0 1 = 1,2, ••• ,q 
l. = 

x 1 +x2+ ••• +xq=1 ( 1 • 1 ) 

Hence the experimental design is restricted to the (q-1)-dimen­

tional simplex 

q-1 
S 1=iCx-1., ••• ,x 11'riJO<L:x.<1, x.>O, i=1,2, ••• ,q-1l q- ~ q..:. .tt -i=1 1.- 1.= 

( 1. 2) 

Scheffe (1958) introduced the lq,ml-simplex-lattice design where 

the values of factor x. 
l. 

x. 
l. 

1 2 = 0 ,-,-, ••• '1 mm 

are 

i=1,2, ••• ,q 

All possible mixtures with these proportions of the factors 

are used. The polynomial associated with the simplex-lattice is 

q 
T] = fj + L: fJ . X . + L; p . . X . X . + L: fJ 1.' -; lrXl.. X J' XJr + • • • 

• O i=1 l. l. 1<i<"<n l.J l. J 1<i<'<k~ dA ~ - _J_~ - _J_ -~ 

(1.4) 

This polynomial has as many coefficients as there are design­

points in the lq,m}-simplex-lattice design. 
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Let the estimated polynomial be 

... 

... 
where the ~-s are the least-squares estimates. The results 

for some given simplex-lattice designs and the associated poly­

nomials can be found in Scheffe (1958), Gor.manand Hinman (1962). 

Box and Draper (1959) considered the choice of design on 

Sq_1 for fitting a first order polynomial model. They used the 

optimality criterion based on minimizing the mean square devi­

ation averaged over the experimental region when the true model 

is a polynomi.al of second order. Draper and Lawrence ( 1965a, b) 

considered the problem for m=3 and m=4 • Becker (1970) con-

sidered the choice of design for a general m and proved the 

generalization of the suggestions made by Box, Draper and 

Lawrence. 

We are searching for an optimal allocation of the obser­

vations tru{en on the simplex-lattice. Let 

1v = J 
s q-1 

be integrated variance over Sq_ 1 • Suppose that total number 

of observations equals N • Our optimality criterion is to 

choose the number of observations in each designpoint so that 

W is minimized. 

The fundamental results concerning 

section 7 in Scheffe (1958). 

('V 

var Tt can be found in 
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2.1. Optimal allocation of observations for the linea£_]£~~£1· 

Consider the linear polynomial 

1l = 
q 
L: ~.x. 

. 1 l l l= 

and a jq,1l-simplex-lattice. Vie are thus studying the response 
A 

of "pure components". Suppone that 'lli is the observed response 

on the lq,1}-simplex-lattice. According to Scheffe (1958) 

and 

q .... 
11 = ~ n.x . 

. 1 'l l l= 

"' var 11 = 

since we assume that the observations are independent with equal 

variance Let r. 
l 

be the number of observations on each 

lattice-point. 

Then 

We want to minimize (2.1.1) under the side condition 

q 
L: r. = N 

i=1 l 

According to (A.1) in Appendix 

w = j' var n a.x1 ••• dx _ 1 =cr 2 rt2(+3 )) . f _L = 
q q l=1 ri 

(2 .1 • 1 ) 
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where 

Here W is to be minimized under the side condition 

q 
L: r. = N 

. 1 J. J.= 

Introduce 

w q 1 
w1 = --2 = a1(q) L: --

cr i==1 ri 

w1 is then to be minimized under the given side condition. 

This extremum problem can be solved by studying 

Thus 

~ = a1 (q) f 1- +"A( t r.-N) 
i=1 ri i=1 J. 

-a1(q) r~2 +A 
J. 

q 
L: r .-N 

. 1 J. l= 

The extremum value is thus the solution of 

Hence 

N r. =-
J. q i=1,2, ••• ,q 
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This indicates that, using a linear polynomial, we take equal 

number of observations of the response to "pure components". 

The result seems intuitively obvious. 

If N is a multiple of q, r. 
J. 

is an integer. If If is 

not a multiple of q , that is 

kq < N < (k+1)q , k an integer, 

we choose k observations of the response to each "pure compo­

nent". The remainding N-kq observations can either be distri-

buted randomly on the lattice-points or according to special 

interest in the coefficients Pi • 

Obviously the solution of the extremum problem gives a 

minimum value of vf • Suppose that r 1 ,r2 , ••• ,rq_1 are chosen 

sufficiently close to 0 ' ffi1d 

Thus 

q-1 
==N-L.:r. 

. 1 J. J.= 

t L 
i=1 ri 

can be made as large as we want. Consequently we can make W 

as large as we want at the scm1e time as the side condition 

q 
2: r. =If 

i=1 J. 

is full:filled. The extremum point is thus a minimum point. 
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2.2. Optimal allocation of observations for the guadratig p~l~ 

nomial. 

