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Correlation Curves: Measures of association as functions 

of covariate values. 

Steinar Bjerve1 

Department of Mathematics, University of Oslo 

Kjell Doksum2.3 

Departtnent of Statistics, University of California, Berkeley 

and Harvard University 

Abstract. 
For experiments where the strength of association between a response variable Y and a 

covariate X is different over different regions of values for the covariate X we propose 

local nonparametric dependence functions which measure the strength of association 

between Y and X as a function of X = x. Our dependence functions are extensions of 

Galton's idea of strength of co-relation from the bivariate normal case to the non

parametric case. In particular, a dependence function is obtained by expressing the .: 

usual Galton-Pearson correlation coefficient in terms of the regression line slope ~ and 

the residual variance var (Y I X = x) and then replacing the regression slope ~ by a 

nonparametric regression slope ~ (x). We show that the dependence functions share 

most of the properties of the correlation coefficient and that they reduce to the usual 

correlation coefficient in the bivariate normal case. For this reason we call them corre

lation curves. We show that, in a cenain sense, they quantify Lehmann's notion of 

regression dependence. Consistency and asymptotic normality results of empirical ver

sions of correlation curves are established. The last two sections present a bootstrap 

confidence procedure and include a data example and a simulation example. 

I. Introduction. For bivariate experiments where the contour plots (plots of (x, y) 

where the joint density f (x, y) is constant) are nearly shaped like lemons or ellipses, 

the correlation coefficient p is a very concise and convenient measure of the strength 

of the association between the two random variables X and Y. However, in many 

interesting cases, the contour plots cannot be assumed to be elliptical. For instance, J. 

Fisher (1959) reponed on studies in psychology and other fields where the association 

1 Partially supponed by the Johan and Mimi Wessmann foundation. 
2 Work partially supponed by grant from the Norwegian research foundation 
for science and the humanities. 
3 Research partially supponed by NSF Grant DMS-8901603 
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between the response variable Y and covariate X is strong for large values of X = x, 

but the association is weak or non-existent for small x. In particular, Fisher describes 

studies where the association between a score X giving level of brain disease is 

strongly associated with an independently assessed score Y indicating level of patho

logical behaviour for patients with large values of X = x, but the association gets 

weaker as X = x decreases. Fisher gives an associated contour plot and calls it a 

twisted pear. See Figure 1 which gives a representation of J. Fisher's contour plot. 

y 

X 

Figure I. A typical twisted pear contour plot. x is level of symptom and y is level of 

disease. 

Our next example is from financial analysis. Here studies (e.g. Karpoff (1987)) of 

stock market behavior has revealed that the association between change X in prices 

and volume Y moves from negative to positive as X = x goes from negative to posi

tive. Using Karpoff's plot and data description, we conclude that the contour plot in 

this case looks somewhat like a twisted sausage or a banana. See Figure 2. 

y 

X 

0 

Figure 2. A contour adaption of Karpofrs Figure l. x is change in price and y is 

level of volume. 
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In the statistical literature, there is also an abundance of examples where the 

strength of association changes with the levels x of the covariate X. See for instance 

Anscombe (1968), Bickel (1978), Carroll and Ruppert (1982, 1988), Breiman and 

Friedman ( 1985), and Silverman (1988). The methods proposed for handling such 

situations include transformation techniques where the X's and Y's are transformed 

according to some criteria to the case where the strength of the association does not 

change with the covariate values. However, in many applications the change in the 

strength of association is of interest and this change is erased by the transformations. 

Another approach is nonpararnetric regression which involves computing estimates of 

the conditional mean or median of Y given X = x. These regression methods only 

consider average (or median) conditional behaviour and do not take into account the 

width (in the y-direction) of the contour plot. From Figure 1 it is clear that the width 

of the contour in the y-direction is very important for the strength of association. 

Thus when the strength of the association is of interest. the regression methods need 

to be supplemented with a measure of spread for Y given X = x. 

2. A correlation curve. Our approach is to construct a measure of local strength of 

association by combining ideas from nonpararnetric regression and Galton (1888). 

According to Galton (see Stigler, 1986, p.297; 1989), the strength of the co-relation 

between X and Y can be taken as the slope of the regression line computed after X 

and Y have both been converted to standardized scales X'= (X - J,L 1) I a 1 and 

Y' = (Y - J,L2) I a2, where (J.L 1, a 1) and (J,L2, a2) are location and scale parameters for X 

and Y, respectively. 

