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ABSTRACT. This paper proposes and discusses ways of constructing an indirect 
likelihood function to summarise information in indirect data. The indirect likeli­
hood can then be combined with the likelihood of the direct statistical data to form 
the basis of an ordinary likelihood analysis. We call this Likelihood Synthesis. In 
the case of a scalar parameter, the indirect log-likelihood is related to the cumu­
lative confidence distribution Fe that yields canonical confidence intervals, that is, 
the distribution having the property that [Fc- 1 (~a), Fc- 1(1- ~a)] is the canonical 
1 - a-interval. The indirect likelihood is transformation invariant, unlike analysis 
based on a Bayesian prior. It equals the confidence density only in the normal case. 
The indirect likelihood is intended for statistical reporting and for integrating results 
from other studies with new direct data. 

Likelihood Synthesis is also a modelling strategy for likelihood analysis. By 
first developing a purely statistical model with likelihood Lf in a possibly high­
dimensional parameter ¢, and then restricting this to a sub-manifold, usually by 
a model function ¢ = <I>(O) in a basic parameter 0, the likelihood to analyse is 
L(O) = Lf(<I>(O)). Likelihood for interest parameters are found from Las profile 
likelihoods. 

The theory is illustrated via two examples. In the first, the Fieller method 
of drawing inference for a quotient parameter is extended and illustrated through 
survey data for minke whales. The second example concerns bowhead whales, and 
presents a Likelihood Synthesis analysis that could replace the Bayesian Synthesis 
analysis of Raftery, Poole and Zeh (1996). 

KEY WORDS: Bayesian Synthesis, cumulative science, indirect likelihood, input and 
output parameters, Likelihood Synthesis, population dynamics, whale counting 

1. Introduction and summary. 

1.1. THE LIKELIHOOD PRINCIPLE AND COHERENT LEARNING. The likelihood principle 

(Birnbaum, 1962) states that parametric inference should be based on the likelihood function 

if the principles of sufficiency and conditionality are observed. The concepts of likelihood and 

sufficiency and the method of maximum likelihood date back to papers of R.A. Fisher, from 

1920 and 1922 and even to 1912; see the discussion in Geisser (1992), Edwards (1997), and 

Efron (1997). Many authors have discussed the likelihood principle and its consequences; 

a recent contribution of interest is Bj¢rnstad (1996). Bayesians have argued that accepting 

the likelihood principle should lead to Bayesian methodology. Berger and Wolpert (1984, 

p. 124) sought to demonstrate that "sensible use of the likelihood function seems possible 

only through Bayesian analysis". And Savage, in the discussion of Birnbaum (1962), said 
that 

" ... I suspect that once the likelihood principle is widely recognized, people will not 
long stop at that halfway house but will go forward and accept the implications of 
personalistic probability for statistics". 
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In this paper we propose the concept of indirect likelihood as a means of completing what 

Savage called the halfway house of the likelihood of the direct data, in the presence of prior 
distributional information (indirect data). The Bayesian integrates his prior distributional 

information (personalistic or otherwise) with the information contained in the direct data by 
using Bayes' formula. His parameters are stochastic variables, and he modifies their distri­
bution in light of new data. In the Bayesian tradition, no formal distinction is made between 

probabilities related to judgements or beliefs on one hand, and probabilities related to the 
outcome of an experiment on the other hand. This is unfortunate. Belief-probabilities have a 
different basis than experiment-probabilities. Our proposal is to reserve the term probability 
for the objective sampling probability, and to use the term 'confidence' or 'likelihood' for 

degree of belief. 

To explain what we shall mean with an indirect likelihood, let us first quote Efron (1997) 
as he discusses Fisher's ideas and attitude: 

" ... Fisher's main tactic was to logically reduce a given inference problem, sometimes 
a very complicated one, to a simple form where everyone should agree that the 
answer is obvious." 

And Fisher's favourite target for the 'obvious' was the situation where a single X is observed 

from a N(/3, 0"2 ) with unknown mean and known variance. Here everyone agrees, say Fisher 
and Efron, that the correct 1 - a confidence interval (to use terminology Fisher disliked) 

for f3 is jj ± z1-a;2 0", where jj = X (the equally obvious best estimate) and Zp denotes the 
standard normal p-quantile. This may also be written 

(1.1) 

in terms of the log-likelihood £(/3) for this experiment, where X~ 1_a is the upper a point of the 
' x2 with v degrees of freedom. Efron goes on to credit Fisher for his astounding resourcefulness 

at reducing complicated problems to the simple form above. One such area of importance is 

that of large-sample maximum likelihood theory, where we know that the recipe of the right 

hand side of (1.1) leads to more accurate intervals than the simpler jj ± z1-a;2a. 
These remarks also reflect our own attitude and aspiration when working towards a 

workable definition of and methods utilising the intended indirect likelihood. In the above 

situation, the confidence distribution function Fc(f3) = N((/3- fj)jO"), where N is the stan­

dard normal cumulative, neatly and canonically summarises all correct confidence intervals; 

[Fc- 1 (~a), Fc-1(1- ~a)] is the same as the interval above. There are other families of con­
fidence intervals, say skewed ones, corresponding to other confidence distributions, but the 

Fe just given is the 'inferentially correct one' in this situation. This enables us to define 

an indirect log-likelihood Cind, by extension and analogy, in nice models, in terms of a given 
confidence distribution. This is elaborated on from both a theoretical and practical viewpoint 

in Section 3, which also deals with multiparameter situations. For the case of models with 

a single parameter /3, the approach is to let Cind(/3) be the log-likelihood that would have 
generated the same set of central confidence intervals (leaving out confidence a/2 at either 
end) by the standard recipe 

(1.2) 
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where And is the point estimate, defined as the 'confidence median', the remaining point of 
the confidence interval when the confidence level is sent to zero. This determines the indirect 

likelihood, up to an additive constant, as 

(1.3) 

in terms of the cumulative confidence distribution Fe. This is further discussed and developed 

in Sections 2 and 3. 
Edwards (1992, Chapter 3) defines support as the logarithm of the likelihood ratio, and, 

somewhat implicitly, prior support for one hypothesis against another as the log-likelihood 

ratio in an imaginary experiment. Edwards' prior support is the log-likelihood ratio of imag­
inary data from the experiment which gives weight to one hypothesis over the other that 

matches the prior preference. This concept of prior support corresponds to our indirect like­

lihood. We stress, however, the need to base the indirect likelihood on data; but, of course, 

some judgement will always enter an analysis and both indirect and direct likelihoods will be 

somewhat flavoured by subjectivity. Edward's verbal formula 

posterior support = prior support +experimental support 

could be rephrased in terms of total log-likelihood being equal to indirect plus direct log­

likelihoods, which is the crucial point. We prefer the terminology of likelihoods, however; the 
term 'support' also conveys the spirit of the concept, but appears superfluous. 

Efron (1993, 1994, 1996) also uses the term 'confidence distribution', denoting such a 
representation of a family of confidence intervals for the parameter. Our indirect likelihood 

is derived from the confidence distribution, in cases when the indirect data are summarised 

by confidence intervals. Our indirect likelihood is not, however, the same as the density of 

the confidence distribution. When the confidence intervals are constructed by Efron's ABC 

method, correcting for acceleration and bias, the likelihood that Efron terms the implied 

likelihood is precisely the likelihood we propose (Efron 1993); see Section 3. If the family of 
confidence regions is more complex than a nested set of intervals, the indirect likelihood gets 

more complicated. If the indirect likelihood has two local maxima, for example, the set of 

confidence regions will, for an interval of a values, consist of unions of two disjoint intervals. 

