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ABSTRACT. This paper develops a non parametric density estimator with 
parametric overtones. Suppose f(z, 0) is some family of densities, indexed 
by a vector of parameters 0. We define a local kernel smoothed likelihood 
function which for each z can be used to estimate the best local parametric 
approximant to the true density. This leads to a new density estimator of 
the form /( z, 0( z)), thus inserting the best local parameter estimate for 
each new value of z. When the bandwidth used is large this amounts to 
ordinary full likelihood parametric density estimation, while for moderate 
and small bandwidths the method is essentially nonparametric, using only 
local properties of data and the model. Alternative ways more general 
than via the local likelihood are also described. The methods can be seen 
as ways of nonparametrically smoothing the parameter within a parametric 
class. 

Properties of this new semiparametric estimator are investigated. Our 
preferred version has approximately the same variance as the ordinary ker­
nel method but potentially a smaller bias. The new method is seen to 
perform better than the traditional kernel method in a broad nonpara­
metric vicinity of the parametric model employed, while at the same time 
being capable of not losing much in precision to full likelihood methods 
when the model is correct. Other versions of the method are equivalent to 
using particular higher order kernels in a semiparametric framework. The 
methodology we develop can be seen as the density estimation parallel to 
local likelihood and local weighted least squares theory in nonparametric 
regression. 

KEY WORDS: bias reduction, density estimation, kernel smoothing, local 
likelihood, local modelling, parameter smoothing, semiparametric estima­
tion 

1. Introduction and summary. Let X 1 , ... , Xn be independent and iden­
tically distributed with density f. The traditional kernel estimator of f is 1{ z) = 
n-1 L:~= 1 Kh(zi- z), where Kh(z) = h-1 K(h- 1 z) and K()_is some chosen uni­
modal density, symmetric about zero. The basic properties off are well known, and 
under smoothness assumptions these include 

El{z) = f(z) + tO'kh2 /"(z) + O(h4 ) 

and Var l{z) = R(K)(nh)-1 f(z)- n-1 f(z) 2 + O(h/n), 
(1.1) 

where O'k = J z2 K(z) dz and R(K) = J K(z)2 dz. See Scott (1992, Chapter 6) or 
Wand and Jones (1994, Chapter 2), for example. 

Our aim in this paper is to propose and investigate a class of semiparametric 
competitors which have precision comparable to that of J but sometimes better. For 
any given parametric family /{-, 0) = f( ·, 01 , ... , Op) and for each given z we will 
present ways of estimating the locally best approximant to f, and then use 

(1.2) 

Thus the estimated density at z employs a parameter value which depends on z 
and whose choice is to be tailored to good estimation at z. In other words the 
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method amounts to a version of nonparametric parameter smoothing within the 
given parametric class. 

1.1. LOCAL LIKELIHOOD FOR DENSITIES. A central idea in our paper is the 
construction of a local likelihood function for density estimation. Local likelihood 
ideas have been employed in non- and semiparametric regression for some time, see 
Section 1.2, but the concept is far less immediate in the present context of density 
estimation. Around each given z we define the local log-likelihood to be 

Ln(z,8)= I Kh(t-z){logf(t,8)dFn(t)-f(t,8)dt} 

= n-1 fxh(zi- z)logf(zi,8)- I Kh(t- z)f(t,8)dt, 
i=1 

(1.3) 

writing Fn for the empirical distribution function. When h is large this is close 
to the constant K(O)h-1 times the ordinary, normalised log-likelihood function 
n-1 2:~= 1 log f(zi, 8) -1, and maximising the (1.3) function with respect to the pa­
rameters becomes equivalent to ordinary full maximum likelihood estimation. When 
his moderate or small, however, maximising Ln(z, 8) will be seen to be a fruitful 
way of obtaining an estimate of the best local approximant to f. This is made clear 
in Section 2. 

A related and in fact more general apparatus is as follows. Decide on suitable 
weight functions v3(z, t, 8), j = 1, ... ,p, guidelines for which will be discussed later, 
and let 0( z) be defined as the solution to the p equations 

Vn(z, 8) =I Kh(t- z)v(z, t, 8){dFn(t)- f(t, 8) dt} 

= n-1 f Kh(zi- z)v(z, Zi, 8)- I Kh(t- z)v(z, t, 8)f(t, 8) dt = 0. 
i=1 

(1.4) 
Maximising the (1.3) function amounts to solving (1.4) with v(z, t, 8) = u(t, 8) = 
: 9 log f(t, 8), the p X 1 score function of the model, with one component u3(z, 8) per 
parameter. The generalisation is analogous to that of M-estimation over maximum 
likelihood estimation in ordinary estimation theory. 

This strategy, with (1.4) or its special case (1.3), gives O(z) and in the end (1.2). 
We call this local parametric estimation of the density f, hence the title of our paper. 
An attractive motivation for this approach is that as h --+ oo, 1 tends to a global 
parametric fit of the model f( ·, 8). As in other attempts at semiparametric density 
estimation, cf. references mentioned below, our methodology should be particularly 
useful when f exhibits small or moderate departures from a standard parametric 
form. But f( ·, 8) need not even be a crude model for the data because, if not, h 
will be chosen small, and local properties of 1 will largely be divorced from global 
properties of f( ·, 8). Thus we view our method as a 'continuous bridge' between 
fully parametric and fully nonparametric options. 

The local likelihood function is more fully motivated in Section 2, where a con­
nection is also established to the dynamic likelihood methods for nonparametric 
hazard rate estimation of Hjort (1991, 1993). Apart from the local likelihood con­
nection, we note that the (1.4) type approach is natural in that a weighted difference 
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of dFn(t)- f(t, 9) dt, which in the limit is a weighted difference of {f(t)- f(t, 9)} dt, 
is set to zero. 

The new estimator can and will be motivated also on the grounds of perfor­
mance, of course. We start our investigation of the large sample properties of f( :z:) 
in Section 3, with concentration on one-parameter local fits. This is extended in 
Section 4 to the multiparameter case, with particular focus on two parameters. The 
two parameter case affords an attractive simplification of O(h2 ) bias, and forms 
our favoured class of locally parametric density estimators. It turns out that the 
bias and v~iance properties of fare remarkably comparable to those of the classic 
estimator f. For many situations it will be seen that 

Ej(:z:) = f(:z:) + tu}ch2 b(:z:) + O(h4 + n-1 ) 

and Var f(:z:) = R(K)(nh)-1 f(:z:)- n-1 f(:z:) 2 + O(h/n), 
(1.5) 

just as in ( 1.1), but with a bias factor function b( :z:) related to but different from 
f" ( :z:), with characteristics inherited from the parametric class and the weight func­
tions used. To the order of approximation used the variance is simply the same, 
regardless of parametric family and of v(:z:, t, 9). The statistical advantage will be 
that for many f's, typically those lying in a broad nonparametric neighbourhood of 
the parametric f( ·, 9), b( :z:) will be smaller in size than f" ( :z:) for most :z:. It should 
also be the case that in aiming for improved performance by choice off(·, 9) we will 
rarely lose too much in performance terms in the sense that b( :z:) should not be too 
much greater than f" ( :z:) on occasions when f( ·, 9) is a totally inappropriate global 
model. 

