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Abstract: Nonparametric curve estimation by kernel methods has attracted 
widespread interest in theoretical and applied statistics. One area of conflict 
between theory and application relates to the evaluation of the performance of the 
estimators. Recently, Marron and Tsybakov (1995) proposed visual error criteria 
for addressing this issue of controversy in density estimation. Their core idea 
consists in using integrated alternatives to the Hausdorff distance for measuring 
the closeness of two sets based on the Euclidean distance. In this paper we transfer 
these ideas to hazard rate estimation from censored data. We are able to derive 
similar results that help to understand when the application of the new criteria 
will lead to answers that differ from those given by the conventional approach. 

1 Introduction 

In various areas of applied and theoretical statistics nonparametric curve 
estimation by kernel methods has attracted widespread interest during the 
last two decades. Without imposing any distributional assumptions on the 
observed data, structural information, for example, on the underlying den­
sity functions, some interesting functionals of the density (like the hazard 
rate) or regression curves, can be obtained by "smoothing" the empirical 
mass of the observations to some neighbouring environment around the ob­
served data points. Starting with the pioneering work by Rosenblatt (1956) 
and Parzen (1962), nowadays a vast literature on the properties of kernel 
methods can be found (for recent textbooks see Wand and Jones (1995), 
Hardle ( 1991)). Important progress has been made recently in a variety of 
issues (for example, bandwidth selection, boundary behaviour, software im­
plementation), mostly originating from research in density estimation, the 
simplest situation. However, it has been criticised repeatedly that there is 
an obvious gap between theory and application with respect to the evalu­
ation of the performance of the nonparametric estimators. The estimated 

1 A slightly modified version of this paper is to be published in I. Balderjahn, R. Mathar, 
M. Schader (eds.): Data Highways and Information Flooding, a Challenge for Classifi­
cation and Data Analysis. Spinger Series "Studies in Classification, Data Analysis, and 
Knowledge Organization", Volume 8. Springer-Verlag, Berlin, to appear in 1997. 
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curves that are judged to be "good" from theoretical reasoning (based on 
their distance to the true curve in terms of the classical norms on function 
spaces, mostly L 2 ) do not satisfy applied statisticians as their "graphical fit" 
can be substantially poorer than that of other estimators which are more 
appealing from a graphical notion but exhibit larger deviations from the true 
curve in £ 2-norm. To address this issue of conflict, Marron and Tsybakov 
(1995) proposed new visual error criteria for assessing the performance of 
nonparametric density estimators. The core idea of this concept consists 
in using integrated alternatives to the Hausdorff distance for measuring the 
closeness of two sets of points based on the usual Euclidean distance. 

The aim of this paper is twofold: first, we review this interesting ap­
proach and describe the basic properties of the visual error criteria in Sec­
tions 2 and 3. Second, in the following Sections 4 and 5 of this paper, we 
apply the criteria to nonparametric hazard rate estimation from censored 
data via kernel estimators. The evolving area of hazard rate estimation 
is a promising field for these new ideas, because, due to the application­
orientated interpretation of hazard rates in practical survival analysis, qual­
itative aspects of smoothing performance should be preferred to the exclusive 
consideration of £ 2-fit. As a first step in this direction, we derive similar re­
sults as in the density context showing that a suitable asymptotic bridge can 
be built between expected visual error criteria and conventional integrated 
mean squared errors (MISE), incorporating some weight function depending 
on the derivative of the hazard rate. In the final section we discuss ad­
vantages and disadvantages of this approach and point to future work that 
needs to performed to broaden the understanding of the concept. 

2 Conventional L-norm criteria 

The conventional approach for measuring the distance between some 
"true" curve h and its estimate h relies on the application of classical math­
ematical norms on function spaces. The most popular representative of this 
approach is the L2-norm. The distance between two functions in terms of 
the L2-norm is then defined as 

L2 (h, h)= J [h(x)- h(x)f dx. 