This system might be represented by two confidence distributions, and the indirect data can 
be defined in terms of these. 

Bayesian inference is known to be invariant with respect to transformations of the pa­
rameter. The direct likelihood is of course transformation invariant, and when the Jacobian is 

carried along, the posterior is transformation invariant with respect to probabilities of events 

in the parameter space. When the Bayesian is in lack of indirect data on which to base his 

prior distribution, he has to invent some (perhaps implicitly or subconsciously). To keep away 

from subjectivity, he might use a non-informative prior. For some models, arguments can 

sometimes be given for particular priors to be non-informative. If the parameter space, 0, has 
finite volume, a uniform distribution is often regarded as a non-informative prior. Also when 

the volume is infinite, Bayesians often revert to a fiat prior, which then does not represent a 

proper prior distribution. Generally, the property of non-informativity is not transformation 

invariant, whether the distribution is proper or not. The Jacobian of the transformation will 
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distroy the flatness. As other likelihoods, the indirect likelihood is, of course, transformation 
invariant. And the non-informative indirect likelihood is uniquely defined (up to an additive 

constant); put .eind(/3) equal to zero on n and -oo outside. 

The Bayesian stand (Berger and Wolpert, 1984) is that the only coherent methodology 

that is in accordance with the likelihood principle is the Bayesian way of characterising the 

likelihood function by averaging. The methodology we present, allowing indirect data to 

enter the likelihood function, is certainly coherent in the Bayesian sense, and it is no less 
in accordance with the likelihood principle than the Bayesian method. Nuisance parameters 

might, however, be difficult to handle in given situations (as for the Bayesian). The concept 
of profile likelihood, and various ways of approximating or modifying it (Barndorff-Nielsen 

and Cox, 1994) are, however, available and useful tools. 

To facilitate coherent and cumulative learning, it is important that studies are reported 
on in a sufficiently complete fashion, to allow the results from one study to be used by the 

next study. This requires both the likelihood of the new direct data to be reported and also 
the combined likelihood (with proper reference to the sources for indirect data) in sufficient 
detail to allow them to be reconstructed for use in the next study. It is imperative to avoid 
that the same indirect data are being used with multiple weight. This applies to Bayesian 

methods as well as to likelihood methods. 

1. 2. LINKS TO RECENT LITERATURE. The concept of indirect likelihood and the ensuing 

method of Likelihood Synthesis have been developed as an alternative to Bayesian Synthesis 

as presented in Raftery, Givens and Zeh (1995). One of the present authors (T.S.) was a dis­

cussant when that paper was presented to the Joint Statistical Meeting in Toronto in 1994. 

His remarks flattering Bayesian Synthesis came in an awkward light when R. Wolpert pointed 

out that Bayesian Synthesis is plagued with a serious lack of invariance under reparametrisa­
tion; see the discussion following Raftery, Givens and Zeh (1995). This lack of invariance is 

related to the original Bayesian Synthesis being a case of calculating the conditional proba­

bility density given an event of probability zero. This was elaborated in Schweder and Hjort 
(1996), presented to the Scientific Committee of the International Whaling Commission to 
argue against the use of the original version of the Bayesian Synthesis method for assessing 

whale stocks. Indirect likelihood and Likelihood Synthesis were briefly sketched and discussed 

in Schweder and Hjort (1996) as likelihood alternatives to the Bayesian prior distribution and 

synthesis. 

There is much current interest in establishing general ways of combining different in­

formation sources in nontrivial situations. Raftery and coworkers have made an attempt to 
overcome the problems of Bayesian Synthesis which is different from the the Likelihood Syn­

thesis methods of Schweder and Hjort (1996) and the present paper; see Raftery, Poole and 

Givens (1996), and also comments by Bravington (1996). Efron (1996) discusses empirical 

Bayes methods for combining likelihoods, again different in spirit from the present paper. For 

a good partial review of relevant problems and methods, prior to the last decade, see Genest 
and Zidek (1986) and its discussion contributions. 

The aim of the present paper is to develop the concept of indirect likelihood further and 

to discuss Likelihood Synthesis as a modelling strategy for accommodating diverse data and 
complex deterministic models in a single likelihood function. In the end this permits analysis 
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by ordinary methods. Section 2 provides the initial general framework for our intended indi­

rect likelihood and its role in Likelihood Synthesis. Section 3 discusses the indirect likelihood 
construction in more concrete terms, and delineates some general practical strategies. Also 

a characterisation result is reached involving normal confidence densities. Then Section 4 

takes up computational and other practical aspects of the Likelihood Synthesis. This leads 
to illustrating applications, concerned with minke and bowhead whales studies, presented in 
Section 5. One of the applications involves an extended Fieller type analysis for quotient 
parameters. Finally supplementing remarks are offered in Section 6. 

2. Indirect likelihood and Likelihood Synthesis: general considerations. 

2.1. INDIRECT LIKELIHOOD. Bayesians have an advantage over classical inference in 

their use of prior distributions as a vehicle for updating quantitative indirect information 

in the light of new direct data. The distinction between direct and indirect data has been 
discussed by Bravington (1996) and others, and is essentially that indirect data are based on 

analogy and past summary observations, while direct data are subject to an observational plan 

for gathering new data and possibly experimental manipulation that would give structure to 

the parameter of primary interest. There is inevitably an element of subjectivity in judging 
indirect data to be relevant, and thus to be included in the analysis together with the direct 

data when drawing inference concerning a parameter of primary interest. The pure objectivist 

position that often is taken by statisticians of the classical frequentist breed is in our view 
extreme, almost as extreme as the pure subjectivist position often taken by Bayesians. There 
are, in our experience, many cases where there are relevant indirect data and prior knowledge 

that have a role to play in the statistical analysis, even when carried out by classical methods. 

We will argue that there often is uncertainty associated with indirect data. A concept 
allowing uncertain prior information to enter the likelihood analysis is therefore needed. To 
stay within the framework of likelihood analysis, the prior information should be embodied 

in a likelihood function to be combined with the likelihood function of the direct data. To 

distinguish the likelihood function based on indirect data from the ordinary likelihood func­

tion, and to allude to the element of subjectivity involved in judging the indirect data to be 
relevant, we have chosen the term indirect likelihood for the former. It is essential that there 

is scientific confidence in the indirect data, and that their relevance is well argued. 

In mainstream classical statistics, prior knowledge and indirect data enter the analysis 
through the assumptions made concerning the structural form of the likelihood function 

including its support. These assumptions form the basis for the analysis, and the validity 
of the results rests with the validity of these assumptions. There is usually no quantified 

uncertainty associated with assumptions made based on prior information. By allowing the 
information in the indirect data to be presented in the format of a likelihood function, the 

inference drawn from the combined likelihood would account for this uncertainty in addition 
to the sampling variability in the direct data. To include all possible sources of uncertainty 
is, however, an impossible task. 

When the indirect data are summarised in an indirect likelihood, it is in principle possible 

to test the relevance of these data by an ordinary likelihood ratio test. This would be 

analogous to a Bayesian testing whether his prior distribution is consistent with the direct 
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likelihood. It is standard Bayesian practice to show the prior and posterior distributions in 

the same plot. When the two essentially agree in location, the Bayesian has gained precision 
in his information through the direct data. If the posterior differs markedly from the prior 

in location, the Bayesian might, however, be equally happy, claiming that he has learned 
something new and that he has corrected previous biases in his knowledge. We would normally 

require the indirect likelihood to be consistent with the direct data in the sense that a 
hypothesis of homogeneity in parameters between the two is not rejected. If the parameter 

describing the indirect data is significantly different from that describing the direct data, 
the indirect data are not directly relevant for drawing inference for the current value of the 

parameter of interest; and other explanations or models must be sought. 

