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We begin by reviewing some of the basic concepts of reliability theory. A binary monotone 
system is an ordered pair (E, ¢),where E = {1, ... , n} is a set of components and¢ is the 
structure function. ¢ is a binary, non-decreasing function defined on the random vector 
X = (X1 , ... , Xn) of binary component states at a certain fixed point of time. Xi = 1 if 
the i-th component is functioning, otherwise Xi = 0. Similarly ¢ takes the value 1 if the 
system is functioning and 0 otherwise. 

The reliability Pi of the i-th component is the probability that the component is func­
tioning. The reliability h of the system is the probability that the system is functioning. 
The reliability function h(·) of the system is a multilinear function in the variables p1 , ... , Pn 
whose value is the reliability of the system if the component states are independent. h can 
be expressed as 

h(p) = r: o(A) rr Pi (1) 
A~E iEA 

The function 8 is called the signed domination function and is defined through the 
equation 

¢(X)= L 8(A) rr xi (2) 
A~E iEA 

A subset P of E is called a path set for the system if Xi = 1 for all i E P implies 
¢(X) = 1. P is called a minimal path set if no proper subset of P is a path set. A subset 
K of E is called a cut set for the system if Xi = 0 for all i E K implies ¢(X) = 0. K is 
called a minimal cut set if no proper subset of K is a cut set. 

Many theoretical results are known, and many methods exist for analysing systems with 
independent components. The analysis of systems with dependent components is much 
more difficult in general. In practice the asumption of independence is often unrealistic. 
It is therefore important to study different types of dependence models that can be used 
to model systems of dependent components in different situations. One such model is the 
shock model introduced by Boyles and Samaniego (1984). This model is particularly well 
suited to analyse systems where the dependence is due to common cause failures. 

In section 2 we define the shock model, and discuss how the reliability of shock systems 
can be calculated. Section 3 of this paper is devoted to a discussion of bounds for the 
reliability of a shock system. In section 4 we discuss Bayesian analysis of shock systems 
in relation to a framework for such analysis for general reliability systems introduced by 
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Natvig and Eide (1987). In section 5 we discuss Bayesian estimation of the life distribution 
of a shock system in analogy with the procedure of Natvig and Eide (1987). 

2 The shock model 

In the shock model we assume that there exists a set of common shocks corresponding 
to a family A of subsets of E. The shock corresponding to the set A E A destroys all 
components in A and no others. The common shocks are also referred to as external 
shocks. The individual failure of a component is also thought of as a shock (corresponding 
to a set consisting of one element) and is called an individual shock. We denote by Ei the 
set of shocks destroying the i-th component, and more generally, by EA the set of shocks 
B such that B intersects A. In order to keep track of the shock status we introduce the 
random variables YA. YA = 1 if the shock corresponding to A has not yet occurred, and 
0 if it has occurred. The probability that the shock A has not occurred is denoted by qA, 
and the vector with components qA is denoted by q. The variables YA are assumed to be 
independent. Now we have the following obvious relations: 

Pi= IT qA 
AEE.; 

(3) 

(4) 

Since the variables YA are binary, and since the state of the system clearly is a non­
decreasing function of these variables, it is obvious that the YA's can be used to define a 
binary, monotone system that gives an alternative description of the state of the original 
system. More precisely, we summarize the equations (3) and (4) in the equations 

X= rJ(Y) p = rJ(q) (5) 

and define the system (F, '1/J) by letting F consist of all the sets in A together with the one 
point sets { i}, i E E. Thus we identify the components of the system with subsets of E 
rather than with natural numbers. The structure function '1/J is defined by 

'1/J(Y) = ¢(TJ(Y)) (6) 

The advantage of this is that the components of the system (F, '1/J) are independent. 
Note that q is the vector of component reliabilities for the new system. We will denote by 
g ( ·) the reliability function of ( F, '1/J). The independence of the components in ( F, '1/J) implies 
that g( q) is the reliability of the system. 