Alternatively, other variants of the broad class of £-norms such as, for exam­
ple, L1 (h, h) = f lh(x) -h(x) I dx and Loo(h, h) = supx lh(x) -h(x) I have also 
been proposed, but are less often used. All measurements of distance based 
on the various £-norms have one fundamental property in common: they 
focus completely on the vertical discrepancy between the curves at all points 
x belonging to the support of the functions (typically in cases of lifetime 
data, the support is some subset of R+)· 

A striking graphical example that the concentration on vertical discrep­
ancy can contradict the visual notion of distance between curves has been 
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provided by Kooperberg and Stone (1991). Their example shows a "true" 
bimodal curve that is approximated by two very different estimates. The key 
element of this example is that the visually more appealing estimate that 
recovers the bimodal structure but with some imprecision in the location 
of the second peak is clearly inferior in terms of all L-norms to the other 
estimate that only recovers the first peak and "smooths away" the lower sec­
ond peak. The reason for this contradiction between graphical impression 
and mathematical L-norm analysis is obvious: as the distances between the 
curves are only assessed vertically, no L-norm criterion realises that the first 
estimate is "structurally correct", although quite incorrect with respect to 
localising the second peak, and thus penalises the estimate in both regions 
of vertical discrepancy, the region of the true second peak and that of the 
estimated second peak, whereas the "oversmoothed" estimate is penalised 
only once, in the region of the true peak. Any remedy to this problem has 
to drop the strict reliance on vertical distances and has to offer another way 
of conceptualising discrepancies between curves. 

3 Visual error criteria 

One such alternative approach of measuring the discrepancy between 
curves has been developed by Marron and Tsybakov (1995) who termed 
their measures visual error criteria. The starting point for the derivation of 
these criteria consists in treating curves not as pointwise collections of the 
values of functions h and h of a single variable at fixed x E R+ but instead 
as sets in R 2 that are defined by their corresponding "graphs". The graph of 
some function his defined as the set Gh = {(x,y):x E R+,Y = h(x)} C R 2. 
Some planar distance between the sets G h and Gh can now replace the 

conventional vertical distance between h and h for fixed x E R+. The basis 
of the definition of a planar distance is the notion of distance from a point 
to a set, defined as 

d((x,y),Gh) = inf ll(x,y)- (x*,y*)ll 2 
(x*,y*)EGh 

and giving the shortest distance from some fixed point ( x, y) to any ele­
ment in the set Gh, where II · ll2 denotes the usual Euclidean distance. By 
allowing ( x, y) to vary and take on all elements in the set Gh, a set of 
distances between between Gh and Gh is defined, formally introduced as 
M(Gh,GJ;) = {d((x,y),GJ;): (x,y) E Gh}· A variety of different ways of 
summarising the complete information in M(Gh, GJ;) when defining a real­
valued one-dimensional distance are now conceivable. In analogy with the 
L2-norm criterion based on quadratic vertical distances we first consider the 
two versions of the quadratic visual error criteria: 
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[ ] 
1/2 j d((x, h(x)), Gh? dx 

As the planar distances are asymmetrical in nature, both versions have to be 
distinguished since they are not identical in general. However, a symmetrised 
version of VE2 can also be defined by simply averaging the two versions, in 
a Pythagorean way, as follows: 

As for the L-norm criteria, similar asymmetrical and symmetrical visual 
error criteria can also be defined for the non-quadratic distances (by sim­
ply integrating over d((x, h(x)), GyJ and d((x, h(x)), Gh), respectively, yield­
ing VE1(h --+ h) and VE1 (h --+ h), respectively) and maximal distance 
(by considering sup(M(Gh, G~;)) and sup(M(G~;, Gh)), respectively, yield-

ing VEoo(h--+ h) and VE00 (h--+ h), respectively). The symmetrical version 
of the two variants of VEoo given by 

SEoo(h, h)= max{VEoo(h--+ h), VEoo(h--+ h)} 

is also traditionally known as the Hausdorff distance. Thus, all other visual 
error criteria described in this section can be viewed as integrated alterna­
tives to the Hausdorff distance. 

It has to be kept in mind that the other symmetrised versions (SE2 and 
SE1 ) are - in a mathematical sense - not "distances" on the corresponding 
function space as they do not satisfy the triangle inequality (see Marron 
and Tsybakov (1995) for an illustrative counterexample). For the practical 
application of these criteria, lacking this mathematical property does not 
seem to be a serious drawback. 

