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SUMMARY

Statistical methods that give detailed descriptions of how
populations differ are considered. These descriptions are in
term of a response function A(x) with the property that
X+ &(X%) has the same distribution as Y . The methods are based
on simultaneous confidence bands for the response function computed
from independent samples from the two populations. Both general
and parametric models are considered and comparisons between the

various methods are made.
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1. INTRODUCTION

We consider the problem of comparing two populations with
distribution functions F and G on the basis of two independent
random samples X1,...,Xm and Y1,,..,Yh y» respectively. Instead
of the usual shift model where F(X) = G(x+p) for all x , we
treat the general case where F(x) = G(x+A(x)) for some function
L(x) «» If the X's are control responses and the Y's are treat-
ment responses, &(x) can under certain conditions be regarded as
the amount the treatment adds to a potential control response x,
(Doksum (1974)). Since it gives the effect of the treatment as a

function of the response variable, we call it the response function.

Under general conditions it is the only function of x that
satisfies X + 4(X) ~ Y , where ~ denotes distributed as.

Thus 4&(e) is the amount of "shift" needed to bring the X's up
to the Y's in distribution and it is also referred to as the

shift function.

Assume that F and G are continuous. Let F~ ! denote the

left inverse of F . Then we can write
a(x) = 6”1 (F(x)) - x .

If in fact a shift model holds, that is, F(x) = G(x+6) for some

i}

constant 6 , then o&(x) 0 .

A natural estimate of G-1(F(x)) is G£1(Fm(x)) » where F_
and Gn denote the empirical distribution functions based on the
X and Y samples. The Q-Q plot considered by Wilk and
Gnanadesikan (1968) is essentially G;1Fm evaluated at the X

order statistics. Doksum (1974) referred to it as the empirical



probability plot and derived the asymptotic distribution of
8x) = 62(E, () - x

Suppose that a beneficial treatment leads to large responses.
Then certain natural questions arise : (i) Is the treatment
beneficial for all the members of the population, i.e., is
A(x) >0 for all x ? (ii) If not, for which part of the popu-
lation is the treatment beneficial, i.e., what is {xEA(x) >0} ?

The kind of model that is in effect also yields information
about how the treatment works and about which statistical analysis
is appropriate. Thus the following questions are of interest :
(iii) Does a shift model hold, i.e.,is &(x) = ¢ , some 6 ,
all x ? (iv) If not, does a shift-scale model hold, i;e., is
6(x) =0 +Px , some o , B, all x ?

These questions can be answered by giving a simultaneous
(in x) confidence band [A(x),A(x)] for &(x). Thus (i) is
answered in the affirmative if A(x) >0 for all x , (ii) has
solution {x:A(x) > O} , (iii) is rejected if no horizontal line
fits in the confidence band, and (iv) has a negative response if
no straighv i1ine fite in the band. Note that the first two
answers only required a lower confidence boundary g(x).

Such confidence bands have been considered by Doksum (1964),
Switzer (1975), and Sievers (1975). The latter two papers dexive
a band based on the two sample Kolmogorov-Smirnov statistic and
thereby obtain the exact confidence coefficient of the band in
the former paper. Similar bands have been considered by Steck Zimmer
and Wil iams (1972) in connection with the "acceleration function" Gr™! .

Here we consider bands based on statistics of the form

SUPg < x < bmlFm(X)-Gn(X)l/¢(HN(X))



where

HN(X) = ka(x) + (1-A)Gh(x) , A=m/N

Efficiency comparisons are made between such bands in terms
of sqguare ratios of widths, and it is found that the choice

o(u) = VH??;IT leads to an efficient band.

In the case that a location-scale model can be assumed, a
band which improves on the above general bands is constructed
from order statistics and its asymptotic efficiencies with
respect to the general bands are given.

For the normal Behrens-I'isher model, the likelihood ratio
band is derived aﬁd it is shown to be much more efficient than

the general bands in the normal model.
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2. NONPARAMETRIC SIMULTANEOUS CONFIDENCE
BANDS FOR THE RESPONSE FUNCTION.

In the nonparametric case, it is natural to construct confi-
dence bands for A(x) using pivots based on empirical distri-
bution functions Fm and Gn « The key to finding such pivots

is to note that G defined »
dy,n ¥

Cpn (V) = G (a(F) +y)

is distributed as the empirical distribution of a sample of

size n from F . Tc see this note that

G, (a(y) + y) = [Wo. of Y. <G (F(y))]/n

[No. of F-1(G(Yi)) < yl/n

and F'1(G(Y)) has distribution T .,

How if ¢(Fm’Gh) is a distribution-free level a test
function for HO: F=G,
then

fa(.) :¢(Fﬁ’GA,n) = 0} (1)

is a distribution~free, level (1 - g) confidence region ror
the respbﬁse function A(*) .