In Section 4 it is also shown that a bias of the potentially smaller size O(h4 ) is 
attainable if the vehicle model has three or four parameters and the underlying true 
density is sufficiently smooth. This is achieved without having to (explicitly) resort 
to higher order kernels. Our method is, however, in its kernel-dependent quantities, 
asymptotically equivalent to a particular class of higher order kernels which are of 
the form a suitable polynomial times K. The same higher order kernels arise in 
local polynomial regression (see Section 1.2 below), but we stress that this result 
is consequent on the number of parameters fitted and not on using any particular 
form of local parameterisation (which shows up only in the bias factor). We con­
jecture that the same is true in the local least squares regression context. Thus 
locally smoothing a three- or four-parameter model leads to a superior asymptotic 
performance. We nevertheless favour two-parameter families for their comparative 
simplicity conceptually and computationally, and with experience of higher order 
kernels raising doubts about the transfer of such asymptotic advantages to finite 
sample practice (Marron and Wand, 1992). 

A variety of particular examples is discussed in Section 5. These are not prac­
tical examples but rather features and properties of interesting special cases of our 
methodology. Particular attention is given to the case of an estimated 'running 
normal' density and to estimates that incorporate local modelling of level, slope 
and curvature. Sections 6 and 7 provide further extensions of the earlier theory. 
In Section 6, we present results on the boundary behaviour of our estimators, and 
note attractive properties thereof. Section 7 indicates extensions to the multivariate 
case, where the new method could prove to be particularly useful, since the ordinary 
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methods are problematic in higher dimensions. In Section 8 we discuss some other 
issues such as automatic bandwidth selection and inspection of 'running parameters', 
while our conclusions are offered in Section 9. Our focus throughout this paper is 
on intuitive and theoretical considerations. Implementation issues and comparative 
work are left to future studies. 

1. 2. RELATED WORK. In nonparametric regression, there has been much recent 
interest in fitting polynomial functions locally; relevant references include Fan (1992, 
1993), Fan and Gijbels (1992), Hastie and Loader (1993), Ruppert and Wand (1994), 
building on earlier work of Stone (1977) and Cleveland (1979). This has been done 
by local least squares, which is a normal error distribution version of local likelihood 
fitting, see Tibshirani and Hastie (1987), Staniswalis (1989), and Fan, Heckman and 
Wand (1992). Local linear fitting is particularly attractive. It affords asymptotic 
bias depending only on the second derivative of the regression function, without 
sacrificing anything in terms of variance (this is not at all trivial to achieve, cf. Jones, 
Davies and Park, 1994). It also automatically has very good boundary properties. 
Higher degree polynomials behave rather like 'higher order' kernels. In the large 
bandwidth limit, the parametric form approached is, of course, a global polynomial 
regression. Given the large impact of these methods in regression, it is natural to 
ask if parallel methods can be invented for density estimation. It is indeed an aim 
of this paper to provide such a methodology. 

At around the same time as we were developing our ideas, Loader (1993) inde­
pendently proposed a version of local likelihood density estimation. A key compo­
nent is specification of an appropriate likelihood function, and Loader's definition 
is indeed similar to our (1.3). Loader uses his definition to fit local polynomials 
to the log density, perhaps the most immediate analogue of the regression work. 
Our motivation differs from Loader's in preferring to work with more general lo­
cal parametric models, seeking semiparametric density estimators, with standard 
parametric models as limiting cases. However, our methodology covers interesting 
non-standard parametric forms, and other local estimation methods, as well. We 
arrived at (1.3) and its relative (1.4) partly via the hazard rate case, for which local 
likelihood specification is more immediate, see Hjort (1991, 1993), and partly via 
local weighting of the dFn(t)- f(t, 0) dt difference; see Section 2. 

Some semiparametric density estimators already exist. Our approach has simi­
lar intentions to that of Copas (1994), but ours appears to be both simpler and more 
general. A semiparametric method which works by multiplying an initial parametric 
description with a nonparametric kernel-type estimate of the necessary correction 
factor is developed in Hjort and Glad (1993). Their estimator also has properties 
( 1.5), but with yet another b( :z:) bias factor function. Another similarly spirited 
method consists in using an estimated orthogonal expansion for this multiplicative 
correction factor; see, for example, Hjort (1986, Chapter 5), Buckland (1992) and 
Fenstad and Hjort (1994). Various semiparametric density estimators of Bayesian 
flavour are discussed in Hjort (1994a). Earlier work, somewhat less attractively 
involving an extra parameter in a linear combination of parametric and nonpara­
metric estimators, includes Schuster and Yakowitz (1985) and Olkin and Spiegelman 
(1987). Jones (1993a) argues that (the natural variance-corrected version of) the 
kernel density estimator can itself be thought of as a semiparametric estimator. 
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2. Local likelihood for density estimation. This section gives support for 
the local parametric estimation method of (1.2)-(1.3). It first relates the method to 
a well-defined local statistical Kullback-Leibler type distance function from the true 
density to the parametric approximant. This is followed by a connection to similar 
concepts for hazard rate estimation in survival data. Finally included in this section 
are alternative motivations, also of others, for considering the same definition of 
local likelihood. 

2.1. LOCAL PARAMETRIC APPROXIMATION. To explain why maximising (1.3) 
is a good idea, note first that 

Ln(z,O) -+p .A(z,O) =I Kh(t- z){l(t)logl(t,O)- l(t,O)}dt 

as n grows. The maximiser 0( z) hence aims at the parameter value Oo ( z) that 
maximises .A( z, 0). This is a well-defined statistical quantity in that it minimises the 
distance 

d[f, 1(·, 0)] =I Kh(t- z)[l(t)log ~~;~~) - {l(t)- f(t, 0)}] dt (2.1) 

between true density (which need not belong to the parametric class under consid­
eration) and approximating parametric density; Noting that the Kullback-Leibler 
distance from I to le can be written 

I l(t) log{f(t)J l(t, 0)} dt = I [l(t) log~~?~) - {l(t)- l(t, 0)}] dt, 

we see that (2.1) is a version of the same, locally weighted around z. These ar­
guments show that using (1.2) with (1.3), which is (1.4) with weight function cho­
sen to be the score function u(t, 0), aims at the best local parametric approxi­
mant to the true f. Note also that if I is not far from 1(·, 0), then d[l, (/·, 0)] ~ 
t I Kh(t- z ){f(t)- l(t, 0)}2 / l(t) dt. An alternative L2-based local distance mea­
sure is briefly discussed in Section 5.5. 

2.2. THE HAZARD CONNECTION. For a moment, consider survival data on 
[0, oo ), and switch attention from density l(t, 0) and cumulative distribution F(t, 0) 
to survival function S(t, 0) = 1- F(t, 0) and, particularly, hazard function a(t, 0) = 
l(t, 0)/ S(t, 0). The likelihood is ll~=l a(ti, O)S(ti, 0) so that the log-likelihood, after 
a little manipulation, and disregarding a multiplier of n, takes the form I {log a( t, 0) 
dFn(t) - Sn(t)a(t, 0) dt}, where Sn(t) = 1 - Fn(t) is the proportion of individuals 
still at risk just prior to time t. The kernel smoothed local log-likelihood for the 
model at location z is, therefore, 

Lo,n(z, 0) =I Kh(t- z){loga(t, 0) dFn(t)- Sn(t)a(t, 0) dt}. (2.2) 

This local likelihood for hazard models is well-motivated and explored in Hjort (1991, 
1993). Note that 

I { f(t, 0) l(t, 0)} 
Lo,n(z,O) -+p .A0 (z,O) = Kh(t- z) l(t)log S(t,O)- S(t) S(t,O) dt. 
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Maximising Lo,n(z, 8) aims at the best local approximant in the sense of minimising 
the local distance function 

I [ { f(t) f(t, 8)} { f(t) f(t, 8) }] 
do[/,/(·,8)]= Kh(t-z) f(t) logS(t)-logS(t, 8) -S(t) S(t)- S(t, 8) dt. 

