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Abstract

Introduction: The Activity-Regulated Cytoskeleton-associated (ARC) gene

encodes a protein that is critical for the consolidation of synaptic plasticity and

long-term memory formation. Given ARC’s key role in synaptic plasticity, we

hypothesized that genetic variations in ARC may contribute to interindividual

variability in human cognitive abilities or to attention-deficit hyperactivity dis-

order (ADHD) susceptibility, where cognitive impairment often accompanies

the disorder. Methods: We tested whether ARC variants are associated with six

measures of cognitive functioning in 670 healthy subjects in the Norwegian

Cognitive NeuroGenetics (NCNG) by extracting data from its Genome-Wide

Association Study (GWAS). In addition, the Swedish Betula sample of 1800

healthy subjects who underwent similar cognitive testing was also tested for

association with 19 tag SNPs. Results: No ARC variants show association at the

study-wide level, but several markers show a trend toward association with

human cognitive functions. We also tested for association between ARC SNPs

and ADHD in a Norwegian sample of cases and controls, but found no signifi-

cant associations. Conclusion: This study suggests that common genetic vari-

ants located in ARC do not account for variance in human cognitive abilities,

though small effects cannot be ruled out.
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Introduction

The immediate early gene, ARC/ARG3.1 (activity-regulated

cytoskeleton-associated protein/activity-regulated gene 3.1;

here denoted as “ARC” for the gene and “Arc” for the

mRNA and protein), controls diverse forms of experience-

dependent synaptic plasticity and memory formation in the

mammalian brain (Plath et al. 2006; Bramham et al. 2010;

Korb and Finkbeiner 2011; Shepherd and Bear 2011). ARC

is expressed predominantly in excitatory, glutamatergic

projection neurons suggesting late evolutionary emergence

and functional specialization (Campillos et al. 2006; Vaz-

darjanova et al. 2006; Mattaliano et al. 2007). Following

bursts of synaptic activity, Arc mRNA is rapidly induced

and transported to dendritic processes for local storage,

translation, or decay. Synthesis of Arc is required for long-

term potentiation (LTP) and long-term depression (LTD),

the major cellular mechanisms for synaptic strengthening

and weakening, respectively (Chowdhury et al. 2006; Plath

et al. 2006; Rial Verde et al. 2006; Shepherd et al. 2006;

Messaoudi et al. 2007; Panja et al. 2014). Recent studies

show that the Arc protein self-oligomerizes, contains two

biochemically distinct domains that flank a disordered

region, and originated from the Ty3/Gypsy retrotransposon

family (Myrum et al. 2015; Zhang et al. 2015).

Dysregulation of excitatory synaptic transmission and

plasticity is increasingly implicated in the major psychi-

atric disorders, including bipolar disorder (BP),

schizophrenia (SCZ), major depressive disorder (MDD),

attention-deficit hyperactivity disorder (ADHD), and

autism spectrum disorders (ASD) (Toro et al. 2010; Auer-

bach et al. 2011; Grant 2012; Gkogkas et al. 2013; Nithi-

anantharajah et al. 2013; Ripke et al. 2013; The Network

and Pathway Analysis Subgroup of the Psyciatric Geno-

mics Consortium 2015). Synaptic dysfunction may there-

fore play a causal role in cognitive impairments, such as in

inhibitory control and other aspects of executive function,

that are shared across all of the major neuropsychiatric

disorders (Kahn and Keefe 2013). Numerous genetic risk

factors are implicated in psychiatric disorder susceptibility

(Sullivan et al. 2012). SCZ and BP heritability is estimated

to be as high as 70%, whereas ADHD heritability is esti-

mated at 79% (Lichtenstein et al. 2009, 2010). For SCZ,

common genetic variants identified by Genome-Wide

Association Studies (GWAS) currently account for up to

18% of this heritability (Visscher et al. 2012; Ripke et al.

2014), but the heritability explained is lower for other psy-

chiatric traits. Studies looking at the overall effect of com-

mon variants (present in more than 1% of the

population) have shown that common variants could

actually explain 40% of the heritability (Lee et al. 2012),

but we are lacking either the sample size or the statistical

tools to identify these common variants of small effect.

