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Applications of ‘non-homogeneous Markov chains
to medical studies. Nonparametric analysis
for prospective and retrospective data

P. Borgan

Recently, AALEN (1978) has °howh hoa the modern theory of stochastic
procesqes may be a usefui fool in developing wonparamefrlc estimation
and testing proceduree of intérest in medicine and related fields. The
purpose of the present paper is to give a nontechnic¢al review of his re-
sults and some exterisions 6f these, and to discuss protilems connected

with a nonparametric analysis of retrospective datea.

1. INTRODUCTION AND EXAMPLES

In many medical investigations one observes certain (random) phenomena
(sickness, death, relapse after treatment, etc.) which have a time dimen-
sion. The statistical analysis of data collected in such investigations
may often be carried out within the framework of stochastic process theo-
ry. Models for such processes on the individual level will involve a set
of medical statuses (healthy, sick, :Zrad, etc.) and the phenomena to be
investigated will consist of stays in these statuses and moves between
them.

The models may conveniently be illustrated by labcled boxes, corvespond-
ing to the health statuses, and érrows showing the porsible direct trans-
itions between the statuses. [or example, the simple model underlying
the product-1limit estimator for the survival diastipribution (XAPLAN and
METIER, 1958) may be depicted asz in Tigure 1. At death, the individual
moves from state 0 to state 1.
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Figure 1. A simple mortality model
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By introducing mcore than one state for "dead" in such a model, we are

lﬁd to the milliple decrement model, or equivalently 1o the model of com-
peting risks. This model is shown in Figure 2. A third example of in-
terest in medicine is the following. Assume that we want to analyse the

depencence of two events, A and B, say, in the life history of an in-
dividual.

1
Dead from
cause no 1
Qo1
0 2
Qg2
. \ Dend om
Alive > Dead fr
. cause no 2
SFANN

, .
[} .

N Dead from
l cause no k

Figure 2. The multiple decrement model

A suitable model for such a study can be the one given in Figure 3.
This model is discussed in detail by AALEN et.al. (1980), who use a
slight extension of it to investigate the possible influence of meno-
-pausal hormonal changes on the outbreak of the chronical skin disease
"pustulosis palmo-plantaris.

0 - _ B
Neither A norv > B has occurred
B_have occurrad ®nn _

A NA B AR AB

A,AB Both A and B

‘have occurred |
' Nead “

Figure 3. A model for the occurrence of
two separate life history events

A has occurred
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For more cxamples, in medical as well as in other contexts, see HOEM

(1376, Section 2).
|

In general one may let the medical statuses correspond to the states 1

of some state space J of & s*ochastic nrocess (5(t):t20} . A sample
rath is taken to represent a segment of the life history of an indivi-
dual, and the time variable t may stand for the age of the individual,
for time elapsed since a given treatment, or some such quantity. For ;
mast interesting applications in medicine the state space is finite, and
tc avold some technical difficulties we will assume that this i1s the case
throughout this paper. Furthermore, we will concentrate on the situa-
tion where S(+) 1is a Markov prucess. This is a limitation for some of

those medical applications where duration-dependence is important.

Let us assume that the transition probabilities
Pij(s,t) = P{S(t) =3j|sS(s) =1}

are absolutely continuous in (s,t), and that the intensities, or forces
of transition, defined as

a..{s) = 1lim P..(s,t)/(t-s)
) tes 13

for i,je€Jd, i=*j, exist and are continuous. Finally, let us postulate
that only a finite number of transitions can occur almost surely in any

bounded time interval, i.e. there can be no "explosions".