Although there is an element of subjectivity in the indirect likelihood, as there is in most 
assumptions leading to appropriate and tractable likelihood functions, our main concern is 

not to allow subjectivity per se in likelihood analysis. The focus is rather on methods for 
accumulating scientific information. When integrating information concerning an important 
parameter from different sources, efficiency is gained by having the relative weighting correct. 

It also helps to have the information presented in statistics that allow efficient integration. 

In smooth models, adding log-likelihoods of independent data components is an efficient way 

to integrate statistical data. This is also the case when integrating indirect and direct data 

when they are independent. In Schweder (1988), a version of the Neyman-Pearson lemma 

was used to show that independent test information is most efficiently integrated by way of 

likelihood functions. 

The use of indirect likelihood is twofold. It can be used to present indirect data in a 
format that allows ordinary statistical analysis to be carried out on the likelihood function 

integrating direct and indirect data. The result of this analysis would typically be a profile 
likelihood in the parameters of primary interest, with consequent confidence intervals and 
test conclusions. The other use of indirect likelihoods is to report the main finding of a study 

in a format that invites subsequent studies to integrate the results with new direct data. 

The reported result-likelihood would typically be the profile likelihood. To prevent misuse of 

the reported likelihood, it is essential that its sources are made clear. It is easy to imagine 
that several studies could use the same indirect data. Their result likelihoods would then 

not constitute independent sources of information. To prevent such confusion, we support 

the suggestion made by among others Spiegelhalter, Freedman and Parmar (1996, p. 98) in 

the Bayesian case, that the direct likelihood is fully reported in the results section of the 
publication, while results based on combining direct and indirect data should be presented 

in the discussion section. See also our Section 5.2 below. 

The frequentist interpretation of confidence intervals and p-values etc. is made slightly 

difficult when the inference is partially based on an indirect likelihood. If, however, the 
indirect likelihood itself is based on various pieces of past direct data, the frequentist inter­

pretation stands, but hypothetical replicates of the study would then involve replication of 
the whole suite of studies that led to the indirect and the direct data. We prefer to not place 

too much emphasis on this frequentist interpretation. What matters is the log-likelihood 

function. Due to the frequentist interpretation in linear normal models, or smooth large­

sample models, we characterise the log-likelihood function by its contours, as indexed by the 
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x2 distribution. In such nice models, minus twice the log-likelihood (normalised to value zero 
at the maximum) is x2 distributed with degrees of freedom equal to the dimension v of the 
space of free parameters, and the region within the -~x~,l-a is a 1- a confidence region in 
the classical sense. We will use confidence region synonymous with likelihood contour region. 
Thus the 95% confidence region calculated from the available data is the set of parameter 

values inside the -~x~,0 . 95 contour of the log-likelihood function, rather than a region calcu­
lated by a method that in a hypothetical replication of the experiment would cover the true 

value with probability 0.95. 

This re-definition of degree of confidence, from coverage probability to contour index of 

the log-likelihood function, is valuable, we think, for several reasons. In scientific applications 

it is the data at hand that matter, and not hypothetical replications. In parametric models, 
the direct and indirect data are summarised by the likelihood function, and all that can be 

learned from the data are aspects of the likelihood. The log-likelihood is uniquely deter­
mined by its indexed contours, and these contours are thus primary aspects. To separate the 
concepts of probability on the one hand and likelihood and confidence on the other is also 

important, both for educational and interpretational purposes. Most important, however, is 
that by linking the confidence regions to the log-likelihood it becomes reasonably clear how 

indirect data presented in the format of a set of confidence intervals, say at levels 95%, 90%, 
75%, 50% and 0% (the point estimate) can be integrated with new direct data in a likelihood 
analysis. Full information of a one-dimensional likelihood is, as we shall see, provided in the 

confidence distribution; see also Efron's (1993) discussion. 

The re-definition is not primarily intended to change the way in which confidence in­
tervals are calculated. It is rather the interpretation that, in the applied scientific context, 

should be changed. But statistical practice should, perhaps, be changed with respect to 

which confidence intervals are calculated and how they are presented. The point here is that 
sufficient information should be reported to allow the results from the reported study to be 

integrated with future or other data in an optimal way. 

That confidence intervals often allow a frequentist interpretation is a good thing. It is 

through the frequentist interpretation of confidence as coverage probability in Gau:Bian or 

large-sample smooth models that the x2 is found to be the obvious index of the log-likelihood 
contours. The benefit of having an agreed method for indexing the log-likelihood contours 

is substantial, and outweighs the inconvenience of not always allowing a precise frequentist 
interpretation. 

2.2. LIKELIHOOD SYNTHESIS. The likelihood function is often more difficult to construct 
than what appears from statistical textbooks. The ideal is to capture the statistical variability 

in the direct data, the regularities of the subject matter theory and the information contained 

in the available indirect data, in a statistical model with its likelihood function. When the 
subject matter theory may be approximated with a deterministic model, as in the population 

dynamics model of Section 5.2 below, it is sometimes possible to obtain the likelihood of 

interest from the likelihood of an overparametrised model. This is the essence of Likelihood 

Synthesis, and as such it is more a strategy for statistical modelling than a (new) method of 

analysis per se. We will, in fact, rely entirely on ordinary likelihood analysis, with the profile 
likelihood as a central concept. 
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Likelihood Synthesis was sketched in Schweder and Hjort (1996) as an alternative to 

Bayesian Synthesis. Our aim was to carry the attractive features of Bayesian Synthesis over 

to the framework of likelihood analysis, in order to avoid problems connected with Bayesian 

Synthesis. The particularly attractive feature of Bayesian Synthesis is that the statistician 

is allowed to formulate descriptive statistical models for the various independent pieces of 

direct data. If indirect data are available, the information and uncertainty is captured in 

prior distributions. These likelihoods and priors are constructed without regards to the 

possible complex parametric structure that is imposed by the subject matter theory. In 

Bayesian Synthesis, the Bayesian statistician would thus be allowed to do what he is best at: 

establishing likelihood functions for the direct data that reflect sampling variability, and prior 

distributions for the parameters for which there is indirect information or expert knowledge 

available. The subject matter scientist would, on the other hand, be allowed to construct 

his theoretical model without having to cast it in tractable statistical terms. The synthesis 

would then be to filter the statistical information through the deterministic model to obtain 

inference for parameters of primary interest. 

In Likelihood Synthesis, assume that there is a deterministic theoretical model driven by 

the input parameter (). There are K pieces of independent direct or indirect data available. 

