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Abstract 

In this paper upper and lower bounds for the availability and 

unavailability, to any level, in a fixed time .interval are arrived 

at for multistate, monotone systems based on corresponding informa­

tion on the multistate components. These are assumed to be main­

tained and interdependent. Such bounds are of great interest when 

trying to predict the performance process of the system noting that 

exact expressions are obtainable just for trivial systems. The 

bounds given generalize the existing bounds known in traditional 

binary theory and represent improvements of the ones being devel­

oped by now in multistate theory. 
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1 • Introduction and basic definitions "---------
In reliability theory a key problem is to find out how the 

reliability of: a complex syst.em can be determined from knowledge of 

the reliabili ties of its components. Agrawal and Barlow ( 1 983) 

demonstrate that computational complexity makes it impossible to 

arrive at exact reliabilities associated with a large binary coher­

ent system even if the system can be represented by a graph and its 

components unrealistically are assumed to be independent and not 

maintained. 'I'herefore bounds on the reliabilities seem to be a 

necessity. Such bounds are given in Natvig (1980) generalizing and 

extending work by Esary and Pros chan ( 1970), Bodin ( 1970) and 

Barlow and Proschan (1975). 

One inherent weakness of traditional reliability theory, as 

treated in the papers mentioned above, is that the system and the 

components are always described just as functioning or failed. 

Fortunately, by nov1 this theory is being replaced by a theory for 

multistate systems of multistate components. This enables one for 

instance in a power generation system to let the system state be 

the amount of power generated, or in a pipeline system the amount 

of oil running through a crucial point. In both cases the system 

state is possibly measured on a discrete scale. Three recent papers 

in this area are Block and Sa vi ts ( 1 982), Butler ( 1982) and Natvig 

(1982) which independently generalize bounds in Barlow and Proschan 

(1975) to the multistate case. A summary of the present state of 

the art of multistate theory, also aiming at a standardization of 

the terminology, is given in Natvig (1984). The purpose of the 

present paper is to gerwrali?.e all bounds in Natvig ( 1980) to the 

multistate case. 

He start by an introduction to multistate theory as presented 

in Natvi9 ( 1984). Let the set of states of the system be 

S = {0,1, ... ,M}, M < ro, 'l'he M+1 states represent successive 

levels of performance ran9ing from the perfect functioning level ~I 

down to the complete failure level 0. Furthermore, let the set of 

components be c ~ { 1 , 2 , ... , n}, n < oo, and the set of states of the 
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i th component 

states 0 and 

s. 
1 

(i=1, ... ,n) where {O,M} c S. c s. Hence the 
1 -

M are chosen to represent the endpoints of a 

performance scale which might be used for both the system and its 

components. Note that in most cases there is no need for the same 

detailed description of the components as for the system. If X, 
1 

(i=1 , •.. ,n) denotes the state or performance level of the i th 

component and x = (x
1 

, ••. ,xn)' it is furthermore assumed that the 

state ~ of the system is given by the structure function 

$ = $(~). Here x takes values in 

values in s. In this paper we will 

8 XS X • • • X8 
1 2 n 

consider the 

and $ takes 

following very 

large class of systems not involving any assumption on relevance of 

components: 

Definition 1.1. A system is a multistate monotone system (MMS) 

iff its structure function $ satisfies: 

(i) $(~) is non-decreasing in each argument, 

(ii) $(Q) = 0 and $(,l'!) = M (Q = (0, ••• ,O), M = (M, ••• ,M)). 

The present definition of an MMS is more general than the one 

presented in Griffith (1980) and Block and Savits (1982) since they 

assume s. = S, i = 1 , ••. ,n. An MMS with structure function $ 
1 

and set of components c is often denoted by (C,$). 

Figure 1 

As a simple example of an Mf4S consider the network of 

Figure 1 • Here component (2) is the parallel module of the 

branches and 

branches work and 

b
1 

(a
2 

and b
2

). Let (i=1,2) 

(0) if one (no) branch works. 

system is given in Table 1 • 

x. = 3 if two 
1 

The state of the 
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3 0 2 3 

Component 2 0 2 

0 0 0 0 

0 3 

component 

Table l 

Note for instance that the state l is a critical one both for each 

component and the system as a whole in the sense that the failing 

of a branch leads to the 0 state. In binary theory the functioning 

state comprises the states (l ,2,3) and hence just a rough descrip­

tion of the system's performance is possible. 

He next gener~lize each of the concepts ''minimal path set'' and 

"minimal cut set" from binary theory. In the following Y. < x 

means yi <xi for i = l, ... ,n and yi <xi for some i. 

Definition l .2. Let ~ be the structure function of an MMS and 

let j E ( l , •.. , M ) . A vector x 

vector to level j iff ~(~) > j 

( ~(~) < j and q,(y_) > j for all 

minimal path (cut) s'ets to level 

(D~(~) = (ijxi<M)). 

is 

j 

said to be 

and ~ (y) < 

y > ~). The 

are given 

a minimal 12ath (cut) 

j for all Y. < X 

corresponding 

by c~ (x) = {i jxi>l} 

He also need the following notation. Let A c c. Then 

xA = vector with elements xi , i E A 

Ac = subset of C complementary to A 

Most of the following definitions are obvious modifications of the 

ones listed in Natvig (1980). 

Definition l . 3 • An MMS (A, X) is a module of an MMS ( c 1 <I>) iff 

<I>(~) 
A Ac 

= <!>[x(~),~], 

where <I> is the structure function of an MMS and A c c. If s 
X 

denotes the set of states of x, we assume s, c s c s for i E A. 
l. X 
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Intuitively, a module is a multistate monotone subsystem that acts 

as if it were just a component. 

Definition I .4. A modular decomposition of an MMS (C,$) is a 

set of disjoint modules {A~,x~) }~=I together with an organizing 

structure function, $, of an MMS1 i.e, 

( i) c = 

( ii) 

r 

U A~ 
.t=l 

where A.M.=¢ 
]. J i * j 

Making a modular decomposition of a system is a way of breaking it 

into a series of subsystems which can be dealt with more easily, 

Definition I .5. Let $ be the structure function of an MMS. The 

dual structure function, $D, is given by 

D ( D D ) where ~ = x1 , ••• , xn) = ( M- x1 , ••• , M- xn • 

It can easily be checked that the dual system of an MMS is an MMS. 

Definition I .6. The performance process of the i th component 

(i=l , ..• ,n) is a stochastic process {X, (t), tE~}. where for each 
]. 

fixed 

in s
1

. 

t E ~. Xi(t) is a random variable (r.v.) which takes values 

X. (t) denotes the state of the i th component at time t. 
]. 

The index set ~ is contained in [O,ro), We assume that the sample 

functions of a performance process are continuous from the right on 

~. 

Definition I .7. The joint performance process for the components 

is a vector stochastic process for which the i th marginal process 

{X. (t), tE~} is the performance process of the i th component, 
]. 

i=l, ... ,n. 
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Definition l .8. Let $ be the structure function of an MMS. The 

performance process of the system is a stochastic process 

{q,(~(t)),tE1:}, where for each fixed t E '• $(~(t)) is a r.v. which 

takes values in S. $(~(t)) denotes the system state at time t. 