These regions will reduce ©o0 simple bands if we consider
distribution-free test statistics T(Fm,Gn) with the property

that the inequality T(¥_,G ) < K is equivalent to

Q(Fm(x)) < Gn(x) < E(Fm(x)) Tor all x (2)

Ifor some functions L and h . Typically these functions



are nondecreasing. IFor instance, let N =m +n , M = mn/N

ai1¢. suppose

P(F,,G,) = Dy = i sup, |F (x) - & (x)] ,

the Kolmogorov-Smirnov statistic. Then g(x) = x5 - KﬁﬁE
and h(x) = x+K/’\f—'.

From (2) , we derive confidence bands as follows.

Let G;(u) = infix : Gn(::) >ul and G;ll(u) = sup{x : Gn(x) < u}
be the left and right inverses of Gn » and suppose that K 1is

chosen so that

Ppg(T(F G ) <K)=1-a. (3)

Then
1 -a = Pp o((F,G ) <K)
Pp,o(T(Fp Gy 1) < K)
Pp o, (x)) 26 (x) < B(F (x)) ; a1l x)
PF’G(Q_(Fm(X)) < Gn(A(X) +x) < E(Fm(x)) ;3 all x)

Pp oG5 (%)) - = < a(x) < ;7 (B(E, () - x,

]

]

i

all xX) .
Ve have shown that
Propogition 1:
If (2) and (3) hold, then
=10 (3 - =L )) -
(6, (@, x))-x, ¢ ~(R(F (x))) - x) (4)

as x ranges from - +to w gives a level (1 - a) ,
siiul taneous, distribution-free conlidence band for the response

function a(xz) .
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Now suppose that K a has veen chosen from the Kolmogorov-
H
Smirnov tables (e.g., Kim and Jennrich (1968), (1970)) so

that
Prg(Dy = KS,a) =1-a.

Then

Remark 13
A level (1 - o), simutltaneous, distribution~-free coniidence
band for A(x) , -=© < x < is given by
[G:(Fm(x) - 5——%_-?-,9‘-)- x , G;_I (Fm(x) + ;%9-) - X) .
This band, which we call the S band and denote by
[QS(X) , Zé(x)) , was obtained by Switzer (1975) and Sievers
(1975) and should repiace a similar pand given by Dokswz (1974).
Let [t] denote the greatest integer less than or egual
to t , let <t> be the least integer greater than or equal
to t, let X(1) <eee< X(m) ; Y(1) <ew.<¥(n) denote the order
statistics of the X and Y samples, and define Y(j) = -

for j <0 and Y(j) =c0 TOor j>n +1 . fThen the band (4)

can be expressed as

[A(x),E(x)) = [T(«n@)>) - =, ¥([nE@)]+1) - x)  (5)

for =z e[X(i), X(i+1)), i=0,1,4e0, , with X(0) = - and
X(m+1) == , This representation was used to produce Fig. 1 whecre

the S band (solid lines)

[A(2), Ba(x)) = [Yn( - §§.&)>) - x,Y([n(E + -I-{—S*’-q-‘)W + 1)-x)
— S ‘ m T T

11 ,\/ﬁ"'




is given for X and Y samples from N(0,1) and N(1,4)
distributions, respectively. In this figure, m=n=100 and
a= .05 .

The general method can also be applied to a weighted

sup norm statistic

WN(Em’Gn) = d;. sup | Ty, ()= () |

6
{xiacF_(x)<p} TH (X” 6)

=
I

where Hyp(x) = AF (x) + (1-2)G (x); »=m/N and O<a<b< 1.
If we choose Y¥(t) =~+t(1-%) , then we give approximately equal
weight to each x in the sense that M [F (x)-G (x)]/Y( I(x))
has asymptotic variance independent of x . From Borokov and
Sycheva (1968) it focllows that if we consider one sided (without
the absolute value) test statistics in the class (6) with

0 < a< b<c 1 this choice of V¥ asymptotically maximizes the
minimum power when testing H_ :F =G vs. H1:F(x) - G(x) > b
for some x, 85>0.

To apply Proposition 1 , we need to solve the inequality

‘ “1’G)]SK

ST T
for G, . When ¥(t) =~t(1-t) , this inequality becomes

(e, (x)-F_(x)1° < 1%2- [AF, (x) +(1-3)G, (x) TR=IAF, (x)+ (1-1)6, ()} ]



for x such that a< F (x) <o .