When (X, Y) is bivariate normal, N(J,L1,J,L2,a(,aj,p), this leads to the familiar for

mula 

P = CJ1 ~/CJ2 (normal case) 

where ~ is the regression slope when Y is regressed on X. Next we introduce the 

familiar (e.g., Bickel and Doksum (1977, p.36)) decomposition 

aj = var (Y) = variance explained + residual variance 

= (a1 ~)2 + a 2 (x) (normal case) 

where a2 (x) = var (Y I x) = var (Y 1 X = x) is the variance of Y given X = x. (In the 

normal case, a2 (x) = aj ( 1 - p2) does not depend on x, but in non-normal cases it 

typically does). We can now write 

(2.1) 
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In this representation we see how the correlation coefficient p is determined by the 

regression slope ~ and the residual variance cr2 (x). The representation also suggests 

that in the non-normal world of twisted pears and sausages, a very natural local meas

ure of the strength of the association between Y and X near X = x is the correlation 

curve 

(2.2) p (x) = 
[ (al ~(x)} 2 + rr(x)] 112 

(general case) 

where ~ (x) = J.L' (x) is the slope of the non-parametric regression 

J.1 (x) = E (Y I x) = E (Y I X = x); and CJf = var (X) and cr2 (x) = var (Y I x) as before. 

This correlation curve concept makes sense only when X is a continuous random vari

able (in fact, J.1 (x) = E (Y I x) must be differentiable). The distribution of Y can be 

discrete or continuous. We have assumed that CJf and a2 (x) exists. 

p (x) measures the strength of the association between X and Y locally at X = x. 

Thus, in the price-volume example (Figure 2), the correlation curve would be negative 

for x negative and positive for x positive. More generally, for some number :xo. we 

could have p (x) negative for x < Xo and CJ (x) positive for x > Xo· On the basis of .... 

price-volume data we could find the region "x < x1" where p (x) is significantly nega

tive and the region "x > x2" where p (x) is significantly positive. In the J. Fisher 

example where small x has little or no influence on the distribution of Y while large x 

does (Figure 1), p (x) would start out near zero and then increase towards one. 

Example. A generalized linear model (GLM). Consider the GLM of the form 

Y = a 1 + ~g(X) + h(X)£ 

where X and £ are independent with variances CJf and of, and where E (£) = 0. By 

appropriate choices of g and h as well as distributions of X and £, the contour plots of 

the density f (x, y) of (X, Y) will resemble the twisted pear in Figure 1. For instance, 

if £ has a standard normal distribution, then (Y I x) has N (~ g (x), h2 (x)) distribution, 

and if the link function g (x) has an increasing derivative g' (x) and if h (x) is constant 

or decreasing, then the twisted pear model results for most choices of the distribution 

of X. If h (x) is constant, the correlation coefficient is the appropriate measure of 

strength of association between g (X) and Y. However, if we are interested in the 

strength of the relationship between X (the level of the symptom) and Y (the level of 

the disease), then the correlation curve p (x) is the appropriate measure of the strength 

of the relationship even if h (x) is constant in x. In our GLM with g (x) differentiable, 

we have 

p (x) 
~ Ot g' (x) 

= 
[ ( ~ Ot g' (x) }2 + of h2 (x) 1112 . 
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If g (x) = x2 /2 and h (x) = 1, x > 0, (which corresponds to a twisted pair model), we 

find p (x) = ~a 1 xI [ (~a 1 x} 2 + of] 112• In this case, the strength of the association 

starts out at zero when x = 0 and increases until x reaches it largest possible value. 

To obtain a comparison with the correlation coefficient Pxy between X and Y, we 

further assume that X has a uniform distribution on [ 0, 1 ]. In this case 

p(x) = ~x/[ (~x} 2 + 12af]112 and PxY = (112)~/[(12/45)af + 12af] 112• A 
particularly simple and instructive case is ~ = 1 and of= 11/180. In this case 

p = 0.5 and p(x) = x/[x2 + (11115)] 112. Thus p(x) increases from zero to 0.76 as x 

increases from zero to one. On the other hand, the correlation coefficient between 

Z = g(X) = X212 and Y is pzy = ~ which in the case ~ = 1, 
..JaJ + 45 a] 

of= ll/180 equals pzy = 1/..J3.75 = 0.52 

3. General correlation curves and their properties. In Section 2 we defined a 

correlation curve in terms of Jl (x) = E (Y I x), Of = var (X), and a 2 (x) = var (Y I x). 

However, just as there are many measures of location and scale, there are many corre

lation curves. These are obtained by replacing J.L (x), Of and a 2 (x) by other measures 

of location and scale. This may be desirable since Jl (x), Of (x) do not always exist. 