It follows that the sample functions of { $ (~ ( t)), tE '<} are contin­

uous from the right on '· 

Consider now a time interval I= [tA,t8 ] c [O,w) and let 

' (I) = '<ni. 

Definition J .9. The marginal performance processes {X.(t),tEo} 
l. 

i = J, ... ,n are independent in the time interval I iff, for any 

integer m and {t
1 

, ... ,tm} c o(I), the random vectors 

are independent. 

Definition l .JO, A modular decomposition { (A~,x~)J%=J consists 

of totally independent modules in the time interval I iff, for 

any integer m and {t
1 

, ... ,tm} c o(I), the random vectors 

A1 A
1 

A A 
(_X (t

1
), ... ,x (t )), ... ,(X r(t

1
), ... ,x r(t )) 

m - - m 

are independent. 

Definition 1 .JJ. The r.v.'s T
1

, ... ,Tn are associated iff 

Cov[r(!),~(!)] > 0 for all pairs of non~decreasing binary 

functions r,~. T = (T
1 

, ... ,Tn). 

We list some basic properties of associated r.v. 's. 

P1 : Any subset of a set of associated r.v. 's is a set of 

associated r.v.'s. 

P2 : The set consisting of a single r.v. is a set of 

associated r.v. 's. 

P
3

: Non-decreasing functions of associated r.v. 's are associated. 

P4 : If two sets of associated r.v.'s are independent of each 

other, then their union is a set of associated r.v.'s, 
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Definition 1 .12. The joint performance process {~(t),tE~} is 

associated in the time interval I iff, for any integer m and 

{t , .•• ,t } c ~(I), the r.v.'s in the array 
1 m 

• 

X (t ),• .. ,X (t) 
n 1 n m 

are as soc ia ted. 

This definition obviously applies to a marginal performance process 

too. 

Definition 1.13. Let j E {1, ... ,M). The availability, h~<Il, and 

the unavailability, g~(I), to level j in the time interval I 

for an MMS with structure function $ are given by 

h~(I) = P[$(X(s)) > j \lsE~(I)) 
. (I) 

g~ = P[<J>(2S_(s)) < j \lsE~(I)) 

Note that 

h
j(I)+ j(I) , 

1 $ g <jJ ' , 

with equality for the case I= [t,t). 

In the present paper we will arrive at bounds for h j <I') 
<jJ : ' 

g
j(I) 
$ generalizing the bounds given in Natvig ( 1 980) for the 

( 1 • 1 ) 

and 

case 

M = 1. The bounds are of great interest when trying to predict the 

performance process of the system noting that exact expressions, are 

obtainable just for trivial systems. As in the latter paper special 

bounds are developed for the case I = [t,t)r i.e. at a fixed point 

of time. These latter bounds are improvements of the ones developed 

in Block and Savits (1982), Butler (1982) and Natvig (1982) and are 

motivated by the fact that computational complexity makes it impos­

sible to arrive at exact expressions for large systems. It should 

be admitted that especially some bounds given in Butler (1982) have 

partly inspired the generalizations of the present paper. 
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Before proceeding to the bounds we have to establish some 

bas±c notation and results. This is done in Section 2. In Section 3 

basic bounds on and are arrived at whereas improved 

bounds are given in section 4 by using modular decompositions. such 

bounds as the latter ones are in fact the only one of practical 

interest for large systems as has also been pointed out by Butler 

(1982). The reason is that the bounds in Section 3 are based on all 

minimal path and cut vectors of the system. To arrive at these for 

a system of a large number of components seems impossible for com­

puters of today. However, the number of components of each module, 

and the number of modules, may be chosen to be moderate making it 

possible to arrive at the minimal path and cut vectors both of the 

organizing structure and of each module. The strategy is then to 

arrive at bounds for the availabilities and unavailabilities for 

the modules and inserting these into the bounds for the availabili­

ties and unavailabilities for the organizing structure. This fin­

ally leads to improved bounds for the availabilities and unavaila­

bilities for the system. 

Furthermore, in section 5 the case I = [t,t) is treated 

giving improved bounds using modular decompositions. \'Ye end up in 

section 6 by applying the theory to the simple system given in 

Figure 1. A more convincing case study is under way. Finally, it 

should be noted that the present paper represents a thoroughly 

revised version of a thesis Funnemark (1982) by the first present 

author. The second author is responsible for the main ideas and 

guided the work on the thesis. The proofs of theorems that are 

omitted in this paper can be found in this thesis. 

2. Basic results 

He start by introducing some basic notation and some basic 

indicator functions which will be applied all through the paper. 

Definition 2.1. Let $ be the structure function of an MMS with 

n components. Furthermore, for j E {1, .. .,M) let y~$ = (yfk$'. 

j 
l, ••• ,n$ be its 
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minimal path (cut) vectors to level j and C~(y~~) k = 1, .•• ,n~ 
(D~(_~~~) k=1,,,, ,m~) the associated minimal path (cut) sets to 

level j. Then the corresponding minimal path (cut) indicator 

functions to level j are given by: 

{: 
if x. ) 

j 
for i E c~(y~<l>l 

I . ( x) 
]. yik~ 

= 
J - otherwise, yk~ 

j k = l, ... ,n$ 

{: 
if x. < 

j 
for i E D~ (_~~$) 

J . ( x) 
]. zik$ 

= 
J - othen~ise, ~k~ 

j k = 1 1 • • • 1 ffi$ 

The following theorem represents a reformulation of Theorem 2.6 in 

Natvig (1980). 

Theorem 2.2. Consider an !1~18 with structure function ~ and let 

the system state indicator fun9tion to level j be given by 

Then 

r.(~(x))= 
J -

j 
n<l> 

otherwise , 

li I . ( x) 
k=1 V) -

.Lk~ 

mj 
<I> 

r.(~(x)) = lTJ. (x) 
J - k=1 ZJ -

-k<J> 

nj 
<I> 

j=1, ... ,M 

1-lT(1-I. (x)) 
k=1 y~<l> -

( 2 • 1 ) 

(2. 2) 

We now turn to modular decompositions. The following theorem is 

proved as a part of the proof of Theorem 3.1 in Butler (1982). The 

proof goes along the same lines as the corresponding part of the 

proof of Theorem 4.1 in Barlow and Proschan (1975, p.44). 

Theorem 2.3, Consider an MMS with structure function ~ and 

modular decomposition given by Definition 1 .4. Introduce the 

following binary structure functions of the system's components 

~~(.!) = J j (.x_(.!l)' 

~k<Ji 

j = 1 , ..• ,M; k = 
j 

l, ... ,mtP 
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Then the minimal cut vectors to level j of $ are 

j 
k=l, ... ,ml]J 

and we hence have: 

mj 
ml. 

.pJ 
'J! k 

I.( .p{x)) = n n J zl J - k=1 m=1 -m.pj 
k 

He end this section by giving some basic results on dual 

structure functions. The following theorems are obvious el(tensions 

of well-known results in binary theory. 