Of course, knowledge of q is required in order to perform a reliability analysis by means 
of the system (F, '1/J). However, data on the reliabilities of the components will often be 
in a form directly relevant to the quantities qA, with A a one point set. In laboratory 
experiments the components will usually not be subject to the common shocks that can 
occur when the system is operating. 
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By (2) and (3) the structure function of (F, '1/;) can be expressed as 

'1/;(Y) = ¢(rJ(Y)) = L 8(A) IT ( IT YB) = L 8(A) IT YB (7) 
A~E iEA BEEi A~E BEEA 

It follows that the reliability function g is given by 

g(q) = L 8(A) IT qB (8) 
A~E BEEA 

Thus if the reliability function h of (E, ¢) is known analytically through knowledge of 
the signed domination function 8, the same is true for g, and the reliabibity of the system 
can be calculated by (8). 

For some systems it is possible to calculate the functional state of the system, given the 
functional state of the components, even if the signed domination function has not been 
derived. It is in principle always possible to compute¢ if the minimal path sets or cut sets 
are known, since every binary, monotone system can be regarded as a series system of the 
minimal cut parallell structures or a parallel! system of the minimal path series structures 
(see Barlow and Proschan (1975)). For some types of systems there exist algorithms for 
calculating the structure function. It is then in principle possible to compute the reliability 
function h by going through all possible state vectors X. This gives the formula 

n 

h(p) = L ¢(x)(ITpf'(1- Pi) 1-x') (9) 
xEX i=l 

where X denotes the set ({0, 1})n. By instead enumerating all possible values for Y and 
evaluating ¢(rJ(Y)) for each Y, the reliability can be calculated by the formula 

g(q) = L ¢(rJ(y))( IT q~A(1- qA)l-YA) (10) 
yEY AEB 

where Y denotes the set of possible values for Y, and B denotes the family AU{1}U· · ·U{n} 
of subsets of E corresponding to shocks. The number of summands in (9) is 2n and 2n+p in 
(10), if the number of common shocks is p. Thus it is impossible to use the method for very 
complicated systems. In some cases, however, it may be easy to find the subsets rJ- 1 (x) of 
Y, and if the system is sufficiently small such that h can be calculated by (9), it may also 
be possible to calculate g despite the added complexity due to the shocks. We then have 
the formula 

g(q) = L ¢(x) ( L IT q;t(1- qA)l-YA) 
xEX YE77-l(x) AEB 

(11) 

If the system is too complicated to use (10) or (11), one may estimate the reliability by 
drawing a large number of vectors Y from the distribution defined by q and calculate the 
average of '1/;(Y) over the sample. 
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3 Bounds for the reliability 

If the minimal path sets and minimal cut sets of a binary, monotone system are known, it 
is possible to calculate bounds for the reliability of the system (see Barlow and Proschan 
(1975)). The components must be associated in order for these bounds to be valid, and 
for some of the bounds independence of the components is needed. In a shock model the 
component states will always be associated since they are nondecreasing functions of the 
independent shock variables. The bounds based on independence, however, can not be used. 
In the case of a shock model an obvious alternative to the standard approach is to base the 
bounds on the minimal path and cut sets for the system (F, '1/J). One advantage of this is 
that the bounds based on independence of the components can be used. Furthermore, we 
shall see that some of the bounds based on association are improved by this approach. On 
the other hand, it may be more difficult to find the minimal path and cut sets for (F, '1/J) 
than for (E, ¢). For the minimal path sets, however, the connection is very simple, as seen 
by the following proposition: 

Proposition 1 If P is a minimal path set for (E, ¢) then the set Ep is a minimal path 
set for (F,'l/J). If Q is a minimal path set for (F,'l/J) then the set P(Q) = {il{i} E Q} is 
a minimal path set for (E, ¢). This establishes a one to one correspondence between the 
families P and Q of minimal path sets for (E, ¢) and (F, '1/J) respectively. 

Proof: The proof is straightforward and is omitted. 

The connection between the families }( and .C of minimal cut sets for (E, ¢) and (F, '1/J) 
respectively, is more complicated. Each minimal cut set for (E, ¢) gives rise to several 
minimal cut sets for (F, '1/J), but cut sets for (F, '1/J) generated from different minimal cut sets 
for (E, ¢) may coincide. In order to simplify the formulation of the following proposition 
we define a family M of subsets of E to be irreducible if for each A E M we have A n 
(UBEM,BfA B) =J. A. In other words, a family is irreducible if the union of the sets in the 
family becomes smaller if any of the sets in the family is removed. The union of the sets in 
M will be denoted by AM. 