For data piece k, construct a likelihood, possibly an indirect likelihood, in the parameter ¢k· 
That this piece of data is relevant is reflected in ¢k being functionally related to (), through 

the theoretical model. The likelihood to work with for ¢ = ( ¢1 , ... , ¢ K) is thus of the form 

K 

L1 (¢) = II Lk(¢k)· 
k=l 

This is usually an overparametrised likelihood. We write Lf to indicate that this is the 

full likelihood constructed to represent the statistical information, without regards to the 

theoretical deterministic model 

The likelihood for () is thus simply 

L(()) = Lf(~(e)). (2.1) 

From this likelihood, we would like to draw inference on the interest parameter '"'! related to 

the basic parameter through'"'!= r(e). If dim('"'!) <dim(()), Likelihood Synthesis consists of 

calculating the profile likelihood for '"'!, 

Lprorb) = max{L(()):r(e) = '"f}. (2.2) 

Likelihood Synthesis may also be an effective modelling strategy in pure statistical prob­

lems. If, say, the parameter of interest is related to the quotients of pairs of other parameters, 

as in the extended Fieller example of Section 5.1, it pays to construct an overparametrised 

likelihood in the independent pieces of data first, and then to restrict this likelihood to a 

subspace determined by the quotient relationships. 
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3. Constructing the indirect likelihood. 
If science were linear and accumulative and if scientists did report their findings in the 

format of (profile) likelihoods, there would be no need for the next scientist to construct an 

indirect likelihood for the parameter of interest. He could just use the last update of the 
likelihood for the parameter. When the indirect likelihood is not directly available for the 

indirect data found relevant for inclusion in the analysis, the problem is how to naturally 

summarise these indirect data and how to turn these summary statistics into an indirect 

likelihood. 

3.1. THE ONE-PARAMETER CASE. Assume first that the parameter of interest and 

for which there is 'background' or indirect information, say /3, is one-dimensional. The 
parameter of primary interest in the study might well be many-dimensional, and there might 
be independent indirect information on other components than /3. By independence, the 

indirect log-likelihood of all indirect data is the sum of its independent components. 
Assume that the information in j3 is given in terms of a nested set of confidence intervals. 

Generalising slightly, these intervals may be presented by a confidence distribution Fe(/3), 
such that [Fe- 1 (~a), pe-1(1- ~a)] is the canonical 1- a confidence interval for /3; see the 
discussion around (1.1) and (1.2). For the moment, take Fe to be continuous. Note that Fe 
is interpreted in terms of degree of confidence and not coverage probability; regardless of this 

Fe certainly satisfies the requirements of a cumulative distribution function. 

In classical statistics, a distinction is made between degree of confidence on one hand and 
coverage probability on the other. We keep this distinction. The confidence distribution is just 

one that summarises a partially nested set of confidence intervals. A Bayesian statistician does 
not distinguish between confidence and probability. This is, in our view, often unfortunate, 

since then degree of belief is mixed with probability related to sampling variability. There is 
thus an important difference in interpretation between indirect likelihood and prior density. 

The two approaches are also different in practice, except for the very important GauJ3ian 

case, as we show below. 

The Bayesian would take fe(/3) = F~(/3) as a prior probability distribution for /3. This 
density is in general not equal to the indirect likelihood function. The indirect likelihood 

is, on the contrary, the likelihood function that would have led to the confidence intervals 

generated by likelihood analysis. The 1 - a-confidence interval obtained by inverting the 

likelihood ratio statistic based on a given log-likelihood, Rind(/3), using the traditional first­

order approximation to its distribution (in the frequentist sense), is 

involving the upper a point of the x2 distribution with 1 degree of freedom. The confidence 

distribution thus leads to the indirect log-likelihood Rind with its mode at the median ,Bind = 
pe- 1 (~) and with 

Rind(/3) = -~X~,l-2Fc(~) ~f j3 ~ ~nd = -!{N-l(Fe(/3))}2 { 
1 2 ~ } 

-2X1,2Fc(~)-1 1f /3 ~ /3ind 
(3.2) 

(defined up to an additive constant), writing N for the standard normal cumulative distri-
bution function. 

9 



The right hand side of (3.1) represents 'correct' confidence intervals based on Rind when 
the indirect likelihood is Gau:Bian. Confidence intervals are, however, transformation invari­
ant, and since any unimodal Pi can be transformed to Gau:Bian shape, the right hand side 

represents 'correct' intervals for any unimodal likelihood; cf. comments about the frequentist 

interpretation of confidence intervals at the end of Section 2.1. 
For multimodallikelihoods, the relationship between confidence intervals and log-likeli­

hood is more complex. It is outside the scope of this paper to discuss this in detail. For 

our purposes it is sufficient to assume that there exists a likelihood function summarising the 
indirect data, and that this function is represented in one format or another. One possible 

format of representation is the family {l, R1} where l is the height to the top of the log­

likelihood from anywhere on the contour R1. The contours might be thought of as defining 
confidence regions, and in nice models the degree of confidence for R1 would be the cumulative 
chi square probability K 1 (2l). Thus if the contours are indexed by the degree of confidence, 
the (3.1) recipe yields 

As a simple example, let Fc(/3) = N((/3- And)/a). Then 

(3.3) 

and Lind(/3) = exp(Pind(/3)) ex fc(/3) in this case. This is actually the only situation with 
the indirect likelihood being proportional to the confidence density. This is seen by inverting 

(3.2). For f3 < jjind, the inverse of (3.2) is Fc(/3) = N( -( -2Pind(/3)) 112 ), while for f3 > jjind it 
is N ( (-2Pind (/3)) 112 ). Differentiation yields 

Thus, fc is proportional to Lind if and only if P(nd (/3) = (-2Pind (/3)) 112 / a for some positive 
a. The solution to this differential equation is the Gau:Bian log-likelihood (3.3). This proves 

the following. 

RESULT. The indirect likelihood is proportional to the probability density of the confi.­
dence distribution if and only if the distribution is normal. 

The likelihood function is known to be transformation invariant. That is, if 'fJ = rJ(/3) is 
an increasing function of /3, the likelihood for the parameter f3 is the transformed likelihood for 

'f/i L(/3) = V 1(rJ(f3)). When constructed from a confidence distribution, the indirect likelihood 
is indeed transformation invariant: 

The invariance is due to the indirect likelihood being defined in terms of the cumulative 

distribution and not through the density. The Bayesian prior is, of course, defined in terms 

of the density, and when the parameter is transformed, the Jacobian of the transform must 

be multiplied in. The presence of the Jacobian implies that the notion of 'non-informativity' 
is slightly problematic in Bayesian analysis. If the indirect likelihood is the indicator function 

for a subset of the parameter space, the elements of the subset are equally likely. If the prior 
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density is uniform over an interval, the Bayesian would only be able to say that under the 

particular parametrisation, the parameter is uniformly distributed. 
Efron(1993) introduced 'implied likelihood' based on a system of confidence intervals. 

His likelihood is related to the confidence density through a data-doubling argument. In 

the one-parametric case, Efron's implied likelihood agrees with our likelihood obtained from 

(3.1) when the confidence intervals are constructed by Efron's ABC method, and when the 

additive bias has been removed. Theorem 2 of Efron (1993) states that the likelihood is 
second order efficient in the sense that the ratio between the 'true' likelihood underlying the 

ABC-intervals and the indirect likelihood is of the order 1ln. 
Discrete and improper confidence distributions give rise to indirect likelihoods of interest. 

Consider the two-point distribution with mass ~ in (31 and (32 • By (3.2), 

£. ((3) _ { 0 if fJ1 ~ (3 ~ fJ2, 
md - -oo outside the interval. 