Theorem 2.4. Consider an MMS with structure function $ and 

dual structure function $D given by Definition I .5. Let 

j E {1, ... ,M) and x be a minimal path (cut) vector to level, j. 

Then xD is a minimal cut (path) vector to the dual level 

l = M-j +1. l~e hence have: 

.D . 

YJ D = !:.!-~~"' 
k$ '!' 

.D .D . . 
cJD(yJ D) = D~(~f,) 

$ k$ '!' '!' 

I .D (~D) = 

YJ 
1 -J · (X) , 

J -
~k$ 

k$D 

and 
.D . 

ZJ = M - YJ 
-k$D k$ 

1-I. (x), 
J -

Yk.p 

k=l, ... ,m~ 

j 
k = 1, ... ,n$ 
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Theorem 2. 5. consider an MMS with structure function ~ and 

modular decomposition given by 

ding modular decomposition of 

Definition I .4. Then the correspon­

~D has disjoint modules 

{(A J..' x~l } ~,. 1 and organizing structure function 
D o 

lJ! ; ~.e. we have 

the representation 

Obviously, Theorem 

applied on ~D and 

2 .4 and 
D 

XJ.. , 

the relations listed there can be 

J.=l, .•• ,r. 

Finally, we list the following obvious duality relation 

hjD(I) "' 
~D 

Note that (~0 ) 0 "' ~ and (j 0 ) 0 "' j. Hence (2.3) implies 

h
j(I) jD(I) 
~ "' g D 

~ 

(2 • 3) 

(2 • 4) 

lrhen we write down duality relations later in this paper, we just 

present one of the two versions, the other one being straightforward. 

3. Basic bounds for the availabilities and unavailabilities in 

the time interval I 

The presentation in this section is very parallel to the one 

in Section 2 of Natvig (I 980), Furthermore, for easy reference we 

try to keep the notation as close as possible to the notation of 

this paper. 

Theorem 3. I. Let (c, ~) be an MMS. Define (j "' I,,,, ,M) 

j" (I) 
P(I o (X(s) )=I \fsE~(I)) J..~ "' max 

I <k <n~ 
J -

yk~ 

j"(I) 
= min P(J o (X(s) )=<I \fsE~(I)) u~ 

l<k<m~ 
J -

E.k~ 

-j"(I) 
max OP[J j (~(s))o:O \fsE~(I)) J..~ = 

I <k <mJ E.k~ 
~ 

-j"(I) 
"' min P(I j (~. (s) )o:Q \fsE~(I)) u<i' 

I <k <n~ yk~ 
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Then 

j"(I) ~ hj(I) j" (I) 
~<P <P 

~ u<P 

-j"(I) ~ gj(I) 
~ 

-j"(I) 
~<P <P 

u <P • 

'"(I) 
Furthermore, ~~ and j"(I) 

U<j> 
'"(I) -j"(I) (~J and u ) are non-

j <Pas is true <P for h ~ ( I) ( g; (I ) ) , -increasing (non-decreasing) in 

Proof. From Theorem 2,2 we have, for all s E "<(I) (k=l, ••• ,n~; 
~=I, .•• ,m~) 

( Ij(<P(~(s)) ~ J j (~(s)) 

.?! ~ <P 

Hence the first two inequalities follow. Applying these inequali­

ties on the dual structure and dual level gives the two last ones 
'+! 

remembering Theorem 2.4 and (2.3). since for all k E {1, ••• ,n~ ) 

{ j ) . j+ l j there exists ~ E l , ••• ,n<P, and v~ce versa, such that Xkq, ) X~q,' 

j"(I) -J"(I) it follows that ~<I> (u ) are non-increasing (non-~ecreas-

ing) in j. The corresponding properties of the two other bounds 

follow similarly. 

Theorem 3,1 is very general, but seems of little practical 

value due to the complexity of the bounds. 'J'he following corollary 

is more useful. First denote the availability and unavailability to 
';' 

level j MMS (C, $) by 
j(I) 

Pi.p and 

in I for the i th component of an 
j (I) qi$ respectively, i = l, ••• ,n; j ;c: 1 , ••• , M. I ntro-

duce the nxM matrices 

= fp~ (I)). 
\J.<f> ~=l, ... ,n 

y=l, •.• ,M 

={,j(I)) 
\qi4> ~=l, ... ,n 

J=l,,,.,M 

( 3 • 1 ) 

We also introduce the dual matrix by the convention 

p(I) ., (f?j
0
(I)). 

-<PD ~i<PD ~:1, ••• ,n 
J-l, ... ,M 

( 3 • 2) 

and hence have parallel to (2,3) 

( 3. 3) 
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The proofs of the bounds in Corollary 3.2, Theorem 3.3, 

corollaries 3.4 and 3.5 to follow are extensions of the proofs of 

the corresponding results in Section 2 of Natvig (1980). However, 

the only bound to prove is always the first lower bound since the 

second lower bound follows by applying the first one on the dual 

structure and dual level, and the two upper bounds follow from the 

two lower ones by (1 .1). In the following corollary the first lower 

bound is proved leaving the rest of the proofs to the reader. 

Corollary 3.2. Let (C,$) be an MMS and assume that the joint 

performance process of the system's components is associated in I. 

Define ( j=1 , • , • , M) 

Then 

max . 
1<k~n~ 

c max 
1 (k<m~ 

.9.j' (P(I)) ~ hj(I) (1-1j' (Q(I)) 
$ -<!> <I> <I> -$ 

]_j'(Q(I)) ~ gj(I)~l-.9.j'(p(I)) 
<I> -$ $ $ -$ 

Furthermore, .9.j' (P(I)) ('ij' (Q(I))) are non-increasing (non-
<!> -$ <I> -$ 

decreasing) in j. 

Proof. Let s be a countable subset of ~(I) that is dense in 

~(I). Since the sample functions of {X. (t) ,tE~} i=1, ... ,n are 
]. 

continuous from the right on ~, then 

j"(I) 
.9.$ = 

Let S = {s
1

, ... ,s} 
m m m=l t 2 I • • • be subsets of s such that 

as m ~ oo, By monotone convergence 



- 14 -

Now by introducing the component state indicator functions to 

level j 

we have 

by 

= {: 

if x. > j 
I , (X, ) ]. 

J 1 otherwise , i=1, ••• ,n1 j=1, ••• ,!1 

max . 
1~J<(ng 

= max 
1 (]<~ n; 

P(Xi (s)>ytk<l> lfi E 

m 
P( n n 

iE c~ (~~4> ) Y. "'1 
I , (X,{s,))=1] 

J 1 '· 
yil<$ 

n , P(Xi (s)>yrl<$ lfsESm], 

iE c~ <~~.P ) 
" 

having applied Theorem 3.1 in Barlow and Proschan (1975). This can 

be done since the r.v. •s ; I j (Xi (sY.)), iEc;(~~.p) are assooi-
Y. =1 y il<.P . . 

ated by property P 3 • Finally by monotone cori;,'ergence 

j • j' ,: ' ( I ), . n , P(Xi (s)>yil<$ Its E s 111]H.p (4 ) , 
iE c~ (~~.P) 

and the first lower bound follows from Theorem 3.1. 