Let ¢ = K2/M s U = Fm(x) and v = Gh(x) , then the
inequality can be written as

ef

a
a(v) = (1+c(1-x)2)v2- [2u-c(1-k)(2ku-1)]v+u2—01u+ck2 2

u <0 .

Since the coefficient of v2 is positive, d(v) < 0 if and only
if v is between the two real roots of the equation d(v) =0 .

These roots are
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l+( def u+dc(1-1)(1-2nu) *3 N 02(1-k)2+4cu(1-u)
1-(u) =

1)

1 + c(1—h)2
It follews that with probability (1-o) , Gn(x) is in the band

nT (T () < 6, (x) < h*(F_(x))

for all xe {x 3 a< T (x) <0l .

it

A

Applying Iroposifion 1, we have shown

Renark 23
Let 3F=G(WN <K) =1 - @, then the level (1 - gq) ,
simultaneous, confidence band for A(x) based on Wy with

u(t) =Nt(1-t) is

e E N -x  »  ratE ) - ),

xe {x:a S_Fm(x) < b} .

We refer to this band as the W __Dband and write it
[AW(K) s Kw(x)) . As with the S vand, it is computed from the
order statistics by using (5) . DMNonte Carlc values of X are
given by Canner (1975) when a =1 = Db =0 . ZFig. 1 gives this
pand (dotted lines) for X and Y samples from N(0,1) and
N{(1,4) distributions, recpectively. Here m =n = 100 ,
o = 05 and K = %3.02 is obtained frox Qanner.

For a >0, b« 1, asynmptotic critical values K can be

obtained from Borokov and Sycheva (1968).



Figure 1.

The estimate ﬁ(x) and the level
«95 8 (solid lines) and W (dotted lines) bands.
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A third band can be obtained by considering the Renyi statistic

o |F,(x) - G (x)]
R = '\/I\I e .
N xe{xs%p(\)> c} Hy ()

This statistic is a possibility when one wants to give nore
weight to smaller =x's . If the X's and Y's are lifetimes,
small x's correspond to high risk members of the population,
If one wants a band which is accurate for these x's , the band
based on RN could be considered. The inversion of this
statistic is straight forward.

Let r denote the level @ critical value for RN and

define

* _ X e NIT )
bp(w) (11 (1-1)r/M}

+
then the R _band [AR(X),Zh(X)) is obtained by substituting hE

for h and h in (5) + x is required to be in {x : Fp(x) >c .
Asymptotic critical values 1r can be obtained from the tables

of Renyi (1953).
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3. COMPARISON OF THE NONPARAMETRIC BANDS.
We compare the bands in terms of their widths and their

limiting widths

wy o (1) = VMG (R(T, (x))) - 67 (u(F, (x)))]
and

Wﬁ(x) = 1ﬁ%@¥ﬂyﬁha(x) .

When computing this limit, it is convenient to introduce the
notation u = Fm(x) rand € = M'% « Moreover, to emphasize the
dependence on € , we write h(e,u) for h (u) and h{e,u)

for h(u) . Now

= € L6 Ee,)) - 67 T@)] - T[T e, w)) - ¢ ()]
+ e [a T (E(e,w)) - 67 I(H(e,u))]
- e e w)) - 67 ale,w))]

e 167 ) - ¢ (u)]

The l;mit of WM,a(u) is infinite unless G is strictly
increasing at G'1(u) . We make this assumption, thus I; =0 .
Suppose furthermore that G has a continuous,; nonzero
derivative g . Using a vesult of Doksum (1974) and a random
change of time argument (e.g.Billingsley (1968) ,'pp,144-6),fwé fing
that I3+I4 converges in law to U(F(x))/g(a(x) +x)
- U(r(x))/g(a(x) + x) on every interval
[F-1(6), F'1(1-5)], 0 <§ <%, where U denotes the Brownian
Bridge on D[0,1]. |
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It follows that I, + I, converges in probability to zero. If

3
we add the assumption that L (e,u) and h(e,u) converge to
v as € - 0% and that a(e,u) and H(e,u) have continuous (in u)
right hand derivatives h'(C,u) and h'(O,u) with respect to ¢ at ¢ =0,

then we can compute the Limits of I1 and 12 as folliows

tim I = 1im  EE@EEw) - rEm(ou) | _E'(0,EE))
c-0" ot € ' g(c™ 1 (@ (x)))

h'(0,F(x))
lim 12 = —r—— —
e=0 g(¢ ' (F(x)))

Tce swamarize, we have

Proposition 2:

Under the above stated conditions, the asymptotic widiths of

the bands (4) are given by

B'(0,F(x)) - ' (0,F(x))
wd(x = -1
z(6™ (P(x))

Let the asymptotic relative eificiency of two bands be the

square of the ratio of the reciprocals of their asymptotic widths.