Moreover, they are very sensitive to the tail behaviour of the distributions of X and 

(Y I x). Thus, in our definition of the correlation curve p (x), we replace Jl (x) and a (x) 

by measures m (x) and t (x) of location and scale in the distribution L (Y I X = x) of Y 
given X= x. We assume only that m (x) and t (x) are location and scale parameters in 

the sense that they satisfy the usual equivariance and invariance properties. Similarly, 

we replace a 1 by a scale parameter t 1 for the distribution of X. Our basic assumption 

is that m' (x) = ! m (x), t 1 and t (x) exist. Thus X has a continuous distribution 

while the distribution of Y may be discrete or continuous. Each time we specify 

m (x), t 1 and t (x) we get a correlation curve whose formula is 

(3.1) 
t 1 m' (x) 

p (x) = Pxv (x) = [ ( tl m' (x) )2 + t2 (x) ]112 • 

It will sometimes be convenient to write (3.1) in the equivalent form 

(3.2) 

where the sign ± is the same as the sign of m' (x). Under appropriate condition, the 

correlation curves satisfy the following eight basic properties (axioms) of correlation. 

(In these axioms, the expression "for all x" means "for all x in the support 

S = ( x: 0 < Fx (x) < 1) of the distribution Fx (x) of X.) 
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(i) Standardization to the unit interval. 

From (3.1 ), we observe 

-1 s; p (x) s; 1 for all x. 

(ii) Invariance and equivariance. 

Each correlation curve p (x) has in variance and equivariance properties that are 

direct analogs of those of the correlation coefficient p, that is 

Proposition 1. If x* =a+ bX and y* = c + dY with bd :# 0, then, for all x* in the 

support of the distribution of x*, Px• y• (x *> = sign (bd) PxY (x), where x = (x * - a) I b . 

. Proof: In the proof we use "*" to indicate parameters computed for x* and y*. 

Using the invariance and equivariance of the loca~tion and sc~e par}ameters we find 

• * • d • * d x -a , t 1 = lblt1, t (x ) = ldlt(x) and -. m (x ) = -.., m( ) = d {m (x)lb}; 
dx dx b 

thus the result follows. 

(iii) p (x) = p for all x in the bivariate normal case. 

It turns out that in order to achieve p (x) = p in the bivariate normal, 

N (J.lt dJ.2, of, O'f, p ), case, we need to add the condition that t 1 and t (x) are scale 

parameters of the "same type". We give an example where p (x) :# p, and then 

explain the term "same type". 

Example: Let t 1 be the interquartile range IQR (X) = F:X1 (.75) - F:X1 (.25) and let 

t 2 (x) = var (Y I x). In the normal case all measures m (x) of location for (Y I x) equal 

E (Y I x) and thus 

(3.3) p (x) = tl 0'2 pI O't 
[ (tt 0'2 pI O't)2 + a} (1 - p2) 1112 

= 

Now p (x) '# p since t 1 I o1 = 1.348 '# I. 

What goes wrong in this example is that t 1 = IQR (X) and o1 = { var (X)} 112 are 

different "types" of scale parameters. We say that two scale parameters are of the 

same type if they are equal when applied to the same distribution. 

Proposition 2. If t 1 and t (x) are the same type of scale parameters, and if (X, Y) is 

bivariate normal with Gal ton-Pearson correlation coefficient p, then p (x) = p for all x. 

Proof. Since (Y I x) is normal with variance O'f (1 - p2), we can write t (x) as 

t (x) = t 2 ....J 1 - p2 where t 2 is the scale parameter t (x) applied to L (Y). Since X and 

Y both have normal distributions, invariance and equivariance yields 

(CJ210't) = (t21t1). The result now follows from (3.3). 
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It follows that if tf = var (X) = Of and t 2 (x) = var (Y I x), then p (x) = p. Simi

larly, p(x) = p when t 1 = IQR(X) and t(x) = IQR(Yix). 

p (x) as defined by (3.1) is called a correlation curve only when t 1 and t (x) are the 

same type of scale parameters. 

(iv) p (x) = 0 for all x when X and Y are independent. 

Since in this case m' (x) = 0, the only condition needed for this result to hold is 

that t (x) > 0 for aH X. 

(v) p (x) = ± 1 for all x when Y is a function of X. 

Suppose Y = g (X), then, since m (x) is a location parameter, m (x) = g (x), and 

since t (x) is a scale parameter for Y I x, then t (x) = 0. It follows that 

p (x) = t 1 g' (x) I ([ t 1 g' (x) ]2) = ± 1 provided that t 1 and g' (x) exists and are non-zero. 

Moreover, p (x) = 1 when g' (x) > 0 and p (x) = -1 when g' (x) < 0. The case 

g' (x) = 0 is handled by defining 0 I 0 = 1. 

