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Abstract
Strict control of tissue-specific gene expression plays a pivotal role during lineage commit-

ment. The transcription factor c-Myb has an essential role in adult haematopoiesis and func-

tions as an oncogene when rearranged in human cancers. Here we have exploited digital

genomic footprinting analysis to obtain a global picture of c-Myb occupancy in the genome

of six different haematopoietic cell-types. We have biologically validated several c-Myb foot-

prints using c-Myb knockdown data, reporter assays and DamID analysis. We show that

our predicted conserved c-Myb footprints are highly dependent on the haematopoietic cell

type, but that there is a group of gene targets common to all cell-types analysed. Further-

more, we find that c-Myb footprints co-localise with active histone mark H3K4me3 and are

significantly enriched at exons. We analysed co-localisation of c-Myb footprints with 104

chromatin regulatory factors in K562 cells, and identified nine proteins that are enriched

together with c-Myb footprints on genes positively regulated by c-Myb and one protein

enriched on negatively regulated genes. Our data suggest that c-Myb is a transcription fac-

tor with multifaceted target regulation depending on cell type.

Introduction
c-Myb is a key regulatory transcription factor (TF) essential for normal adult haematopoiesis
[1–4]. It is a TF highly expressed in haematopoietic stem cells and progenitors, and plays a
direct role in lineage commitment where its downregulation is associated with haematopoietic
maturation and differentiation of both myeloid and B and T lymphoid progenitor cells [5–8].
Clinical studies have revealed strong links between c-Myb aberrations and human cancer. The
MYB gene is frequently rearranged in several human neoplasias, such as acute myelogenous
leukaemia, melanoma, and breast, colon and pancreatic carcinoma [9–11]. In some cancers
this involves amplification of theMYB gene and increased c-Myb expression. The expression
level of c-Myb is also tightly controlled by specific miRNAs [12,13]. A recent report identified
a group of tumour suppressor miRNAs with reduced abundance in leukaemia cells from
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patients with T-cell acute lymphoblastic leukaemia (T-ALL) [14]. Since these miRNAs all con-
verged onMYB, their downregulation caused increased c-Myb expression in the T-ALL
patients. On the other hand, studies of a knockdown allele ofMyb in mice have shown that
reduced levels of c-Myb can also severely perturb haematopoiesis [6–8,15]. The emerging pic-
ture from these studies is that the level of c-Myb is critical for proper function in haematopoie-
tic tissue, and that only a two-fold up- or down-regulation may have dramatic biological
effects. In order to understand the biological effects of altered c-Myb levels, it is important to
know the c-Myb binding sites and target genes in haematopoiesis and cancer.

Although some studies have identified potential target genes by knockdown or induced
expression of c-Myb [1,5,16–25], very few genome-wide studies of c-Myb enrichment are avail-
able. Chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-
seq) relies on good antibodies and this is where c-Myb may have had limitations. A ChIP-seq
dataset mapping c-Myb binding sites of an ER-MYB fusion protein in myeloid progenitor cells
has been reported [5]. However, a severely truncated c-Myb part was immunoprecipitated
lacking important functional regions, and we cannot exclude that c-Myb binding could be ste-
rically influenced by the large ER part of the fusion [5]. ENCODE has published one c-Myb
ChIP-seq dataset from murine MEL cells from the Snyder laboratory. However no published
study of this dataset is available [9,14]. A recent paper reported c-Myb ChIP-seq datasets from
MOLT-3 and Jurkat cells, but the authors limited their analysis to studying an oncogenic
super-enhancer [26].

Antibody independent methods offer an alternative way of mapping binding of proteins to
chromatin, such as DamID or chromatin accessibility analysis that maps DNA occluding fac-
tors with nucleases. DNase I footprinting has been used as a method to study DNA protection
for over 35 years [27]. With recent developments in sequencing technology, mapping of nucle-
ase-protected DNA can be used genome-widely at single base pair resolution. Digital genomic
footprinting (DGF) uses massively parallel sequencing of DNase I treated cells to map proteins
associated with specific DNA sequences on a global scale [28–32]. The identity of the factors
bound is deduced from comparing the DNA sequence within the footprint with known
sequence recognition patterns of different TFs.

In this work, we have exploited this alternative DGF strategy to obtain a global picture of
c-Myb occupancy in the human genome. We have investigated c-Myb binding in six different
haematopoietic cell-types using DGF and biologically validated the c-Myb footprints using
c-Myb knockdown data, reporter assays and DamID analysis. We show that the predicted c-
Myb specific binding sites vary strongly among haematopoietic cell-types, but that there is a set
of c-Myb footprints that are common to all cell-types analysed. We identify c-Myb footprints
for both up- and down-regulated targets in K562 cells c-Myb is a TF of critical importance for
correct haematopoietic development and our predictions show that c-Myb has differential
occupancy depending on cell type reflecting its role in both lineage commitment and
differentiation.

Results

Genome-wide prediction of c-Myb footprints
DGF is a powerful method to identify nucleotides protected by proteins at a genome-wide scale
independent of antibodies [29–32]. To map changes in c-Myb occupancy during haematopoi-
esis, we used DGF to generate maps of c-Myb footprints with nucleotide resolution (Fig 1A).
We selected haematopoietic cell-types where c-Myb is expressed at different levels: c-Myb is
highly expressed in haematopoietic stem cells [33] and expressed at lower level in CD4+ T-
helper cells [34] and B cells [35,36]. c-Myb is also highly expressed in most cases of leukaemia
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Fig 1. Identification of c-Myb footprints. (A) Workflow for identification of c-Myb footprints. (B) A pie chart representing the number of c-Myb footprints
identified compared to the total number of footprints in K562 cells. (C) An illustration fromMotiflab showing a c-Myb motif located at the start of the first intron
of the gene FKBP5 that overlaps with a DNase I footprint with a high conservation value in K562 cells, illustration modified. The coordinates for the c-Myb
footprint is shown above the illustration, and to the right are the signal intensity for the DNase I datasets, in addition to a conservation score. (D) The binding
motif enriched in c-Myb footprints in K562 cells. (E) Graph of the presence of c-Myb footprints and the distances to the 100 most regulated genes upon KD in
K562 cells (dots) or a selection of 100 random genes (squares), an average of ten repetitions. Zero base pair indicates that the c-Myb footprints are found
inside the gene body (F) A c-Myb footprint at the TSS of GRSF1 gene mapped in all six cell-types analysed. Coordinates for c-Myb footprint are shown
above, and to the left are the signal intensity for DNase I datasets. (G) Position of c-Myb footprints, and random selections of DNase I footprints and c-Myb
motifs, respectively, around ENSEMBL annotated TSS in K562 cells. (H) Distribution of c-Myb footprints at annotated genes, promoters and intergenic
regions in K562 cells. *Overlapping significantly higher with c-Myb footprints than expected by random sampling of K562 DNase I footprints (p' < 5x10-2).

doi:10.1371/journal.pone.0133280.g001
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[10]. We collected available DNase I footprint datasets in six different human cell-types from
three healthy donors (CD34+ (mobilized), CD20+ and Th1 cells), transformed B-lymphocytes
(GM12865) and two cancer cell-types where c-Myb is upregulated: erythroleukaemia (K562)
and promyelocytic leukaemia (NB4) [31].