Thus for two bands based on functions Q1,E and h

’ _2,Eé , we

have that the efficiency is

B (0,F(x)) - 23(0,F(x))] 2

178 5! (0,F(x)) - B)(0,F(x))




If we think of this efficiency as a function of the quantiles

x, = F(q) of P, we see that it is independent of the form
of F and G .
In the case of the S band, h(e,u) = u-Kg ¢ and
’

h(e,u) = u+k, € thus its asymptotic width is

S;a

ZKS
'wsa(x)=————lg.._ ’ o<q<1.
’

T g6 (g))
In the case of the W vaud, we replace c by K22 ip (7)
and differentiate with respect to e to obtain h'(0,u) and

h'(0,u) . This yields

—————

<) = 2q(-q)

w ("& ] -
heal Tg(@ i)y asasy

as the asymptotic width of the W band. Thus the asymptotic

efficiency of the S ‘band to the W band is

'

K‘ 2
eS,W(Xq) = ( K“&) Q.(1'q_) » 2a<qLhb

S,a

where KS and KW denote the asymptotic critical vaiues
a QL
of the DN and WN statistics, respectively.
Using Borokov and Sycheva, we obtain the following very close

but si1ightly conservative approximation to the asymptotic Ky o
’ »
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Table 1
ASYMPTOTIC CRITICAL VALUES OF WN. b =1 ~-a

a
I Y- .1 .04 .02

.25 12,109 | 2.482 | 2.879 |3.138
.1 24471 | 2,758 | 3.091 |3.318

Coribining this with theasymptotic tables for DN,we obtain

the following tables of efficiencies.

Table 2
THE ASYMPTOTIC EFFICIENCY eg W(xq) of the S BAND
b
TO THE W BAND WHEN & = .1

a=1=">b=.25

a4 | .25] .30 .35| 40| .45 .50
.1 78| 87| .94 |1.00] 1,02 | 1.04
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a=1-">b=.1

; ! )
o1 . 02 .BL 04}‘ 05

46 .82 | 1,07 1.23 1.28

The values for gq > .5 are the same as those for 1-q .
Diifferent values of @ yielded similar results. We find that
the S band is better in the center of the X distribution

at the expense of being worse in the tails up to + x

a
Technically, the asymptotic efficiency is co for x outside

+ x, + However, the S band is only valid for Fm(x) in

(K., MWM', 1=K, /M) . When m=n and o=.01 , K. AHI'> .1
S:CL S,Q. o

Ssa
for ng 531, while for o = .1, Kg AWMz .1 for n< 297
b
Canuer (1975) gives llonte Carlo critical values of Wﬁ with
a=1=-b=0 when n=n=2000{(q=.05) and n=m=1000(a=.01) .

Using these in place of asymptotic critical values, we obtain

3| 4 | .5
1,17 11434 [1.39
| 446 | .82 [1.08 [1.24 |1.29

7

21,01 | .05 § o1 W2

7
L 4
N

605 006 '26

001 é 005 024
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These values are close to the values of table 2 with

We also computed the efficiencies for finite sample sizes
(reciprocal ratios of widths for actual samples) using Canner's
critical values and computer generated samples. Some results are
given below for X samples from a N(0,1) distribution and Y

samples from a N(1,o§) distribution.,

Table 4.
Finite sample gize efficiency of the S band
to the W band. o = .05 .

m=n-=50,

\}2\3 1 e | L3 | 45 16 |1 ] .8
5| ooks 0 0 .61 1 1.01 |1.00 | .76 cofo
2.0 | cofo 0 0 +61 11,18 {1.00 | .66;00/00
m=n = 100
NS IRIC-T P B A B R U I A R
o5 Jeoke |0 0 .87 | .97 {1.18 1 1.18 | .80 | .65 | copo
2.0 oo | 0 0 80 | .90 [1.14 | 1.19 [1.09 | .56 | cofo

These results are qualitative close to the asymptotic results
bur favor the W band more. They vary little from sample to sample

or from distribution to distribution.



Taken together, the tables show that in terms of width the
W band is preferable to the S band. The S band is better in the
center of the X distribution at the expense of being much worse
in the tails. This is also clear from Fig. 1. It is interesting
to note that in this figure, the W band leads correctly to the
rejection of a linear model while the S band does not (see
(iii), section 1). The S band has the advantage of being simpler
and its critical values are more extensively tabulated. It is
preferabie if the central part of the X distribution is of

more interest than the tails.