Proposition 2 Let .C' be the set of irreducible families L of subsets of E such that AL = K 
for some minimal cut set K for (E, ¢). Let .C" be the set of families L of subsets of E such 
that AL contains a minimal cut set K for (E, ¢), and such that AM does not contain K for 
any proper subfamily M of L (L is then necessarily irreducible). Then .C' C .C C .C" . .C' is 
a disjoint set of minimal cut sets for (F, '1/J), .C" is a possibly nondisjoint set of cut sets for 
(F, '1/J) containing all minimal cut sets. 

Proof: The proof is fairly straightforward and is omitted. 

Two different minimal cut sets K 1,K2 for (E,¢) may give rise to the same cut set L E .C". 
Moreover, K 1 may give rise to a cut set L1 properly contained in a cut set L2 generated by 
K 2. However, .C can be obtained from .C" by removing all sets properly containing some 
other set in .C" and all unnecessary copies of other members of .C". 
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Note that there exist algorithms for constructing the minimal path and cut sets for a 
binary, monotone system based on a fault tree representation of the system. Constructing 
the fault tree representation of (F, 7/J) from that of (E, 7/J) is a trivial matter. Thus in 
practise one may use such an algorithm on (F, 7/J) to find Q and .C directly, rather than 
deriving these sets from P and JC. 

The following theorem shows that for the min-max bounds in Barlow and Proschan 
(1975) the lower bounds are improved by passing to (F, 7/J). 

Theorem 3 h (p) = maxPE1' TiiEP Pi :::; l1 ( q) = maxQEQ TIAEQ qA :::; h :::; u1 ( q) = 
minLE.C ilAEL qA = minLE.C" ilAEL qA :::; minLE.C' ilAEL qA 

In the last two expressions .C" and .C' may be replaced by any family of cut sets containing 
.C and contained in .C respectively. 

Proof: By proposition 1, if p E P, then Q = Ep = uiEPEi E Q. By (4) TiiEPPi = 
TiiEP ( TIAEE, qA) :::; TIAEU,;EPE, qA = TIAEEp qA. By maximizing over P the first inequality 
follows. The second and third inequalities are applications of standard results in Barlow 
and Proschan (1975). The next equality is true because the reliability of any cut parallell 
structure of a nonminimal cut set L majorises the reliability of the cut parallell structure 
of a minimal cut set M C L. The last inequality is obvious. 

Note that we have a corresponding upper bound u 1 (p) based on JC, since the result of 
Barlow and Proschan (1975) only requires associated components. 

The "product - ip" bounds of Barlow and Proschan (1975) applied directly to (E, ¢) 
are not valid, since the components of (E, ¢) are not independent. By passing to (F, 7/J) we 
obtain the following bounds: 

II Jl qA:::; l2(q) = II Jl qA:::; h:::; u2(q) = Jl II qA (12) 
LE.C" AEL LE.C AEL QEQ AEQ 

In the first of these inequalities .C" may obviously be replaced by any family of cut sets 
containing .C. 

The last two inequalities in (12) follow by applying Barlow and Proschan (1975). 
By expanding P(UQEQ Q) and P(ULE.c L) according to the formula for the probability 

of a union of sets up to a certain order, alternate upper and lower bounds for hare obtained 
(see Barlow and Proschan (1975)). These are again based on independence of components, 
and therefore similar bounds based on P and JC are not valid. For instance, LQEQ TIAEQ qA 

is an upper bound, LQEQ TIAEQ qA - LQ,REQ,Q=IR TIAEQUR qA is a lower bound, and so on. 
When expanding according to cut sets up to order one, one gets alternative bounds by using 
.C" instead of .C, since we obviously have 

1 - L II (1 - qA) :::; 1 - L II (1 - qA) :::; h (13) 
LE.C" AEL LE.C AEL 

Of course, all bounds discussed in this section are based on knowledge of q. If p 
is known, but q is unknown, only the standard bounds of Barlow and Proschan (1975) 
based on association are available. However, if the reliability function is known, it is 
possible to get other bounds in some situations by applying results of Egeland and Huseby 
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(1991). They showed that knowledge of the shock structure in some cases can be used to 
determine whether h is overestimated or underestimated by h(p). Loosely, one may say 
that h(p) tends to underestimate h (and thus act as a lower bound) if the sets A E A 
define subsystems (socalled minors) (A, x) of (E, ¢>) containing cut sets of order 1, and 
overestimate h otherwise (see section 4 of Egeland and Huseby (1991)). This generalises 
the well-known fact that Tif=1 Pi underestimates the reliability of a series system, whereas 
ilf=1 Pi overestimates the reliability of a parallell system of associated components. 