(vi) p (x) = ± 1 for almost all x implies that Y is a function x. 

Note that p (x) = ± 1 implies that t (x) = 0. Thus the result holds provided 

t (x) = 0 for almost all x implies that Y = g (x) for almost all x for some function g. 

When t (x) = var (Y I x), this condition holds. However when t (x) = IQR (Y I x), it 

does not hold. 

(vii) p (x) ~ 0 when X and Y are regression dependent. 

The pair (X, Y) is positively regression dependent if Pr (Y ~ y I X = x) is non

increasing in x (Lehmann (1966)). Let Y (x) denote a random variable with distribu

tion Pr (Y ~ y I X = x). Then regression dependence means that for x1 < x2, Y (x1) is 

stochastically smaller than Y (x2). It follows that if the location parameter m (x) for 

Y (x) has a derivative m' (x), then m' (x) ~ 0 and p (x) ~ 0. 

(viii) p (x) increases with increasing regression dependence. 

Let (X, Y 1) and (X, Y 2) be two pairs of random variables, let Y 1 (x) and Y 2 (x) 

denote random variables with distributions L (Y 1 I x) and L (Y 21 x), and let 

(m1 (x), t 1 (x)) and (m2 (x), t 2 (x)) denote location and scale parameters of the same 

type for Y 1 (x) and Y 2 (x), respectively. The pair (X, Y 1) is said to be more regres

sion dependent than the pair (X. Y 2) if Y 1 (x) I t 1 (x) is stochastically more increasing 

than Y 2 (x) I t 2 (x) in the sense that for each B in some neighborhood (o, £) of zero, 

{ Y 1 (x + B) - Y 1 (x - B)) I t 1 (x) is stochastically larger than 

{ Y 2 (x + 5) - Y 2 (x - B)) I t 2 (x). It follows that if m1 (x) and m2 (x) are location 

parameters such that the location of a difference is the difference of the locations and 

if m1'(x) and m2'(x) exist, then {m 1'(x)lt1 (x)) ~ {m2'(x)/t2(x)). Thus, if we let 

P1 (x) and p2 (x) denote the correlation curves corresponding to (X, Y 1) and (X, Y 2), 
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then it follows from (3.2) that p1 (x) ~ p2 (x) for all x. 

(ix) Interchangeability of X and Y. 

Note that PXY ( · ) ~ PYX ( · ) except in very special cases. If we want a local meas

ure of correlation where X and Y are interchangeable, we can proceed as follows: Let 

Fx and Fy denote the distributions of X and Y respectively. Set x = Fx1 (p) and 

y = Fy1 (p); thus x and y are both pth quantiles. Define 

Tlxy(x,y) = [sign (Pxv(x)}] (Pxy(x)Pvx(Y)} 112 if sign{Px:y(x)} = sign{pvx(y)} 

= 0 otherwise . 

We assume that all the conditions of this section are satisfied for (Y, X) as well as 

(X, Y). Now it is clear that llxv (x, y) = Ttvx (y, x). In this paper we prefer the asym

metric situation where how strongly the response variable Y is associated with the 

covariate variable X locally at X = x is of interest. We will not consider llxv {x, y) 

again in this paper. 

Remark 3.1. The joint distribution of Y (x- 5) and Y (x + 8), which appear in (viii) 

above, can be obtained as follows: Suppose Y (X) = g (X) + h (X)£, where X and £ are .

independent, then the distribution of (Y (x - 5), Y (x + 5)) is the distribution of 

(g (x - 5) + h (x - 5) E, g (x + 5) + h (x + 5) £). In general, assume we can write 

Y = a (X, E) for some function a ( · , · ) and repeat the above idea. 

Remark 3.2. A definition of "more regression dependent" based on comparing the 

Kolmogorov distance between Y 1 (x1) and Y 1 (x2) to the Kolmogorov distance between 

Y 2 (x 1) and Y 2 (x2) was considered by Bell and Doksum (1967). 