Note that the lower bounds of Theorem 3.1 reduce to the corre-

spending ones of Corollary 3.2 when components,.,!lrEl.independent. For 

the case I= [t,t] Butler (1982) proves the, bo,l.!pds above. For 

this case the next result is also proved in Nat;.vig ( 1982), 

Theorem 3. 3. Make the same assumptions·· as in' Corollary 3, 2 and 

define ( j=1 , ••• ,M) 

Then 

Y. j* (I ) = 
<!> 

rY· (I) = 
.p 

mj 

n 
1<=1 

nj 

n-
1<=1 

P(J . (X{s))"'1 lfsE>(I}] 
J -
~M 

P ( .!. j ( ~ ( s ) ) =0 If sE > ( I ) ] 

~1<$ 
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By combining Corollary 3.2 and Theorem 3.3 we arrive at the 

following corollary. 

Corollary 3.4. Make the same assumptions as in Corollary 3.2 and 

define (j=J , ... ,M) 

max 

Then 

An objection against these bounds is that and 

seem very complex. This is dealt with in the next corollary, the 

price paid being stronger assumptions and poorer bounds. 

Corollary 3.5. Let (C,$) be an MMS with the marginal perfor­

mance processes of its components being mutually independent and 

each of them associated in I. Define (j=J , ••• ,M) 

Then 

Lj (p(I)) = 
<!> -$ 

max 

r)(Qirl, 
<!> -<!> 

= max 

(lj'(p(II),lj*(p(I)I] 
<!> -<!> <!> -<!> 

[1Y (Qirl I ,1Y1Qirl I] 
<!> -<!> <!> -$ 
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Due to a counterexample in Butler (1982) when I = (t,t) the 

bounds on h~(I) (g~(I)) given in the two last corollaries are not 

certain to be non-increasing (non-decreasing) in j, Corollary 3.1 

of the latter paper hence inspires the two last corollaries of this 

section, proofs being straightforward, 

Corollary 3,6. Make the same assumptions as in corollary 3,2 and 

define ( j=1,, .. ,M) 

Bj(I) = max (Lk(I) J 
$ j<k<M $ 

Bj(I) = max [Lk(I) J 
$ 1 <k < j $ 

Then 

L j (I) 
$ 

< Bj(I) 
$ 

< hj(I) 
$ 

< 1-Bj(I) 
$ 

< 1-Lj(I) 
$ 

Lj(I) 
$ 

< Bj(I) 
$ 

< gj(I) 
$ 

< 1-Bj(I) 
$ 

< 1-Lj(I) 
$ 

Corollary 3.7. Make the same assumptions as in corollary 3.5 and 

define (j=l , •.. ,M) 

Then 

We close this section by giving some comments. First of all it 

is easy to check that all bounds given here lie inside the i.nterval 

[0,1] as is a minimum claim. on the other hand, the upper bounds 

given, except in Theorem 3.1 are poor if hj(I)+gj(I) is not close 
$ $ 

to 1, He have, however, not been able to arrive at better upper 

bounds. 

To apply for instance Corollary 3.5 and 3.7 one has to check 

that the marginal performance process of each component is associ-
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ated in I. When these processes are Markovian a theorem providing 

a s~fficient condition for each of them to be associated in I is 

given in Hjort, Natvig and Funnemark (19~2), thus generali~ing a 

result from binary theory by Esary and Proschan (1970), Imbedded in 

the theorem is an equivalent and much more convenient condition in 

terms of the transition intensities of the Markov process. 

4. Improved bounds for the availabilities and unavailabilities 

in the time interval I using modular decomeositions 

\'ie start by listing some dual.ity relations which come out from 

the proofs in the last section 

,/"(I) = -j"(I) 
<PD ".v 

. D" (I) -j"(I) UJ = u 
<PD <P 

. D' ( ) 
,_J (P I ) = 

<PD -<PD 

LjD(I) = 
,p 

LjD(p(I)) 
,PD -qP 

-(!) 
B<j> 

( 4. 1 ) 

(4. 2) 

(4 .;n 

(4.4) 

(4. 5) 

(4. 6) 

(4. 7) 

Now consider an MMS with structure function 4> and modular 

decomposition given by Definition 1 .4, Oqviously, the results of 

section 3 and the relations above can be applied on ~ and x,_ , 
.R. = 1, ••• ,r as well, Introduce the following rxM matrices 

= (hj(I)) x,_ .t=1, ••• ,r 
j;=l, ••• ,M 

and correspondin<Jly define the fol).owing r xM matrices 

(4.8) 
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(I) ~,(I) R.,(I) ~'(P(I)), 'J.'(Q(I)), ~*(I) -*(I) L(I) -"l.x , -.x , -.x , -.x -4> -.x -4> -;: , .&.x , -.x , 
-(I) L(P(I)) L (Q(I)) B(I) -(!) B(P(l)), B (Q(I)). !!_x , -.x -4> , -.x -4> '-.x , ~,X , -.x -4> -.x -4> 

The dual matrices of these are defined py the convention leading to 

(3.2). 

The two theorems to follow are genera~i~ations of Theorem 2.6 

and 2.7 in Natvig (1980). In the first one we find lower Pounds 

that are improvements of the lower Pounds in Theorem 3.1. This is 

by no means proved with regard to the upper bounds. 

Theorem 4.1. Let (C,4>) be an MMS with modular decomposition 

given by Definition 1 .4 consisting of totally independent modules 

in I. Furthermore, assume that the marginal performance process of 

each module is associated in I. Then (j=1 , ••• ,M) 

From the assumptions of the theorem it follows that the margi­

nal performance processes of the modules of (C,$) are mutually 

independent in I. Hence corollary 3. 7 can be applied by consider­

ing the modules as components and the inequalities 2, 3, 8, 9 

follow. Furthermore, Theorem 3.1 can be applied on all modules. 

Hence the inequalities 1 ( 1 0) and 4 ( 7) follow since 

and are non-decreasing functions in each matrix element. In 

addition the inequalities 5 and 12 follow by applying 11 and 

6 respectively on the dual structure and dual level remembering 

(4.1), (4.7), (4.2) and (4.3). The inequalities 6 and 11 are 

proved in Appendix 1 . 
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Theorem 4.2. Let (c, ~) be an MMS with modular decomposition 

given by Definition 1 .4. Assume the marginal performance processes 

of the modules to be mutually independent in I and furthermore 

the joint performance process for the components of each module to 

be associated in I. Then 

J_j' (P(I)) ~ Bj(B(I)) ~ Bj(h(I)) ~ hj(I) ~ 
~ -4> q, -_x q, -.x ~ 

~ 1-iij(ii(I)) ~ 1-1j'(o(I)) 
q, -.x ~ -~ 

1j(Q(I)) ~2 Bj(B(I)) ~I Bj(a(I)) ~0 gj(I) ~ 1-Bj(h(I)) 
4> - ~ q, - _x q, -":.x 4> q, -.x 

Note that we have found bounds that are improvements of the 

bounds in Corollary 3. 2. (l~e have also proved this corollary under 

somewhat different assumptions.) However, we have not proved that 

these bounds are improvements of the onee; in Corollary 3.4. 