Thus, many common variants of small effect in psychiatric

disorders remain undetected. One approach to increase

the power to identify these variants is to look at additional

phenotypes which are correlated and relevant to these psy-

chiatric traits, such as cognitive abilities (Fernandes et al.

2013; McIntosh et al. 2013; Lencz et al. 2014). As a func-

tionally versatile regulator of plasticity and memory for-

mation, the ARC gene, mRNA, and protein are all tightly

regulated (Bramham et al. 2010). Dysregulation of Arc is

implicated in Angelman syndrome and pathogenesis of

Alzheimer’s disease (Greer et al. 2010; Wu et al. 2011).

We hypothesized that genetic variations in ARC also

could contribute to the range of human cognitive abilities

and impairments in cognition. Previously, postsynaptic

proteins at glutamatergic synapses associated with Arc and

N-methyl-D-aspartate receptor complexes have been

shown to be enriched in SCZ-associated loci containing

copy number variants (CNVs), rare coding variants, and

small de novo mutants (Kirov et al. 2012; Fromer et al.

2014; Purcell et al. 2014) Here, we carried out a compre-

hensive association analysis of ARC genetic variants to

determine whether ARC variation plays a role in general

cognition. First, we tested genetic variants in ARC for their

association with cognitive abilities (word comprehension,

visuospatial ability, intellectual function, verbal learning,

verbal recall, and response inhibition) in two samples with

cognitive phenotyping: the Norwegian Cognitive NeuroGe-

netics sample (NCNG) (Espeseth et al. 2012) and the

Betula sample (Nilsson et al. 1997, 2004). Furthermore, we

checked for association between ARC SNPs and a Norwe-

gian ADHD sample (Jacobsen et al. 2013) since ADHD

patients present with deficits in cognitive abilities, particu-

larly in executive function (Pennington and Ozonoff 1996).

Materials and Methods

The study utilized three independent datasets, which are

described here. A summary of these cohorts are summa-

rized in Table 1.

NCNG

The NCNG (Norwegian Cognitive NeuroGenetics) sample

consists of 670 healthy individuals from whom genetic

Table 1. Summary of cohorts.

Cohort Sample size Mean Age � SD

NCNG 645 47.6 � 18.26

Betula 1742 62.3 � 13.3

Norwegian ADHD 661 cases

697 controls

33.95 � 10.25

29.69 � 6.52
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and cognitive data were collected. Participants aged 20–80
were recruited through advertisements in local newspa-

pers in the Oslo and Bergen areas. Candidates with past

or present neurological or psychiatric diseases or a history

of substance abuse, learning deficits, or depression were

excluded. Participants were required to be native speakers

of Norwegian and to have completed basic education.

Those scoring more than one standard deviation (SD)

below their age norm on tests of intelligence or memory

were excluded. All participants gave their informed con-

sent for participation, which included donation of a

blood sample, DNA extraction and genotyping, and

storage of the remaining blood sample in a biobank. All

participants read an information sheet and signed a state-

ment of informed consent approved by the regional com-

mittee for Medical and Health Research Ethics (Southeast

Norway; Project ID: S-03116).

The cognitive tests analyzed here (summarized in

Table 2) were the California Verbal Learning Test II

(CVLT II) (Delis et al. 2000), the Color-Word Interfer-

ence Test (CWIT) which is part of the Delis-Kaplan

Executive Function System (DKEFS) (Delis et al. 2001),

and the Vocabulary and Matrix Reasoning subtests from

Wechsler Abbreviated Scale of Intelligence (WASI)

(Wechsler 1999), which were used to estimate general

cognitive abilities (IQ). The CVLT II scores several

parameters of episodic memory function, including a

total learning score, and free recall after 30 min. The

CWIT comprises four conditions: the naming of color

patches (1), reading of color words (2), color-word inhi-

bition (3), and color-word inhibition/switching (4), with

the third included in this study. For a more thorough

description of the NCNG sample and tests, see (Espeseth

et al. 2012).

The whole sample underwent genome-wide genotyping

using the Illumina Human610-Quad Beadchip. The

description of quality control is provided in Espeseth et al.

(2012). Imputation was performed according to the

ENIGMA protocol (Stein et al. 2012) (http://enigma.lo-

ni.ucla.edu/protocols/) with the use of MACH (Li et al.