This underlies the theory of locally parametric nonparametric hazard rate estima­
tion, and is as in Hjort (1993, Sections 2 and 3), but now suitably re-expressed as a 
distance between densities and not hazards. 

To see a connection from this context to density estimation, put in a( t, 8) = 
f(t, 8)/ S(t, 8) to see 

Lo,n( :z:, 8) = I Kh(t- :z: )[{log f(t, 8) -log S(t, 8)} dFn(t) - Sn(t)f(t, 8)/ S(t, 8) dt]. 

Now replace S(t, 8) here with the estimate Sn(t) (this step will be discussed in 
Section 2.3). This leads to 

I Kh(t- :z:)[{logf(t, 8) -log Sn(t)} dFn(t)- f(t, 8) dt], 

and since the log Sn(t) term is immaterial this is the same as Ln(z, 8) of (1.3). We 
point out that the hazard connection makes it clear how censoring can be coped 
with also, see Hjort (1993). 

2.3. JUSTIFICATION OF (1.3) AS LOCAL LOG-LIKELIHOOD. We think of (1.3) 
as the local log-likelihood, or local kernel smoothed log-likelihood, for the model at 
:z:. The main justification for this is via the best local approximation framework laid 
out in Section 2.1 above, combined with the appealing feature that large bandwidths 
lead back to global likelihood analysis, and not least with the fact that the method 
works, as this paper demonstrates. We also know of three additional justifications 
for the (1.3) construction. 

The first completes the argument of Section 2.2. One can argue that the in­
sertion of Sn(t) for S(t, 8) here should not alter things very much since Sn(t) is a 
more precise estimate than is any local parameter estimate (or hence local density 
estimate) for its population version. Indeed, Sn(t) has mean squared error of order 
n-1 , which is insignificant compared with the mean squared error of our density 
estimate which, it will turn out, will be O(n-415 ). 

But what of a more direct local likelihood argument? The na.lve local log­
likelihood J Kh(t- z)logf(t,8)dFn(t) does not work, as inspection in the normal 
case pedagogically reveals, for example. Similarly the na.lve nonparametric log­
likelihood J log f(t) dFn(t) has problems, whether kernel smoothed or not; it can be 
made infinite by putting infinite spikes at the data points. Loader (1993) argues 
that the log-likelihood is truly J log f(t) dFn(t) - J f(t) dt, but the final term is 
normally discarded since it takes the value one. Leaving the second term in and 
then localising by kernels yields precisely (1.3) again. 

Another argument stems from J .B. Copas (personal communication). Note 
first that the derivative of the simplistic J K h( t - :z:) log/( t, 8) dFn ( t) is J K h ( t -
:z: )u(t, 8) dFn(t), which does not have expectation zero, even under model conditions. 
To remedy this, subtract its expectation, which is J Kh(t- z)u(t, 8)/(t) dt. Or, at 
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least, if we approximate this last f(t) by f(t, 8) we obtain the score function case 
of Vn(:z:, 8) of (1.4), and hence motivate Ln(:z:, 8) at (1.3) once more. (Copas's, 
1994, suggestion differs from this. The current version replaces Copas's expression 
(7), w(:z:) log f(:z:, 8) + {1- w(:z:)} logB(8) in Copas's notation, by w(:z:) logf(:z:, 8) + 
B(8)- 1.) 

3. Large sample properties. 

3.1. h FIXED, LARGE n. Let 8 be p-dimensional in this subsection. Estimating 
8 by solving (1.4) is like M-estimation, with the extra complication that we do not 
assume the true f to belong to the parametric f(·, 8) class. For simplicity suppress 
the fixed :z: and write v(t, 8) = v(:z:, t, 8) for the p weight functions. Assume that 

V(:z:,8)= I Kh(t-:z:)v(t,8){f(t)-f(t,8)}dt=0 (3.1) 

has a unique solution 80 = 80 ( :z:) (which also depends on h, held fixed here). This 
essentially says that f(t) should be within reach of f(t, 8) as 8 varies and that the p 

functions Vj(t, 8) should be functionally independent; see the examples of Section 5. 
That Vn(:z:, 8o) has mean zero plays a role in developing the following facts. Firstly, 
o'( :1:) converges to this best local parameter 8o ( :1:) in probability. In the score function 
case v = u this is also the parameter minimising (2.1). Secondly, 

(3.2) 

where 

Jh = I Kh(t- :z: )[v(t, 8o)u(t, 8o)' f(t, 8o) + v*(t, 8o){f(t, 80)- f(t)}] dt, 

Mh = VAR,{Kh(Xi- :1: )v(Xi, 8o)} = I Kh(t- :1: ) 2v(t, 8o)v(t, 8o)' f(t) dt- ehe~, 

and eh = I Kh(t- :1: )v(t, 8o)f(t) dt. Again u(t, 8) is the model's score function while 
v*(t, 8) is the p x p matrix of derivatives of the Vj(t, 8) functions. Proving these 
claims is not very difficult, using variations of arguments used to prove asymptotic 
normality of M-estimators; see Section 8.4 for relevant details and an additional 
result. By the delta method 

3.2. DECREASING h. The (3.3) result is valid for a fixed positive h. We are 
also interested in being increasingly fine-tuned about h as n grows. Observe that, 
as h ---+ 0, 

(3.4) 

for each smooth g function, by a standard simple Taylor series argument. Using this 
in conjunction with (3.1) shows that f(:z:,80 (:z:))- f(:z:) = O(h2 ) in general. Indeed, 
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under smoothness assumptions on f and the weight functions, writing fo(z) = 
f(z,Oo), Vj,o(z) = Vj(z,Oo) and so on (and where Oo = Oo(z) also depends on 
z). Furthermore (vj,o/o)"(z), for example, means the second z-derivative of the 
Vj( z, O)f( z, 0) function, and then inserted the parameter value 0 = 00 ( z ). This also 
implies E[(z) = f(z) + tu}ch2b(z) + O(h4 + n-1 ), where the precise nature of the 
b( z) function will be quite important and will be analysed more later. 

We need to assess the size of Ji:1 Mh( J~)-1 of (3.2), and of the variance ap­
pearing in (3.3), when h tends to zero. To this end it proves to be convenient to 
reparametrise quantities in Jh and Mh. Rewrite f(t, Oo) as f(t- z, 1/Jo), where the 
new parameters 1/J are easily related to the old parameters 0 and we note that the 
first element of ;p is the only one directly specifying [( z). Also, replace u( t, 00 ) and 
v(t,Oo) by uh(h-1(t- z),'I/Jo) and vh(h-1(t- z),'I/Jo) respectively, the subscript h 
referring to dependence of uh and vh on h to accommodate the h-1 attached to 
t- z. (For an example, reparametrise 01 + 02t + 03 t2 to 1/J1 + 1/J2hz + 1/J3h2 z2 where 
z = (t- z)jh.) We then find that 

h = fo(z) I K(z)vh(z,'I/Jo)uh(z,'I/Jo)' dz + O(h2), 

Mh = h-1 f(z) I K(z) 2vh(z,'I/Jo)vh(z,'I/Jo)' dz- eoe~f(z)2 + O(h), 
(3.6) 

where eo = f K(z)vh(z, 1/Jo) dz. 