4 Kernel estimation of the hazard rate 

The evolving area of hazard rate estimation from censored data com­
prises a promising field for the application of the visual error criteria as 
qualitative aspects of smoothing performance are of primary interest here. 
In this section the necessary background about the statistical setting and 
some well-known asymptotic results concerning kernel estimators of the haz­
ard rate are briefly summarised. More detailed reviews on this subject can 
be found in, for example, Gefeller and Michels (1992), Andersen, Borgan, 
Gill and Keiding (1993), and Hjort (1996). 

Suppose T1 , ... , Tn refer to i.i.d. nonnegative failure times with distribu­
tion function F and density function J, and C1, ... , Cn denote i.i.d. nonneg­
ative censoring times with distribution function G and density function g. 
Assume further that failure times Ti and censoring times Ci are independent 
for all i = 1, ... , n. Under this setting of the so-called random censorship 
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model, which is the simplest and most important special case of models for 
censored failure time data in the framework of counting process models, the 
observed data consist of the bivariate sample (X1, 1h), ... , (Xn, 6n), where 
Xi = min(Ti, Ci) and 6i = I {Ti :S Ci} for i = 1, ... , n. The censoring in­
dicator 6i provides information on whether the observed xi refers to a true 
failure time ( 6i = 1) or to a censoring time ( 6i = 0). 

The hazard rate, defined as h(x) = lims-+o(1/c-)P(x :S Ti < x + c J Ti 2:: 
x) for x 2:: 0, has the application-orientated flavour that it can be nicely 
interpreted as the instantaneous risk of observing the failure event of interest 
at time x. In a variety of applications ranging from survival analysis in a 
medical context to reliability testing in industrial settings the hazard rate 
is thus used extensively as a methodological tool to describe variations in 
risk over time. In these applications qualitative aspects of the structure of 
the hazard rate are more interesting than the precise location and height of 
peaks of the function. 

The most prominent nonparametric approach to estimate the hazard 
rate is represented by the kernel estimator with a fixed bandwidth b which 
is given by 

h(x)=t 6(~) 1K(x-X(i)), 
i=l n- 't + 1 b b 

where 6(i) refers to the censoring indicator corresponding to the i-th element 
of the order statistic of the observed failure times, K ( ·) denotes the ker­
nel function (satisfying standard conditions, see below), and the bandwidth 
parameter b has to be positive. Several variations of this kernel estimator 
have been suggested allowing the bandwidth to vary with x, for example, 
the nearest neighbour kernel estimator (Gefeller and Dette, 1992), the local­
bandwidth kernel estimator (Muller and Wang, 1994) or the variable kernel 
estimator (Schafer, 1985). For the rest of this paper attention is focussed 
on the simplest case of the fixed-bandwidth kernel estimator. Modifica­
tions for the local-bandwidth and the nearest neighbour kernel estimator 
are straightforward; however, the variable kernel estimator poses the addi­
tional complexity that expressions for the asymptotic MISE have not yet 
been fully derived and thus conditions under which the results of following 
section might be transferred to the variable kernel estimator are not yet 
explicitly available. 

A variety of results on the asymptotic behaviour of h ranging from differ­
ent proofs of consistency to sophisticated elaborations on the optimal order 
of convergence can be found in the literature. For the purpose of this paper 
it is sufficient to restrict the attention to a result on the asymptotic MISE 
which can be easily decomposed into integrals over a squared bias (p,2 ( ·)) 

and a variance part ( a-2 ( ·)). The necessary technical assumptions for the 
asymptotics to work can be stated as follows: 
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(K) The kernel function K(·) has to be defined on a compact support 
[a, b] c nasa bounded symmetrical probability density function hav­
ing a second derivative that is Lipschitz continuous on [a, b]. 

(H) The hazard rate h has to be twice continuously differentiable and square 
integrable on n+. 

(B) The sequence of bandwidths bn has to approach zero at a rate slower 
than n-1. The convergence rate in this situation is optimised for the 
bandwidth sequence bn = C0n-115 , with 0 0 > 0 denoting a special 
constant. 