From the assumptions of the theorem and property P
3 

of 

associated r.v.'s it follows that the marginal performance process 

of each module of (C,$) is associated in I. Hence corollary 3.7 

is again applicable and the inequalities 3, 4, 9, 10 follow. 

Furthermore, Corollary 3.6 can be applied on all modules. Hence the 

inequalities 2 (11) and 5 (8) follow. Furthermore the inequalities 

6 and 7 are equivalent. The same is true for 1 and 12. Since 6 

follows by applying 12 on the dual structure and dual level remem­

bering (4.3), (4.6) and (4.7) what remains to prove is inequality 

1. This is done in Appendix 2. 
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5, Improved bounds for the availabilities at a fixed point 

of time using modular decompositions 

In this section we specialize I = [t,t] and obtain improved 

bounds for system availabilities at time t, denoted by hj 
~ 

j = 1, .•. ,M. For simplicity all bounds introduced in the previous 

section will for the special case treated here appear without I. 

~he bounds obtained will automatically give bounds for the unavai­

labilities at time t, since as stated in section 

j=1,,.,,M ( 5 • 1 ) 

Note also that if we assume that all components and hence the 

system function at t = 0, but are not ma,intained, h~ is just :the 

system reliability to level j, 

Let 1 a xb be an a xb matrix with all elements being 1 • We 

then obviously have 

9q, 
nxM 

= 1 - R4> 

rxM 
h .S_x = 1 - -.x 

The two first theorems to follow are generalizations of Theorem 3,1 

and 3,2 in Natvig (1980), 

Theorem 5,1, Let (C,oj>) be an MMS with modular decomposition 

given by Definition 1 .4 consisting of totally. independent modules 

at time t. Then (j=1 , ••• ,M) 

8 
sl(h ) 

6 
~ ( 

,~.j" I 0 
Bj(J.") 

-.x 
hj ( 

4> <)> -.x 9 
hj(J.") 

7 4> 

~ ~ 
4>-_x 

4 
1_iij (lrxr1_h ) 2 

< ( 
<)>- -.x 

J-iij(1") 
I 

1 -:i)" < 
5 hj(lrxM_ 3 <)> -.x 4> 
( 1") ( 

<)>- -.x 
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Proof, The inequalities 1, 2, 4, 6, 8, 10 fo1low immediately from 

the inequalities 11, 10, 9, 3, 4, 5 of Theorem 4.1 by speciali~ing 

for the case treated in this section, To apply the 1atter theorem 

we need the marginal performance process of each module to be asso­

ciated at time t. This follows from property P2 of associated 

r.v.'s, Since the modules are totally independent, extending a part 

of the proof of Theorem 3,1 in Butler (1982) we have 

(5.2) 

From Theorem 4.2 of El-Neweihi et. al. (1978) it follows that 

h~(·) is non-decreasing in each matrix element. Hence the inequal­

ities 5 and 7 follow from Theorem 3.1 and the inequalities 3 and 9 

from Corollary 3,7, noting that due to Theorem 3.1 the matrix argu­

ments ,!," and 1 r 41-1" have the same properties as h . -_x - -_x -.x. 
Note that due to (5,1) we have no objections against the upper 

bounds arrived at in the previous sections, when applied here. 

Hov1ever, any upper bound arrived at is now equivalent to an estab­

lished lower bound and nothing is gained, Note also that Theorem 

4.1 can be considered as a generalization of the main part of Theo­

rem 5.1. For the remaining theorems given in this section, we have 

not been able to genera1ize their main parts to the situation with 

general r. 

Theorem 5.2. Make the same assumptions as in Theorem 5.1, Assume 

furthermore that for each module the states of the components at 

time t are associated r.v.'s. Then (j=1 , ••• ,M) 

8 
B~ (h ) 

6 
~ ~ 

Bj 1 0 

B ~(!~·.X) 
-.x 

hj " 
"' 

9 
h~(_~.x) 

7 
"' " ~ 

4 1-Bj(1rxM_h ) 2 

" ( 

"'- -.x 
1-B~(s l 

1 
1-iij ~ 

5 hj (l rxM_ 3 -.x 
"' " i3 l " "' - -.x. 
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The inequalities 2, 4, 6, 8 follow immediately from the 

inequalities 2, 3, 4, 5 of Theorem 4.2 by s~eciali~ing for the case 

treated in this section, Remembering (5.2) the inequalities 5 and 7 

follow from corollary 3,6 and the inequalities 3 and 9 from corol­

lary 3. 7. since 1 follows by applying 10 on the dual st.ructure and 

dual level remembering (4.6) and (4.7) what remains to prove is 

inequality 10. This is done in Appendix 3. 

corollary 5.3. Let (C,$) be an MMS with modular decomposition 

given by Definition 1 ,4 having independent com~onents at time t, 

Then (j=1 1 ••• ,M) 

8 
B~ (h ) 

6 
( ( 

-.x 
hj 

9 

h ~<.~~/E.$ )) 
7 $ 

( < 

2 
( 

Proof. Since I = [t,t] and all components are independent at t, 

·it immediately follows that (j=1 , •.. ,M) 

and hence 

These latter relations can obviously also be applied on each 

module. Hence Corollary 5.3 follows from Theorem 5,2, 

Note that even for the special case of the latter corollary 

our results improve the inequalities of Theorem 3.1 and 3.2 in 

Butler (1982). The reason is that this author does not utili~e the 

bounds of Corollary 3,2 at all when improving bounds by using 

modular decompositions. 
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\'le end up this section by generalizing Theorem 3. 3 and 3. 4 in 

Natvig (1980). The three theorems to follow essentially tell us 

that it is advantagous to decompose modules with unknown reliabili­

ties and do nothing with the remaining ones. 

Theorem 5.4. Make the same assumptions as in Theorem 5.1. Further-

more, for J. = 1, ... ,k 

modular decomposition 

( 1 ~k~r) assume that (A J., x J.) has a 

SJ. 
{(BJ.m,QJ.mllm=1 consisting of totally inde-

pendent modules at time t and with organizing structure :!;unction 

<JJ., Let 

0 = (Q11' '''' 01s
1
''''' 0k1 '•••• 0ksk'Xk+1 '••••Xr) 

and introduce 

Also block the matrix given by (4.8) into two matrices by 

o, " [ ~ :::: ]· 

where ~ (1 ) is a kxM matrix 
.X 

With obvious notation we have 

and ~ (2 ) 
.X 

(j=1, ... ,M) 

4 . sx11 sxM 
h J(1 1 ;;.. 1 k ;;.. h ) 

~ e- -~o 1 ' • • ''- -~o '- (2) 
- -k .X 

is an (r-k)xM matrix. 