3.3. THE ONE-PARAMETER CASE. Let f(z, 0) have just one parameter and let 
the weight function v(t, 0) be smooth and non-zero at z. From (3.5) and previous 
arguments one finds 

b(z) = f"(z)- f~'(z) + 2{v~(z)/vo(z)}{f'(z)- f~(z)}, (3.7) 

differing from the kernel estimator's bias factor f"(z) by a term depending on prop­
erties off(·, 0). IT fo = /, that is, if we are working with the correct parametric 
class, then b(z) = 0. Otherwise, (3.7) should be small when fo is close to/, and per­
haps not too large in absolute value even when f and fo differ considerably. Notice 
that the expression for b( z) simplifies when the weight function used is v( t, 0) = 1. 
It also simplifies in the multi-parameter case of the next section. An expression for 
the variance is found from (3.3) and (3.6). Assuming that vh(z) and uh(z) are of 
the form c + 0 ( hz) for small h, the weight function as well as other traces of the 
parametric model are seen to cancel out, for the leading terms, and the result is 

Var [{z) = R(K)(nh)-1 f(z)- n-1 f(z) 2 + O(h/n). (3.8) 

That is, the variance is the same, to the order of approximation used, as that of the 
ordinary kernel density estimator. See also the comment at the end of Section 4.1. 

4. The multiparameter case. In this section, let the parametric model be 
!B(z) = f(z, 81, ... , Op) with p ~ 2. 

4.1. THE BIAS. We have E[(z) = f(z, Oo) + 0(1/n) again, and the p equations 
J Kh(t- z)vj(t,Oo){f(t)- f(t,Oo)}dt = 0 can be used to see how far f(z,Oo) is 
from f(z). From (3.5) it is seen that 

f(z, Oo)- f(z) = tu}ch2[f"(z)- f~'(z) + 2{vj,0 (z)jvj,o(z)}{f'(z)- f~(z)}] + O(h4 ) 
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for each j, under smoothness assumptions. Since there are p ~ 2 equations giving 
the h2 coefficient this can only hold when f'(:c)- fJ(:c) = o(1) ash-+ 0. This is not 
in general true in the one-parameter case, and is the cause of the extra term making 
up (3.7). For p ~ 2, however, we have 

Introduction of further local parameters has simplified the bias to depending solely 
on f" (:c) - fJ' (:c). This is appealingly interpretable. The bias is of a familiar second 
derivative, local curvature, type, and the way in which closeness of fo to f affects 
the bias is abundantly clear. 

But the above remarks are really most relevant to the case of two parameters 
exactly. For p ~ 3, an extension of the above argument shows that (!- fo)'' is also 
o(1). To see this, write Ur = (!- fo)(r) ~ 2:;=0 a(r, i)hi for r = O, ... , 4. Then look 
at the general equations governing asymptotic bias and equate terms in powers of 
h. These are 

for j = 1, ... ,p, where we write k; = J zi K(z) dz; in particular k2 = oJ(" For 
instance, when p = 3, the constant term yields a(O, 0) = 1, h gives a(O, 1) = 0, h2 

gives a(O, 2) + tk2a(2, 0) = 0 and a(1, 0) = 0, and h4 yields a(O, 4) + tk2a(2, 2) + 

214k4a(4,0) = O, k2a(1,2) + ~k4a(3,0) = 0 and k2a(0,2) + tk4a(2,0) = 0. The 
final equation combines with an earlier one to force a(O, 2) = a(2, 0) = 0. Likewise, 
consideration of h3 and h5 terms ensures that, amongst other things, k2a(1, 2) + 
~k4a(3,0) = 0 and a(0,3) = 0. What remains is that a(0,4) = -{ 214k4a(4,0)+ 
ik2a(2, 2)}. To make further progress, we need to consider the h6 term which 
involves three equations in four unknowns, say r, s, t, u, where in particular 

We can thus write t =Au for appropriate A and hence find that 

Reinterpreting this in bias terms results in 

where, being explicit about A, A is the solution to the system of equations 

+ I +A" Ill • 123 :cv;,o YV;,o v;,o = -v;,o' J = ' ' · 

Increasing p from 3 to 4 results in the considerable simplification that the term 
involving A in (4.2) disappears due to being able to set t = u = 0 so that we then 
have 

(4.3) 
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Therefore, one gets an exact parallel of properties of the local polynomial re­
gression referred to in Section 1.2 (see Ruppert and Wand, 1994). Fitting one or 
two parameters, using a second-order kernel K, corresponds to O(h2 ) bias, with two 
parameters exhibiting advantages in terms of simplicity, and the same goes for local 
constant and linear regression. Three and four local parameters yield O(h4 ) bias, 
as do local quadratic and cubic regressions, and four parameters affords a simple 
dependence on (! - fo )< 4). And, we conjecture, so on. An important point emerg­
ing here is that we have not had to impose any particular local parametric form to 
achieve this behaviour. Rather it is a consequence of the number of local parameters 
fitted. See also Sections 4.2-4.3 below. Since the practical value of these asymp­
totic results is perhaps dubious, we prefer to concentrate on the two parameter case 
and consequent improvements in leading constant rather than rate, allied with more 
obvious practical interpretation. 

4.2. THE VARIANCE. We use (3.3) with (3.6), assuming, as is reasonable, that 
the vh(z,'l/Jo) and uh(z,'l/Jo) functions are of the form c1 + c2(hz) + c3 (hz)3 +···for 
small h, and that there is at least one nonzero Ci coefficient in each of the vectors vh 
and uh. It should be no surprise that v and u functions can be subjected to arbitrary 
linear transformations without effect on the resulting estimates, and it is easy to see 
by consideration of u' Ji:1 Mh( J~)- 1 u and (3.6) that the variance is unaffected by 
this. As far as this asymptotic assessment is concerned, therefore, where h---+ 0 and 
nh---+ oo, it follows that we can replace both v and u by the canonical function 

Thence, from (3.3) and (3.6), we see that 

Var i(z) = (nh)- 1 f(z)r(K) 2 + O(h + h/n), (4.4) 

where e1 = (1, 0, ... , 0)' and 

A particularly natural local parameterisation takes f(t, 8) as exp(L:~,:~ 83t3) so 
that u(t, 8) = (1, t, ... , tP-1 ). This is the special case- with v = u- explored by 
Loader (1993), who gives essentially the same variance expression as above. But we 
must emphasise that this variance result also holds for any (sensible) local parametri­
sation and not just for Loader's: it is purely a consequence, as is the kernel-dependent 
part of the bias, of the number of local parameter fitted. 

4.3. TWO, THREE, FOUR PARAMETERS. In the case of two parameters, (4.4) 
simply reduces to 

Var i(z) = (nh)-1 f(z)R(K)- n-1 f(z) 2 + O(h/n). (4.5) 

This nicely joins with the two-parameter bias to mean all the usual properties of the 
ordinary kernel density estimator with the single exception that the bias depends 
now on (! - fo )" rather than just f". 
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For either three or parameters, (4.4) yields 

And this variance quantity associates appropriately with the kernel-dependent quan­
tity given for the three parameters in ( 4.2) and for four parameters in ( 4.3). The 
two are the bias and variance of the fourth order kernel {(z2- k2)/(k4- k~)} K(z); 
see Jones and Foster (1993). This equivalence is familiar for local quadratic or cubic 
regression (Ruppert and Wand, 1994). But here we observe it for density estimation 
and, most importantly, for any local three or four parameter model. 

As the pattern is that, for example, five and six parameters affords O(h6 ) bias, so 
O((nh)-1 ) variance can be expected, and an equivalent kernel that is an appropriate 
quartic multiple of K. 