2009, 2010) and minimac (Howie et al. 2012) imputation

software. The 1000 Genomes Project reference haplotype

dataset, Interim Phase 1 release for the European popula-

tions (EUR) was used. SNPs with an imputation quality

estimate r2 value >0.5 were considered to be successfully

imputed and the most likely genotypes were derived from

the dosage values. A postimputation quality control was

performed to exclude SNPs with a call rate <0.95, minor

allele frequency (MAF) <0.01, and Hardy–Weinberg

Equilibrium (HWE; exact test) P-value <0.001. After qual-
ity control of the NCNG genotyping data, 645 individuals

remained. The markers located in the ARC gene

(+/�10 kb) or in LD were identified using the LDsnpR

tool (Christoforou et al. 2012). This set consisted of two

SNPs that were genotyped and 69 SNPs that were

imputed.

Betula

The Betula Project is a longitudinal study (est. 1988)

on aging, memory, and dementia. This sample consists

of individuals that were assessed for cognitive functions

of memory, speed of processing, and attention (Nilsson

et al. 2004;). The measures of cognitive function used

here were selected to allow comparison with the NCNG

sample (see Table 2). We used a subset of 1800 Betula

samples for which DNA was available. Samples were

genotyped for 19 markers in the ARC gene, which were

selected to ensure a complete coverage of the ARC

�10 kb region and SNPs in LD. A special emphasis

was placed on rare SNPs in the region identified by

the 1000 Genomes Project (http://www.1000genome-

s.org/). Genotyping was done with a custom Illumina

iSelect array. Samples were subjected to stringent qual-

ity control in PLINK. SNPs were excluded from the

analysis if they had a failure rate <0.95, MAF <0.01, or
HWE exact test P < 0.001. After quality control of the

iSelect genotyping data, 1742 individuals remained. All

participants signed informed consent, in accordance

Table 2. Summary of the complementary cognitive tasks analyzed in

the NCNG and Betula samples.

Cognitive

aspect tested NCNG test Betula test Measure

Semantic

knowledge

Vocabulary

(WASI)

Vocabulary Word

comprehension

Visuospatial

ability

Matrix

Reasoning

(WASI)

Block design

test

Visuospatial

ability

Estimated IQ Estimated IQ

from

Vocabulary and

Matrix

Reasoning

(WASI)

Estimated from

Vocabulary and

the Block

design test

Intellectual

function

Episodic

memory

California Verbal

Learning Test-

II: Total

learning

Encoding and

free recall of

short sentences

Verbal

learning

Delayed

episodic

memory

California Verbal

Learning Test-

II: Recall

Delayed cued

recall of nouns

in sentences

Verbal recall

Processing

speed

Third condition

of CWIT from

D-KEFS

Letter-digit

substitution

Response

inhibition

WASI, Wechsler Abbreviated Scale of Intelligence; CWIT, Color-Word

Interference Test; D-KEFS, Delis–Kaplan Executive Function System.
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with the guidelines of the Swedish Council for Research

in Humanities and Social Sciences.

Analysis of NCNG and Betula samples

To test whether SNPs were associated with the different

cognitive tests selected, we performed linear regression

analyses using PLINK (Purcell et al. 2007). Age and sex

were set as covariates except for the IQ measure, which

had already been adjusted for age.

Norwegian ADHD sample

After excluding known duplicates and family members,

individuals with self-reported mental retardation and sam-

ples not meeting the quality control criteria outlined below

(143 samples), the Norwegian ADHD sample consists of

661 adult ADHD cases and 697 population controls. For

information about recruitment, phenotyping and DNA

collection, see (Johansson et al. 2008; Halmøy et al. 2009).

Tag SNPs were selected to adequately cover the ARC gene

and SNPs in LD (for detailed protocol see (Le Hellard

et al. 2009). Quality control was done using PLINK (Pur-

cell et al. 2007), and consisted of excluding individuals

with <90% call rate, as well as markers with <95% geno-

type frequency and those significantly out of Hardy–Wein-

berg equilibrium (P = 0.01). The ARC gene was tagged

using HapMap phase III data, spanning a region of

38.4 kb. The tagging region did not overlap with other

genes. A total of nine SNPs were genotyped at the CIGENE

platform at the Norwegian University of Life Sciences at
�As, using the MassARRAY iPLEX system (Sequenom, San

Diego, CA). One SNP was excluded for HWE P-value

<0.001, leaving 8 SNPs for further analysis. Statistical anal-

yses were done by using single-point analysis through

logistical regression in PLINK using gender as a covariate.