Given that (K), (H) and (B) hold it has been shown that for n --+ oo the 
MISE can be represented as follows (omitting the asymptotically vanishing 
terms): 

MISE(h, h) IE [li(x)- h(x)] 2 dx 

I ([1 ( ) 2 "( )]2 R(K) h(x) ) 
2k2 K bnh X + nbn (1- F(x))(1- G(x)) dx 

I (J.L2 (x) + CJ 2 (x)) dx, 

where R( K) = J K2 ( u) du and k2 (K) = J u2 K ( u) du denote constants de­
pending on the kernel function. This result demonstrates the well-known 
problem in selecting an appropriate bandwidth, often termed the "variance­
bias trade-off". For the bias to decrease one needs to select a small band­
width; however, taking this parameter small means automatically an increase 
in the variance. The variance-bias trade-off is in accordance with the intu­
itive understanding of smoothing as a technique to reveal the underlying 
structure of the data by reducing the "noise" (variance) at the expense of 
some "oversimplification" (bias). More details on these general aspects of 
smoothing and on the technical details of the derivation of asymptotic results 
in a general counting process framework can be found in the monograph by 
Andersen, Borgan, Gill and Keiding (1993). 

5 Large-sample properties of visual error criteria 

The standard asymptotic results on the properties of the kernel estimator 
h consider only distances between h(x) and h(x) at fixed x En+ and thus 
exhibit the drawback of measuring error only vertically as discussed previ­
ously. In this section we analyse the asymptotic behaviour of the quadratic 
versions of the visual error criteria that is essentially determined by the 
asymptotics of the distances d((x, h(x)), Gh) and d((x, h(x)), G-;;), respec­
tively, for n --+ oo. To this end, consider for fixed x0 E n+ the distances as 
sequences of nonnegative random variables D~(x0 ) and D~(x0 ), respectively. 
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In the context of density estimation Marron and Tsybakov (1995) derived a 
result on the convergence in probability of D~(x0 ) and D~(x0 ), respectively, 
for n -+ oo. In the proof they used a combination of primarily geometric 
arguments that can be directly transferred to the hazard rate context. The 
only "density-specific" step concerned the convergence in probability of the 
kernel estimator for the derivative of the density to the true derivative of the 
density. The same property, i.e. h'(x0 ) -tp h'(x0 ) for fixed x0 as n -+ oo, 
holds for the kernel estimator of hazard rate, modulo a sufficiently correct 
choice of the bandwidth, as can be checked easily. Thus, analogous to the 
density context analysed in Marron and Tsybakov (1995), 

n2/5 (n~(xo) _ ih(xo)- h(xo)l) ~ 0 J1 + h'(xo)2 

holds in the hazard rate context for both i = 1 and i = 2 as n-+ oo. This 
result allows us to build an asymptotic bridge between the expected squared 
visual error criteria and the conventional approach as follows: 

E [VE2(h-+ h) 2] E I d((x, h(x)), Gh)2 dx 

IE (D~(x?) dx 

~ IE ([h(x)- h(x)J 2 ) dx 
1 + h'(x)2 

~ I p,2(x) + 0'2(x) d 
1 + h'(x)2 x. 

Here the first two equalities are given by the definition of the quantities, the 
first approximation utilises the asymptotic result on D~, and the last ap­
proximation results from plugging in the asymptotic MSE expression given 
in the previous section (a similar line of reasoning leads to the same asymp­
totic result for E[VE2 (h-+ h?]). When defining w(x) = (1 + h'(x) 2)-I, the 
final expression above can also be viewed as the standard asymptotic rep­
resentation of a weighted MISE employing the special weight function w(·). 
This shows that expected squared visual error corresponds asymptotically 
to a weighted MISE, and inspection of the weight function allows one to 
infer in which situations the two concepts of measuring discrepancy between 
curves will contradict each other. For example, for linear functions both 
error concepts give identical answers, but for functions with regions where 
lh'(x)l is large E[VE2 (·) 2] and MISE can disagree markedly. This finding 
corresponds with the motivating example given in Section 2 and the intu­
itive understanding of the deficiencies of the L2-approach in situations where 
functions reveal several peaks. 
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Although the asymptotic expressions for 

are the same, details of the proof in Marron and Tsybakov (1995) suggest 
that the asymptotics might come into action later for VE2 ( h --+ h) than 
for VE2 (h --+ h). This should also be reflected in a different finite sample 
behaviour of the two criteria which needs further investigation. 