To predict potential c-Myb binding sites (c-Myb footprints), we first scanned the human
genome with MotifLab [37] using four c-Myb motifs from the TRANSFAC database [38]. We
identified more than 19 million c-Myb motif instances and filtered these against cell-specific
DNase I footprints from the six different cell-types (Fig 1A) [31,39]. We decided that a c-Myb
motif was regarded as occupied in each respective cell type if 90% of the motif overlapped a
DNase I footprint. We found that between 0.14–0.3% of the total c-Myb motifs overlapped
DNase I footprint signals in the six cell-types analysed (S1 Table).

It has previously been reported that factor specific DNase I footprints show a higher evolu-
tionary conservation than immediately adjacent sequences and that these correspond with
ChIP-seq signals [30,32,40]. We utilized information on weighted average conservation score
(phastCons46wayPlacental) [41] to weigh each position in the footprint according to the infor-
mation content of the corresponding column in the c-Myb motif. Sites that scored below 0.22
were discarded from further consideration. In total, we identified between 6061 and 12338 evo-
lutionary conserved c-Myb footprints depending on the cell type (Fig 1B, S1A–S1F Fig and S1
Table). This is illustrated in Fig 1C where a c-Myb footprint in K562 cells fell within the first
intron of c-Myb regulated FKBP5 gene [1]and falls within an evolutionary conserved region. In
all six cell-types, the weighted average conservation for each predicted motif instance are ele-
vated for all genome-wide c-Myb footprints compared to all identified c-Myb motifs (S1A–S1F
Fig).

We scanned the remaining 6061 c-Myb footprints in K562 cells with ChIPMunk [42] and
identified a five nucleotide signature resembling the core c-Myb binding motif (Fig 1D). A sim-
ilar c-Myb binding motif was identified in the other five cell-types (S1G–S1K Fig). This close
resemblance of the five nucleotide signatures was expected as our analysis started with four c-
Myb motifs from TRANSFAC database [38].

In order to evaluate the relevance of this collection of deduced c-Myb binding sites, we
examined the correlation of the identified c-Myb footprints with a list of c-Myb target genes
derived from c-Myb knockdown in K562 cells [1]. Seven of the ten most down-regulated genes
(KCNH2, LMO2,MYB,MYADM, STNM3, EPCAM and GRSF1) had c-Myb footprints local-
ized within the gene locus. For the gene GLUL, a c-Myb footprint was located 19 kilo bases
(kb) downstream of the gene (S2 Table). Two target genes had no conserved c-Myb footprint
present. Mapping c-Myb-footprints at the majority of these genes is consistent with c-Myb
being involved in the activation of these. For genes being repressed by c-Myb, we identified c-
Myb footprints in five of the ten most upregulated genes: within the gene locus for GDF15,
MKRN1,MRAP2, LEPR, CPEB4. For two upregulated genes SH3BGRL3 and SLC30A10, c-Myb
footprints were identified 4 kb and 15 kb upstream respectively (S3 Table). The presence of
conserved c-Myb footprints at a high fraction of gene loci that are most affected by c-Myb
silencing suggests a role of c-Myb in direct regulation of these genes in K562 cells. We further
extended this analysis to the 100 most up- or down-regulated genes upon c-Myb knockdown
in K562 cells (Fig 1E) [1]. We find that 30% of these genes had conserved c-Myb footprints
within the gene body. A total of 39% of the top 100 c-Myb target genes had a c-Myb footprint
located +/- 10 kb from the gene body. Most cis-acting regulatory elements are found within
10–200 kb of their target genes [43]. By extending our analysis to +/-100 kb, we detected c-
Myb footprints at 72% of the top 100 genes. The remaining 28% of genes had no c-Myb foot-
prints and may not be direct targets of c-Myb, or these genes may be regulated by c-Myb at
binding sites that are not conserved. Additional alternatives may be that c-Myb binds to a
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DNA sequence motif different to the four TRANSFAC motifs used in this analysis, or indirect
association of c-Myb with chromatin through interaction with another bond TF or co-factor.
We also generated a graph displaying average of random sample of 100 genes repeated ten
times which show a marked decrease in genes with c-Myb footprints (Fig 1E). For example,
only 5.5% of these random genes had conserved c-Myb footprints within the gene locus, and
15.5% random genes had a c-Myb footprint located +/- 10 kb from the gene body.

We found that c-Myb footprints show a high degree of cell specificity, but there is also a
common core of c-Myb footprints that could be detected in all six cell-types, suggesting that
c-Myb may control both common functions and specific gene programs. One example is a c-
Myb footprint that maps to the transcription start site (TSS) of the GRSF1 gene in all six cell-
types (Fig 1F). Nonetheless, two other c-Myb footprints in the first intron of GRSF1 are only
present in three cell-types (CD34+, GM12865 and NB4), suggesting a complex combination of
general and cell type dependent control by c-Myb.

We analysed the global distribution of c-Myb footprints and found that between 10 and
15% (900–1300 footprints depending on cell type) map to the promoter directly upstream of
TSS (Fig 1G and S2A–S2E Fig). In comparison, a random sample of the same number of pre-
dicted c-Myb motif hits in the respective cell-types showed far less preference for mapping
close to the TSS. When we carried out the same analysis with the same number of randomly
selected DNase I footprints, we found a similar TSS localization as with the c-Myb footprints,
but with a slightly lower frequency directly upstream of TSS. Our analysis show that c-Myb
footprints and randomly selected DNase I footprints follow a common pattern at TSS.

On a global level, we found that c-Myb footprints in K562 cells were located more in pro-
moter regions (47%) and introns (30%) compared to intergenic regions (19%) (Fig 1H). When
we compared this across the other cell-types, a large proportion of c-Myb footprints was pres-
ent at promoters, with Th1 and CD20+ cells having over 60% of the c-Myb footprints located
in these regions. In comparison, the percentages of c-Myb footprints at promoters were less
(43–48%) in CD34+, GM12865, NB4, and K562 cells with more footprints in introns (28–31%)
and intergenic sequences (18–21%) (Fig 1H and S2F Fig). However, when we compared our
analysis with random sampling of DNase I footprints in K562 cells, c-Myb footprints over-
lapped significantly more with exons (with a normalised ratio, r, of 3.47), UTR regions
(r = 1.27), and promoters (r = 1.10) than would be expected by random sampling of DNase I
footprints (FDR-corrected p-value, p'< 0.05) (S4 Table). In the five other cell-types, c-Myb
footprints were located significantly more in exon regions (with normalised ratios ranging
from 2.98 to 3.96, p'< 0.05) (S4 Table) and 3'-UTR regions than expected by random sampling
of DNase I footprints (with normalised ratios ranging from 1.10 to 1.44, p'< 0.05). For NB4
and GM12865 cells there was a slightly higher localization in promoter regions (normalised
ratios 1.04 and 1.08, respectively, with p'< 0.05) (S2F Fig and S4 Table). Therefore, we con-
clude that c-Myb footprints differ from random sampling of DNase I footprints by locating
more in exons than at promoters although the total number of c-Myb footprints in promoters
is higher in all six cell-types.