4. Smooth correlation curves. Since they depend on the derivative m' (x), the corre

lation curves p (x) considered in Sections 2 and 3 can be erratic and difficult to esti

mate. Thus, prior to introducing estimates of p (x), we pre-smooth p (x) by consider

ing the strength of association between X and Y for X in an interval containing x 

rather than for X exactly equal to x. We choose this interval so that there is an equal 

amount of mass on either side of x. More precisely, we set x = "P = pth quantile of 

Fx, where p = Fx (x) and Fx is the distribution function of X. Now our interval is 

[ "P-t• xp+t ], where "P-t = Fx1 (p - t) and xp+t = Fx1 (p + t) are the (p - t)th and 

(p + t)th quantiles of Fx. Note that this interval has mass t on either side of x = "P· 
Now rather than using the derivative p (x) = m' (x) of the location parameter m (X) for 

L (Y I X = x), we consider the interval slope 

Pt (x) = 
m (~t - m (Xp-t) 

X = Xp· 
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In direct analogy with (2.2) and (3.1 ), we c;lefine the smooth correlation curve as 

t1 ~~ (x) 
( 4.1) Pt (x) = 2 2 112 • x = x_ 

[(t 1 ~1 (x)} +t (x)] -., 

with the convention that p, (x) = 0 if both the numerator and denominator equals zero. 

Clearly, if m' (x) exists, p, (x) --+ p (x) as t --+ 0. Even though p, (x) is an approxi

mation to p (x), we prefer to think of it as a correlation curve in its own right: Since 

p, (x) combines the slope over the interval and the residual variance in accordance with 

formula (2.2) and Galton's principle of correlation as regression slope on standardized 

scales, we conclude that p, (x) measures the strength of the association between Y and 

X for X in the interval [ xp-t• xp+t ]. 

Moreover, p, (x) also satisfies the eight basic axioms (i), ... ,(viii) of correlation 

curves given in Section 3 and it can be turned into a measure with X and Y inter

changeable as in (ix), Section 3. 

Remark 4.1. Kowalczyk (1977) and Kowalczyk and Pleszczynska (1977) con

sidered the functions 

E (Y I X > Xp) - E (Y) 
Jlv.x(P) = E(YIY > Yp)- E(Y)' Jly,x(p) = 

and defined the monotonic function 

llv.x<P> = Jlv.x<P> if Jlv.x<P> ~ o 

= Jlv.x (p) if J.Lv .x (p) s o. 

E (Y I X > Xp) - E (Y) 

E (Y) - E (Y I Y < y 1-p) 

This function measures dependence to the right of ~· Our function p, (~) measures 

strength of association in a neighborhood of~· 

5. Estimation of smooth correlation curves. Consistency. 

S(a). The general setup. We consider two types of sampling experiments with 

corresponding models: 

I. Random Covariates. In this case, let (X1, Y1), ... , (Xn, Yn) denote the ran

dom outcome of an experiment where, for the ith subject in a random sample of size 

n, Yi denotes the response and Xi denotes the covariate value. The pairs 

(X 1• Y 1), ... , (Xn, Y n> are assumed to be independent and identically distributed. We 

assume that the distribution Fx of Xi is continuous while the distribution Fy of Yi may 

be discrete or continuous (or a mixture). 

II. Fixed covariates. In this case, the covariate value xi is fixed and Yi denotes 

the random response of a subject selected at random from a population of subjects 
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with covariates value xi. The distribution function Fy1 of Yi depends on xi. We 

assume that Y 1, ••• , Y n are independent and that the x's are distinct. Since the x's 

are nonrandom we can without loss of generality take x1 < · · · < Xn· 

By a result of Bhattacharya (1974), there is a strong connection between models I 

and ll: In model I, let Xo> < · · · < X<n> denote the X-order statistics and let 

Y111 , ... , Y[nJ denote theY-statistics induced by the X-order, that is Y[i] = Yk1• where 

k1 denotes the subscript on the X with rank i among X1 , ••• , Xn (Xk1 = X(i)). These 

Y[ 1's are called concomitants. Conditionally on X(l) = x1 , •.. , x(n) = Xn• 
Y111 , ... , Y[nl are independent, and the conditional distribution of Y[i] depends only 

on xi. Thus model II is a conditional version of model I. Conversely, if in model II 

we replace x1 < · · · < Xn by the order statistics X(l), ... , X(n) of a random sample 

from Fx, we let (r1 , ... , r0 ) denote a random permutation of (1, ... , n), and we set 

Xi= X(r;)• Y/ = Yr1• then (XI, Y1'), ... , (X0 , Y0 ') are independent identically distri

buted random pairs. Thus model II is a randomized (anti-conditional) version of 

model I. 