Proof. By applying the inequalities 1 and 2 of Theorem 5.2 and 

corollary 3.7 on the structure a, we get 
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and the inequality follows. From the inequalities I and 3 of 

Theorem 5.1, we have (~=1 , .•• ,k) 

since is non-decreasing in each argument, we then have 

. . s XM s XM 
h J(1kxM '" h ) hJ(h (1 1 0 " 1 k 0 " ) h ) <V- -,..(1)'-(2) ><P-er- -~Q, ... ,_ -~Q '-(2) 

X .X - -1 -k ..x 
s 1 xM _ skxM _ 

=he(l -1:9·····l -1:~~·:!!(2)), 
-1 -"k .X 

and the second inequality follows. 

Since is non-decreasing in each argument, we have from 

Theorem 3.1 

-j kxM -, 
1-Bq,U.. -n, (1 ) •1: (2 )) > 

.X .X 

= 1-Bj(1rxM_h ) > hj 
<jl - -..x 4> 

also having applied the inequality 4 of Theorem 5,1. Hence inequal-

ity 3 follows. similarly 

, s
1

xM _ skxM _ 
h ~ (l -1:" Q , ••• , l -1:~.. , n. ( 2 ) ) ) 

-1 -"k .X 

= hj(h ) = hj 
<jl -..x 4> , 

having applied Theorem 3.1 and (5.2) and the inequality 4 follows. 

Finally by applying the inequalities 1 and 3 on the dual structure 

and dual level the inequalities 7 and 5 respectively follow. The 

inequalities 8 and 6 are proved completely parallel to 2 and 4. 

Theorem 5 . 5, t4ake the same assumptions as in Theore.,t 5. 4. Further­

more, assume that for each of the modules .. !B~m'Q~m) ~ = 1, •.• ,k; 

m = 1, ... ,s~ and (A~,x~) ~ = k+1 , ••• ,r the states of the compo­

nents at time t are associated r. v. 's. Then. ( j=1 , ••. , M) 
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B~ {!lg 
7 

B~O:l (1)'~ (2)) 
5 

, ... , !lg , ~ ( 2) ) ~ ~ 

-1 -k .X .X .X 
hj 

h ~ (~ ( 1 ) , !l ( 2) ) 
8 

h~ (~_g1 
6 ~ 

~ , ... , ~Q , !l ( 2 ) ) ( 

.X .X -k .X 

Proof. The proof is very similar to the one of Theorem 5.4 apply­

ing Theorem 5.2 instead of Theorem 5.1 and corollary 3.6 instead of 

Theorem 3.1. Note that due to P2 also for (A~,x~) ~; 1 , ••• ,k 

the states of the components at timet are associated r.v,'s, 

This is needed when proving the inequality 8, 

In the same way as corollary 5.3 follows from Theorem 5.2, the 

last corollary of this section follows from Theorem 5.5. 

corollary 5.6. Make the same assumptions as in Theorem 5.4. Assume 

furthermore that all components are independent at time t, Then 

(j;1, ... ,M) 

. skxM - J ( s 1 xM - ( n xM ) ) 
1-B 9 l -!lg , ... ,l -!lg ·~ (2) l -£~ 

-1 -k .X 

4 • s 1 xM nxM skxM _ nxM 2 
~ hJ(1 -B (1 -P ),,,,,1 -_B 0_ (_1 -_P,.),_h (2 )) ( 9 - -_g1 - -~ -"k "' .x 
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Let us try to summarize the implications of Theorem 5.4, 5.5 

and corollary 5.6. Consider an Mt~S (C,q,) with modular decomposi­

tion consisting of totally independent modules at time t and with 

organizing structure function 4 having known availability func­

tions h~, j = 1, ••• ,M. (These are considered as functions of the 

availabilities of the modules- again remember (5.2).) Furthermore, 

assume that each module with unknown availabilities at time t has 

a modular decomposition consisting of modules having either the 

specific properties mentioned in Theorem 5,4, 5.5 or Corollary 5.6 

and in addition having unknown availabilities at t. Finally, 

assume that the organizing structure function e of the refined 

modular decomposition of (c,q,) has known availability functions 

h~, j = 1, .•• ,M. Then the inequalities 2, 4, 6, 8 tell that the 

bounds based on the refined modular decomposition are better than 

the bounds based on the original one. 

The 

Now the 

remaining 

hj 's and 
4 

inequalities tell us in a way just the opposite. 

h~'s are supposed to be unknown. However, this 

time each module with known availabilities at t is decomposed 

into modules with known availabilities at t, Now the bounds based 

on the refined modular decomposition are wor~e, If in this latter 

case! thr ,h
4

's and,,;,1"/e:'!;!, 

of Theorem 5, 4, , it readily 

are known, for instance in the situation 

follows that 

~ h j ( h 1 ( r-k) xM -1 II ) = 
4-(1)'- - (2) 

j ( r-k) xM - 11 ) 

he O:!Q • " • • 1:!Q • l -!: ( 2 ) • 
..X ..X -1 -k ..X 

Parallel relations are proved for the situations in Theorem 5.5 and 

Corollary 5.6. Hence now the bounds based on the refined modular 

decomposition and the bounds based on the original one are equally 

good. 
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6. A simple example 

lle now finally return to the simple example given in Figure 1 • 

First of all it is easy to see that the minimal path and cut 

vectors are given as follows: 

1 (1,1), 2 (3, 1), 2 (1,3), 3 (3,3) y1<!> = YH = y2<!> = y1 <!> = 

1 (3,0), 1 (0,3), 2 (1,1), 2 (3,0), ~1 <!> 
= ~2<1> = ~1 <!> 

= !2<)> = 

2 (0,3), 3 (3,1), 3 (1,3). ~H = ~1 <!> = ~2<1> = 

Secondly, we have to work out the availabilities and unavaila­

bilities for the two components in the time interval I = ~(I) = 

(tA,tB) c (O,ro) letting ~ = [O,ro), To do this we assume that the 

marginal performance processes {Xi(t)1 tE(O,ro)) i = 1,2 are 

independent and identically distributed time-homogeneous Markov 

processes with state space (0,1,3). Denote the transition proba­

bilities by 

i,j E{0,1,3) 

and the corresponding transition intensities by ~ij' Assuming more 

specifically that 'the two branches of each component fail and are 

repaired/replaced independently of each other, both having the same 

instantaneous failure rate A and repair/replacement rate ~, we 

have 

( 6 • 1 ) 

By standard techniques, using for instance Laplace Transforms, 

one arrives at the expressions 

l~e now assume that both components function perfectly at time 0. 