SR
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For the R-band, Proposition 2 yields the asymptotic width
R,a*"g

where K is the asymptotic critical value of the Renyi

R:(I.
statistic Ry . From Renyi (1953), we obtain

Table 5
ASYMPTOTIC CRITICAL VALUES OF Ry
c 2 | W1 | .05
KR,a 4 1 6 J! 8.5

- —

1 -4 | .,9082! ,9081 .8977

Table 6
ASYMPTOTIC EI'FICIENCY OF THE R BAND TO THE W BAND

a=1‘b=o1,c=005,a=-1

g 1.051 .1 | .2 1z 1.4} .5 1 .6
e | @ [1.05 | .47 | .28 | .18 | .11 | .08

i 6 W7
+
|

! e 12,08 | .96

q. i '.2 025 '3 '4‘ 05 . 06 ': 07

| e | © [1.15 | .89 | .58 | .39 | .26 | .17

It is apparent that the W-band is preferable to the R band

except when only small xq are of interest.
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4, THE LOCATION-SCALE MODEL.

In this section, we cousider the model where

P(x) = BH=L) , G(y) = H(==?)
1 2
for some continuous distribution function H .
Then G '(u) = Wy * ch'1(u) and
92
Alx) =y, + o (x-p,) - x &

In this model it is common to treat Mo—h, as the parameter of
interest. However, as seen in section 1 , A(x) will yield
additional information apbout how the populations differ.

Since &(x) is linear in x , a simultaneous band can be
constructed by specifying intervals of values for A(x) at just
two points x .

Thus if X1 < x2 and

then for x e[x1,x2] s The upper boundary would consist of the line
connecting the points (x1,T) and (xg,S) , while the lower
boundary would be the line connecting (x1,2) and (X2,§) . For
X > X5 the upper boundary would be the line through the points
(X1,2) and (xz,g) , end so on. x, and X, may pe random, in
fact in the following, they are order statistics.
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Proposition 3.

Suppose that a locaticn-scale model holds. Let
Ty s ik s Sy k = 1,2, be integers such that

¥(r, ) < X(4i,) < Y(sk) , k=1,2) =1 ~ « (8)

Then a simultaneous (1-a) 100% confidence band for A4(x) is

determined by

T{r,) - X(1,) < 6(x(1y)) < ¥(sy) - X(4y),k=1,2 (9)

Proof:
For arpitrary continuous F and G , 4(X) + X and Y have

the same distribution. Thus

P(Y(I‘k) < L\(X(ik>)+ X(ik) < Y(Sk) 9 k=1y2) =1=-0

and the result follows.

The choice of integers r, , i, , s, satisfying (8) could
be made using the bivariate hypergeometric distribution, although
convenient tables dc nct seem to be availabple.

Mternatively, Switzer (1975) has suggested a conservative
procedure using the Bonferroni inequality and the hypergeometric
distribution. A third possipbility, when sample sizes are large,
is to use a bivariate normal approximation. To do this, let
Z, = No. of T, < X(iy) and 3, = Fo. of Ty > X(i,)

Then the probability in (8) equals

Pr_g [r1 <Z,,<s; -1,n-8,+1<4,<n-r1,] and

can be approximated using
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Lemma 1.
For 0<f, <B, <1, let i =[mg, J+1, k=12,
let §1={31,§2=1—ﬁ2,and1e‘t

If F =G, then (V1,V2) has a standard bivariate normal limiting

1
distribution with correlation p = -[51(1-32)/(1-51)52]§ .

The lemma is proved by noting that the conditional distribution
of (Z1’ZZ) given X(i1) , X(i2) is trinomial and after standard-
ization, asymptotically bivariate normal. Since E(Zle(ik)) ,
i=1,2, 1is asymptotically normal, an application of Sethurarman's
theorem gives the result.

The following remark gives a particular application of the

lemma,

Remark 3.
Let i, = [mB] + 1 and i, = [m(1-5)] + 1 for some B € (0,3%).
Then an asymptotic (1-&) 100% simultaneous confidence band for

6(x) is determined by (9) with

r =1
1 2 _ ;\/ .__._.v../ [
n - B - CCL 9(1"B> NM 9
(10)
L= =5+ cNB(1-p)NIH,
r, = n+1-s1 and S, = n+i=r ,

where ¢, satisfies P[|V_ | <c, ; k=1,2] =1 -«

2 s

for (V1,Vé) standard bivariate normal with correlation

p =~ E/(1-B) .
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If TLy(x) denotes the width of this bend at x , and if H

has a density h , then

_ -2, Z=Z, o
g0 ey Lty
(Z.]_B"‘Zﬁ) h(z.]_s) h(ZBI
= L(x) , say
o _ ; G . i th .
for x = c1zp t with B < p < 1-p and zp the p guantile
of H.,

If the density h(x) is symmetric about O , then
T
L(x) = 2e Np(1-p) 0,/h(z;) , B <p<1-B .