Results

ARC genetic variants and cognitive abilities

Summary statistics of the NCNG cognitive tasks are dis-

played in Table 3. We extracted all of the imputed and

genotyped markers located within the ARC gene �10 kb

from the GWAS performed on the NCNG sample

(Espeseth et al. 2012). We also included all the markers

that were in LD with ARC (r2 > 0.8) using the LDsnpR

tool (Christoforou et al. 2012). Thus, all genetic variation

in ARC and correlated with ARC was included. Regions in

LD with ARC can be visualized in the LD plot of the ARC

locus (Figure S1). Linear regression analysis revealed nom-

inally significant association (P < 0.05, without multiple

testing correction) between SNPs in the 20 kb region

flanking ARC and the visuospatial ability subset, delayed

episodic memory, and episodic memory (Table 4).

Although the data were extracted from a genome wide

association study, we here calculated a less conservative

study level. We factored in the number of markers tested

(71) and their nonindependence [i.e., their linkage dise-

quilibrium (LD)], as well as the phenotype correlation.

We calculated that a correct value of study-wide signifi-

cance would be P-value <0.001 for association with cogni-

tive function. Thus, none of the associations remained

significant at the study-wide level. For a complete list of

each SNP’s P-value, see Table S1 for the NCNG sample.

Analogous cognitive tests were analyzed from a sample

of 1800 Betula participants (Table 2). Ten ARC genetic

variant markers were genotyped using an iSelect platform,

and a linear regression analysis was performed with age

and gender as covariates. No association was detected

between any ARC SNP and the cognitive functions tested.

A summary of all nominally associated SNPs in the two

samples is listed in Table 4. For a complete list of each

SNP’s P-value in the Betula sample, see Table S2.

ARC genetic variants and ADHD

In our Norwegian ADHD sample, we genotyped and

analyzed 8 tagging SNPs of ARC and the surrounding

region in a sample of 661 adult ADHD patients and 697

controls. Single-point analyses did not reveal any signifi-

cant association between ADHD and ARC genotypes. The

P-values of SNP analyses are given in Table S3.

Discussion

The study presented here indicates that common genetic

variants within ARC (�10 kb) are not associated with

Table 3. Summary statistics of NCNG cognitive tasks.

Cognitive test Mean Median 95% CI

NCNG

Vocabulary (WASI) 65.5 67 0.54

Matrix Reasoning (WASI) 27.8 29 0.35

Estimated IQ from Vocabulary

and Matrix Reasoning (WASI)

118.9 120 0.80

California Verbal Learning

Test-II: Total learning

56.9 58 0.83

California Verbal Learning

Test-II: Recall

13.2 14 0.21

Third condition of CWIT

from D-KEFS

52.2 50 0.98

WASI, Wechsler Abbreviated Scale of Intelligence; CWIT, Color-Word

Interference Test; D-KEFS, Delis–Kaplan Executive Function System.
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normal variation in human cognition in our samples or

with ADHD.