Validation of predicted c-Myb footprints
To test whether a selection of c-Myb footprints is bound by c-Myb and in turn causes activa-
tion of the neighbouring gene, we performed transient reporter assays in CV-1 cells. We used a
sumoylation-deficient c-Myb mutant (c-Myb-2KR) to ensure active c-Myb (Fig 2A) [1,44,45].
We selected nine regions containing c-Myb footprints that mapped to genes being activated by
c-Myb (KCNH2, LMO2,MYADM, GRSF1, IKZF1, SENP1, DUS3L, RABEPK and DCAF7) (S2
and S5 Tables) in K562 cells [1]. Furthermore, we included four other K562 c-Myb footprints

Prediction of c-Myb Binding Sites in Haematopoietic Cells

PLOS ONE | DOI:10.1371/journal.pone.0133280 July 24, 2015 5 / 25



Fig 2. c-Myb enhances transcription from genomic elements with c-Myb footprints. Luciferase-based reporter assay to study the responsiveness of
genomic regions, with one or more c-MYB footprints mapped. (A) Representative Immunoblot of CV1 cells transfected with reporter plasmid and-/+ c-Myb.
(B) Map of the pGL4.26 vector used for the luciferase assays. The grey box illustrates the genomic fragment containing a c-Myb footprint or control region.
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located in proximity of or within the gene loci not known to be regulated by c-Myb in K562
cells (RUNX1, RUNX2, KB-1458E12.1 and C10orf55). Each amplified sequence (average 280
base pairs (bp)) spanning a c-Myb footprint was inserted into a luciferase reporter plasmid
upstream of the minimal SV40-promoter (Fig 2B). As negative control we selected a genomic
region on chromosome 2 that lacked c-Myb footprints. This control reporter showed only a
marginal response similar to the empty vector (Fig 2D and 2E). Several of the selected regions
(KCNH2,MYADM, GRSF1, SENP1, RABEPK, DCAF7 and C10orf55) showed a c-Myb
response equal to or higher than the 3xMRE positive control (Fig 2F, 2G and 2H, S3A, S3B,
S3D, S3E and S3G Fig). The base level differed largely between the constructs as expected since
they span a larger segment than the just c-Myb footprint. A weaker response was measured for
c-Myb footprints at the loci of LMO2, IKFZ1, RUNX1, DUS3L, KB-1458E12.1 and RUNX2 (Fig
2I, 2J, 2K and S3C, S3F and S3H Fig). These data confirmed that most of the selected c-Myb
footprints, taken out of their normal context, confer c-Myb response consistent with c-Myb
being capable of binding to the footprints and able to enhance transcription of the neighbour-
ing gene (Fig 2 and S3 Fig).

In order to further validate the deduced c-Myb footprints, we performed a DamID analysis
in K562 cells (S4A Fig) [46,47]. DNA adenine methyltransferase (Dam) was fused to full-length
c-Myb, and we generated a pool of stably transfected cells that express trace amounts of Dam
or c-Myb-Dam. It is critical to keep the Dam and Myb-Dam expression low to avoid too high
background methylation. This precludes direct detection of the trace levels by normal Western
blotting. We used an ecdysone-inducible promoter to detect the c-Myb-Dam expression and
performed transient transfection together with the pVgRXR vector encoding the ecdysone
receptor in K562 cells and induced expression by the ecdysone analog Ponasterone A [48]. A
clear induction of the fusion protein was observed (Fig 3A). To rule out the effects of random
integration of transgenes, we used two stable K562 pool cell lines for Dam and Dam-Myb
derived at different time points. Finally, we used qPCR with oligos spanning selected c-Myb
footprints to map c-Myb binding at these sites and compared the signals to those obtained
with the Dam only cells.

To monitor c-Myb binding at c-Myb footprints in K562 cells, we monitored DamID signals
by q-RT-PCR at six selected regions measured in the reporter assay (Fig 2), and in addition
two controls and three other regions where we had detected c-Myb footprints. At two selected
control loci without predicted c-Myb footprints we detected less c-Myb-Dam binding relative
to Dam alone (Fig 2H and 2I). We detected c-Myb binding at five gene loci with c-Myb foot-
prints that also showed response in the reporter assay (KCNH2, LMO2,MYADM, GRSF1 and
RUNX1) (Figs 2 and 3). Interestingly, we observed weak enrichment of the c-Myb footprint at
the IKZF1 locus, which showed only marginal response in the reporter assay (Figs 2J and 3F).
We also detected binding of c-Myb-Dam over Dam alone at three other loci (CBFA2T3,
BHLHE40 and PA2G4) (S4B–S4D Fig). These results show that almost all loci with predicted c-
Myb footprints that were tested by DamID are bound by c-Myb-Dam in K562 cells.

Histone modifications and transcription factors associated with c-Myb
footprints
It has previously been reported that c-Myb acts as both a transcriptional activator and repres-
sor and can influence the histone environment in the region it binds to [1,5,44,49]. To study

The black box illustrates the minimal promoter. (C) Positive control with three MREs. (D-E) Negative controls, (F-K) genomic loci identified to contain c-Myb
footprints. The upper panels show the genomic region in the UCSC browser (hg19) presenting DNase I signals, c-Myb footprints and oligos for selected
region. The coordinates for the c-Myb footprint are shown above the illustration. The values are the average from three independent experiments-/+ SEM.

doi:10.1371/journal.pone.0133280.g002
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Fig 3. Validation of c-Myb footprints by DAMID. (A) Expression of the Flag-c-Myb-Dam construct. K562 cells were transfected with a plasmid encoding the
c-Myb-Dam together with the activator plasmid pVgRXR and treated with 2 uM of Ponasterone A. Expression of the fusion construct was detected by
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how c-Myb footprints and histone marks correlate on a genome-wide level, we compared the
identified c-Myb footprints to ChIP-seq peak datasets for four different histone marks
(H3K4me3, H3K4me1, H3K9ac and H3K27me3) in K562 cells, available from the ENCODE
Consortium (Farnham and Snyder labs) [50,51] (Fig 4A–4D). We found that 36.9% of the c-
Myb footprints in K562 cells overlapped with ChIP-seq peaks of H3K4me3, a mark generally
associated with transcriptional initiation (Fig 4A) [52,53]. This overlap represents 10.7% of
total H3K4me3 peaks (1863 of 18622 peaks). Similar enrichments were found for H3K4me1
and H3K9ac, both marks associated with “open” chromatin and being signatures of enhancers
[54]. Here we found an overlap of 31.3% of the c-Myb footprints with H3K4me1 peaks (Fig
4B) and 40.6% overlap of the c-Myb footprints with H3K9ac (Fig 4C). Only 1.7% of total ChIP
peaks for H3K4me1 overlapped with c-Myb footprints. The repressive mark H3K27me3 [55–
57] showed a very low overlap with only 31 (0.02%) c-Myb footprints falling inside 134768
H3K27me3 peaks (Fig 4D).