We call the band determined by (9) and (1C) the O band (order
statistics band) and compare it with the W band of section 2 .
In the location scale model, the asymptotic width of the W band
is sz’anfTi53cz/h(zp) . Vhen H is normal, we obtain
Table 7.
The asymptotic efficiency of the O band to the W bend

with a = 1-b = in the normal mcdel . o = .1 .

« 20 e 25 + 30 «40 .50

.10 1.99 1.39 1.27 1.19 1.10 1.08

.25 1.63 1453 141 1.38
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These efficiencies will not be much different for other
reasonable "pbell-shaped " h . Thus we conclude that if a
location-scale model can be assumed, a considerable gain in
efficiency is possible by using the O-band provided only

that h(zg) and h(z1_8) are not to close to zero.
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5. THE NORMAL MODEL.

If we let H in the location-scale model be N(0,1) , then we

have the Behrens-Fisher model. In this case we can write

t(x) =ax + b - X

where
CnA G
— - uﬁ -— - —2
a = o, » b =My o, Mo

We will construct the likelihood ratio test for the hypothesis

H a=ao , b=b

o for fixed aoe(OfZO and 006(- o, ) , The

o)
collection of all (ao,bo) that is accepted by this test for a
given set of data provides a confidence region for (a,b) that
is an ellipsoid. This ellipsoid will be translated into a

likelihood ratio simultaneous confidence band for &(x) .

If L denotes the likelihood function, then

it} n
-m_-n 1 2 1 2
L g (o] exp - — (X—!J. ) - —F (y_p. ) }
172 20? ] i™ ch , j e

where < denotes proportional to.
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The maximum for unrestricted Mystos0

1292
Substituting of = ajo- and p, = b *aju, , the maximm of I

is well known.

under Ho occurs at

A + n(y-b_)
A _ % o
Mq 7 a N

f

a>
=N

A A
2 . 2
T Blrgg)® + =g 5(;-0-a0)%)

;. o ms5  (§-b -a ®)°
=3 ims1 +—=+ N >
a a
C (]

where“-(i,i,sﬁ,sg) denotes the usual unrestricted maximum likelihood

estimate of (pi,p2,o$,o§) « It follows that the likelihood ratio is

1
supy L (S?)%m(sg)ﬁn
Ay = e T
S5 T o A, DAD .3
Sup (c2)%(o26%)%

o L
(a252)m (52)2

[AaZ52+(1-1)55+1 (1-0) (Fbs8, £)° 120

where A\ = %.

The space of (p1,p2,01,02) wvith o, = a,0, and

Mo = 'bo+aop1 is linear with 2 dimensions. Thus, under HO

N . . e 2
by classical results , = 2 log AH’ has a limiting Xg-p = ¥

PN -

distripution.

Tet x°(1-a) denote the (1-a)th quentile of the ¥

’

NSV}

distribution and let Kﬁ= expfx2(1ia)/N} then the accepterce region

of the test is
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242 - VP e 212
\acsT + (1-1)53 A (1-2) (F-b, a %)

K .
22 A a2y (1-1) - e
(ag87)"(85)
When n =m, A= % , this sinplifies %o
def %aéﬂ? + %Sg + % (y'bo-aoi)z
aoS182

can .
Write bo = bo+ao

X , then the collection of (ao,bé) for which

HO is accepted can be written as the inside of an ellipsc as

follows:
. 2 = . 4\2
Z(Sxao'kqsy) + (y-pé)

-

Let E denote this ellipse and lct

< 282(x2-1) (11)

8 (x) = inf {aoxwo;(ao,bé)e n - x

+ ) ~r
5 (x) = sup {a_z+03(a b} )e zf - =

then [6-(x) , 6+(x)] ig the Level (1-a)

. + . . .
for O{x) . &= is given in

Proposition 4. When n=m , the level(1-a)

L.R. conficdence vend

likelihood ratic

ceniidence band for A(:z) in normal nodels is given by

o

+ 5 P )
b—(x) = Y+Ku52(-§f) -x & 5.1

1
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Proof :

We will use the Cauchy-Schwartz inequality in the form

o ey

L a.w, | < A ? Ew? (12)

wvith equaiity iff W, is proporticnal to Gy -

Simply note that (11) is equivalent to

2

L2
+ W, <d
2=

w wiiere

N

_ -
W =VZ(S1a - K.S,.)