The availability to level 3 and unavailability to level 

for the components are straightforward (i=1,2): 

in I 
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3(I) [ l pi~ = 1-P30 (tA)-P 31 (tA) exp(-2A.(t8-tA)) 

1 (I) 
qi~ = P30 (tA)exp(-2ri(t8-tA)) 

By considering a Markov process with state space {0,1,3}, letting 

first {o} be an absorbing state, and then {3), we get by using 

Sverdrup (1965) (i=1 ,2 ): 

1 (I) 
pi~ = [1-P30(tA)-P31 (tA) )[r2exp(r1 (t8-tA))-r 1 exp(r2 (~-tA))j/(r2-r1 ) 

where 

+ P31 (tA) [(r2H)exp(r 1 (t
8
-tJ)-(r 1H)exp(r2 (t

8
-tA)) )/(r2-r 1), 

r1 } = (-n-Il ± I( A-Ill 2+8A.[l)/2 
r2 

3(I) 
qi• = P30 (tA)[riexp(r;(t8-tA))-r;exp(ri(t8-tA)) )/(ri-ril 

+ P31 (tA) [(rz+ll)exp(rj (t8-tA))-(rj+ll)exp(r2(t8-tA)) )/(r2-r] )1 

where 

Note that the second factor and denominator in each addend of 

( 3(I)) 
qh are obtained from the corresponding expressions of 

( 1(I)) 
pi$ by interchanging 

considerations. 

and 11• This is obvious from symmetry 

To be allowed to apply Corollary 3,5 and 3,7 the marginal 

performance process of each component must be associated in I. 

From Hjort, Natvig and Funnemark (1982) Theorem 2.1 a sufficient 

condition for this to hold is given by 

which is trivially satisfied due to (6.1). Since the marginal per­

formance processes of the components are assumed mutually indepen­

dent, it furthermore follows from property P
4 

of associated 

r.v.'s that their joint performance process is associated in I. 
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Hence, Corollary 3.2, Theorem 3,3, Corollary 3,4 and 3.6 can be 

applied as well in addition to Theorem 3.1 • 

In the following we concentrate on bounds on the availabili­

ties, It turns out that several bounds coincide. The lower bounds 

are given by: 

2"(I) 2' (P(I)) = 1 (I) 3(I) 
J.$ = J.<P -$ P1 <1> •p1 <1> 

< 1(I) 3(I) (1 1(I)( 2 3(I))) = 
P1 <P 'P1 <!> max ,p1 <1> -p1 <1> 

J.3 " (I ) = J.3 I ( p (I) ) = J.3 ~ (I ) = L 3 (I ) = L 3 ( p (I) ) 
<1> <1> -$ <1> <1> <!> -$ 

= 8 3(I) = B3(P(I)) = (p3(I))2 
<!> <1> -<)> 1 <1> 

The bound J.!*(I) can not be established as a function 

nent availabilities. Hence the same is true for L2 (I) <j> I 

B
2 (I) 

<1> • 

The upper bounds are given 

1"(I) 1(I) 
u<l> = p1 <1> 

= 1-L1 (Q(I)) = 
<1> -<j> 

3"(I) 3(I) 
u<l> = P1 <1> 

= 1-L3 (Q(I)) = 
<1> -<P 

by: 

1_11' (Q(I)) 
<1> -<j> 

) (1- 1(I))2 
q1$ 

of compo­

B 1 (I) and 
<1> 
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The bounds 1 _;; ji. ( I ) ' 1 2 3 
A~ ' J = ' ' can not be established as a 

function of component availabilities. Hence the same is true for 

1-i)(I) • 
-j(I) , 

and 1-B. , J = 1,2,3. In addition 
2"(I) 

u• can not be 

obtained in a simple 1~ay. 

In Table 3 we give numerical values for the bounds for all 

combinations of A= 0.001, 0.01; ~ = 0,001, 0.01 and I= [tA,t
8

) 

= [100,110],[100,200],[1000,1100]. The bounds are presented as in 

Table 2. 

LEVEL 1 LEVEL 2 LEVEL 3 

LO\'IER UPPER LOWER UPPER LOWER UPPER 

A 1 " (I ) 1 " (I) 2" (I) 
1_£2'(Q(I)) 3" (I) 3"(I) 

= t<)> u. .1.$ t • u. . -· 
!1 = 1_ £1 '(Q (I)) L2(P(I)) 1 _j} (Q(I)) 1 -i3 '(Q (I)) . -· q, -· 

., ., 
I = [ l -1 (I) 

1 -B~ (~I)) 1 -L3 (Q (I)) 
' 1-Lq, (Q¢ ) 

q, -· 
Table 2 

LEVEL 1 LEVEL 2 LEVEL 3 

LOI'IER UPPER LO\'IER UPPER LOWER UPPER 

A = 0.001 0.9802 0. 9901 0,8025 0.9706 0.6570 0.8106 

~ = 0.001 0.9919 0.9451 0.9683 0.8286 
I = r 1 oo, 1 1 o 1 0.9840 0.9683 0.6865 

A = 0.001 0.9400 0.9695 0,6564 0.9750 0.4584 0.6770 

~ = 0. 001 0.9933 0.8420 0.9732 0.8420 
I = [100,200] 0.9866 0.9732 0.7090 

A = 0.001 0. 5862 0.7656 0.2020 0.6012 0.0696 0.2638 
!1 = 0. 001 0.8470 0.2685 0.5268 0.3685 

I=[1000,1100l 0.7174 0.5268 0. 1 3 58 

A= 0.001 0.9903 0.9952 0.8607 0,9886 0. 7 481 0.8649 
!1 = 0.01 0.9970 0.9723 0.9880 0. 8932 

I = [ 1 00' ]] 0 l 0.9940 0.9880 0.7978 

A= 0.001 0.9667 0.9832 0.7103 0.9979 0.5219 0.7224 
~ = 0.01 0.9995 0.8923 0.9979 0.9543 

I = [ 1 00' 200] 0.9990 0.9979 0.9108 

A = 0.001 0.9522 0.9758 0,6603 0,9954 0.4578 0.6766 
!1 = 0.01 0.9989 0.8526 0.9952 0.9320 

I= r 1 ooo, 1 1 oo 1 0.9978 0.9952 0.8686 
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Table 3 (continued) 

- _, ________________ 
.. ·---------~----·-------------------------

LEVETJ 1 LEVEL 2 LEVEL 3 

LOHER UPPER LO\vER UPPER LO\VER UPPER 

A = 0. 01 0.3429 0.5856 0.0742 0.2934 0.0161 0.1268 

fl = 0.6395 0.0814 0.1935 0. 1 594 

I = [ 1 00 ' 1 1 0 l 0.4089 0.1935 0.0254 

A = 0. 01 0.0762 0.2761 0.0058 0.3394 0.0004 0.0210 

ll ·- 0.001 0.6989 0.0058 0.2445 0. 1 872 

I = [ 1 00 '200 l 0.4884 0.2445 0.0350 

A = 0. 01 0.0046 0.0680 0. 0001 0.0478 o.oooo 0. 0011 

ll = 0.001 0.3234 0.0001 0.0156 0.0242 

I = [1000, 1100] 0. 1 046 0.0156 0.0006 

A = 0. 01 0.5862 0.7656 0.2020 0.6012 0.0696 0.2638 

ll = 0.01 0.8470 0. 2685 0. 526 8 0.3685 

I = [ 1 00' 11 0 l 0.7174 0. 526 8 0. 1 358 

A = 0. 01 0.2024 0.4499 0.0196 0.8705 0.0019 0.0436 

ll = 0.01 0.9747 0.0196 0.8585 0.6401 

I = r100,200) 0.9500 0.8585 0.4097 

A = 0. OJ 0. 1 65 J 0.4063 0.0137 0.8349 0. 001 J 0.0338 

ll = 0.01 0.9662 0.0137 0.8182 0.5937 

I = [1000,1100] 0.9335 0.8182 0.3525 

Table 3 

As we see from Table 3 the bounds for this simple example are 

amazingly good. Only some bounds for the availability to level 2 

are getting really bad; i.e. for A= f1 = 0.01 and I= [100,200], 

[ J 000, l 1 00 ]. In these cases we expect more fluctuations between the 

states of the two components and hence of the system during I. 