We have previously shown evidence for significant

associations between variants in DCLK1 and variants in

BDNF and ARC, which affected verbal memory and gen-

eral cognitive abilities in a smaller NCNG sample (Le

Hellard et al. 2009). Here, using an extended NCNG

sample and an additional sample (the Betula) as well as

higher coverage of the ARC gene, no associations

between common genetic variants within ARC and cog-

nition were found. However, we cannot completely

exclude association between genetic variants in ARC and

cognitive abilities for several reasons. First, ARC variants

might associate with specific cognitive abilities other

than those tested here. Our analysis included word com-

prehension, visuospatial ability, intellectual function, ver-

bal learning, verbal recall, and response inhibition, but

more detailed measures qualifying as cognitive endophe-

notypes and tests for nonverbal episodic memory should

be included in further studies. Second, recent GWAS

confirm that genetic factors contribute to a large extent

to the interindividual variability in cognitive abilities

(Davies et al. 2011), but their individual effect is very

small and difficult to detect with classical GWAS (Davies

et al. 2015). The nonsignificant study-wide associations

between ARC SNPs and the traits examined here is con-

sistent with the intricate, polygenic genetic architecture

of complex traits such as cognition and psychiatric dis-

orders. It is also in line with the assumption that much

of the heritability that cannot yet be explained by

GWAS (aka the “hidden heritability”), but that is shown

to be attributable to common variants, could partially

be accounted for by many variants of very small effect

size (Visscher et al. 2012). Larger sample sizes may pro-

vide the power needed to detect these effects. Lastly,

much is still to be learned about ARC. It is exquisitely

regulated at nearly every level (epigenetically, mRNA

transport, by miRNAs, mRNA and protein degradation,

Table 4. Nominal associations of ARC SNPs with cognitive abilities (NCNG: N = 670; Betula: N = 1800.

SNP

M/m

allele MAF1

Semantic

Knowledge

P-value

[Sample]2

Visuospatial

Abilities

P-value

[Sample]2

Delayed Episodic

Memory

P-value

[Sample]2

Estimated

IQ

P-value

[Sample]2

Episodic

Memory

P-value

[Sample]2

Processing

Speed

P-value

[Sample]2

rs13273921 T/C 0.486 — — 0.045 [N] — — —

rs13260813 A/C 0.092 — — — — 0.03 [B] —

rs28625055 G/A 0.225 — 0.045 [B] 0.03 [B] — — —

rs79905110 G/A 0.095 — 0.03 [N] — — — —

rs10105842 C/T 0.134 — 0.03 [B] — — — —

rs10110456 G/A 0.088 — 0.04 [B] — — — —

—, Indicates nonsignificance.
1MAF = Minor Allele Frequency (European).
2N = NCNG; B = Betula.

Figure 1. Regulatory features of ARC gene and location of SNPs. The red region indicates the coding sequence and the blue regions are exons.

Regulatory features of ARC are indicated on the top while nominally associated ARC SNPs are indicated on the bottom. (SARE = synaptic activity-

response element; SRE = serum response element; ZLF RE = Zeste-like factor response element; A2RE = hnRNP A2 response element; hsa-miR-

19a = Homo sapiens microRNA-19a predicted binding site; DTE = dendritic targeting element).
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etc.), and other mechanisms are certainly yet to be

described. Some known regulatory regions of ARC are

shown in Fig. 1, along with the location of the nomi-

nally associated SNPs. Based on current knowledge of

ARC regulatory regions, none of the nominally signifi-

cant SNPs in this study are likely to have functional

significance. Large-scale sequencing is needed to identify

the full range of SNPs present within ARC, in ARC-

regulating regions, and other SNPs in ARC signaling

complexes.

Recent studies on the genetic etiology of SCZ have

reported de novo copy number variants (CNVs), small

de novo mutations, and rare coding variants in genes

encoding for proteins implicated in an ARC signaling

complex (Kirov et al. 2012; Fromer et al. 2014; Purcell

et al. 2014). While substantial further study is required,

these studies have pointed at the involvement of an

ARC complex in SCZ. It will thus be necessary to carry

out similar studies to characterize the implication of

rare ARC variants and in genes of ARC complexes in

cognitive functions. We also note that none of the

common ARC variants reported in the Psychiatric

Genomics Consortium database showed significant asso-

ciation with SCZ (Ripke et al. 2014).

Impairments in cognitive function are observed across

the major neuropsychiatric disorders (Gottesman and

Gould 2003; Hasler et al. 2006). We therefore utilized

our Norwegian ADHD sample to test for association

between ARC SNPs and ADHD, but found no signifi-

cant associations. Since present ADHD diagnostic cate-

gories are rather heterogeneous, more precise phenotypic

categories should be analyzed. More importantly, a more

thorough association analysis between ARC variants and

other neuropsychiatric disorders deserves consideration.

As a tightly controlled gene central to brain plasticity

and cognition, variation in ARC may still prove to

confer beneficial and/or deleterious effects on human

cognitive abilities.
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