4 Bayesian estimation of system reliability 

Suppose for a while that (E, ¢>) is a binary, monotone system, but not necessarily a shock 
system, with vector of component reliabilities p. Suppose that p is not known, but that 
the uncertainty about p is expressed in terms of a prior distribution 1r. Then the system 
reliability h must be estimated within a Bayesian framework. More ambitiously, Natvig and 
Eide (1987) describe a procedure for calculating or estimating the distribution ?ro of h from 
1r. One important reason for doing this, besides getting a description of the uncertainty 
of h, is that the procedure provides a framework for updating the knowledge about h 
when acquiring data on the system level. On the other hand, data on the component level 
may also be used to adjust the distribution of p before the distribution of h is calculated. 
Information obtained from experts' opinions may also be incorporated, both on component 
and system level. This may be done by applying the retrospective method of Huseby (1986, 
1988) reconstructing as far as possible the experts' background information as imaginary 
data (see Gasemyr and Natvig (1991, 1992) for an example relevant to binary systems). 

The procedure of Natvig and Eide (1987) is in principle straightforward if the compo­
nents of (E, ¢>) are independent. It involves repeated use of Bayes theorem together with 
the transformation formula for probability distributions (see section 1 of Natvig and Eide 
(1987) and also section 1 of Gasemyr and Natvig (1992)). If the pi's have independent prior 
distributions, updating of 1r by data on the component level is also straightforward (see 
Natvig and Eide (1987)). 

Since the distribution calculated by the above procedure is the distribution of h(p), it can 
not be used if h =J. h(p), as is the case when the components of (E,¢>) are not independent. 
Theoretically, there could exist a function h such that h = h(p), in which case a similar 
procedure might be used. Knowing such a function h amounts to having very specific 
knowledge of the dependence structure of (E, ¢>). In many cases such detailed information 
on the dependence structure is not available, but one would nevertheless be interesed in 
getting as much information on the distribution ?ro of h as possible. For instance, one could 
hope to find a class of possible distributions for h containing all distributions consistent 
with the available information. 

Besides these problems, the integration needed to arive at ?ro may be very complicated, 
even if the components are independent. In order to address these difficulties N atvig and 
Eide (1987) suggest "estimating" ?ro indirectly from bounds on the moments of the distri­
bution derived from the moments of the distributions ?ri of Pi· "Estimating" here means 
choosing within the class of possible distributions consisting of all distributions whose mo­
ments lie within the bounds calculated. Note also that even with independent components 
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the direct procedure can not be used if the function p --+ h(p) is not known analytically, 
since use of the transformation formula requires use of a Jacobian determinant involving 
this function. The indirect method of Natvig and Eide (1987) may then be used instead, 
since the bounds used by this procedure are based on knowledge only of the minimal path 
and cut sets of (E, ¢). These bounds are analogues of the standard bounds for the reliability 
of a binary system in Barlow and Proschan (1975) (see also the previous section), and are 
derived in section 2 of Natvig and Eide (1987) (see theorems 2.7 and 2.8). For convenience 
we quote these theorems here (other bounds are found in Lindqvist (1991)): 

Theorem 2. 7 Let h be the reliability of a monotone system of n associated components 
with independent reliabilities p1 , •.. ,Pn· Then form= 1, 2, ... 