Since our bounds are based on component availabilities/unavailabi­

lities, a lot of information is lost in these cases, and the bounds 

are hence poor. 

Note also that we always have 

in Table 3. In fact we have not been able at all to find values of 

A, f!, I such that this equality does not hold. For the special 

case tA = t
8 

= ro it is not too hard to sh~• this analytically. 

Hence the bounds of Corollary 3.6, 3.7 have not been to any help 

in this example. 
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APPENDIX 1. PROOF OF THE INEQUALITIES 6 AND 11 OF THEOREM 4.1 

1/e start by proving inequality 6 and an equality which 

immediately leads to inequality 11, for the special case that ~ 

has only one single minimal cut vector to each level. 

Lemma A1 .1. Nake the first part of assumptions of Theorem 4.1. In 

addition assume that ~ has only one single minimal cut vector to 

level j' ~ = ( zr ~' ... 'z;~)' \~ith corresponding minimal cut set 

Dl (_g::~). Then (j=1, ••• ,M) 

-j"(I) 
'-~ 

Proof. He have by Definition 2.1 and Theorem 2. 2 

I , ( ~ (X)) = 
J -

J .(x(x)) = 
J - -
~ 

Now the minimal cut indicator functions for ~ to level j are 

given by 

(A J. 1 ) 

where for each we can choose Hence 
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j" (I) 
u<i> = lisE.,;(!)] 

liH oJ (~)] 

= J- lisE.,; (I)] 

= J-

having used the fact that the modules are totally independent in 

I. Finally 
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and the proof of the lemma is completed. 

Now from Theorem 2.3 we have 

j"(I) = 
u~ 

= min . 
J ~ k<m~ 

min , 
l ( ]<;(m~ 

min 
1 

P[J 
1 

(~(s))=l \fsE'<(I)] 
hm(m . z . 

4>J -m4>J 
k k 

l " (I) 
u ' ( 

4>) 
k 

= l- max 

l <k~m; 
= J-:i:j

1 
(:i:"(I)) 

. tjJ -x. I 

having applied Lemma Al ,] 1 and the inequality 6 is proved, 

Furthermore, 

= 

-j"(I) 
'-q, = 

max , 
l < k<m~ 

max , 
l <k<mJ 

-l "(I) 
~ ' = 
4>~ 

max 1 J <m~m . 
of>) 

k 

max . 
J < k<mJ 

= -j~(-"(I)) 
'- ol. '- ' 

'I' -x. 

again having applied Lemma Al .J, and the inequality JJ is readily 

proved. 

APPENDIX 2. PROOF OF THE INEQUALITY l OF THEOREM 4.2 

l'ie start by proving an equality which immediately leads to 

inequality l, for the special case that <V has only one single 

minimal cut vector to each level. 

Lemma A2.1. Let (C,4>) be an MHS with modular decomposition 

given by Definition J .4. In addition assume that tjJ has only one 

single minimal cut vector to level j, ~ = (z?q,•••••Z~q,), with 

corresponding minimal cut set D;(~). Then (j=l , ••• ,M) 

zj +J I 

J:'-<V (Q(I)) 
x,_ "'of> n 
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Proof. The proof is straightforward when remembering the notation 

of the proof of Lemma Al .l. 

= 

max 
zj +J 

l~k ~m s¢ 
s X s 

sED~(~~) 

n 

and the proof of the lemma is completed, 

Now remembering the main part of the proof from Appendix J, 

we get by applying Lemma A2.J. 

= 

= 

Hence we 

max . 
J ~ k~m~ 

max . 
l ~ k~ m~ 

Il '. (Q(I)) 
J -<P 

<Pk 

~j' (( (Q(I))), 
<!> -x -.v 

have: 

= max . 
l~k(~ 

and the inequality J is proved. 

APPENDIX 3. PROOF OF THE INEQUALITY l 0 OF THEOREM 5. 2 

( A2 • l ) 

We start by proving the following lemma which is a corrected 

and slightly generalized version of Lemma 3.2 of Butler (1982), 
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Lemma A3 .1 

Make the same assumptions as in Theorem 5.1. In addition 

assume that ~ has only one single minimal cut vector to level j, 

~$ = (zl~····,z~~), with corresponding minimal cut set oJ(~). 
Then (j=1 , •.• ,M) 

Proof. Consider the structure function ~* of an MMS defined 

by 

I.(<i>*(Y(t))) = 
J -

j 
z,_~ +1 

m 

rt'-
k=1 

where r<tl is a vector of binary, mutually independent (and 

hence associated) components at time t with availabilites (to 

level 1) at this point of time (k=l, ••• ,mj ;~=1, •• ,, r; j;::l, ••• ,M) x,_ 

P(Y~,_(t)=1) 
A,_ 

= P[ J . (X ( t) ) = 1 ) • 
J -z -kx,_ 

We have 

(A3. 1 ) 

= 

Now all the minimal cut indicator functions for <i>* to level j 

are of the same form as the ones for <i> , given by (A1 .1), just 
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ziq, +1 
by Yk y_ (t). Since the modules of 

J. 

are totally independent at time 

are independent, exactly as is true for for 

He then have 
j-A 

= J. j>\ 
J..p* <jJ • 

Hence from Theorem 3.3 and ( A3 • 1 ) we get 
j 

0"' J. j* hj 
Zy_q, +1,._ 

y_J = ~ = ilj j Y-xy_ 
<jJ .p" .p"' 

HD<jJ (~<jJ) 

and the proof of the lemma is completed. 

N01v from Theorem 2.3 we have 

mj 
m1 0 

<jJ J 
J. j>\ 

q, k 
= n n P[J 1 (.JS(t))=1) 

o/ z 0 k=1 m=1 - J 
m<jlk 

mj mj 
zik<)J +1* q, 

J. 1 "'0 
<jJ 

J. j* (Y.*) = n < n il J. = 
k=l .pJ k=1 Y.EDj (~j) Xy_ <jJ -x. ' 

k <jJ - q, 

(A3. 2) 

having applied Lemma A3.1. 

On the other hand by applying (A2.1) on the dual structure 

and dual level, specializing I= [t,t) and remembering (4.3) we 

get 

= J. j' (J.' (P ) ) 
q, -x -.p 

From (A3.2) and (A3.3) we now get 

L~ = max[Y.{ (~<jl) ,J.r) < max[Y.r (~X.) ,J.r (~X.)) 

~ max[Y.~' (~X),J.r (.§.X.)) = L~(~X.), 

and the inequality 10 immediately follows. 

(A3. 3) 
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