In Sections 2 and 3 we formulated correlation curves in terms of the random 

covariate model. To formulate the correlation curve in terms of the fixed covariate 

model, we rewrite this model as 

(5.1) Yi = m(Xj) + t(Xj)ft, i = 1, ... , n; Xt < "' < Xn 

where m (xi) and t (xi) are location and scale parameters for the distribution of Yi• and 

E1 , ... , En are independent with location and scale parameters zero and one respec

tively. With this notation the smooth correlation curve is 

tln ~~ (x) 
Pn (x) = 2 2 112 ' x = "P 

[ (tln~1 (x)) + t (x)] 

as before except t 10 is now a known scale value computed from the given x's. More

over, in ~~ (x) = ~~ (Xp) = ( m ("P+-1) - m (~J) I (Xp+1 - Xp-1), we take p = F n (x), 

~~ = F;1 (p - t) and "P+-t = F;1 (p + t) where F0 (x) = n-1 [#xi :S x] and 

F;1(u) =min {x: F0 (x) ~ u). m(x) and t(x) are unknown functions defined on 

[ x1, Xn ]. Here and throughout, the dependence of xi, ~~·etc. on n is suppressed. 

If ~n (x) is an estimate of Pn (x) obtained by replacing m (Xp-1), m (Xp+J and t 2 (x) 

by consistent estimates, then it follows from (5.3) below that () (x) is consistent in the 

sense that I ~n (x) - Pn (x)l tends to zero in probability. See Hiirdle (1990) for a recent 

survey of estimates of m (x), and see Muller and Stadtmiiller (1987), Hall and Carroll 
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(1989), and Hall, Kay and Titterington (1990) for the consistent estimation of t 2 (x) as 

well as m (x) under certain regularity conditions. Here we use Kolmogorov's inequal

ity to give an elementary argument for unifonn consistency of nearest neighbor esti

mates of p2 (x) that require a minimum of smoothness conditions. 

S(b). Nearest Neighbor Estimation. For the rest of this section we will consider 

the correlation curve p (x) based on means and variances. Thus we let t 1n be the stan

dard deviation a1n of x1 < · · · < "n· we take m (xi) = J.1 (xi) = E (Yi) and 

t 2 (xi) = a2 (xi) = var (Yi). The basic model is 

Y = J.1 (x) + a (x) £ 

where J.1 (x) and o2 (x) are the unknown mean and variance functions and £ is a ran

dom variable with mean zero and variance one. We will also assume the existence of 

the residual variance function 

Of (x) = Var (Y - J.1 (x))2. 

The data is generated according to the model 

(5.2) 

where £1, ... , En are independent with mean and variance zero and one, respectively. 

In the asymptotics each xi = xin depends on n, the second subscript on xi having been 

omitted. We assume that x1, ... , xn is a regular sequence of covariate values in the 

sense that (xi, i = 1 , ... , n} is dense on some interval [a, b] with a < b (possibly 

infinite), F(x) = lim Fn (x) exists for each x e [a, b], and F(x) is a continuous and 

strictly increasing distribution function on [a, b]. 

Let Ip-£• IP and Ip+-E be the sets of indices on the k values of x1 , .•. , xn closest to 

xp-t' xP and xp+t• respectively. (In case of ties, choose the smaller index). Define 

J.l (xp-1) = k-1 . ~ Yi, Jl (xp+-1) = k-1 . 1: Yi, f? (xp) = k-1 .1: [ Yi - Jl (xp) f. 
IE lp-l IE lpol l<lp 

Let Pn (x) denote the estimate of Pn (x) obtained by replacing J.1 (xp-1), J.1 (xpt-1) and 

o 2 (xp) by Jl (xp-J, Jl (xpi-J and er (xp). 

In the following k = ~ is a function of n tending to infinity as n --+ oo. 

Theorem 5.1. Suppose that x1 , ... , Xn is a regular sequence of covariate values and 
n 

suppose that max I xi+k - xi I --+ 0 as n --+ oo. Assume that k-2 1: o 2 (xi) --+ 0 and 
1sisn-k i=1 

n 
k-2 1: Of (xi) --+ 0 as n --+ oo. Assume that inf ( o 2 (x)} > 0 and that 

i=1 X1 S X SXH 

lim sup Ofn < oo. Then for each 0 > 0, 
n-+-
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P { sup I~; (x) - p; (x) I > 8) --+ 0 as n --+ oo. 
ll1Sli.Sllt-t 

Proof: Let 

Au (x) = [ J.1 (Xp+t) - J.1 (Xp-t) 12 Ofn • Bn (x) = (~ - "p--t)2 a2 (x) 

An (x) = [ ~ (Xp+J - ~ (Xp-J 12 0 fn , Bn (x) = (Xp+t - Xp-i ~ (x) . 