Theorem 2.8 Let h(p) be the reliability of a monotone system of n components with 
independent reliabilities p 1, ... ,Pn· Let the components be independent given p. Then for 
m= 1,2, ... 

rr f (r;) c-1r .rr t (:) c-1) 8 EP:::; E{h(p)}m 
J=l r=O ~EK; s=O 

p 

Eh(p) ::; II II Epi 
j=l iEP; 

We observe that only the first of these theorems can be used if the components of (E, ¢) 
are not independent. Moreover, only the lower bounds can be used if the component 
reliabilities Pi are not independent. When using the retrospective method of Huseby (1986) 
to incorporate experts' opinions into the distribution of p, dependence between the pi's 
can easily arise (an example of this is found in section 2 of Gasemyr and Natvig (1992) 
in the case of the Marshall-Olkin model (Marshall and Olkin (1967))). Thus in the case 
of dependent components the quoted theorems may give a poor foundation for estimating 
the distribution of h. Another difficulty in the case of dependent components, concerns 
the updating of the distributions of the Pi's by real data Di on the i-th component. These 
data will not be independent if they are obtained from operation of the system, which 
complicates the updating. In order to be independent they must typically result from 
laboratory experiments. However, under laboratory conditions the i-th component is not 
influenced by the behaviour of the other components, and consequently its reliability will 
be different from Pi· 

We now turn to the shock model. Thus we consider a binary system (E, ¢)whose state 
is determined by the independent shock indicator variables YA, where A runs through the 
set B = { 1} U · · · U { n} U A, n is the number of components and A is the set of common 
shocks (just as in section 2). However, the vector q of "shock reliabilities" is considered as 
a random quantity, with prior distribution p. We now consider the YA's as the components 
of a binary system (F, 7/J), as in section 2. The distribution p0 of the reliability h = g( q) 
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of (F, '1/J) can then in principle be calculated by the direct procedure of Natvig and Eide 
(1987), provided that the function g(·) is known analytically. This procedure could not 
be applied directly to (E, ¢) since the components are dependent. In fact, knowledge of 
a distribution 7f for p together with knowledge of the shock structure is not sufficient 
information for determining a distribution 7ro for h, since obviously different distributions 
p producing different distributions p0 for h are consistent with 7f (any conditional joint 
distribution for the qA's with A E A, given p, will produce such a distribution). 

Since p = 1}(q), where 1} is a non-bijective function (see (5)), the decision maker is 
required to provide more information by this procedure than just specifying a distribution 
for p. However, we think that specifying a distribution for q is at least equally natural in 
most cases. In many situations it is even reasonable to think of the qA 's as independent, 
so that p is determined by the marginal distributions PA for qA, A E B. In that case, 
data from laboratory experiments providing information on the reliabilities q{i}, i E E can 
easily be used to update p. Also, the independence between the qA 's makes the upper 
bounds of theorem 2.7 of Natvig and Eide (1987) available. Gasemyr and Natvig (1992) 
gives an example where this independence is preserved when p is updated by imaginary 
data from expert opinions, even though the experts are challenged to provide information 
reflecting the dependence structure of the model. In addition, the bounds in theorem 2.8 
of Natvig and Eide (1987) can also be used. Thus even when one has to use the method 
of bounds for moments, a significant improvement is obtained, by basing the analysis on 
a prior distribution for q rather than for p. Moreover, in analogy with theorem 3 the 
following theorem shows that the lower bound of theorem 2.7 of Natvig and Eide (1987) is 
improved: 

Theorem 4 Let (E, ¢) be a shock system, and (F, '1/J) the corresponding system of indepen­
dent shock variables. Let P, Q denote the set of minimal path sets for (E, ¢) and (F, '1/J) re­
spectively. We then have .\!(p) = maxPEP IliEP E(pi) :::; .\!(q) = maxQEQ IlAEQ E(qJ:) :::; 
E(gm) 

Proof: Note that by (4) we have 

E(pr;) = E( II qA) = II E(qA). 
AEE, AEE, 

(14) 

Applying this, the first inequality follows by an argument similar to the first part of the 
proof of theorem 3. The second inequality follows from theorem 2. 7 in Natvig and Eide 
(1987). 

5 Bayesian estimation of life distribution 

In this section we asume that (E, ¢)is a system ofn independent components with reliability 
function h and vector of component reliabilities p. In the light of the previous sections it 
is clear that the ideas can be applied to a shock system as well. However, for notational 
simplicity we chose to formulate the material in this section in terms of systems with 
independent components. 
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If the decision maker is content with a simple numerical estimate for the reliability of 
the system, and if the uncertainty about p is expressed by the prior distribution 1r, it is 
natural to choose the Bayes estimator subject to quadratic loss, i.e. 

h = E(h(p)) = h(E(p)) (15) 

This number may also be considered as the true probability that the system functions, 
given all the uncertainty in the model (i. e. the uncertainty in p, and the uncertainty in X 
given p). Indeed, we have 

P(¢(X) = 1) = E(¢(X)) = E(E(¢(X)Ip)) = E(h(p)) = h (16) 

Thus, if the goal is a numerical estimate, it is not necessary to provide a full distribution 
for p. It is sufficient to specify an expected value for p. However, a distribution 1r facilitates 
the updating procedure if data is acquired. 