Consider the polynomial 

1l = 
q 
L: ~.x.+ L: ~· .x.x. 

i=1 l l 1<i<j~ lJ l J 
(2.2.1) 

and a lq,2l-simplex-lattice, which means that the q factors 

are given by 

q 
L: x. = 1 

. 1 l l= 

x. = O,i,1 
l 

i=1,2, ••• ,q 

From this design the coefficients in the polynomial (2.2.1) are 

estimated. This is carried out in Scheffe (1958). Suppose that 

Yl· l and 1l .. 
lJ 

are the means of the observed responses on the 

simplex-lattice. According to Scheffe (1958) the estimated poly-

nomial is 

~ q ~ • 
1l = E a.T].+ L: a. ·Yl·. 

i=1 l l 1<i<j~ lJ lJ 

where 

a . = x . ( 2x . -1 ) 
l l l 

(2.2.2) 
a .. = 4x.x. 
lJ l J 

Suppose that the observations are independent with equal vari­

rulce, a2 and the numbers of observations of the response to 

"pure components" and mixtures with X. = X. = t 
l J 

rij • We then get 

are r. 
l 

8lld 
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"' 2 q a.2 a .. 2 
var n = a ( L -l- + ~ -11-) 

i=1 ri i<j rij 

The optimality criterion is now to minimize 

subject 

I rv w = var T1 dx1 ••• dxq_1 

sq-1 

to the side condition 

q 
~ r.+ L r .. = N 

. 1 ]. '<' J.J J.= ]. J 

We consider 

I 2 2 1 + a L a .. - dx1 ••• dx 1 '<' J.J r.. q-S J. J J.J 
q-1 

and calculate 

a2(q) = I ai2dx1 ••• dxq-1 

sq-1 

According to (A.1) in Appendix we get 

i=1,2, ••• ,q 

(2.2.3) 

(2.2.4) 
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b2 (q) = J 16xi2xj 2dx1 ••• dxq_1 

sq-1 

64 
= (3+q)! 

i = 1,2, ••• ,q 
j = 1,1, ••• ,q 

i<j 

Substituting (2.2.4) and (2.2.5) into (2.2.31 we get 

We introduce 

w1 = a2(q) £ 1 + b2(q).<~. _1_ 
i=1 ri l J rij 

(2.2.5) 

(2.2 .. 6) 

and we are interested in minimizing (2.2.6) subject to the side 

condition 

q 
~ r. + ~ r .. == N 

i=1 l i<j lJ 

~1e problem is solved by differentiating 

which yields 

()ip q 
~ = ~ r. + L: r .. -N 
OA . 1 l '<' lJ l= l J 

(2.2.7) 
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We then solve the equations 

b~ Qqi Qq) 
-=-=~=0 or. or. . u A 

l lJ 

and get 

(2.2.8) 

Substituting (2.2.8) into the side condition we get 

i = 1 I 2, I I I 'q 

(2.2.9) 

i = 1,2, ••• ,q 

j = 1,2, ••• ,q 
i<j 

We are thus led to the conclusion of taking the same number of 

observations of the responses to each "pure component" and the 

same number of observations of the responses to mixtures where 

xi = xj = i . The relative proportion of the number of obser­

vations is given by 

ri = Ja2(q) i = 1,2, .... ,q 
r .. 

~b2(q) 
(2.2.10) 

lJ j = 1,2, ••• ,q 
i<j 

Using an argun1ent similar to the argument used in section 2.1, 

we get that the solution (2.2.9) gives minimum value of W • 
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Ex. 1: We are interested in studying the relative proportions 

of observations, given by (2.2.10) for some values of q • 

The result is given in table 1 

q ri;rij 

3 'l 0,433 
I 

4 i 0.433 i 

5 0.500 

6 0.612 

7 0.750 

8 0.901 

9 1.060 

10 1. 225 

20 I 2.948 I 

Table 1 

For each value of q we choose 

r 1=r2= ••• =rq 

Table 1 indicates that if q ~ 8 , r 2. and r .. 
lJ 

according to the optimality criterion, so that 

are chosen, 

r. < r ..• 
l lJ 

This signifies that ~Arhen there are few components in the mixture, 

most of the observations are used to estimate the 11 interaction11 

between the factors, When there are many components in the 

mixture, most of the observations are used to estimate the "main 

effects 11 , 



- 11 -

2.3, Qptimal allocation of observations for the special cubic 

polynomial. 

Consider the special cubic polynomial 

g_ 
'r1 = L: ~;x~+ L: ~· .x.x.+ L: 13· .kx.x.xk (2.3.1) 

i =1 .... .L 1 ::;i <j :sg_ l. J l. J 1 § <j <k:::g_ l. J l. J 

When we have chosen the polynomial, we adopt the {g_,2}-simplex-

lattice argumented by the designpoints corresponding to mixture 

with x. = x. = x1 = ~ , i, j ,k = 1, 2, ••• , g_ , i < j <. k • l. J c :; 

Scheffe (1958) found that estimated response is given by 

rv g_ "" "" ,.. 
'r1 = L: b.r].+ L: b. ·'rl· .+ L: bi~k'lliJ'k 

i=1 l. l. i<j l.J l.J i<j<k -

and 

~ ( 2 g_ 2) b. = zx. 6x. -2x.+1-3 L: x. 
l. l. l. l. j=1 J 

b .. k = 27x . x .x1 l.J l. J <:: 