We next tested whether the overlap between c-Myb footprints and histone marks were dif-
ferent than expected by chance. We found that DNase I containing c-Myb footprints over-
lapped significantly with H3K4me3 peaks (positively, with r = 1.10) and H3K4me1 peaks
(negatively, r = 0.81) from what is expected from a null model based on random sampling of
DNase I footprints (p'< 4x10-4, Monte Carlo test) (S5A–S5D Fig and S6 Table). Furthermore,
very few of a random sample of c-Myb motifs (same number as c-Myb footprints) overlapped
with the different histone marks (S5E–S5H Fig). The general picture that emerges from this
analysis is that c-Myb plays a role, both at enriched at TSS regions and exons, correlating with
activating H3K4me3 marks. It also suggests that the repressive effects of bound c-Myb are
achieved by other mechanisms than inducing repressive H3K27me3 marks.

The expression of a gene is often controlled by several TFs in concert through combinatorial
control [58]. To obtain more information on how c-Myb exerts its function in synergy with
other TFs in controlling gene expression of target genes, we analysed co-localisation of c-Myb
footprints around the TSS and ChIP-seq peak datasets generated by the ENCODE Consortium
[51] for 103 chromatin-associated proteins in K562 cells. We limited the analysis to the 467
genes positively or negatively regulated by c-Myb knockdown [1]. For each TF, we tested
whether the ChIP-seq peaks overlapped c-Myb footprints around positively and negatively
regulated genes, respectively, more than expected by random sampling of footprints. Based on
certain thresholds (see Methods) we thus identified two sets of proteins that we suggest may
co-regulate positively (9 factors) and negatively c-Myb regulated genes (1 factor), respectively
(Fig 4E, S7 Table). Interestingly, c-Myb has previously been shown to interact with three of the
proteins that we mapped to overlap on c-Myb target genes, either directly or as a part of com-
plexes: a member of the mixed-lineage leukaemia (MLL) complex RBBP5 [49] and the two TFs
ETS1 [59] and SIN3A [60]. Our analysis suggests that c-Myb may act together with these fac-
tors to modulate the expression of its target genes.

c-Myb footprints are present on a subset of genes across six
haematopoietic cell-types
To understand how c-Myb exerts its function through downstream gene programs, we
assigned molecular functions to the identified c-Myb footprints through the use of the Gene

immunoblotting against Flag-tag. (B-J) Association of the control Dam and c-Myb-Dam at specific loci containing one or more c-Myb footprints quantified with
qPCR and normalised to Dam. The upper panels show the genomic region in the UCSC browser (hg19) presenting DNase I signals, c-Myb footprints and
oligos for qPCR. The coordinates for the c-Myb footprint are shown above the illustration. The values represent the average from two independent cell lines-/
+ SEM.

doi:10.1371/journal.pone.0133280.g003
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Ontology (GO) tool GREAT [61,62] (Fig 5, S6–S9 Figs). For K562 cells the top enriched func-
tions were identified to be in three groups: RNA catabolic processes, regulation of gene expres-
sion and cell cycle regulation (S6 Fig). This result correlates well with previous conclusions
after c-Myb knockdown in the same cell type [1]. The functional analysis of the five other cell-
types showed genes involved in cellular maintenance and several cell-specific functions were
enriched for each cell type (S6–S9 Figs). We repeated the analysis for the same number of ran-
domly selected DNase I footprints in all six cell-types and obtained results showing different
gene functions from those predicted from the c-Myb footprint gene list.

Fig 4. c-Myb footprints co-localises with active histonemarks and co-regulatory TFs at c-Myb-regulated genes. (A-D) The number of c-Myb footprints
(grey), which co-localize with ChIP-seq peaks for the active histone marks H3K4me3, H3K4me1, H3K9ac, (green) and the repressive mark H3K27me3 (red)
in K562 cells. *Significantly different than expected from random sampling K562 DNase I footprints (p', > 4x10-4). (E) Suggested co-regulatory TFs for c-Myb
in K562 cells. Green and red denotes factors in the positive and negative set respectively. Next to each factor, the normalised ratio for the co-localisation with
c-Myb footprints at positively or negatively regulated genes is displayed. The distance between each factor and c-Myb is calculated as a measure of the
normalized ratio, as described in Methods.

doi:10.1371/journal.pone.0133280.g004
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To obtain more detailed information about the function of c-Myb in the different haemato-
poietic cells, we compared the c-Myb footprint genes from the haematopoietic progenitors
CD34+ with c-Myb footprint genes from the more differentiated cell-types CD20+ and Th1
(Fig 5A). We found that a large number of c-Myb footprints are lost when the haematopoietic
progenitors develop into each of the differentiated cell-types, while a small fraction of the c-
Myb footprints is retained. However, an even larger fraction of the c-Myb footprints appear in
this process and is specific for the differentiated cell type (Fig 5A). Functional analysis of the
differentially mapped c-Myb footprint genes shows an enrichment of functions specific for the
individual cell type, e.g. B cell activation and differentiation for CD20+ cells and T-cell activa-
tion and regulation for Th1 cells (Fig 5A).

Fig 5. c-Myb controls differentiation and cell development. (A) Gain and loss of c-Myb footprints between CD34+ cells and CD20+ and Th1 cells,
respectively. To the right are the top enriched functions for genes nearby c-Myb footprints specific for either CD20+ cells or Th1 cells as compared to CD34+
cells. For the full list of enriched functions, see S9 Fig. (B) Functional analysis of c-Myb footprints in all six cell-types. The functional analysis was made with
GREAT [61].

doi:10.1371/journal.pone.0133280.g005
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A core of 406 common c-Myb footprints is present in all the six cell-types (e.g. GRSF1), and
the functional analysis of this subset shows enrichment of genes involved in RNA processing
and DNA recombination (Fig 5B, S10 Fig and S8 Table). We were concerned that these com-
mon c-Myb footprints could be driven by an overlap of DNase I footprints in all six cell-types
and therefore we performed a random DNase I footprint control experiment ten times (S10
Fig). The random controls gave no common footprints, showing that there is a high degree of
specificity for these common c- Myb footprints.