1
'W2 = 57-'()-83-: and dz = 2S§(K§-1) M
If we apply (12) with a, = - (x-R)W25; end ap =1 ,

the result follows.

Remark 4 The above proof is very similar to the derivation of

Scheité's simultanous confidence intervals for contrasts. The
interpretation is alsgo similar: IT the likelihood ratio test of
H :mA(x) = 0 for ati =x"(i.e. a=1,b=0) rejects, then for some

% thz band does not contain O and vice versae.

When n # m , we can use the maximum likelihood estimate

of &(x) +to obtain a confidence band for &(x) . Let

7 (x) = VH[8(x) --8(x)] .




By using a Taylor expansion of TN(X) in terms of X,Y,S1 and

S, , we find that TN(X) converges in law to

def N
T(x) 2 02[V1+tV2/fE]

where t = (x-p1)/c1 and V,,V, are independent standard normal

variablesg.

Write T2 = Var (r(x)) = c§[1+%t2] and
A -
72 = Sg (1+%(X-X)/S1)

A
then we can use supxlTN(x)l/T as a pivot and obtain the following

M.L. band

Proposition 5.

An asymptotic 100(1-c )% simultaneous confidence band for

A(x) is given by

n

b(x) e ¥ + g%(x-i) - X + X(1-a)[{1+%(x—§)2/8$}/M]%

for all x , where x°(1-a) is the (1-a)th quantile of the

xg distribution.

\
Proof : TN(X)/Q converges in law to the process

i - ! A
(V1 + tV2/V25 /N1 + %tz . Hence supX]TN(X)/T\ converges in law

to

—

suptl(V1+tV2/V§) / N1+ %t2‘ = sup |1(t)| (say)

By considering the equation 1'(t) = 0 , we find that for almost
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all (V,,V,) , the maximum of |1(t)| is attained at t = A2v,/v,

a Cauchy random variable. Thus the maximum is JV& + Vg s  which

is the square root of a xg variable. The result follows.

By standard asymptotic theory, the L.R. and M.L. bands should
be asymptotically equivalent. This can be estiablished directly
when n=m by using the first 2 terms in the Taylor expansion of

e? apout 2z=0 in the expression k, = exp {x2(1—a)/N§ . The

L.R. band is preferable since it is based on a more accurate

R

approximation. The above expansion also yields :

Proposition 6. The L.R. and M.L. pands both have asymptotic width

x(1-a) V1 4

where t = (x—u1)/c1 .

It is interesting to compare this asymptotic width with the
asymptctic widths of the general methbds of the previous sections
to find out how much these general methods loose if in fact the

correct model is normal.
We see that the asymptotic relative efficiency of the S pand

to the L.R. band in normal models is

[Width L band)?

e (x ) = 1Lim
$;3797 " e [width S band]?

_ et () x2(1-e) (1+3t%)

5
Kq o

(1+%t2) x§(1—a)
- 2
t=.,2
21 ¢ KS,a
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where o(t) denotes the standard normal density. Similar ex-

pressions hoid for the W and O bands. Some numerical results

are
Table 8.
Asymptotic efficiencies with respect to the L.R. band in normal
models. t = §'1(p) , o = .10
A, The W-band with a = 1-b .
t

2 .10 .20 .25 .30 .40 .50 |
a ..

L0 | .38 .40 .40 .40 .39 .39

|
.25 |49 49 | .48 | .48
B. The S-pand.
i.
;\\\P .10 .20 .30 .40 .50
! ~.
<17 « 33 43 .48 «49
Co T}le O“-balldn

\E\\~P .10 .20 .25 .30 .40 .50

010 075 056 051 Q‘T8 04’2 '4‘2

.25 .80 .75 .68 .66

The efficiency of the S band is surprisingly low, much smaller
than the familiar ©/2 = .64 .



We also give some finite sample size "efficiencies" computed for

he same N(0,1) and N(1,cg) samples as in section 3 .

Table 9.

It

Finite sample size efficiency of the W band with a = 1-D

to the L.R. band. a = .05 and m=n .