Then, using a little algebra, we can write 

(5.3) ~; (x) - p; (x) = An (x) [An (x) + Bn (x) r1 - Au (x) [An (x) + Bn (x) r 1 

= { [ 1 - p; (x)] [ ~ (x) - An (x)] + p; (x)[ B (x) - B (x)]) [ ~ (x) + Bn (x) r•. 
It follows that ~; (x) - p; (x) converges uniformly in probability to zero provided 

~ (xp-1) - J.1 (~J, ~ (Xp+1) - ~ ("P+-1) and til (x) - o2 (x) converge uniformly in proba

bility to zero and provided inf { Bn (x)} is bounded away from zero as n --+ oo. 
x, s II. s llt-1 

By assumption, o2 (x) is bounded away from zero. Since F (x) = lim Fn (x) is continu

ous, then "P+t - "P-t = F~ 1 (p + t) - F~1 (p- t) is bounded away from zero as n --+ oo. 

Thus inf { Bn (x)} is bounded away from zero. Next we show that Jl (Xp.-1), 
ll, s II. s llt-1 

~ (xp+J and ~ (Xp) converge uniformly in probability. We start with 

~ (x) = k-1. I: Yi, where Ik (x) set of indices on the k values of x1 , •.. , Xn closest to 
t• lt,{ll.) 

x. The deviation ~ (x) - J.1 (x) has the random part ~ (x) - E (J1 (x)) and the determinis

tic pan E (~ (x)) - J.1 (x). The random part is taken care of by the following Lemma. 

Lemma 5.1. In the fixed covariate model, assuming only that o2 (xi) exists for 

i = 1 , ... , n, 

4 n 
P ( sup I~ (x) - E (~ (x)) I > 8) s --2 I: a2 (xi) 

-oo<x<- (k8) i=l 
(a) 

(b) sup I~ (x) - E (~ (x)) I tends to zero in probability as n --+ oo 
-oo<x<-

provided o2 (x) is bounded above and (nlk2) --+ 0 as n --+ oo, 

Proof. (The proof given here leads to an upper bound sharper than the bound given in 

Bjerve, Doksum and Yandell (1985)). 

Jl (x) - E (~ (x)) = k-1 I: [ Yi- E (Yi)] is a step function which is constant on 
i• lt(X) 

each of the intervals 

(5.4) Ji = ((xi + xi+k) /2, (xi+k + xi+k+1) /2], i = 0' ... ' n - k' Xo = -oo, Xn+l = oo. 

In fact, if we set Wj = k-1 [ Yj - E (Yj) ], then we can write 

i+k 
~ (x) - E (Jl (x)) = I: wj • X e Ji. i = 0' ...• n - k . 

j=i+1 

.:; 
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i 
Set Si = .'E WJ·, i = 1 , ... , n; S0 = 0, then 

j=l 

sup Hl (x) - E (Jl (x)) I 
--<x<oo 

i+k 
= max I .'E W·l 

Osisn-k j=i+l J 

= max ISi+k- Sd s max {ISi+tl + ISd} s 2max ISd. 
Osi sn-k Osi sn-k 1 sisn 

Since var (Wi) = k-1 cr2 (xi), result (a) follows from Kolmogorov's inequality. Result 

(b) follows from Chebychev's inequality. 

Returning to the proof of T~eorem 5.I we have now shown that 

~ (xp-t) - E (Jl (~,)) and j.1 ("J>+t) - E (11 ("J>+1)) converge to zero in probability uni

formly over the respective sets (~t: t s p < 1} and {Xp.t,: 0 <psI- t}. Next we 

turn to the deterministic part represented by E (jl (x)) - J..l (x). 

Lemma 5.2. If J..l (x) satisfies the Lipschitz condition 

(5.5) IJ..l(x)-J..t(y)l s clx-yl forall x,ye [x1,Xn], some c>O, 

then 

(a) sup IE (jl (x)) - J..l (x) I s c max I xi+k - xd. 
x1 sxsx, 1 sisn-k 

(b) sup IE (jl (x)) - J..l (x) I tends to zero as n ~ oo 

if xi can be written as xi = F 1 ((i - 0.5) In)+ o (n-1) where F 1 satisfies the Lipschitz 

condition (5.5), and if (kin) --+ 0 as n --+ oo. 

Proof. Note that, using (5.4), IE (Jl (x)) - J..l (x) I = I k-1 1: J..l (xj) - J..l (x) I 
je lk(x) 

s k-1 1: I J..l (xj) - J..l (x) I s ck-1 .'E I xj - x 1. Let Ji be as defined in (5.4) except 
j•lk(x) j•lk(x) 

x0 = x1 and Xn+l = xn. For x e Ji =((xi+ xi+k)/2, (xi+!+ xi+k+l)/2], 
i+k 

L I xj - xI = 1: I xj - x 1. Next note that for x e Ji, i = 1 , ... , n - k - I, 
j• lk(x) j=:i+ 1 

max {I xj - xI; i + 1 s j s i + k} is bounded above by the larger of 

xi+k- 0.5 (xi+ xi+k) = 0.5 (xi+k- xi) and 0.5 (xi+k+l + xi+l)- xi+l = 0.5 (xi+k+l - xi+1). 