Four of the 65 common genes are listed among the genes regulated by c-Myb in K562 cells
(GRSF1, RUVBL2, UBE2N and SMNDC1) (Figs 1G, 5B and S8 Table) [1]. Furthermore, when
we analysed the list of common c-Myb footprints and compared overlap with ChIP-seq peaks
for chromatin proteins that we identified as co-regulatory factors using c-Myb footprints in
K562 cells (S7 and S9 Tables). A large fraction of the common c-Myb footprints (55–204) over-
lapped with ChIP-seq for the different factors.

To further validate our c-Myb footprints, we used the set of 406 common c-Myb footprints
from our six cell-types and checked for overlap with c-Myb ChIP-seq peaks in human T-cell
leukaemia cell lines (Jurkat and MOLT-3) [26]. The rationale is that if these footprints repre-
sent a common c-Myb signature, they should also be found among the c-Myb ChIP peaks in
the two latter cell lines. We got an overlap of 65.2–75.8% in the Jurkat cell line and 79.6% in
MOLT-3 the cell line. From this we can conclude that a large fraction of common c-Myb foot-
prints from our analysis are also found in T-cell leukaemia cell lines. We illustrate an overlap
of a common c-Myb footprint with the c-Myb ChIP-seq signal datasets at the GRSF1 promoter
(S11A–S11B Fig).

Discussion
In this study we have predicted genome-wide c-Myb binding in six different cell-types using
digital DNase I footprints, from the haematopoietic progenitor CD34+ to the more differenti-
ated cell-types GM12865, CD20+ and Th1 and the cancerous cell-types K562 and NB4 (Fig 1)
[31]. Our aim was to evaluate whether DGF was an approach that could compensate for the
lack of available c-Myb ChIP-seq data. With the filters utilised, we ended up with about 6000
footprints sharing a c-Myb signature in K562 cells. Several validation experiments suggested
that these predictions had a reasonable accuracy. We used our c-Myb knockdown dataset from
K562 cells to validate the c-Myb footprint predictions. For the top 100 c-Myb regulated targets
a large proportion (39%) had c-Myb footprints +/- 10 kb from TSS, whereas when we extended
the analysis to +/-100 kb, we detected c-Myb footprints at 72% of top 100 genes. Furthermore,
we used reporter assays and showed that thirteen selected c-Myb footprint regions that local-
ized either within the gene locus or upstream of twelve genes were enhanced to different
degrees in the presence of c-Myb compared to control (Fig 2 and S3 Fig). In addition to these
functional assays, we directly tested c-Myb occupancy on a selection of c-Myb footprints in
K562 cells with the antibody independent technique DamID and showed that they indeed are
elements recruiting c-Myb in their chromatin context (Fig 3 and S4 Fig). It is noteworthy that
the level of c-Myb-Dam expression is very low in DamID compared to the reporter assay, and
we were unable to detect the c-Myb-Dam fusion protein by western in c-Myb-Dam stable cell
lines. That we nevertheless find c-Myb enriched in nine out of nine selected regions with c-
Myb footprints suggests that c-Myb recognizes and selectively binds these predicted footprints
in chromatin under quite stringent conditions. The DamID validations, therefore, lend quite a
strong support to the accuracy of the DGF predictions.

The vertebrate Myb family members consist of A-Myb (MYBL1), B-Myb (MYBL2) and c-
Myb (MYB) and share a conserved DNA-binding domain [63]. Although the Myb family
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members are very similar in overall structure and although they can be co-expressed in differ-
ent cell-types, knockout studies of A-Myb, B-Myb or c-Myb show that they have differential
roles in gene regulation during development and have distinct phenotypes [3,64,65]. The three
MYB family members have their highest level of conservation in the DNA binding domain
(DBD). They bind the same core Myb recognition element (MRE) (PyAACG/TG) [66–68] and
the core MRE in c-Myb footprints in all six cell-types may therefore be bound by all three pro-
teins (Fig 1D and S1G–S1K Fig). Our main focus has been on c-Myb footprints in K562 cells
where c-Myb is the most highly expressed family member and overlapping binding of A-Myb
to MREs is minimal, asMYBL1mRNA is approximately 900 times less abundant [1]. The
MYBL2 expression is four times lower than the expression ofMYB in K562 cells and it is there-
fore a more likely candidate binder thanMYBL1 [1].While A- and c-Myb appear to have virtu-
ally identical DNA-binding properties, B-Myb forms complexes of significantly lower stability,
which are rapidly dissociating under competitive conditions. It is therefore unlikely that
B-Myb can form sufficiently stable enough complexes to generate clear DNase I footprints
[69].

Another important aspect regarding prediction of specific TF footprint signatures is the res-
idence time of the respective factor. A recent report by Hager and colleagues showed that
DNase I “cleavage” signatures to a large extent depend on intrinsic properties of the DNase I
and the DNA sequence in the factor-binding site [70]. However, the footprint depth seems to
depend on the time the factor occupies and protects the target sequence. Many TFs with fast
kinetics such as the glucocorticoid receptor (GR) gives poor overlap between GR footprints
and ChIP-seq peaks compared to CTCF that has long residency time [70]. The in vivo dynam-
ics of c-Myb binding is not known, but the intrinsic DNA binding properties of c-Myb has
been extensively studied in vitro. Noteworthy, c-Myb binds to DNA in a two-step process—
first the rapid formation of an unstable complex, followed by a slower transition to a stable
complex, a process coupled with a conformational change in its DBD [71,72]. Therefore, c-
Myb is expected to be able to bind more stably to chromatin than normal “tread milling” TFs.
How this process is dependent on the DNA sequence in the factor-binding site remains to be
elucidated.

Several methods for prediction of TF binding using DGF have been described in different
cell-types from yeast to human [29–32,73–75]. Different computational prediction tools such
as Wellington [75], CENTIPEDE [32], DNase2TF [70] and Footprint detection software [30]
are available. We have devised an approach that uses DGF datasets from [31], in combination
with MotifLab [37] and four c-Myb motifs from the TRANSFAC database [38] and weighted
conservation using mammalian phastCons elements [41]. Our choice of conservation can be
debated as regulatory elements may not necessarily be conserved across mammalian species
[76]. A recent study showed that only about 22% of mouse TF footprints are conserved in
human [77]. Even though several approaches have successfully identified active conserved reg-
ulatory regions across vertebrate species [78–81], many enhancers are poorly conserved and
have species-specific TF binding [82,83]. Therefore, we cannot exclude the possibility that our
filters will to a certain degree underestimate c-Myb binding sites in the six human cell-types. A
recent report of an oncogenic super-enhancer formed by somatic mutation creating a novel c-
Myb binding site shows that non-conserved enhancers can occur independently of evolution
[26]. Our analysis, therefore, limits the prediction of c-Myb footprints to those that are evolu-
tionarily conserved, and we may miss c-Myb regulatory elements only present in humans. We
do, however, identify substantially more c-Myb footprints in our analysis as compared to the
previously identified Myb footprints in seven lymphoblastoid cell lines [29].