From the findings on the two asymmetrical versions of squared visual 
error it follows immediately for the symmetrised criterion SE2 (h, h) that 
when n is large, 

Remark 1. Implicit in our definition of VE2 (h--+ h) and VE2 (h--+ h) in 
Section 2, and hence of the symmetrised criterion SE2 (h, h), is the absence 
of any x-weight function that otherwise could have been utilised to mark 
relative importance of certain x-regions. Sometimes such x-weighting could 
be natural, however. Our definitions and the large-sample results above 
generalise immediately to say 

[ ] 
1/2 1 d((x, h(x)), a,;) 2v(x) dx and [ ] 

1/2 I d((x, h(x)), Gh?v(x) dx 

and their consequent symmetrised version SE2 (·; v), say, for any chosen v(x). 
The large-sample result relating this to another weighted MISE measure is 
that 

~ 2 I p,2(x) + a2(x) 
E[SE2 (h, h; v) ] ~ 2 1 + h'(x) 2 v(x) dx. 

One might for example use v equal or close to 1 over the time interval 
deemed most important and equal or close to 0 over the rest. There are also 
reasons of technical necessity to allow v functions to be present; in order for 
the result above to hold over the full time interval [0, oo) one would need 
certain convergence in probability statements, also including the derivative 
estimate, to hold uniformly in x. This could lead to technical conditions 
that might be hard to secure on the full halfline, but the result above would 
nevertheless hold for classes of v ( x) functions that tend suitably to zero as 
x grows. 

Remark 2. It is also worth pointing out in this connection that the 
traditional MISE criterion as such also could and sometimes should be used 
with a weight function v ( x). Hazard rate estimators often err much more for 
large time values, for which there are simply few individuals left at risk, than 
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for smaller time values. Hence the unweighted J (h - h )2 dx could easily be 
dominated by what happens for large x only. The remedy is again to use a 
weight function v(x) inside the integral, perhaps one going smoothly towards 
zero. A case in point is the approximate relation to the MISE of density 
estimation. The density f ( x) and its estimate f( x) can be represented as 
h(x) exp[-H(x)] and h(x) exp[-H(x)] respectively, where Hand Hare the 
cumulative sisters of h and h. The unweighted ISE and MISE criteria have 
long standings in the density estimation sphere, which is to say that 

is a reasonable criterion. But this is approximately equal to J exp( -2H) 
(h- h)2 dx. In other words, claiming appropriateness of the MISE measure 
in density estimation leads one to accept appropriateness of the weighted 
MISE criterion for hazard rate estimation, with weight function of the type 
exp( -2H) = (1- F)2 . 

Remark 3. We have discussed visual error criteria and a large-sample 
connection to a weighed MISE criterion in terms of the traditional kernel 
estimator for hazard rates (see Section 4). However, results very similar to 
those above can be reached for a host of recently developed competing hazard 
rate estimators; see Hjort (1996) for a generous list. Such a competitor would 
have a different p,(x) and possibly a different a-(x), but the structure of the 
large-sample result above, and hence its main consequences, would be the 
same. 

6 Discussion 

The standard approach when evaluating the performance of a functional 
estimate uses some L-norm to quantify its distance to the true function. As 
demonstrated in this paper, there are several situations in which this ap­
proach contradicts the graphical notion of discrepancy between curves since 
all £-norms consider only vertical distances and neglect aspects of quali­
tative similarities. Thus, the new concept of visual error criteria has been 
discussed as an alternative method to evaluate the visual appropriateness of 
functional estimates. In the context of hazard rate estimation from censored 
data it has been shown that application of these criteria corresponds asymp­
totically to a weighted version of the conventional MISE. A more detailed 
analysis of the finite sample properties of visual error criteria is, however, 
needed to expand the knowledge about advantages and disadvantages of 
this new concept. Visual error criteria represent an attractive first step into 
the direction of rethinking the mathematical evaluation of the performance 
of functional estimates, but they require further elaboration - and perhaps 
some modification - prior to their routine application. 
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