This is the appropriate indirect likelihood when (31 ~ (3 ~ (32 is known to be true, but no 
indirect data are available to discriminate between values inside the interval. If smoothness 
is desirable, the mixed normal distribution 

with C/ small, will result in an indirect likelihood representing the inequality constraint (31 ~ 

(3 ~ !32· 
A half-open inequality constraint, but with say the left interval being uncertain, could 

be represented by the improper confidence distribution Fe ((3) = ~ N ( ((3 - (31 ) I C/), with C/ 

reflecting the amount of uncertainty concerning the left endpoint, (31. The 1 -a-confidence 

intervals related to this improper distribution are the half-open intervals [(31 + C/ N-1 (a), oo). 

When Fe is only partially determined, one might want to find a smooth indirect likelihood 

that is reasonably consistent wt the summary information on Fe. 

EXAMPLE 3.1: AN EXPONENTIAL TILTING TRANSFORM. To account for non-normality 
and skewness, suppose the confidence distribution can be represented as 

(3 = 7Jind + C/{exp(aZ)- 1}la, where Z"' N(O, 1). 

The possible range for (3 is from fj;nd - C/ I a to infinity for a positive, and vice versa for a 

negative. When a goes to zero this includes the special case of a N(7Jind, C/2). With some 
manipulations one finds 

Again, a going to zero corresponds to the normal log-likelihood. With knowledge of two 

or more quantiles, or two or more moments, the scale and acceleration parameters C/ and 

a may be found in a given situation. Confidence intervals here are of the form fj;nd + 
C/{exp(±az1-af2) -1}la. 

EXAMPLE 3.2: A POWER TRANSFORM OF THE NORMAL. Another three-parameter 

family with skewed confidence intervals, but with the full real line as support, is obtained 
from 
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where ). > 0 is the power parameter. The indirect likelihood is then 

The related confidence intervals are 

If only the estimator ~nd and, say, a 90% confidence interval is given, e7 and >. could be 
calculated. With more than three quantiles of Fe, a normal probability plot for various 
values of >. would be useful. 

EXAMPLE 3.3: QUANTILE SMOOTHING. Assume that the confidence distribution is 

summarised by a series of (approximate) quantiles, say those representing left and right 

endpoints of confidence intervals [Fe- 1 (~a), Fe-1(1- ~a)] for confidence degrees 1- a equal 

to 0.95, 0.90, 0.75, 0.50 and 0. Let the indirect data be Fe(tj) = Pj for j = 1, ... , J. 
A quantile-quantile plot of Fe against different distributions such as various transformed 

normals, various gamma or beta distributions, or Pearson type IV distributions, may lead to 
a confidence distribution that fits the indirect quantile data well. 

If the search among standard distributions is unsuccessful, a smoothing spline may be 

fitted to the normal probability plot (N- 1(Fe(tj)), tj)· The smoother, S(t), may also be 
constructed in a more careful fashion to reflect different uncertainty levels when setting the 

tj = Fe- 1(pj) values. When found it leads to the indirect log-likelihood Pind(/3) = -~S(/3) 2 . 

3.2. SEVERAL PARAMETERS. The multiparameter case is more difficult, both opera­
tionally and interpretationally. The simplest situation is the one where the indirect infor­

mation can be summarised in terms of a multivariate normal distribution. If the format is 

a log-likelihood function, the work is done. If, however, the format is a point estimate 7Jind 

with an approximate covariance matrix :E, then the standard elliptic confidence region with 
degree of confidence a is 

with v = dim(/3). The corresponding indirect log-likelihood is 

(3.4) 

We stress that this is not only an unrealistically simple textbook case; in situations with a 
reasonable amount of data supporting the indirect knowledge one would have approximate 

sufficiency and normality of the indirect point estimator ~nd. This also motivates a general 

indirect likelihood definition as follows: If Ta = {;3: g(/3) ~ x~,a} denotes the nested set of 
confidence sets, define Pind(/3) = -~g(/3). Note in this connection that a function is completely 
characterised by its set of contours. 

In non-GauBian situations we recommend investing efforts in finding parameters, possibly 

with the help of transformations, for which the background information is independent from 

that of the others. Then one may concentrate on the several one-parameter problems in turn; 

the simultaneous indirect log-likelihood is simply the sum over the independent components. 
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There is a rich and recent literature both on parameter transformations towards or­

thogonality and on various higher-order corrections that could be made on the simple (3.4) 

construction. Key words include multidimensional skewness corrections, Bartlett identities 

and Edgeworth expansions; see Cox and Reid (1989) and Barndorff-Nielsen and Cox (1989, 

1994). Some of these techniques are relevant in the present context too, but exploring this 

further takes us out of the natural bounds of this paper. 

Throughout this section (3 has been used to denote an arbitrary statistical parameter. 
In typical applications of Likelihood Synthesis the (3 might be a component or a subvector of 
the full vector ¢> of descriptive parameters. 

4. Likelihood Synthesis: algorithms and practical considerations. 

Likelihood Synthesis is ordinary likelihood analysis of an overparametrised model re­
stricted to a lower-dimensional manifold of the full parameter space. 

4.1. BASIC IDEAS. Let </> E 0 be the full K-dimensional parameter, with 0 an open 
connected region in IRK, and let Lf ( ¢>) be the full likelihood. The Lf function will of course 

depend on the chosen parameterisation. If indirect data are included in the format of a 
indirect likelihood, independence yields the full log-likelihood 

(4.1) 

The structural model, on top of the structure embedded in P/, is a q-dimensional sub-manifold 

M E n. The log-likelihood to analyse is thus 

PJ: M--+ JR. 

In many cases, M represents a functional relationship¢>= <I>(B) where <I> is the model function 
(and not the normal cumulative). Since M is q-dimensional, so is B. Let 8 in IRq be the 

parameter space for B. The log-likelihood function may then be written 

e(e) = ei(<I>(B)): e--+ JR. (4.2) 

In some cases there will be canonical or at least quite natural choices for the basic 
parameter B and the model function <I>. This will typically be the case when M represents a 

dynamical model, say in ecology or economy. Such models are often directed in time, and more 

easily calculated forwards than backwards. As an example, consider the simple population 

dynamics model in Section 5.2 below. From the natural input parameter 0, consisting of 

stock size in 1848, 81, and maximum sustainable yield rate, 02 , output parameters like ¢, 
consisting of stock size in 1993 and replacement yield that year, are easily calculated. In 

principle, however, B could be solved for ¢, and we could have cast the likelihood in terms of 
¢>, or in some other related two-dimensional parameter. 

In other cases, there are no immediately obvious input and output parameters. In the 

Fieller example 5.1 below, either 01 and 82 could serve as input and the other as output. To fix 
ideas, let B be the input parameter of the deterministic model and let ¢> = <I> (B) be the output 

parameter for which there is direct or indirect data available. The log-likelihood to investigate 
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is (4.2). Let further 'Y = r(B) be the parameter of primary interest. If dim("!) = q =dim( B), 
the likelihood function for 'Y is simply the parametric curve 

(r(B),£(B)). 

If dim("!) < q, we would use the profile log-likelihood 

f'Y ("!) =£prof b) = max{ £(B): r( B) = 'Y }. (4.3) 

This constitutes Likelihood Synthesis. 

Barndorff-Nielsen and Cox (1994) discuss several aspects of profile likelihood analysis, 
and many of the points made by them are directly relevant and useful in the kind of appli­
cations we have in mind for Likelihood Synthesis. 