We should note briefly that p parameters affords, again in parallel with p -1'th 
degree polynomial fitting, natural estimators of the first p - 1 derivatives of f. 
The usual rates for derivative estimation, which involves a variance contribution of 
order n-1 h-(2"+1) for the r'th derivative, can be shown to obtain, and equivalent 
derivative kernels (Ruppert and Wand, 1994) will arise. 

5. Special cases. This section exhibits various special cases of the general 
methodology. 

5.1. THE CLASSIC KERNEL METHOD. The simplest special case is to set 
f( z, 0) = (}. Semiparametrically, this is not especially attractive since the limit­
ing form of the estimator as h ---+ oo is uniform (albeit an improper uniform). But 
for small h, i.e. locally to z, this makes perfect sense. Moreover, the resulting density 
estimator is given explicitly by 

n-1 t Kh(zi- z) / J Kh(t- z) dt. 
i=1 

Since the integral is 1 the denomin~tor may be ignored, and the result is precisely the 
classical kernel density estimator, f. We mention the denominator, however, because 
it is not unity near any boundary off's support, but rather effects a renormalisation 
near the boundary as discussed further in Section 6.1. 

Following on from this, a natural first two-parameter locally parametric esti­
mator is provided by fitting a line, 01 + 02 ( t - z), say, locally to z. Provided we 
need not worry about boundaries, J Kh(t- z )(t- z) dt = O, and hence it turns out 
that f( z) = i( z) once more. Note that both local constant and linear models have 
fJ'(z) = 0, and the bias formula (4.1) gives the classic answer tu}ch2 f"(z). (Near 

boundaries, local lines automatically adjust fin a way that has good consequences 
which are described in Section 6.2.) 

Local polynomials are the obvious further extension, higher degree polynomials 
corresponding to higher orders of bias in a way entirely analogous to local polynomial 
fitting in regression (e.g. Ruppert and Wand, 1994). Local polynomials are not so 
attractive (in density estimation) in semiparametric terms, however. 
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5.2. LOCAL LOG-LINEAR DENSITY. Consider the local model aexp(b(t- z)) 
for f around z (as does Loader, 1993). The score function is ( 1 I a, t - z )', and the 
two equations to solve, in order to maximise the local likelihood, are 

The components on the right hand side can be written '1/J(bh) and ah'I/J'(bh), where 
'1/J(u) = J exp(uz)K(z) dz is the moment-generating function forK. The two equa­
tions therefore become f(z) = a'I/J(bh) and g(z) = ah'I/J'(bh), where g(z) is the aver­
age of Kh(zi-z)(zi-z). Note that the general recipe says f(z) = f(z, a(z), b(z)) = 
a( z), so the b( z) is only somewhat silently present when using this local reparametri­
sation. Here one solves g( z) If( z) = h'I/J' ( bh) I '1/1( bh) for b and in the end uses 
fez)= f(z)l'l/l(bh). 

This apparatus can be used in particular when K is the standard normal. Some 
mild caution is called for since K then has unbounded support, to the effect that 
the local model is only trusted when t E z ± 2.5 h, say. In this case g( z) above 
is directly related to the derivative f' ( z) of the ordinary kernel estimator, indeed 
g(z) = h2 f'(z). (In fact, g(z)lh2 is quite generally an estimator off', usually a 
different one from (f)'. For comparisons see Jones, 1994.) This fact, combined with 
'1/J(u) = exp(tu2 ) and '1/l'(u) = '1/J(u)u, gives b = f(z)lf(z) and 

fez)= f(z)exp(-th2'h2) = f(z)exp(-th2{f'(z)IJcz)}2]. (5.1) 

This particular version of our general local likelihood method performs accordingly 
an explicit correction to the traditional estimator, attempting to get the local slope 
right. Its bias in general is th2{f"- (!')2 I!}+ O(h4 ), which will be only O(h4 ) if 
the true model agrees with ao exp(bt) on it- zi ~ 2.5 h. 

As mentioned in Section 4.3 b will be more variable than a, and might require a 
larger window parameter for its estimation. The correction factor b( z) = f' ( z) I Jc z) 
in (5.1) could therefore either be computed separately, for a somewhat larger h than 
that used for J, or the values of b( z) could be post-smoothed before being plugged 
into (5.1). 

5.3. LOCAL LEVEL, SLOPE, AND CURVATURE. As a continuation ofthe previous 
special case, as well as of the theory of Section 4.3 and of Loader (1993), one can 
try out f(t) = aexp{b(t- z) + tc(t- z)2 } fort in a neighbourhood of z. For each 
given z there are now three equations to solve, 

The right hand side can be evaluated explicitly for the usual choices of K, giv­
ing three functions in (a,b,c) to equate to f(z), g(z) (given above) and g2(z) = 
n-1 2:~= 1 Kh(zi- z)(zi- z)2 • This gives in the end the local likelihood estimator 
f(z) = f(z,a,b,c) =a. 

We give the solution for the case of the standard normal </> being used for K, 
interpreting the local model to be an approximation on t E z ± 2.5 h. In this case 
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g = h2 f and g2 = h2 j + h4 f', bringing in information about the first and second 
derivative of the standard estimator. The three equations become 

1{~) =(aiR) exp(ih2b2IR2), 

f(~) = (abiR3 ) exp(ih2b2IR2), 

h2 n~) + h4i"(~) = (ah2 I R3)(1 + h2b2 I R2) exp( ih2b2 I R2), 

where R = (1- ch2)112 and where it must be assumed that 1 > ch2. Some manip­
ulations show that R can be found from 

giving in the end 

(5.2) 

Note that f can be computed quite explicitly in cases (5.1)-(5.2). This is quite 
fortunate, of course, in view of the general complexity of our scheme. 

Again, Loader (1993) has also, independently of the present authors, worked 
with local likelihood estimation of densities that are log-linear in polynomials. For­
mulae (5.1) and (5.2) are not in Loader (1993), but he comments further on the 
general implementation issues involved. One could, of course, extend the manipula­
tions that led to (5.1) and (5.2) to the log-cubic case which we have argued might 
be preferable to the log-quadratic, but will not take the space to do so. 

5.4. A RUNNING NORMAL DENSITY ESTIMATE. Let us fit the normal density 
locally using 1 and t- ~ as weight functions in (1.4), that is, 

are solved to get hold of the local J.£( ~) and u( ~). This should essentially take care 
of the local size and the local slope. IT K = </> is used, then these equations after 
some calculations become 

(5.3) 

essentially matching traditional estimates of f and f' with quantities predicted by 
the model. It follows that q(~) = f(~ )In~) = -(~-JL)I(0'2 +h2 ), and when inserted 
in the first equation this gives a single equation to solve for the local 0' = u( ~)' 

There is a unique solution provided only </>( hq( ~)) > hi(~). Then the local JL = J'L( ~) 
is found from J:t(~) = ~ + {u(~)2 + h2 }q(~). 
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One may alternatively use the local likelihood function (1.3), i.e. minimise 

to produce J:t(z) and u(z). This can be thrown to an optimiser, or one could use say 
Newton-Raphson to solve the two equations that use the score functions u-2(t- J.L) 

and u-1{(t- J.L) 2 fu 2 - 1} as weight functions. These equations can be worked out 
to be 

The running parameter estimates, for both versions (5.3) and (5.4), would now have 
to be computed over a grid of z values. A practical suggestion would be to start 
optimising or equation solving at a new z at the optimised values for the previous 
z. 