Given these reservations, on a global level, our data show that c-Myb footprints differ from
random sampling of DNase I footprints by locating more in exons than at promoters although
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total number of c-Myb footprints in promoters is higher in all cell-types. An estimate of 51% of
all enhancers are intragenic [54] and DNaseI HS sites in exons have been implicated in chro-
matin looping and possibly alternative splicing [84].The presence of c-Myb in exons and a role
in such processes is very interesting and needs to be further characterized in future studies.

We identified factors that co-localize with c-Myb footprints at promoters of c-Myb regu-
lated genes in K562 cells [1] (Fig 4E). Three of the co-regulatory proteins (RBBP5, ETS1 and
SIN3A) have been found to interact directly or indirectly with c-Myb [49,59,60]. SIN3A,
SAP30 and RBBP5 are part of the ALL-1 super complex identified in K562 cells [85]. This com-
plex also contains two other known c-Myb co-factors p300 [44] and CHD3 [86] that are
involved in the regulation of c-Myb activity. Both p300 and CHD3 enhance c-Myb activity,
and may function together with the SIN3A/SAP30/RBBP5 and c-Myb. RBBP5 is also part of
the MLL1/2 complex responsible for H3K4me3 [87] and MLL3/4 was recently described as the
methyltransferases that monomethylates H3K4 [88]. We find that one-third of c-Myb foot-
prints overlapped with H3K4me3, and that this overlap was statistically significantly different
than expected by random sampling of DNase I footprints (Fig 4A). MLL1 interacts with c-Myb
through Menin [49] and, therefore, c-Myb may play a role in directing MLL mediated H3K4
trimethylation to c-Myb target genes.

Besides a small core of c-Myb footprints that are common across cell-types (total 406) (Fig
5B and S10 Fig), our analysis shows that a large part of c-Myb binding sites are cell type spe-
cific. Performing GREAT for the c-Myb footprints indicates that c-Myb has specialized roles
related to the function of the specific cell type (Fig 5A and S6–S9 Figs).

The gene GRSF1 is an important mitochondrial regulator and is one of the most affected
genes upon c-Myb knockdown in K562 cells (S2 Table). Interestingly, our analysis identifies a
c-Myb footprint in the promoter region of GRSF1 present in all six cell-types. Moreover, we
show that c-Myb is capable of enhancing the expression of GRSF1 and also binds to the locus
in K562 cells. Taken together, the data indicates that c-Myb is important for the expression of
the GRSF1 gene in several stages of the haematopoiesis.

We used this dataset of common c-Myb footprints and found extensive overlap with c-Myb
ChIP-seq peaks in Jurkat and MOLT-3 cells, with the rationale is that if these footprints repre-
sent a common c-Myb signature, they should also be found among the c-Myb ChIP-peaks in
the T-cell leukaemia cell lines. This was indeed true, we found a marked overlap that indicates
that the common c-Myb footprints are bound by c-Myb, and may function as a type of quality
control of our footprint predictions.

In summary, our data show that DGF can be used to predict conserved functional binding
sites for c-Myb and that c-Myb has specific binding sites depending on the haematopoietic cell
type. We have compared the majority of our analysis results to a random control. Furthermore,
we have validated a selection of predicted c-Myb footprints by two different methods, and we
found that c-Myb was capable of binding and enhancing gene activity through these predicted
elements. We also mapped predicted c-Myb footprints to top c-Myb regulated target genes in
K562 cells. These results suggest that a compelling fraction of our identified c-Myb footprints
indeed are true c-Myb binding sites.

Materials and Methods

Data source
Digital genomic footprints for the six cell-types: CD20+, CD34+ (mobilized), GM12865, K562,
NB4 and Th1 were obtained from [31]. ChIP-seq peaks for factors in K562 generated from
experiments as part of the ENCODE Consortium [51] were downloaded from the UCSC
Table Browser (S12 Table). For the histone analysis, we used ChIP-seq peaks generated by the
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Farnham and Snyder labs (S12 Table). For gene annotation data, we used ENSEMBL annota-
tion GRCh37 [89].

Cell culture
Human K562 cells and African green monkey CV1 cells were obtained from ATCC and cul-
tured as described in [86].

Constructs and Cloning
For luciferase constructs, genomic DNA was extracted from K562 cells using the DNeasy
Blood & Tissue Kit (Qiagen). Selected genomic regions with the approximate size of 280 bp
were amplified by PCR and cloned into the pGL.24.6 (Promega) vector using the restriction
sites XhoI and NheI. For primers used, see S10 Table. To obtain the fusion construct 3xFLAG-
c-Myb-V5-EcoDam, the c-Myb with an N-terminal 3xFLAG-tag was cloned into the pINDgw-
RFA-V5-EcoDam using the Gateway technology (Invitrogen). The pINDgw RFA-V5-EcoDam,
pIND-V5-EcoDam and pVgRXR vectors were a kind gift from Bas van Steensel [47]. c-
Myb2KR is described in detail in [44]

Reporter assay
The day before transfection, CV-1 cells were plated in 24 micro-well plates at 2x104 cells per
well. Cells were transfected with a total of 0.3 micrograms of DNA per well using the Tran-
sIT-LT transfection reagent (Mirus Bio). For the reporter assay 0.2 micrograms of pCIneo-c-
Myb-2KR [1] and 0.1 micrograms of the pGL.4.26 were used per well. Cells were lysed 18
hours after post transfections with Passive lysis buffer (Promega) and luciferase activity was
measured in a luminometer (Turner Designs). Data from three biological and nine indepen-
dent transfections are presented.

DNA adenine methyltransferase identification (DamID) assay
Stable K562 cell lines expressing either 3xFLAG-c-Myb-V5-EcoDam or EcoDam alone were
generated by electroporation using the Amaxa Nucleofector system (Lonza Bioscience) with
the pINDgw-3xFLAG-c-Myb-V5-EcoDam or pIND-V5-EcoDam, respectively. Following elec-
troporation cell lines were selected with G418 (Invivogen). DamID libraries for EcoDam and c-
Myb-V5-EcoDam were made as described in [47]. In brief: Genomic DNA was isolated using
the DNeasy Blood & Tissue Kit (Qiagen) and processed to enrich for DNAmethylated by
either V5-EcoDam alone or 3xFLAG-c-Myb-V5-EcoDam. Purified DNA was analysed by
qPCR using the same amount of DNA for EcoDam and c-Myb-V5-EcoDam [48] on a Lightcy-
cler480 (Roche). For primers used, see S10 Table. To validate the expression of the full-length
3xFLAG-c-Myb-V5-EcoDam construct, K562 cells were transfected with pINDgw-3xflg-c-
Myb-V5-EcoDam or pIND-V5-EcoDam respectively together with the pVgRXR ecdysone
receptor-encoding vector. Next day, 2 μM of Ponasterone A (Invitrogen) was added to the cell
media and after 24 hours cells were lysed in SDS loading dye and subjected to western blotting
on a PVDF membrane with anti-FLAG (Sigma) and anti-GAPDH (Invitrogen) antibodies (S10
Table).