The medical phenomena of interest may now be described by the transition
intensities. 1In the model of l'igure 1 a,,(t) is the usual death risk
(force of mortality) at age t, while the ay;5 in Figure 2 are the
cause specific hazards or death intensities. In the mcdel of Figure 3,
the question whether the occurrence of one of the 1ife history events
influences the other, can be studied by comparing the intensities of the
Markov chain. For instance, the timec of occurrence of A and B will
aap F Up . AB as well as  agp 2 %A AB ° If,
say, agp = %A AB while ®aA and “r AR differ on =zome time interval,
this will indicate that B influences A bul not the other way around.

be independent if and only if

In summary, the transition intensities are the important quantities of
the models, and one of the rtatistician's main intercsts in such studies
should be to estimate and tent the relevant hypolheses concerning these

functions.

A number of techniques have been developed for these purposes. There
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are the classical methods in demography and actuan ial science based on
the well-known occurrence/exposure rates (HOEM, 147b). Another possi-
bility, pioneered by GRENANDER (1956), is to assume that the intensities
are suitable parametric functions, i.e. “ij(S) = fij(339) for some i
known functions fij which depend on an unknown parameter @ =(01,.”;epl
COX (1972) has suggested how one may include covariables (concomitant in-
fbrmation)in survival analyses by a "semi-parametric" approach. It should
be possible to apply Cox's idea for more general Markov chain models as
wéll, although the present author has seen no such attempts in the lite-
rature so far. Finally, AALEN (1978) has recently exploited a nonparé~
métric approach for Markov chains (and more general counting process mo-
dels), on which the present paper will concentrate. This theory genera-
lizes such well-known methods in biostatistics as the empirical cumula-
tive hazard plot (ALTSHULER, 1970) and the logrank tect(PETO and PETO,
1972). The theory is based cn the modern theory of time-continuous
martingales, stochastic intecrale, and nounting professes. We will re-

strict ourselves to a nontechnical review (Section 7).

In the final Section 3 below we consider problems connected with a non-
parametric analysis of retrospectively caollected data. Our treatment is
based on a paper by HOEM (19£9), and it is c¢losely velated to the dis-
cussion by AALEN et. al. (1980).

2. NONPARAMETRIC INFERENCE METHODS. PROSPECTIVFE OBSERVATIONAL PLANS

We will call an observational plan prospective if the individuals studied

are sampled at random or by some initiating event (l1ike a treatment for

é disease) before the events.of interest (velapse, Jdeath, etc.). The sim-
plest example of such a prospective sampling schema is the case where at
some time 0 one selects a random sample from a homogeneous group of in-
dividuals, which are then followed to death. lowever, the theory re-
viewed below also covers situaticiiy wiere the persons under observation
are followed over different periods of time, as lonp as the actual obser-
vational period for each individual caso only depends on the past and on
cutside random variation. 1In particular rather genceral censoring patterns
are allowed (AALEN and JOHANSEN, 19/F, “ection 2).

We now define nonparametric cstimation and test procedures.  Certain re-
gulari*y conditions are required in the theorestical devivation of their
properties, but the conditions are of a weak and yeneral nature and we

need nct state them explicitly here.
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Lot Yi(t) » 1€J, be the nurber of individuals observed to bu in

state ¥ Jjust before time t , so that ()i lelt continuous, and
let ng) be the time of the nth direct tran¢1tnon OboCPVLd from state i

to state j . Then an esiimitor ¢f e inftagrated intensity

t
Alj(s,t) = ! aij(u)du
1s given by
(2.1) A..(s.t) = i fY»(T(“)ﬂ -
3 TSI

The estimator may be given thé foilow1ng heur1st1c ju tlfloatxon (AALEN,
1976). We split the time interval from & +td t+ by 4 partltlonlng

S = ty<ty<ceer<ty = t which is so fine that in eacH suBinterval at most
one jump occurs, and such that o5 is (approximatéiyﬂ corstant on each

of the subintervals. Denote this constant value on <t thes k+1} by “(k)

1)
and let Atk be the length of this subinterval. Then the occurréritie/
- n(k) (1() e . o b Iy 11 .
exposure rate 853 for L is given (almost) by L\i(tk)Atk_, if
one observes a transition from 1 to J in the actual subinterval, and
it is 0 if no such transition occurs. Consequently a natural estimator
- (k) . e ~ (k) . :
. z S . : g '\u]. . [T~ Saad
for Alj(s,t) - E o5 bt, 1 ﬁolj oty which equals (2.1) approxima
tely.