If the uncertainty about the model instead is expressed in terms of a distribution for 
parameters describing the life distribution for the components, the life distribution of the 
system can be estimated in analogy with (14). To be specific, let T be the life time of 
the system, and define S(t) = P(T > t). Denote by Si(tiO) the probability that the i-th 
component survives time t, where 0 is an unknown parameter vector belonging to some 
set 8. We suppose that 0 has the prior distribution 1r. Conditional on 0, the survival 
probability for the system beyond tis denoted by S(tiO). We then get 

S(t) = fe S(ti0)1r(dO) = fe h(SI(tiO), ... , Sn(ti0))7r(d0), t E (0, oo) (17) 

If the distribution of T given () is absolutely continuous, this can be updated by data 
on the system level by means of Bayes' theorem. We denote by j(tiO) = -S'(tiO) the 
conditional density forT given 0. Let Z be the life time of the system in an experiment on 
the system level. We asume that T is independent of Z given 0. We then have 

P(T > tiZ = z) = 

= { h(S1(ti0), ... , Sn(ti0))7r(dOIZ = z) oc { h(S1(ti0), ... , Sn(ti0))j(zi0)7r(d0) (18) le le 
Here the last expression must be adjusted by introducing a suitable normalizing constant 
so that it takes the value 1 if t = 0. 

Example 1. Suppose that (E, ¢) is a series system of n independent components, each 
of which is exponentially distributed with failure rate ()i· We asume that the ()/s are 
independent and gamma distributed with parameters ai, bi respectively. Suppose further­
more that in an experiment the system obtains the life time z. We then have S(tiO = 

exp( -(I:r=1 ()i)t), j(ziO) = (I:r=1 ()i) exp( -(I:r=1 ()i)z). Applying (18) we get 
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By a slight modification of the argument, this example can be generalized to the case 
when k independent experiments are performed on the system level, producing the data 
zl = ZI, ... , zk = Zk· The Z/s are supposed to be independent given(). Define 

& = { r = (r1, ... , rn) : Ti E {0, 1, ... , k} for all i, r1 + · · · + Tn = k} (20) 

We then have 

P(T > tjZ1 = Z1, ... , Zk = Zk) ex loco ... looo (~ oi) k (g Of'-1) 

exp (- ~((bi + z1 + · · · + Zk + t)Oi) )dol ... dOn ex 

(fp/ (b;+z, + ... +z.+t)"') (~ (}]; r(a;+r;)j (r;!(b;+z, + ... +z.+t)";))) (21) 

Clearly this may be applied directly to the Marshall-Olkin model as well, since the 
modified system (F, '1/J) is also a series system. 

Example 2. Let (E, ¢) be a binary system with signed domination function 8. Suppose 
that the distributions of the components and of the failure rates are as in the previous 
example. As in the first part of example 1, suppose that an experiment is performed giving 
time to failure Z = z. We then have 

Applying (18) this gives 

P(T > tJZ = z) ex loco··· loco L 8(A1)8(A2) 
A1,A2 

( fi Of'- 1) ( .L oi) ( fi exp(-(bi+I(iEA1)z + I(iEA2)t)Oi))d01· ··dOn (22) 
'1=1 'IEA1 '1=1 

ex L 8(A1)8(A2) (IT 1/(bi+I(i EAI)z+I(i EA2)tt•) ( L ai/(bi+z+I(i E A2)t)) 
~~ ~1 i~ 

Again, the adjustment to a shock model is straightforward. In fact, the only changes 
needed in (22) is that the index i must be replaced by an index B running through B 
in the product and through the set EA1 in the sum, and that the indicator functions 
I(i E A1), I(i E A2) must be replaced by I(B E EAJ, I(B E EA2 ) respectively (8 still 
denotes the signed domination function of the basic system (E, ¢) and A1 , A2 are supposed 
to run through pairs of subsets of the basic component set E, cf. (8)). 
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