The local log-likelihood Ln(z,O) is not necessarily concave, but it should be so 
with high probability since the matrix of second derivatives goes to the -h matrix, 
defined in Section 3, and the J matrix is symmetric and positive definite in this 
v = u case. This indicates that even simplistic computational schemes should work 
well. 

5.5. LocAL L2-FITTING. Consider the local distance measure J Kh(t-z ){f(t)­
f(t, O)P dt, an alternative to the local Kullback-Leibler distance (2.1). Multiplying 
out and disregarding the one term which does not depend on the parameter we arrive 
at the following natural proposal: minimise, for each local z, the criterion function 

Qn(z, 0) = J Kh(t- z)f(t, 0) 2 dt- 2n-1 t Kh(Zi- z)f(zi, 0), 
i=l 

and use the accompanying version of f(z,{l(z)). This would constitute a third 
possible avenue for computing a running normal estimate, for example. Taking the 
derivative it is seen that this local L2-method is a special case of the general {1.4) 
method, with weight function v(t, 0) = f(t, O)u(t, 0). Thus the theory developed 
applies to this case, and suggests in particular that the behaviour would be quite 
comparable to that of the other methods, for small bandwidths. We would prefer 
the local likelihood to the local integrated quadratic for large and moderate h, that 
is, in situations where the parametric model used is not entirely inadequate, since 
the likelihood method is more efficient then. In the normal case, if h is large, the 
variance of the J.L estimator is about 1.54 times higher with the L2 method and the 
variance of the u estimator about 1.85 times higher. However, the corresponding 
parameter estimates are more robust than the maximum likelihood ones. Further 
results and discussion are in Hjort (1994b ). 

5.6. UNIFORM KERNEL. Let K be uniform on [-t, tJ. In this case the local log­
likelihood function is Ln(z, 0) = n-1 l:w log f(zi, 0)- {F(z+ th, 0) -F(z- th, 0)}, 
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where the sum is over the window where Zi E z ± th. Maximising this essentially 
aims to match empirical facts from the local window z± th to behaviour predicted by 
the parametric f( ·, 9) on this window. If v1 ( z, t, 9) = 1 is one of the weights used in 
(1.4) then that equation simply matches the empirical and theoretical probabilities 
of falling inside this window. 

5.7. RELATIONSHIP WITH MOMENT ESTIMATION. Note that as h becomes 
large, the (1.4) recipe ends up choosing as estimate the parameter value that solves 
n-1 L:?=1 v(zi, 9) = Eev(Xi, 9), which is ordinary moment estimation with the 
Vj(Xi, 9) functions. This also indicates that having v1 (t, 9) = 1 as first weight 
function, which we partly used in special cases above, does not work well with large 
hs. We would expect the two methods of obtaining a running normal density esti­
mate, based on equations (5.3) and (5.4) respectively, to perform similarly for small 
hs, but the second method would perhaps be the best one for m~derate and large 
hs. 

6. Estimating the density at a boundary. Throughout the theoretical 
exposition so far, we have assumed that f has support the whole real line. In this 
section, we consider the presence of known boundaries to f's support. It will be 
general enough to consider positive data, and hence one boundary at zero. Consider 
estimation points z at and near the boundary in the sense that z = ph for 0 ~ p < 1 
and suppose K has support [-1, 1]. (This setup can easily be extended to infinite 
support kernels but is standard and delineates boundary and interior regions, results 
already proved continuing to hold for z in the interior.) Define az(p) = J!:,1 u1 K( u) du 
and b(p) = J!:,1 K 2(u) du. (Note that for p ~ 1, ao(P) = 1, a1(p) = 0, a2(p) = O"k 
and b(p) = R(K).) 

6.1. THE ONE-PARAMETER CASE. For Z near the boundary, formula (3.4) 
changes to 

From this, it immediately follows that 

Ei(z) ~ f(z)- {a1(P)/ao(p)}h(f- fo)'(z). 

With a single locally fit parameter, therefore, boundary bias is of the undesirable 
O(h) type unless one has been fortunate enough to choose one's parametric class 
equal to the true f near the boundary. The boundary variance follows from ( 4.4) 
when Vh(z) = 1: 

J = ao(p)fo(z) + O(h) and M = bo(p)h-1 f(z) + 0(1). (6.2) 

These give a variance of 

(6.3) 

Bias and variance in (6.1) and (6.3) exactly match those of a standard kernel 
estimator divided by ao(p) save the replacement off' by f'- fJ (e.g. Jones, 1993b). 
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That is, the one parameter local likelihood estimator behaves much like a renor­
malised kernel estimator in respect of boundaries. In Section 5.1 we noted that if 
the single parameter were a constant, such a renormalisation explicitly and exactly 
takes place; however, the current asymptotic observations apply more generally to 
any one-parameter fitting. 

6.2. THE TWO-PARAMETER CASE. Just as the local linear regression fit has 
an appealing O(h2) boundary bias (Fan and Gijbels, 1992), so too does the two 
parameter locally parametric density estimator, as we shall now demonstrate. 

Write vo,j for the derivative of v with respect to ()j, j = 1, 2, evaluated at Oo. 
To obtain the bias, we need to study the expansions of 

100 Kh(t- z)vo,l(t){f(t)- f(to)} dt = 0 = 100 Kh(t- z)vo,2(t){f(t)- f(to)} dt. 

Expanding each to order h3 , and writing (! - fo) ~ Ah2, (! - fo )' ~ B h and 
(!- f 0 )'' ~ C, we find that the O(h2 ) term in either side of the above expression 
involves A-{ at(p)fa0 (p)}B + Ha2(p)fa0 (p)}C and that the difference between left­
and right-hand sides yields an O(h3 ) term involving -a1 (p)A + a2(p)B- }aa(p)C. 
Setting these two quantities to zero and solving for A yields 

where 
Q(p) = aHp)- al(p)aa(P). 

a2(p)ao(P)- aHp) 

{6.4) 

For the variance in the two-parameter case, simply use Vh(z) = {1, hz) in ( 4.4); 
we get 

The kernel-dependent asymptotic bias and variance terms are precisely those of the 
popular boundary kernel 

(see e.g. Jones, 1993b). That is, with two parameters we achieve O{h2 ) boundary 
bias (regardless of choice of local model) in an appealing way, and there is also the 
potential of further decrease in bias due to a good choice of model. 

Three parameters can be expected to achieve 0 ( h3 ) boundary bias, four pa­
rameters O(h4 ), but this is not pursued here. 

7. Multi-dimensional data. The local likelihood method based on (1.3) 
generalises easily to the case of d-dimensional data vectors, using d-dimensional 
kernel functions. The general weight function version of the method, through solving 
{1.4) for as many equations as there are parameters in the model used, is also 
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operable in the vector case. A bivariate example could be to smooth the product­
normal model, where the final estimator is of the form 

(7.1) 

This would smooth towards normal marginals but also smooth somewhat towards 
independence. 

Defining such estimators is therefore easy in principle, although computational 
matters become more complicated with the increasing number of running parameters 
to solve for. The local minimum Kullback-Leibler distance result of Section 2.1 is 
also seen to hold, giving support to the idea. Another question is to what extent 
the theory of the previous sections can be generalised, to establish properties of 
the resulting density estimators. We shall briefly go through the two-dimensional 
case to illustrate that the theory indeed goes through with appropriate extensions 
of previous techniques. Again it will be seen that the new method has scope for 
reduction of bias in a large neighbourhood of densities around the parametric model 
employed. Our machinery could perhaps turn out to be of particular value in the 
multi-dimensional case, where there is much to lose and appalling convergence rates 
to meet by not imposing any structure at all. 