4.2. CALCULATION. In nice models, such as the Fieller model of Section 5.1 below, the 

profile likelihood can be obtained by analytical methods. If possible, this is to be preferred 

over numerical calculations. 
When numerical methods are necessary, one would normally start with calculating £(B) 

for a large number of values in the high likelihood region. For each of these, calculate the 

interest parameter, 'Y = r(B). Assuming 'Y to be scalar, a plot of the scatter (r(B),£(B)) 
would be instructive. Since f'Y is the profile, the scatter would show an approximate upper 

boundary that would be an estimate of f'Y. If this boundary appears to be convex, a convex 
envelope could be fitted to the scatter as an estimate of f'Y. 

In some cases, one would expect £(B) to be approximately Gauf3ian. To the scatter 

( B, £(B)) one might then fit a quadratic by regression analysis, 

If the residuals e(B) are small, the fit is successful. Since £(B) is smooth, e(B) would also be 
smooth, and one should not expect the residuals to be without structure, as is usually the 

case in regression analysis. If 0 = arg max£(B) is found, say by a Newton-like method, before 

the regression was carried out, the regression equation is linear in the q( q + 1) /2 parameters 
of the symmetric information matrix ~- 1 (preferably restricted by non-negative definiteness 

of ~-1 ). Having obtained a successful Gauf3ian fit, the profile likelihood for 'Y is found from 

this fit, preferably by analytical methods. 

4.3. THE GAUSSIAN CASE. With £(B) = -!(B- e)t~- 1 (B- B) being quadratic, and 

"( = rB being linear' the maximum likelihood estimate of"( is ::y = re and the profile likelihood 
is simply 

It is of interest to note that the Bayesian would come to the same inference. Assume 

that both the direct and indirect likelihood components are Gauf3ian, and that both are 
likelihoods representing confidence distributions that the Bayesian would use for his pre­

model posteriors to be synthesised. In the simplest case, there is a posterior based on the 

direct data and a prior of dimension q = dim( B), and an additional prior on B from that 

part of the confidence distribution that was not used with the direct data. The problem of 

14 



Bayesian Synthesis is then to integrate these two independent pre-model distributions into a 

synthesised posterior density. Raftery, Poole and Givens (1996) suggest that the appropriate 

synthesis is the geometric mean of the two pre-model densities. The two densities are, in 

fact, the two likelihood components since both are Gau:Bian. The synthesis of the Bayesian 

densities is thus the likelihood L(O). Furthermore, the Bayesian would use the marginal 

distribution for "Y as the resulting posterior for the parameter of interest. And this marginal 

distribution corresponds precisely to the profile fpror("Y). Finally, the Bayesian probability 

regions for "Y are exactly matched by the confidence regions constructed from £prof. 

4.4. MORE GENERAL CASES. Likelihood Synthesis, with or without an indirect likeli­

hood, is just ordinary likelihood analysis, and as such subject to occasional difficulties and 

pitfalls. The likelihood £(0) may turn out to be multimodal or ill-behaved in other respects. 

Also, the calculation of the profile likelihood for an interest parameter "Y might be difficult 

due to nonlinearities in "Y = r(O) and lack of smoothness or concavity in £(0). 

The intention is in any case to draw on the general results and experience available 

for likelihood inference. Thus approximate standard errors can be found by taking square 

roots of the diagonal elements of the inverse estimated information matrix, for example. 

Fine-tuning and corrections might be called for, using technology of bootstrapping or higher­

order likelihood analysis, see again Barndorff-Nielsen and Cox (1994), for example. Another 

idea from classical asymptotics theory which may be useful in the present context is that 

of LeCam's efficient alternative to the maximum likelihood method, see LeCam and Yang 

(1990, Ch. 5.3). The idea involves fitting a local quadratic function in the right area of the 

parameter space. 

REMARK: INDIRECT AND PENALISED LIKELIHOODS. We have discussed various aspects 

of the combined log-likelihood construction (4.1). Yet another interpretation is to view this a 

penalised likelihood approach; to find the best estimate of <Pone maximises £dir(¢) penalised 

by the added factor find(¢). In the penalised likelihood tradition this would usually be written 

f* ( <P) = fdir ( </J) + A fo ( <P), (4.4) 

say, with an additional smoothing parameter ,\ determining the strength or not of the penali­

sation. Here £0 would be determined by pragmatic considerations about desirable smoothing 

effects rather than from bona fide prior considerations or from real data. Nevertheless this is 

of the same form as (4.1). Method (4.4) can also be given a Bayesian interpretation in that 

it corresponds mathematically to having a prior of the form L 0 ( <P )>· for ¢. 

5. Examples and illustrations. 

5.1. AN EXTENDED FIELLER METHOD. Raftery and Schweder (1993) discussed non­

Bayesian and Bayesian methods of estimating the quotient 'Y = <Pd ¢2, in a situation where 

separate information on ¢1 and </J2 is available. The non-Bayesian method known as the 

Fieller technique (see Fieller, 1940 and 1954) can be applied when the available estimator 

(¢1, ¢;2) is approximately binormally distributed. 

Assume for simplicity that '¢1 and '¢2 are independent with ;j;j being N(</;j, a}) where 0"1 
and 0"2 are known. Thus the log-likelihood is 

e(¢1, <P2) = -!{(¢1- <Pd 2 1(Tr + (¢2- <P2) 2 ;(Tn. 
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For given '"'(, the maximum likelihood estimate of <h is the weighted mean ¢;2 ( '"'() = ( ¢;1 '"'(I O"i + 
¢;2/ O"~) I ('"'!21 O"i + 11 O"~), and the profile log-likelihood for '"'( becomes 

This agrees with the Fieller technique of using 9 = ¢;1/¢;2 as the point estimate and 

as the confidence interval, where Cj = O" j I ¢;j are the coefficients of variation and zo the 
appropriate normal quantile. 

With additional independent information on'"'(, say with'"'( having the Gau:Bian indirect 
log-likelihood 

the combined log-likelihood becomes 

The Fieller technique can be extended to multivariate data. Let ¢;1 be a p-dimensional 
vector of observed numerators and ¢;2 a p-dimensional vector of denominators. Thus there are 
K = 2p descriptive parameters. Assume the two J;j to be Np(</Yj, ~j) and independent. The 
structural model is ¢1 = 1(8) * ¢2 with '*' denoting element-wise multiplication, and with 0 
being a q-dimensional vector of parameters determining the vector of ratios '"'( = ¢11¢2. For 
given 0, the maximum likelihood estimate of ¢1 and ¢2 is readily obtained, and the profile 
log-likelihood for e is found to be 

Here D(B) is the diagonal matrix with elements 1(8). The structural model might well be 
a transformed linear model with categorical or continuous covariates. A case of a log-linear 

model is discussed below. It is also possible to depart from the assumptions of numerators 
and denominators being independent, the scale of the covariance matrices being known or 
the distribution being normal. 

The ratio estimators are used in estimating animal abundance from line transect surveys. 

In a shipborn survey of minke whales in the northeastern Atlantic in 1995, vessels were out­
fitted with two independent observational platforms, see Schweder, Skaug, Dimakos, Langaas 
and 0ien (1997). For each platform and survey area, the ratio of the number of whales seen 
to the estimated effective strip area is an estimate of the spatial whale density. Denoting 
by ¢;1A the count for platform A, ¢;1B the count for platform B and ¢;1 the vector of counts, 
and similarly for the estimated effective strip areas, a reasonable assumption is that J;j is 
N2(¢j, ~j) and independent for j = 1, 2. Assume for simplicity that the covariance matrices 
are known. The correlation between the counts is due to the two platforms being exposed to 
the same whales throughout the cruise, and the correlation between the effective strip areas 
is due to the same transect being run for both platforms and the effective strip width being 
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estimated from a common parametric model. The parameter representing whale density, (), 

is related to the two mean vectors simply by ¢1 = ()¢2 , since in this case "( = ((), ())t. 