Using the modern theory of stochastic processes, AALEN (1978) proved

that (2.1) is analmost unbiased estimator for Aij(n,f). (Strictly speak-

ing, (2.1) is unbiased for the random process

s lJ(u) I{Y. (u)>1}du, where I{*} 1is the indicator function.) Further-

more aneshmator for its variance is given by

[y.cT

w(n)1 -2
i 713 ﬂ
5t}

(n)

n:s<T
t 1)

As the population size increaces, Aii(ﬁ’t)’ properly normalized, will
asymptotically be distributed as a normal process with independent in-

crements.

Assume that we want to make an overall compavison of two or more inten-

sities aj jo.o T =1,2,...,R (where 1t is quite possible that
rJr
I . ] o= ] some r and h), i.¢. we want to test the
, ly, or J, 4, for so y
hypothesis
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A test for H, may be given as follows. Define Y(t) = Iy, (t) , and
r ‘r
let N

ipip be the observed number of transitiens directly from state

ip to state jp . Furthermorez, denote the 1'ime of the nth of any
one of these transitions by U(n) and define
( ) YiF(U(n))
(2.2 Z = N: = = —_— —

o redeog g
and

i win 'EIUMES
v = L - ( -—— ),

ol et 3

1 ‘{(U(n)) rh ';’(U(“))

Here 5rh is a Kronecker delta. Note that (./.2) is of the form
"observed minus expected", and that I Zf = . Let

- r'

vV o= {Vrh: r,h=1,2,...,R-1}, and

") 2 " v gl 153
(2.3) SR N SNIPR A A C PR P
Then x* is asymptotically chi-squared distributed with R-1 degrees
of freedom under Hy, as the number of persons under observation in-
creases to infinity.

This r-sample test generalizes the well-known log rank test for life
testing models (PETO and PETG, 1972, PETO and PIKL, 1973; see also COX,
1972) to our more general setting. For the two-sample case the test
statistic (2.3) was studied by AALEN (1978, Section 7). The test for
more than twc samples was introduced by AALEN et. al. (1980, Section 3)
and a formal justification of our statement about its distributional
properties will be given in a forthcoming paper (ANDERSEN, BORGAN, and
KEIDING, 1980).

In some situations, one may be interested in comparing an intensity

. . ) o .
uij wlith a known function “1j . A one-sample statistic for testing

-

aij uij ; asymptotically normally distribut.d with mean zero and unit
variance under the hypothesis, is then piven hy

(2.4) S = {N..- fY-(u)u?,-(u)duH f&'.(\l)a?.(u)du}-i .
1 1 1] 1 1

where N,} is the observed number of transitions Jdirectly from state
a3
1 to state J in the stulind time period. HNote that the integral ex-

presses the "expected" number of transiticia: fream 1 to j  under the

nypothesis.
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The statistic (2.4) is similar to a test given by BRESLOW (1975) for
the model of proportional haidvdé, QHd to a test studied by (YD (1977).
In the present context it wan introduced hy AALEN r. al. (1980, Section
3), and its distributicnal propébtiés will Le jnmovel by ANDLESEN et. al.
(1980).

3. RETROSPECTIVE OBSERVATIONAL PLAN3

If the individuals are sampled after the evenls of interest, we have a

retrospective observaticnal plan: In such cascs the ihtensities must

in some sense, be conditiohal ofi the sampling crilerion (which may be
survival, the arrival of a given disease¢, or some such phenomeﬁonj} In
the present paper, we will consider four diff{cienl retrospective samp-
iing schemes. In each case the time variable rorrespohds to a person's
age.

a. Data collected from survivors only

Suppose we have a Markov chain model with state space J, such that

J = LuD. (Here and in what follows we assume that all unions dis-

played are disjoint.) The states in L correspond to various health
statuses for live individuals, while the states in D correspond to

death states. Thus, for the three examples in Section 1Nwe have

L {0}, D = {1};L = {0}, D = {1,2,...,k}; and

L {0,A,B,AB}, D = {+}; respectively.