Let K ( z1, z2) = K 1 ( zt)K 2 ( z2) be a product kernel. A good version of the 
traditional estimator is 

n n 

l{a:1,a:2) = n-1 LKh1 ,h2 (a:i,1- a:1,a:i,2- a:2) = n-1 LKh1 ,h2(Xi- x), 
i=l i=1 

where Kh1 ,h2(t) = h11 K1(h11tt)h21 K2(h2"1t2), and where we write x = (a:1,a:2) 
and so on; see Wand and Jones (1993). It has 

bias"'~ lu(K·)2 h~f!~(x) and variance"' R(Kt)R(K2)f(x)- f(x) 2 (7.2) -L...J2 t lU - hh I 
i=1 n 1 2 n 

where u(Ki)2 = I z2 Ki(z) dz and R(Ki) = I Ki(z) 2 dz. We also use fi~(x) for 
82 f(x)f8a:~ and so on. 

The new locally parametric estimator is defined as f(x) = f(x, O(x)), where 
the local parameter estimate solves 

n-1 f Kh1 ,h2(Xi- x)v(xi, 0) -I Kh1 ,h2(t- x)v(t, O)f(t, 0) dt = 0 
i=1 

around each given x point. Four independent equations are needed to handle the 
product-normal model above, for example. The expected value of f(x) is f(x, 00 ) + 
0(1/n), where Oo is locally least false and solves 

Vj(x, 0) = I Kh 1 ,h2(t - x)vj(t, O){f(t)- f(t, 0)} dt = 0 for j = 1, ... ,p. 

Using 

2 I Khl,h2(t- x)g(t) dt = g(x) + L iu(Ki)2 h~g~Hx) + O((h~ + hn2), 
i=1 
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which is proved by Taylor expansions and properly generalises (3.4), one finds that 

b . ~ 1 (K )2h2 [!"( ) -t" ( ) v_i,o,i(x) {!'( ) -t' ( )}] laS~ {:t 20' i i ii X - JO,ii X + 2 Vj,o(x) i X - JO,i X ' 

where fo and v0 indicate the f(t, 0) and v(t, 0) functions with Oo = Oo(x) inserted. If 
there is more than one Vj function in direction Zi, then ff(x)- f~,i(x) is necessarily 
o(1), and 

2 

bias~ L !u(Ki)2hHffHx)- ~~~ii(x)}. (7.3) 
i=1 

Further, even fiHx)- ~~~ii(x) is o(1) in directions involving three of more Vj functions 
and bias order can then be reduced, and so on. Turning next to the variance, one 
needs to consider 

and 

J = J Kh1 ,h~(t- x)[vo(t )uo(t )' fo(t) + v~(t ){fo(t)- f(t )}] dt. 

Using the same type of method as that used in Sections 4.2-4.3 in this more laborious 
situation one ends up with exactly the same variance as in (7.2), to the order of 
approximation used, provided there are no more than two local parameters in each 
direction. (Extensions to higher numbers of parameters can be carried out, as with 
the case that led to equation ( 4.4).) 

An interesting special case of the general method is that of a local model 
f( t1, t2) = a exp( b1 ( t1 - zt) + b2 ( t2 - Z2)), for t around x, modelling local level and 
local slopes. The score function is (1/a, t1 - z1, t2 - z2)', and gives three equations 
to solve for the three parameters. If the product normal kernel is used calculations 
generalising those of Section 5.2 yield 

2 

[(x) = f(x)exp[-! LhHfl(x)ff(x)P]. (7.4) 
i=1 

A more involved version can be given where the local curvatures exp{!ci(ti- zi)2} 
and/or the local covariance factor exp{d(t1 - zt)(t2 - z2)} are taken into account, 
thus generalising the one-dimensional (5.2). 

8. Supplementing results and remarks. 

8.1. MSE AND IMSE ANALYSIS. The approximate mean squared error for the 
new estimator is 

with b( z) = f" ( z)- f~' ( z) in the typical case, and ignoring terms of order n - 1 + h6 + 
h/n or smaller. For estimation consistency we need h---+ 0 (forcing the bias to zero) 
while nh ---+ oo (forcing variance to zero). The theoretically best choice of h at z 
is therefore of the form {R(K)juJd 115{f(z)jb(z) 2}il5 n-1/ 5 , and the theoretically 
best amse is HR(K)uK}4 / 5 f(z) 415b(z)215 n-4 / 5 • Choosing the best h for every z is 
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generally too ambitious, and it is convenient to study the approximate or asymptotic 
integrated mean squared error aimse(j) = tuk-h4 Rnew(/) + R(K)(nh)-1 , where 
Rnew (f) = J b( :z: )2 d:z:. The theoretically best global h-value is 

(8.1) 

leading to the theoretically best aimse HR(K)uK }4 / 5 R~~~(f) n-415 • We note that 
the Yepanechnikov kernel K0(z) = H1- 4z2)+ (and scaled versions thereof) is 
optimal in that it manages to minimise R(K)uK, see e.g. Wand and Jones (1994, 
Section 2.7). 

8.2. COMPARISON WITH THE TRADITIONAL METHOD. The calculations above 
are quite analogous to well known ones for the ordinary kernel method (which in any 
case are a special case). This also makes it easy to compare the two methods. Using 
the global (approximate) imse criterion we see that the new method is better pro­
vided Rnew(/) < Rtrad(/), where the latter roughness quantity is J(f")2 d:z:. This 
statement refers to the situation where both methods use the same kernel and the 
same bandwidth. If Rnew really is smaller, then j can be made even better by select­
ing a better h. This also defines a relatively broad nonparametric neighbourhood of 
densities around the parametric model at which the new method is better. 

At a pointwise level, several points made by Hjort (1993) in the analogous locally 
parametric hazard estimation case are worth repeating, in modified form, here. First, 
it is easy to show that the locally parametric estimator is (asymptotically) better 
than the classical estimator whenever 

0 < fJ'(z) < 2. 
- f"(z) -

As long as fJ' and f" have the same sign, I!J'(:z: )I can afford to range over [0, 2jf"(:z: )j]. 
Note that this observation holds for small h i.e. at 'the nonparametric end' of our 
semiparametric estimator. We should also note, however, that differences in the 
constant involved in the bias may not be all that important, since the squared bias 
makes up only 1/5 of optimised mean squared error, the remainder being due to 
variance. 

The locally parametric estimator is also designed to have especial advantages 
over the kernel estimator when f is, in fact, close to fo. Regardless of this, the 
kernel estimator has mean squared error of order h4 + (nh)- 1 which is minimised by 
taking h N n-115 and hence optimal mean squared error of O(n-415 ). On the other 
hand, one might quantify closeness of fo and f by setting (!0 - f)" N n -e for some 
0 < E < 1/2. The mean squared error of the locally parametric estimator is thus 
h4n-2e + (nh)- 1 which is optimised by taking h N n-<1 - 2e)/5 • The optimised mean 
squared error is then of order n-(4+2e)/5 • For instance, if fJ' and fo are O(n-114 ) 

apart, the mean squared error is improved to O(n-9110 ), and as the difference tends 
to n-112 , the mean squared error tends to n-1 . 

8.3. CHOOSING THE BANDWIDTH. Methods for automatic bandwidth selec­
tion for the traditional kernel density estimator are reviewed by Jones, Marron and 
Sheather (1992). They might be utilised unaltered for locally parametric estimates, 
at least as a first attempt. However, if we are using an estimator that does indeed 
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improve on the basic one, we will be oversmoothing relative to the new optimal 
choice. An argument in Section 8.2 suggests that the degree of oversmoothing may 
not often be very great, however. 