In Schweder et al. (1997) the whale density was estimated by 1f = (J;'1A + ¢'1B)/(¢'2A + 
J;'2B)· The maximum likelihood estimate, 0, is different from the simple quotient estimate(). 
For survey area Gasbanken in the eastern part of the Barents Sea, the counts and estimated 
effective search areas from the 1995 cruise are: 

~ (35) <h = 33 ' 

~ (576) 
¢2 = 445 ' 

:E = (97.7 17.7) 
1 17.7 78.6 ' 

( 1329 881 ) 
:E2 = 881 1437 . 

Here the unit for ¢1 is number of minke whales seen under primary search effort, and that 

for ¢2 is km2 under primary search effort. 
The maximum likelihood estimate is 0 = 0.0661 as compared to 1f = 0.0666, while the 

95% confidence interval obtained from {(): 2(Rpror(O) - Rprof(())) ~ xLgs} is [0.0379, 0.0965] 
and the corresponding interval based on the profile likelihood for the sum counts over the sum 

effective area is [0.0382, 0.0972]. The profile likelihood based on (5.1) is for the above data, 
in fact, very similar to that based on the sum count and the sum area. With other data, for 

example with less balance between effective areas and whales seen, the simple Fieller method 
based on the sums might come out considerably different from the extended Fieller estimate 

based on (5.1). 
With p :2: 2 it is possible to formulate hypotheses related to homogeneity or other 

structural aspects that could be tested by likelihood ratio methods. As a simple example, 

consider the above application, with structural model ¢1 = "( * ¢2 with no restriction on the 

p = 2-dimensional vector "( (other than its components being positive). The hypothesis of 

homogeneity, "11 = "12 = (), is then simply tested by the likelihood ratio statistic -2Rprar(1') 
since the profile likelihood equals 0 at the optimum when ¢1 and ¢2 are allowed to be different. 

In the above numerical example, -2Rprar(1') = 0.33, and the homogeneity hypothesis stands. 

Time series of ratio estimates are sometimes used for estimating growth rates in animal 

populations. In Raftery and Zeh (1996), count and coverage was estimated for p = 10 years 

between 1978 and 1993. The log-linear model ¢1 = exp(()0 + ()1t) * ¢2, where tis the vector of 
time points, was estimated by weighted linear regression of log(J;'If¢'2) on t. The multivariate 

Fieller technique is, however, more efficient when say ¢'1 and ¢'2 are multivariate normal, 

as seems reasonable. The coverage, ¢2, was only independently estimated for 5 of the 10 
years, and for the remaining years the average over these five years was used. This induces 
a correlation structure in ¢'2. 

In the general case there might be a vector of nuisance parameters, ~, in addition to the 
interest parameters ¢1 and ¢2. The likelihood based on the direct data, Lf ( ¢1, ¢2; ~) will 

often factor since there will be independent data for the numerators and the denominators. 

With the structural model, ¢1 = "!( ()) * ¢2, with "! possibly being a a transformed linear 
model in observed covariates with regression vector(), the direct likelihood is Ldir((); ¢2, ~) = 
Lf("'(())¢2,¢2;~). If there also are indirect data available, with indirect likelihood Lind(()), 
the log-likelihood obtained by Likelihood Synthesis is 

£(()) = Rdir((); 'h(e), &(e))+ Rind(e). 
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Whether this is a well-behaved likelihood function depends primarily on the fit of the struc­

tural model to the direct data, which might be tested by a likelihood ratio test, and also the 
coherence between the indirect data and the direct data, which also might be tested by a 

likelihood ratio test. Only in special cases, as with normally distributed statistics '¢1 and '¢2 

and with covariance matrices known up to a scale factor, will 1!(0) have an analytic form. 

5.2. BOWHEAD WHALES. This example illustrates indirect likelihood and Likelihood 

Synthesis in contrast to Bayesian priors and Bayesian Synthesis. The story behind it is in­
teresting. In 1994 the Scientific Committee of the International Whaling Commission agreed 

on a stock assessment of bowhead whales migration and feeding north of Alaska and North­

western Canada. This stock is of great interest from a conservationist point of view since 
it was heavily harvested by yankee whalers down to a very low level around 1900, and it is 
the only stock of bowhead whales that has recovered substantially from commercial whaling. 
The stock is also interesting from a whaling point of view since it is still harvested by Alaskan 
Eskimos. 

The Bayesian Synthesis method was constructed to estimate the status of the stock of 
bowhead whales (International Whaling Commission, 1995), but management advice had 
to be reconsidered (International Whaling Commission, 1996) due to lack of transformation 

invariance (Schweder and Hjort 1996) and also some other questions including whether the 
'forwards' or the 'backwards' variant of the method is appropriate (Punt and Butterworth, 
1996). 

Raftery, Poole and Zeh (1996) presented a new version of Bayesian Synthesis based on 
geometric pooling of the independent prior distributions that effectively would go into their 

synthesis. To investigate this method, they tried it in a simplified population dynamics model 

for bowhead whales. We use the same deterministic age-structured Leslie matrix model for 

the dynamics of the stock, and we re-interpret their prior probability densities as densities in 
confidence distributions yielding indirect likelihoods. 

At the beginning of year t, there are Pt bowhead whales. With Ct being the catch in 
year t, the dynamical model is 

where 01 is the carrying capacity and 02 the maximum sustainable yield rate. Set t = 1 for 
1848 and assume P1 = 01, since the yankee whaling started in 1848. The catch series Ct for 

t = 1, ... , 145 (in 1992) is assumed to be exactly known. Raftery, Poole and Givens (1996) 

list the following independent priors for el, (}2 and ¢ = p1993: 

01 ""'6400 + Gamma(2.81, 0.000289), 

02 ""'Gamma(8.2, 372.7), 

¢""' N(7800, 13002 ), 

where Gamma( a, b) denotes the distribution with density proportional to ta-l exp( -bt) (it 

has mean value ajb and standard deviation a112 /b). In addition there was a fourth piece 

of independent information, to the effect that the value J; = 8293 was observed from a 

N(¢, 6262 ) distribution. The conceptual and practical problem Raftery, Poole and Givens 
wanted to handle was that of having three independent priors in a model of dimension two. 
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For Likelihood Synthesis it is no problem with having more (or fewer) independent pieces 
of indirect data than there are dimensions in the model. Since independent components of 

the indirect likelihood are treated in the same way as independent components of the direct 

likelihood, it does not matter for the total likelihood whether a piece of data is regarded 
as direct of indirect. To illustrate, take the Gamma distribution for ()2 as a confidence 
distribution yielding the indirect log-likelihood 

(where Ga,b is the cumulative Gamma distribution function), while the Gamma distribution 
for ()1 and the two normal distributions for ¢ are taken as confidence distributions giving 
components of the direct log-likelihood 

The total log-likelihood is then 

where <I> is the deterministic population dynamics model result for ¢ = P1993· 

The¢;= 8293 is the stock abundance estimate obtained from the 1993 survey. The other 
pieces of information, summarised as pre-1993 priors above, are also based on considerable 
amounts of data. The Gamma distribution for the productivity parameter ()2 , is, for example, 

based on the estimated growth rate in a time series of abundance estimates prior to 1993. We 
will investigate the profile log-likelihood for ()2 , as composed of the direct profile log-likelihood 

and the indirect one. 