1

If our sampling sheme is to draw all or a random sample of persons with
a given age [ , who live in a restricted ares, and collect a retrospectiv
account of their individual life histories, data will be missing for in-
dividuals who have died or outmigrated befcie the age ¢ . Let us only
consider selection by survival. Even betfore any data areat hand,we then
know that all individuals in the sample will be in one of the states in
L at age ¢ . Consequently, the observaltionn are no longer from the

original Markov chain, butl from a Markov chain obtained by conditioning
on beeing in L at time (age) ¢ . (See HOIEM, 1367, Scction 5, for

details.) This Markov chain has transcition probabitities

' P, (t,0)
L . - PITNA Y -3 1Sl )= Q - ~ L >
Pij(b,t) = P{3Ct)=)S(s) =1, S(egrel) - Ti_.’(.»,t)-ﬁi—z—c(-?:n

for i1, € L. and s<t=zr , wheve Pil(s.ﬁ) ) Pii(s’t)‘
. ¥ "&l,

The transiticon intensities of the chain are



o (o) = 1im PR (s, 0) /(1)
i3 SRS
(u.1)
P:l(.,a)
e s TETEy

for i,3€L, i=3j, and s <.

By the inference procedures described in Section 2 it is possiblée to
estimate the integrated intensities corresponding to the u%~s and

test hypotheses concerning them. In general, the a%js will be differ-
ent from the aijs , however, which may mean that such inference may be

of limited interest.

Define now a;p = LI a;. and suppose that a,y = v independent of

. 1) i
J€ED
1€L, which means that mcrtality is non-differential. Then (HOEM, 1969)

——

t
(s,t) = exp {~ {pluddu}

[}
(4.2) FiL )
for all i€L, and, consequently, a%j = %53 for a1l i1,j€L , i=73.

Thus, for this situation no bias is introduced by the retrospective
sampling scheme, and the anralysis may be carvied out exactly as des-
cribed in Section 2. (In the present account, we choose to disvegard
all problems concerning the reliability of the information collected in

retrospective studies.)

Normally, one will draw a sample of survivors of Jdifferent ages, and
then the arguments above are valid for each specific age-group. Conse-
quently, if there is non-differential mortality, the analysis may be
carried out as before if the age at interview is treated as a fixed

censoring time.

b. Data collected from those who have a disease at a given age.

Supggbose now that the set L of "live" states may be written as L = Hul,
where a transition from a state in H o one in 1 corresponds to the
occurrence of a particular chronic disease. Thu, we assume that a;, =0
for all 1 €T. An example of this type of model is the one in Figure 3
If the event A 1is the occurrence of the chrogic Jdiscase, we have

H = {0,8}) and I = {A,AB}

Let as assune that we draw a random cample 0 a2l persons of age ¢ who
auffer from the disease in gquestion.  Then ihe data will come from a

Yarkny chain with intensities
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1 (,,r)
(4.3) ulj(s) = u -*-—-(-—S‘-:—E-)-

for i,i€L, i#3j and s<rz . Again the a..s will generally differ

‘ ]
from the quantities of interest: viz. the «a,.sS.

Suppose, however, that the disease considered is nonlethal and that

there is non-differential mortality. Then

t

(u.u) : Pij(s,f) £ Pij(s,t)eXp{—Iu(u)du}

s

fcr i jelJ, where (>,t) denote the tranvltnon probabllltlee of
the Eartlal Markov chaln with state space L = Hx:l obtained by sub-
stituting zero for %53 for all (i,j) with jJeD (HOEM; 1969).
Hence, for this case (4.3) reduces to

(s r)
I NENE (b>__.l__._.__

i) Pll(s,c)

(4.5)

Clearly ﬁ. (',;) 21 for all 1€1, which means that ®i i, for
i1,1, €I may be estimated without bias from the retrospectively col-
lected data. For the other intensities most attempts at nonparametric
ectimation lead to rather indirectly interpretable results. For the
estimation problems, we refer to the discussion in AALEN et. al. (1980).