AN e
n ('_"2\\!; .1 2 «D 04 -5 .6 .7 .8 .9
! ‘ t
0.5 i} O 31 | W34 1 W46 | 63 | W62 | W44 0 0
50 |
2.0 il 0 .35 .27 | 48 |.53 | .57 | .66 | 0 0
EEE L Bl e P E eSS - ==========="-:‘Q==== SR eSS
1
0.5 .31 | .33 .28 | .46 1,73 [ .51 |50 |31 | o
100 1 —
2.0 [j.35 | .36 .27 | .35 1.65 | .52 | .57 |.34 | O

By multiplying the entries of this table with the entries of
table 4, we get the corresponding table for the S band. The
asymptotic efficiencies evidently give a good indication of the
finite sample size performance of the bands.

The results show that the general bhands are quite inefficient
if the correct model is normal. On the other hand, the bands de=-
signed for the normal model are guite sensitive toc the normality
assumption in the sense that skewness or high kurtosis in the F
and G distripbutions will alter the level of the band. Also note
that the O and L.R. bands can nct be used to test whether a
location~-scale model holds. finally, the general methods W , S
and O have the advantage that they can be applied to censored

data.



In figure 2 we give a plot of the I.R. band (solid lines)
together with the maximum likelihood estimate (solid line)
A - -
8(x) =T + == (x=x) - x

Sy

or A(x) for the same N(0,1) and N(1,4) samples used in

figure 1 of section 2 .

The dotted line is the band obtained oy inverting the pivot

Uy = NM sup, |<I>(;l3-§--}E - @(éiiéizlg)\
1 2

N

where ¢ is the N(0,1) distribution function.

U converges in law to

N

U = sup, \¢(t)(v1+tV2/J§)\

We have not found the distribution of U and have instead used

the bound

R —
U< gﬁma.ﬂm+%hme\,\m4ﬁﬂ2ﬂf

which the plot shows to te barely inadequate.

The resulting band is called the 82 band.




Figure 2.

A
The estimate 6(x) and the level .95 L.R.(solid lines) and

L.R.

BAND AND XXX BAND

Sz(dotted lines) bands.

-

" P " e A -y A ‘ L
-3.0 -2 -2.0 -1.8 -1.0 ~.5 0 .5 1.0 1.5
L.R. BAND AND XXX BAND , MeN=100 , MUsl, ,SDe2, ,ALPHA=Q,0S

_gg-
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6. AN ILLUSTRATION.

Ibksum (1974) gives an example involving experimental data
where a linear response function and thus a location-scale model
is indicated, and where the response function shows that high
risk members of a guinea pig population is affected entirely
different by a T.B. dcse than low risk members.

Here we give an illustration involving data from an experiment
designed to study undesirable effects of ozone,one of the components
of California smog.

One group of 22 seventy day old rats were kept in an ozone environ-
ment for 7 days and their weight gains vy noted. Another group
of 23 similar rats of the same age were kept in an ozone free
envifonment for 7 days and their weight gains x noted. The re-
sults were (furnished courtesy of Brian Tarkington, California
Primate Research Center, Univ. of Calif., Davis. From study

supported by N.I.H., U.S.P.H.S., ES-0628.)

| 4120 36,4 ;2444 125.9 121,91 1843 113,11 27.3 1 28.5 1-16.9 126.0 | 17.4
! ! ' ! i i T y
110.1 l 6.1 20.4— l 703 ,1403: 1505 ‘9-9‘- 6.8 28 2’ 17 9 -9-0‘-12-9
218 115.4 | 27.4 ;19 2 ‘22 4} 17.7 126,01 29.4 21.4 | 26.6 | 22.7

l14.o ! 6.6 11241 i15 7 39 9 r1b 9 54.6§-14.7 44.1! -9.0

X = control and y = treatment
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Figure 3 gives the estimate ﬁ(x) = G;1(Fm(x)) - x and the
S-band with exact level .90 . The estimate 2 indicates a
V-shaped response function, thus moderate weight gains woulid be
reduced most by the ozone treatment. Even though ozone reduces
average weight gain, 2 suggests that large weight gains are made
even larger!

From the S-band , we can not reject a linear model assumption.
This may be because the sample sizes are too small leaving the
band too wide. The V-shape of 2 indicates that we can not
use any of the narrower location-scale model bands. The upper

boundary of the S-band shows that weight gain is reduced signi-

ficantly for x in the weight gain interval [7.5 , 22.5].
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Figure 3.

' The estimate ﬁ (x) and the level .90 S-band for the response function in the ozone experimént. _




Flgo 1.

Fig. 2.

Fig. 3.

- 39 -

The estimate %(x) and the level .95 S (solid lines)

and W (dotted lines) bands.

/
The estimate g(x) and the level .95 L.R. (solid

lines) and S, (dotted lines) bands.

A
The estimate A(x) and the level .90 S-band for the

response function in the ozone experiment.
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