- Figure (see page 24), to be placed around here -

FIGURE. Profile log-likelihoods for ()2 , maximum sustainable yield rate. Exact 
profile log-likelihoods are shown for the indirect (dotted), the direct (small circles, 
upper curve) and total (small circles, lower curve) cases. Three-parameter log­
likelihood approximations to the direct and total ones, using the exponentially tilted 
normal family, are also shown. 

The figure shows the exactly calculated indirect, direct and total log-likelihoods; the first 
uses the Gamma assumption while the two latter were computed numerically for ()2 values 

equal to 0.007, 0.008, ... , 0.050. For the direct and total cases, log-likelihood approximations, 

using the exponentially tilted normal as in Example 3.1, are also shown, having been fitted 

by least squares for each component. The fit is remarkably good. To each fitted component, 
a 95% confidence interval is calculated from the formula 

02 + a{exp(±1.96a) -1}/a. 

For the indirect likelihood case the interval is computed exactly from the Gamma distribution. 

The results, together with the results of the two versions of Bayesian Synthesis (Raftery, Poole 
and Givens, 1996) are shown in the following table. 
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TABLE. The parameters 02 , a, IJ of the separately fitted exponentially tilted normal 
log-likelihoods to the indirect, direct and total log-likelihoods, respectively. For each 
fitted component, 95% confidence intervals (lower, upper) are given, and also two 
95% Bayesian credibility intervals taken from Raftery, Poole and Givens (1996). 

indirect likelihood 
direct likelihood 
total likelihood 
Bayesian, forwards 
Bayesian, backwards 

lower estimate upper a IJ 

0.0096 0.0211 0.0394 
0.0000 0.0193 0.0896 0.650 0.01776 
0.0102 0.0209 0.0373 0.220 0.00670 
0.0077 0.0157 0.0295 
0.0069 0.0206 0.0464 

Our results agree more with the results from the backwards Bayesian Synthesis method 

than with the forwards variant, but our confidence interval is shorter. The most important 

difference however is that Likelihood Synthesis yields unique results and that these follow 

directly from the likelihood principle, with likelihoods constructed from confidence distribu­

tions. 

When comparing the indirect and the direct components in the table and figure, it is 

evident that most of the information lies with the indirect component. If information is 

measured by square root length of the 95% confidence intervals, there is 1.8 times as much 

information in the indirect data as in the direct data. This is actually as expected since the 

indirect data summarise a series of earlier abundance estimates with respect to growth rate, 

which is the primary source of information on productivity parameters like (h, 

6. Supplementing remarks. 

REMARK 1. A strategy that has been used occasionally when dealing with complicated 

nuisance parameters is to first do the analysis conditional on such parameters, and then 

average with respect to their prior distribution. More specifically, if say 0-y is the estimator 

obtained conditionally on an"! parameter, the suggestion is to use 

(6.1) 

where 1r is the prior density. This appears to be the general proposal made in Restrepo, 

Hoenig, Powers, Baird and Turner (1992; see in particular their p. 742). 

This is not a good strategy. In a full Bayesian framework the best estimator (with squared 

error loss) is the conditional mean, which can also be expressed via iterated expectations, 

0(2) = E(B I data) = E{E(B I"(, data)} = j O-y7r('Y I data) d"f. (6.2) 

One might, somewhat heuristically, take the last formula as a general strategy, that is, even 

for other 0-y estimators than the Bayesian one. The argument suggests that it would at least 

be better to use the posterior and not the prior density for the nuisance parameter in (6.1). 

A simple example demonstrating this is as follows. Let x1, ... , Xn be independent and 

normal (J-L, 1J2 ), and assume there is a prior N(J-Lo, T5) for 1-L· The maximum likelihood esti­

mator for the variance conditional on J-L is a~ = n -l L:~=l (Xi - /-L) 2 . The ( 6.1) suggestion 
leads to 

n 

~2 E ~2 -1 '""(X )2 2 IJ(l) = prior IJ J-L = n L.....J i - /-LO +To, 
i=l 
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which has obvious drawbacks; it converges to (]'2 + (J..l - J..to) 2 + T6 as n grows, for example, 
seriously overshooting the intended estimand. Suggestion (6.2) gives a more reasonable result, 

n 
~2 E ~2 -1 ~( ~)2 ~2 
(]'(2) = posterior(]' J.L = n ~ Xi - f..l + T , 

i=1 

where Jl and 72 are posterior mean and variance for J..l· We would typically have Jl close 
to x and 72 close to 0:2 jn, showing that the estimate above is perhaps only slightly bigger 
than it should be. It is asymptotically equivalent to the full and correct maximum likelihood 

solution. 
A more elaborate full-Bayes version of this example is as follows, utilising the traditional 

conjugate prior for (J..t, (]')in the normal model. To describe the prior, let>..= 1/(]'2 be Gamma 

(~a, ~b), and let J..l for given(]' be a N(J..to,(J' 2T6) = N(J..to,p-1 >..- 1 ), writing p = 1/T6 for this 
precision parameter. The full likelihood for (>.., J..l, data) is proportional to 

where 0'5 is the traditional n- 1 :E~=1 (xi- x) 2 . This shows that 

>..I data"' Gammag(a + n), ~(b +nO'~+ pn(x- J..lo) 2 j(p + n))}, 

J..tl >..,data"' N(jl, (p + n)- 1 >.. - 1 ), 

in which Jl = E(J..tl data)= (nx + PJ..lo)/(n + p). 
Since jl is independent of(]' both strategies agree on Jl as the estimate of J..l· The situation 

is different for (]'2 , however. In the J..t-conditional framework, .AI data is a Gamma n (a + 
n), ~(b + n0'5 + n(x- J..to) 2}, with resulting 

Strategy (6.2) gives the full Bayes estimate 

which is quite close in probability to simply 0'5 as n becomes large. Method (6.1), on the 

other hand, gives a far too large variance estimator. 

REMARK 2. Bayesians have developed various strategies for obtaining prior distributions 

that are based on data and not on subjective beliefs, as a response to the criticism that science 

should be based on data, with as little subjective judgement involved as possible. Empirical 

Bayes is the most successful of these strategies. By allowing subjectivity in likelihood analysis 

by way of indirect likelihoods, the objectivists might be worried. 

That indirect likelihood could be misused to introduce undue subjective beliefs or prej­

udice into the statistical analysis is not a valid critique. By insisting that each independent 

piece of the likelihood, both the direct and the indirect likelihood based on indirect data, is 

well documented and argued, the reader would know what the basis is for the inference. The 
main use of indirect likelihood is to allow indirect data to enter the analysis. There might 
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occasionally be a place for expert judgements that are not directly based on specific reported 
data. That this can be accommodated by the indirect likelihood is, in our view, rather an 
asset of the concept than a weak point. 

An important difference between Bayesian analysis and likelihood analysis is worth not­
ing in this context. Let the likelihood of the direct data, £din be cast in the q-dimensional 
parameter (), Without a prior distribution in q dimensions, the Bayesian will be unable 
to carry out his analysis. This will often force him to use priors with a weak basis in re­
ported data. The likelihood analyst will, on the other hand, in principle be able to work 
with .edir(()) +find(()) for any indirect likelihood that is well supported, even if find is non­
informative in the likelihood sense in one or more dimensions. He will thus have no need to 
elicit (from experts or from himself) an indirect likelihood with weak support. 

Acknowledgements. We are grateful to B. Efron and C.E. Priebe for comments leading 
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