Identification of c-Myb footprints
To predict c-Myb footprints in the human genome (hg19), we used the MotifLab analysis
workbench with MATCHmotif scanning tool andminSUM cut-off threshold [37,90]. We
scanned with four c-Myb motif models (M00004, M00183, M00773, M00913) from the
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TRANSFAC database [38]. The overlap between the c-Myb motif instances and DNase I foot-
prints was calculated for each of the six cell-types with a threshold of 0.9 (CD20+, CD34+
(mobilized), GM12865, K562, NB4 and Th1) [31]. For each predicted motif instance we calcu-
lated a weighted average conservation score across the site where the conservation score (phast-
Cons46wayPlacental) (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/
placentalMammals/) in each position was weighted according to the information content of
the corresponding column in the motif. Sites that scored below 0.22 were discarded from fur-
ther consideration. The de novo search for motifs inside the c-Myb footprints was carried out
with the motif identification tool ChIPMunk [42].

c-Myb regulated gene set
The list of 100 most up- or down-regulated genes upon c-Myb knockdown in K562 cells are
obtained from [1]. In brief, we analyzed the global effects of c-Myb knockdown using microar-
ray expression profiling by comparing genome wide patterns of gene expression between con-
trol and c-Myb-siRNA transfected K562 cells. The control K562 cells were transfected with a
non-specific siRNA (siLuc; targeting the firefly luciferase gene). We performed a first profiling
experiment using eight biological replicates and si323 RNA-mediated knockdown. A second
expression profiling study with the si2992 RNA-mediated knockdown and four biological rep-
licates was used to validate the regulated genes detected in the first dataset. After statistical
analysis of the results from each of the experiments using permutation F2-tests, in which resid-
uals were shuffled 5000 times, and family-wise error correction, and top 100 significantly regu-
lated genes (P<0.05) were selected.

Statistical analysis
For statistical analysis we used The Genomic HyperBrowser [91]. Hypothesis testing was per-
formed using Monte Carlo simulation with 10000 repetitions, drawing random samples (of the
same size as the number of c-Myb footprints) uniformly from the total population of DNase I
footprints. As the test statistic, the difference in the overlap between the dataset in question
and respectively the sampled footprints (case) and the rest (control) was used. The p-values
were corrected for multiple testing using FDR correction over all tests, or in the case of the
analysis of the cell-specific distribution of c-Myb footprints, over all tests per cell type [92]. As
a measure of effect size, a normalised overlap ratio was used, defined as follows:

r ¼ ðXm=YnÞ
where X is the overlap between the query dataset and c-Myb footprints, Y is overlap between
the query dataset and the rest of the DNase I footprints, n is the number of c-Myb footprints
andm is the number of remaining DNase I footprints. For these analyses the middle point of
the DNase I footprints were used.

Analysis of TF co-regulation
For the analysis of TF co-regulation, distance from c-Myb footprints to the closest gene regu-
lated by c-Myb [1] was assigned using BEDOPS [93]. Footprints inside +/- 5 kb of TSS of regu-
lated genes were isolated and compared with ChIP-seq datasets. Several thresholds were set:
first, only factors with peaks overlapping the gene-regulating c-Myb footprints significantly
more than expected by random sampling of DNase I footprints, were selected (FDR-corrected
p-value, p',< 0.05); second, the threshold for normalised ratio was set to 1.05; third, there
needed to be at least 20 genes with c-Myb regulating footprints (both positively and negatively)
overlapping the ChIP-seq peaks of the factor; and fourth, the difference in normalised ratio for
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the overlap between the peaks and the positively and negatively regulated genes, respectively,
needed to be> 0.5. Factors thus selected were then assigned to either a positive or a negative
set of co-regulating TFs according to the highest value of the normalised ratio. A distance mea-
sure between c-Myb and each protein was calculated as:

10
a
b

Where a is the highest normalised ratio for the factors in the set, and b is the normalised ratio
of the factor in question.

Distribution of c-Myb footprints
To calculate the genomic distribution of the c-Myb footprints, Ensembl gene annotations were
used. The annotations were divided into the following categories: promoters, exons, 3´-UTR,
introns, and intergenic regions. The promoter regions were defined as -2500 bp upstream and
500 bp downstream of TSS. In cases where a footprint was found in more than one gene cate-
gory, it was assigned to one category in the following order: promoters, exons, 3´-UTR, introns,
and intergenic regions. For the distribution around TSS, c-Myb footprints, DNase I footprints
and c-Myb motifs were grouped into 100 bp bins and summed. For all analyses, including his-
tone marks and distance to regulated genes, the middle point of the DNase I footprints and
motifs were used.

GREAT analysis
For the functional analysis of c-Myb footprints the GREAT tool with standard settings was
used [61]. The middle point of either c-Myb footprints or a random selection containing the
same number of cell- specific DNase I footprints was used as input. For a comparison of c-Myb
specific footprints between cell-types, the middle point of c-Myb specific footprints were
expanded with 12 bp on each side and an overlap between two footprints was set to require at
least six bp. The promoter regions of the gene lists are defined as -2.5 kb upstream to +0.5 kb
downstream of the TSS.

Analysis of c-Myb ChIP-seq data
For analysis of c-Myb ChIP-Seq data from [26], datasets were retrieved from NCBI Gene
Expression Omnibus (GEO) (GSM1519643 and GSM1442006) and analysed with SraTailor
[94] using the programs standard settings for Bowtie2 [95] and MACS [96]. ChIP-seq datasets
for c-Myb were analysed for enrichment with corresponding control datasets. To calculate the
fraction of common footprints in all six cell-types co-localising with ChIP-Seq peaks for c-Myb
in Jurkat and MOLT-3 cells, the overlap between footprint and peaks was set to be a minimum
of one bp.