Here we consider the problem of hypothesis testing.

For the model of'Figure 3 it may be of interest to find out whether the
occurrence of the event B changes the intensity of morbidity, i.e.
one may want to test the hypothesis agp = g AR In the general set-
up, the similar hypothesis of non-differvential morbidity is

(4.6) Hy: ah, 1 z ahZIE ere T Uhy T

when H = {hx,h,,o--,hk}.

Let ©6(t) be the common value of the nhI(t) in (4.6)., As in (4.2)

t

exp {-fe(u)dul , for all hé€H , from which it follows
s

that ﬁhI(s’t) =1 -ﬁh“(s,t) is indevendent of h €ll . Thus by (4.5),

if H

then PhH(s,t)

o holds true, then

' 1 _ Co_
”0 .ahll. - . :d.h r

also holds true. Thercfore, if we azcume non=differential mgrtalifze
the hypothecis of non-differential morbidity may he tested directly by
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use of the statistic in (2.3) on the retrospective data. The faet that
H, may hold true even if H, ‘does not, may reduce the power of the test.
(Note that the hypofﬁésis that only some ay;» hEN, are equal Joes not
:imply that the cofrrésponding agls are equal. The hypothesis must in=-

clude a,; for all heH to get something like 1, .)

Usually one will also be intetested i assessing the influérice of the
disease on some other phenomena. For instatice in the model 6f’Figure 3,
one may be interested in tésting the.hypothegis “op = dA;ABl' In the
general situation one may want té test

a = Q. .
hi,h 11,1

(x.7)

:for hy,,h,eH, and 1i,,i, €1, or some other such hypothesis. Hypo~
theses of this kind cannot be tested divectly from the retrospective
data without some additional assumptions. 1In particular, on the assum-
. . . . . 1 -
t . S A e =
ption that H, in (4.6) is valid we have by (u4.5) that % he C %hyhy ?
h,,h; € H and it follows that hypotheses like (4.7) may be tested

directly under the present observational plan, since al z

iy,i2 - %iy,12
by the resoning below (4.5). Thus, we are led to a stepwise procedure.
First one tests H, in (4.6). Tf this hypottesis is rejected one can-
not test hypotheses like (4.7). If H; 1is not rejected one may take
the point of view to assume that it holas true and test hypotheses con-
cerning intensities for transitions within H apainst corresponding

intensities within I, like (4.7), in the usual way.

This stepwise procedure may be avoided if it is pogsible to get infor-

mation regarding %h, ,h, o h,,h, €H, from other data sources. In such
) J

cases this value of the intensity may be tested directly against

a{11iz E“il,iz s i1,12€ I, wusing the two-sample or one-sample test

(depending on the type of information one has ab-ut “hl,hz) described

in Section 2.

It should be noted that the arguments in this ruabnection cannot easily
be extended to the situation where one has a cample of diseased indivi-

duals of different ages, cf. (u.5).

c. Sampling among all diseasod

Lasume now that the set D of death states may bhe writton ac D= DH"DI’
where DH contains the death states for people wha have never had the
chronic disease, and D containa the death states for the digearced

I
individuals. One example of such a model irn the extension of the model
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of Pigure 3 shown in Pigure 4. Here ,DH z {+H}’DI = {11),

LT

Do

without A
o,
0 , B
Neither A nor B : N B has
have bccurbed %08 occurred
T%a  %p,a8Y ’
A AB
A has ®A AB Both A and B
occurred ’ have occurred
a a
AfI *I AB,+I
Y Deac
with A
Figure 4. The Markov model of Figure 3,
extended with twoe death states.
H = {0,B}, and I = {A,AB) . In general, ahDIE 0 for héeH and
a... 20 for ieI. '

Tiie observational plan considered in this subsection, consists in col-
lecting a random sample of people who get the chronic disease sooner

or later. This may be the case e. g. for national cancer registers, or
for data collected at a given hospital on new cases of the disease in
question. With this sampling scheme all the individuals under consicder-
~ation will end up in one of the states in D; no later than at the
highest possible live age w . Hence, our observations are from a
Markov chain with intensities

JDI(S,N)

.