The best of the bandwidth selectors in the ordinary case are founded on good es­
timates of unknown quantities in imse expressions. The key is usually in the estima­
tion of Rtrad = R(f"), and this transfers to the need to estimate Rnew = R( (f- fo )") 
(one might think of adapting traditional selectors by multiplying them by an esti­
mate of ( Rtrad / Rnew) 1/ 5 ). But the estimation of Rnew is not straightforward since 
it involves the second derivatives of both the true f and its best possible approxi­
mant of the form f ( z, 0( z)). One possibility might be to estimate f" by f" using a 
bandwidth g optimal for R(f") (this is what happens in a good bandwidth selector 
for the traditional estimator, see e.g. Sheather and Jones, 1991) and fJ' by f' using 
the same h as for estimation of f. This type of difficulty extends to rule-of-thumb 
approaches too. 

Least squares cross-validation, which for the traditional estimator is less reliable 
than the best methods (Jones, Marron and Sheather, 1992), has the advantage that 
it doesn't explicitly involve fe. One can just follow the usual idea of estimating 
E{I i{z)2 dz-2 I f(z)i(z) dz} by I f(z, O(z))2 dz-2n-1 2:?=1 f(z, o(i)(zi)) where 
numerical integration is used for the first term and ~ i) ( Zi) is the leave-one-out 

version of 0. 
Alternative methods are also worth considering, particularly since one some­

times would be interested in using moderate or large hs, namely in situations where 
the data fit the local model well. A changing and adaptively defined h could be 
advantageous in some cases. Hjort (1993) considers a local goodness of fit approach 
in the hazard case: increase the bandwidth until the local model fails to pass a 
goodness of fit criterion. Extension of this methodology to the density case is an in­
teresting topic for further research, one possibility being to exploit results of Section 
8.5 below. 

8.4. LARGE-SAMPLE NORMALITY. The basic bias and variance results for our 
estimator f( z ,0( z)) were derived in Sections 3 and 4. Our arguments were based on 
claims (3.2) and (3.3) about limiting normality for 0( z ), and in fact also on variants 
of these that work in the framework where the smoothing parameter h is not fixed 
but goes to zero with n. Here we outline proofs of precise versions of these claims. 

The 0( z) we consider is the solution to ( 1.4). For convenience we partly suppress 
the fixed z in the notation now. Taylor expansion analysis for Vn(O) = 0 gives 

(8.2) 

where v: is the p X p matrix of partial derivatives of the Vn,j( 0) functions, and 
this leads to a Ji;1 Np{O, Mh} limit by well known arguments. A more formal proof 
starts out by observing that 0 can be seen as the functional T(Fn), where T(F) is 
the solution to w(F, 0) = I Kh(t- z )v(t, 0){ dF(t)- f(t, 0) dt} = 0, see (3.1). Under 
regularity assumptions this is a second order smooth functional in the sense of Shao 
(1991), with influence function 
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in which 8o = T(F). This is seen from a Taylor expansion of v((1 - e )F + e5t, 8) 
around 80 , where 5t is unit point mass at t. This is sufficient for consistency and a 
normal {0, Ji;1 Mh( Jft)-1 } limit for ..fii,(O- 80 ), see Shao (1991). These arguments, 
in conjunction with the theory and tools developed in Sections 4.2-4.3, can also be 
used to prove 

when n grows and h = cn-115 . Here the bias factor function b(:z:) is as in equations 
(3.7), ( 4.1), ( 4.2) or ( 4.3), depending on the number of parameters used in the vehicle 
model, and the general r(K)2 is the variance factor appearing in equation (4.4). 

Another useful version of such a precise result, valid in the general log-linear 
case, cf. the special cases treated in Sections 4.2-4.3 and 5.2-5.3, is as follows. Let the 
model be of the form f(t, 8) = exp{8'w(t)}, where w(t) is a vector of p functionally 
independent and twice differentiable weight functions. We assume that 8'w(t) spans 
the full real line as 8 varies. The local likelihood 

Ln(:z:, 8) = n-1 t Kh(:z:i- :z:)8'w(:z:i)- J Kh(t- :z:) exp{8'w(t)} dt 
i=1 

is concave in 8. Let 8o,h be the unique maximiser of the limit function, or, equiva­
lently, the unique solution to J Kh(t- :z: )w(t)[f(t)- exp{8'w(t)}] dt = 0. Next study 
the function 

It is concave ins, and inspection shows that it can be expressed as s'Un- ts' Jns + 
O(JJsJJ 3 /(nh)112). Here 

n 

Un = n-1 / 2 L h112 {Kh(:z:i- :z:)w(:z:i)- en}, 
i=1 

with en = f Kh(t- :z: )w(t)f(t) dt, and Jn = f Kh(t- :z: )fo(t)w(t)w(t)' dt. The point 
is now that the maximiser of An(s), which is (nh)112(0- 8o,h), must be close to the 
maximiser of the quadratic approximation s'Un- ts' Jns, which is J;;1 Un. Precise 
general concavity-based arguments are in Hjort and Pollard (1993). Now J;;1 Un has 
a covariance matrix which stabilises as n grows, and using the Lindeberg theorem it 
is not difficult to show that it is asymptotically normal. The delta method, combined 
with the arguments that led to (3.6) and (4.4), then gives the appropriate version 
of (8.3) again. 

8.5. PARAMETER INSPECTION. Plotting the estimated running parameter 0( :1:) 
against :z: is a natural idea. This could be used for model exploration purposes and 
for goodness of fit testing. Monitoring 0( :z:) based on a pilot value of h can also be 
used for choosing the final bandwidth, or for post-smoothing before being used in 
the final f(:z:,O'(:z:)). 

From the discussion of Section 3.1 it is clear that O(:z:) aims at the locally 
least false parameter value 80 ( :z:), which is a constant value 80 independent of :z: 
if and only if the parametric model used is perfect. The approximate precision 
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of O(:z:) can be worked out from 1;;1 Mh(Jh)-1 of (3.2) using methods developed 
in connection with equations (3.6) and {4.4). To a first order approximation the 
variances for the components of 0( :z:) are inversely proportional to nhf( :z:) and hence 
their plots can not normally be trusted in regions of small density. We note that 
both weight functions v( t, 9) as well as characteristics of the model used show up in 
explicit calculations for the variance matrix for 0( :z:), in contrast with the analogous 
calculation for the variance of f(z,O(z)), ending with (3.8) and {4.4). 

9. Conclusions. We believe we have been studying the most attractive way 
of doing semiparametric density estimation. The estimators run the gamut from a 
fully parametric fit to almost fully nonparametric (except with some small change 
in performance which may well be beneficial) with only a single smoothing param~ 
eter to be chosen. The number of parameters in the 'local model' crucially affects 
performance: one and two fitted parameters are most readily comparable with or­
dinary kernel density estimation, three and four fitted parameters with fourth order 
kernel estimation, and more parameters with higher order estimates. Even numbers 
of fitted parameters have advantages in terms of simplicity and interpretability of 
bias. These comments parallel the fitting of local polynomials in regression, but 
we note that they are driven by numbers of parameters only (which are effectively 
automatically reparametrised into intercept, slope, curvature, etc., parameters) and 
not by the specific functional form. Together with, and in generalisation of, Loader 
{1993), we believe we have laid firm theoretical foundations for locally paramet­
ric nonparametric density estimation. Much still remains to be done in terms of 
exploring practical issues and applications. 
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