Supporting Information
S1 Fig. Weighted average conservation for genome-wide c-Myb motifs and c-Myb foot-
prints. (A-F) Weighted average conservation using mammalian phastCons elements for
each predicted motif instance for all genome-wide were calculated for c-Myb motifs and the
identified c-Myb footprints +/- SD, respectively, in the cell-types CD20+, CD34+, GM12865,
K562, NB4, Th1. (G-I) The binding motif enriched in c-Myb footprints in CD20+, CD34+,
GM12865, NB4 and Th1 cells.
(TIF)
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S2 Fig. Genomic distribution of c-Myb footprints. (A-E) Localization of c-Myb footprints, a
random selection of DNase I footprints and a random selection of c-Myb motifs for the cell-
types CD20+, CD34+, GM12865, NB4 and Th1 around TSS. (F) Genomic distribution of c-
Myb footprints for the cell-types CD20+, CD34+, GM12865, NB4 and Th1. �Overlapping sig-
nificantly more with c-Myb footprints than with randomly selected K562 DNase I footprints
(p'< 0.05, calculated by the Monte Carlo test).
(TIF)

S3 Fig. Additional luciferase assays. (A-H) Luciferase assay as described in Fig 2.
(TIF)

S4 Fig. Additional DamID assays. (A) Schematic overview of the DamID method. (B-D)
DamID assay for the association of the control Dam and c-Myb-Dam as described in Fig 3.
(TIF)

S5 Fig. Co-localisation of DNase I and c-Myb motifs with histone marks. (A-H) Overlap
between ChIP-seq peaks for the active histone marks H3K4me3, H3K4me1, H3K9ac (green)
and the repressive mark H3K27me3 (red) in K562 cells, and K562 DNase I footprints or a ran-
dom sample of c-Myb motifs. For DNase I footprints, the expected number of overlapping
footprints when drawing random samples without replacement from the total set of K562
DNase I footprints (the hypergeometric distribution) are shown. For c-Myb motifs the overlaps
of a single random sample are shown.
(TIF)

S6 Fig. Functional analysis of c-Myb footprints in K562 cells and CD20+ cells. GREAT GO-
term annotations for c-Myb footprints and a random sample of DNase I footprints for K562
cells (A-B) and CD20+ cells (C-D).
(TIF)

S7 Fig. Functional analysis of c-Myb footprints in CD34+ cells and GM12865 cells. GREAT
GO-term annotations for c-Myb footprints and a random sample of DNase I footprints for
CD34+ cells (A-B) and GM12865 cells (C-D).
(TIF)

S8 Fig. Functional analysis of c-Myb footprints in NB4 cells and Th1 cells. GREAT GO-
term annotations for c-Myb footprints and a random sample of DNase I footprints for NB4
cells (A-B) and Th1 cells (C-D).
(TIF)

S9 Fig. Functional analysis of cell-specific c-Myb footprints in CD20+ cells and Th1 cells.
The full list of enriched functions identified with GREAT for cell specific c-Myb footprints for
CD20+ cells (A) and Th1 cells (B) as compared to CD34+ cells.
(TIF)

S10 Fig. Analysis of overlap of c-Myb footprints in the six cell-types compared to random
DNase I footprint controls. Graphs showing number of common c-Myb footprints or random
selections of cell-specific DNase I footprints after subtraction of non-overlapping footprints
between two cell-types at the time, and ending with the final number is a common set of foot-
prints in all six cell-types. The analysis of a random selection of cell-specific DNase I footprints
was repeated ten times starting with 12338 random footprints in CD34+ cells. The y-axis repre-
sents the number of c-Myb or DNase I footprints; the x-axis shows the six cell-types with total
number of c-Myb footprints or number of random selection of cell-specific DNase I footprint
used in the analysis (c-Myb footprints, red graph; random DNase I footprints, black bars). The
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numbers to the right indicate common footprints for c-Myb (red) or a random selection of
cell-specific DNase I footprints (black) footprints common in all the cell-types.
(TIF)

S11 Fig. Overlap of common c-Myb footprints and c-Myb ChIP-Seq data from Jurkat and
MOLT-3 cells. A) Overlap between c-Myb ChIP-Seq peaks for Jurkat and MOLT-3 cells [26]
and the c-Myb footprints common in all the six cell-types analysed in this study. ChIP-Seq
data was processed with SraTailor [94] using the default settings. B) An illustration showing
the identified c-Myb common footprints at the promoter for GRSF1 for the six cell-types ana-
lysed in this study (see also Fig 1F) and enriched c-Myb ChIP-Seq signals for the same region
in Jurkat and MOLT-3 cells. Coordinates for c-Myb footprint are shown above, and to the left
are the signal intensities for the ChIP-Seq data shown. UCSC version hg19 (http://genome.
ucsc.edu).
(TIFF)

S1 Table. DNase I footprints and c-Myb footprints for the six cells types analysed. The total
number of footprints, footprints overlapping with c-Myb motifs and predicted c-Myb foot-
prints in all the six cell-types analysed.
(PDF)

S2 Table. The ten most downregulated genes in K562 cells upon knockdown of c-Myb.
Gene name, ID number, degree of regulation, if the gene contains a c-Myb footprint and the
position of the footprint for the ten most downregulated genes in K562 cells upon knockdown
of c-Myb [1].
(PDF)

S3 Table. The ten most upregulated genes in K562 cells upon knockdown of c-Myb. Gene
name, ID number, degree of regulation, if the gene contains a c-Myb footprint and the position
of the footprint for the ten most upregulated genes in K562 cells upon knockdown of c-Myb
[1].
(PDF)

S4 Table. Genomic localisation for c-Myb footprints in the six cell-types analysed. FDR-cor-
rected p-values, p', and normalised ratio for the distribution of c-Myb footprints at annotated
genes, promoters and intergenic regions for the six cell-types analysed.
(PDF)

S5 Table. Additional c-Myb target genes used in this study. Additional genes used in the
study that are also regulated in K562 cells upon knockdown of c-Myb [1].
(PDF)

S6 Table. Co-localisation between c-Myb footprints and histone modifications. FDR-cor-
rected p-values, p', and normalised ratios for co-localisation between c-Myb footprints and
ChIP-Seq peaks for the four histone modifications analysed in K562 cells.
(PDF)

S7 Table. Co-regulatory transcription factors. Transcription factors with ChIP-seq peaks sig-
nificantly overlapping c-Myb footprints at positively and negatively c-Myb-regulated genes.
FDR-adjusted p-values, p', and normalised ratios are shown. For full list of ChIP-seq datasets
analysed see S12 Table.
(PDF)
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S8 Table. Genes enriched in the GO terms of c-Myb footprints common in all six cell-types.
Gene list enriched in the four GO-terms (Fig 5B) identified by GREAT for c-Myb footprints
common in all the six cell-types analysed in this study. The promoter regions of the genes are
defined as -2.5 kb upstream to +0.5 kb downstream of the TSS.
(PDF)

S9 Table. Overlap between suggested co-regulatory factors in K562 cells and c-Myb foot-
prints common in all six cell-types.
(PDF)

S10 Table. List of primers used in this study.
(PDF)

S11 Table. Antibodies used in this study.
(PDF)

S12 Table. List of ChIP-Seq peak datasets used in this study.
(PDF)

S1 File. c-Myb footprints identified in the six cell-types analysed.
(ZIP)
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