D -
u(H.B) aij(S) = (S)r

lD (S w)

It is obvious (by definition of w ) that PlD («5w) =1 for i€1.
Moreover, if we assume non-differential mortallty for healthy individuals,
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i.e. ahDH z y for all heH, then

_ - W -7 vy
(4.9) Phni(sgd) z {PhI(s,u)e‘5 uluddu
S

for heH, where ?ij(s,t) still denote the trangition probabilities

of the partial Markov chain with state space L =HuT (see Subsection

3.b). A formal proof of (u4.8) is givéh ih,fhe appendix. By (4.9) and

 the result stated just below (4:8), Hy, in (4.6) iMplieslthat _

: PhDI(s,w) is indepehdé@t of }1§?{ in the present situation. By (4.8),
therefore, (4.6) entails the hypothesis

D :.'.::"D‘
*hqel~ " %hy 1

Hy
 The discussion in Subsection 3.b was based on an implication similar to
" this one. Consequently, if there is non-differential mortality for
healthy individuals (alone), the analysis from that subsection is valid
here as well. Notice that this result is true under weaker assumptions
than before, since we had to assume identical wortality in all "live"
states in Subsection 3.b.

d. A process of data selection from the population of diseased

The final sampling scheme we will consider is the one where any

given individual has a fixed intensity of being sampled as long as this
person has a particular disease and is still alive. For this case it
is obvious that patients with long disease histories will have a higher
probability of getting sampled, c¢f. the "waiting time paradox" (FELLER,
1966, Section I. 4). Neither of the sampling schemes discussed above

will be adequate.

1t is, however, shown by AALEN et. al. (1980) how it for this sampling
scheme is possible to model the combined biological and sampling pro-
cess, and how the analysis may be carried out quite analoguously to
that in Subsections 3.b and ¢ of this paper. Moreover, in AALLN et.
al. (1380, Section 3) the theory is illustrated by a study concerning
the possible influence of menopausal hormonal changes on the intensity
of the outbreak of a particular chronical skin dicecase. The reader who
wants to see how the methods in the present papor work in practice,
should econsult the discussion by AALEN et. al. (13R0).
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APPENDIX - Proof of (4.9)

It is well-known that ﬁij(s,t) and Pij(s,t) for i,jel are the
solutions of the Kolmogorov forward differential equations

d = - B 4 . ;o
k€H-)

and

2p. .« = - P

atpij‘s’t) = Pij(s,t)(aj(t)+u(t))-+ {_ ‘Pik(s,t)akj(t) ,

keH~-)

respectivel where a., = I a- It follows that

Y 3 7 xepL-j Ik N

_ t

(A.1) Pij(s,t) = Pij(s,t) exp{—iu(u)du}

for i,jJ€H. Next we will prove that

t u
(A.2) PhDH(s,t) = iPhH(s,u) expﬁiu(v)dv}u(u)du

for h&€H. From this (4.9) will follow since PiD (s,w0) =1—Phr)(s,m)
by definition of w . To prove (A.Z) no*e that I &

P, (s,t+8t) = P (s.t)+ Y P, (s,t)P . (t,t+at) .
hDy ™7 hDy "7 kgH hk" 72" Tkby

Dividing by 4t and letting it approach zero one gets

d

Frdh

hDH(s,t) = 3 Phk(s’t)“knﬂ(t) = Pa(s,ult),

k€H

since H 1is finite. From this and (A.1), (A.?) follows, and the proof
is complete.
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