The observations are assumed to be independent with equal vari-

ance cr 2 , and ri , rij 

vations on ~i , ~ij and 

response is 

and are the numbers of obser-

The variance of the estimated 

var n = £ b. 2 o2 + 2:: b .. 2 o2 + L: b. ·i L 
i=1 l. ri i<j l.J rij i<j<k l.J rijk 
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W = J var ~ ax1 ••• dxq-i 

sq-1 

subject to the side condition 

q 
l:: r. + L: r .. + L: rook= N 

i=1 ~ i<j 1 J i<j4c ~J 

leads to the following conclusion: Choose r 1. , r. 0 and r 0 ok 
1J ~J 

so that 

and 

( ) 16 ( 2 ) b3 q = (5+q)! 16q -144q+392 

For details concerning the proof, the reader is referred to 

Laake (1973). An application of (2.3.1) will be developed in 

section 3.1. 

2.4. Optimal allocation of observations for the general cubic 

polynomial. 

Consider the polJ~omial 

q 
fJ = ~ ~oX 0 + L: ~ 0 .x oX 0 + L: y 0 oX oX 0 (x 0 -x.) 

i=1 ~ 1 1<i<j<q 1J 1 J 1~<j~ ~J ~ J 1 J 

+ L: B 0 0, x oX .xk 
1 <i <.. 0 <k:cr,' 1 J.K 1 J ~ 
- J _----J, 
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and adopt the jq,3}-simplex-lattice, Applying the optimality 

criterion, we obtain the following conclusion: Choose 

and so that 

r ... = r ... 
~~J ~JJ 

i = 1,2, ••• ,q 

j = 1,2, ••• ,q 

i < j 

and 

where 

( ) 81 ( 2 ) b4 q = (5+q)! q -9q+38 

For details the reader is referred to Laake (1973). 

3. Definition of the slinplex-centroid design. 

Scheffe (1963) has proposed an alternative design on the simplex. 

The design is called the simplex-centroid design and is defined 

by 

q observations of 11pure components" 

(~) observations of mixtures of two components with equal 

proportions 

(~) observations of mixtures of three components with equal 
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proportions 

• 

1 observation of the mixture with q components all equal 

1 to - • q 

Suppose that the response can be expressed by the polynomial 

q 
11 = L: (3.x.+ L: ~· .x.x.+ ••• +(3 12 x1x 2 ••• x 

i=1 1 1 1~<j~ 1J 1 J ••• q q 

Estimated response is given by 

q A A A 

2:: (3.x.+ L: (3 •. x.x.+,.,+(3 12 x 1x2 ••• x 
i=1 1 1 1~<j~ 1J 1 J ••• q q 

A 

where the (3-s are least squares estimates. The iq,m)-simplex-

lattice designs differ from the simplex-centroid design in that 

for a given q there is a family of alternative {q,ml designs 

for m = 1,2, ••• t but there is a single simplex-ce~troid design. 

3.1 Optimal allocation of observations for the slinplex-centroid 

design with g = 3. 

In section 2.3 we considered an optimal allocation of observat­

ions for the special cubic polynomial and for a g~neral q • 

Comparing the simplex-lattice design and the associated poly­

nomial in section 2,3 with the simplex-centroid design in section 

3, we see that ~1e models are identical for q = 3 • The optimal 

allocation of observations for q = 3 is therefore given by 

substituting q = 3 in (2.3.1). Hence the conclusion is to 

choose aJJ.d so that 
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i = 1,2,3 
j = 1,2,3 

i < j 

3.2 Optimal allocation o£ observations in the simElex-centroid 

design with g = 4. 

Consider the polynomial 

4 
'll = 2.:: ~.x.+ 2.:: ~- .x.x.+ 2.:: p .. kx.x.xl+~1234x1x2x3x4 

i=1 ~ ~ 19-<j<4 ~J ~ J 1<i<j<k<4 ~J ~ J t . 

and the simplex-centroid design with q = 4. The optimum proce­

dure now leads to the following conclusion: Choose 

r., 
~ 

so that 

r. :r .. :r .. k:r1234 = 1:1.30:2.10:3.84 
~ ~J ~J 

i = 1,2,3,4 
j = 1 ,2,3,4 
k = 1,2,3,4 

i < j < k 

For details concerning the proof the reader is referred to 

Laake (1973). 
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Appendix 

Suppose a random vector x = (x1,x2 , ••• ,xq) has a Dirichlet 

distribution with parameter vector o. = (a. 1 ,o.2,, •• ,a.q) , a.i > 0 , 

i = 1,2, ••• ,q. According to DeGroot (1970) page 51 we have 

Lemma A.1: Suppose that 

and s q-1 

x = 1-x - ••• -x q 1 q-1 

is defined by (1.2). Then 

q 
n r(o..) 

. 1 J. J.= 

= --------q 
I( L: o.i) 

i=1 

(Ao 1) 
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