For x e J0 = (x1,(x1 + xk+l)/2 ], max(lxj- xl; 1 s j s k} is bounded above by the 

larger of xk- x1 and 0.5 (x1 + xk+l) - x1 = 0.5 (xk+l - x1); while for 

x e Jn-k = «Xn-k + Xn) /2, xn], max (I xj - x I ; n - k + I s j s n} is bounded above by 

the larger of Xn- 0.5 <Xn-k + Xn) = 0.5 (Xn- Xn-t> and Xn- "n-k+I· Result (a) follows. 
Result (b) follows since 

lx, •• -x;l = IF'[i+\-0.5)- r'[i-.0.5] + o(n-')1 
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I i + k - o.s i - o.s ( 1> I I k < 1) I s c - + o n- = c - + o n-
n n n 

Returning again to the proof of Theorem S.l we have now shown that 

E (~ ("p--t)) - ~ ("p--J and E (~ ("P+t)) - ~ ("P+t) converges uniformly to zero over the 

respective sets {"p--t: t < p < 1) and f"P+t: 0 < p < 1 - t) 

Finally we turn to ~ (x) - a2 (x). 

n 
Lemma 5.3. Suppose that as n ~ oo, max I xi+k - xd ~ 0, k-2 1: a2 (xi) ~ 0, 

1sis~lc i=1 
n 

and k-2 .1: a} (xi) ~ 0. Assume that ~ (x) and a2 (x) satisfy the Lipschitz condition 
1=1 

(5.5). Then, for each B > 0, P( sup I 0'2 (x) - a 2 (x)l > B} -+ 0 as n ~ oo. 

Proof. 

(5.6) 0'2 (x) - a2 (x) = k-1 1: [ yi - ~ (x) 12 - a2 (x) 
i•Mx) 

= k-1 1: [ Yi - ~ (x) ]2 - a 2 (x) - [ ~ (x) - ~ (x) ]2 . 
i•Mx) 

The third term converges uniformly to zero in probability by Lemmas 5.1 and 5.2. 

Similarly, if we let o2 (x) denote the expected value of the first term, the difference 

between the first term and o2 (x) tends uniformly to zero in probability by Lemma 5.1. 

It remains to show that 02 (x) - a2 (x) tends uniformly to zero. Note that 

(5.7) · o2 (x) - a 2 (x) = k-1 1: E [ Yi- ~ (x) ]2 - a 2 (x), where 
i•h(x) 

E [Yi- ~(x)]2 = E [Yi- ~(xi)f +[~(xi)- ~(x)]2 

= a2 (xi) + [ ~ (xi) - ~ (x) ]2 . 

By Lemma 5.2, k-1 1: a2 (xi) - a2 (x) tends uniformly to zero. Similarly, the proof 
i• lk(x) 

of Lemma 5. 2 shows that { c max I xi+k - xd) 2 is a uniform upper bound on 
1 sis~lc 

k-1 1: [~(xi) - ~ (x) f The result follows. 
i•Nt(X) 

6. Asymptotic Normality of Estimated Correlation Curves. 

6(a). General Correlation Curves. Suppose that m ("P+t), m ("p--t) and t 2 (x) are 

consistent estimates of m (xp+t), m (xp-t) and t 2 (x) respectively. Let 

lin (x) = [ m (xp+J - m (xp-t) ]2 tfn• bn (x) = (xp+t - Xp-i t 2 (x) 

~ (x) = [ m (xp-t) - m (xp-t) ]2 tfn• bn (x) = (Xptt - Xp-J2 t 2 (x) . 
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We consider the fixed covariates case with x1 , ••• , "n a regular sequence of covari

ates such that tfn--+ tf as n--+ oo where tf is a scale parameter for F(x) = limFn(x), 

and where Fn (x) = n-1 [#xi s: x] as before. The key to obtaining asymptotic normal

ity of estimated correlation curves is to use a little algebra to rewrite 
.Jk [ p; (x) - p; (x)] as 

(6.1) -.fkrp;(x)- p;(x)] = ([ 1- p;(x)]-Jk[in(x) -~n(x)1 

+ p; (x) {)( [ bn (x) - bn (x)]} I [in (x) + bn (x) 1 . 

Now we can use Slutsky's Theorem to conclude that if we replace the denominator on 

the right hand side of (6.1) by its limit a (x) + b (x), then the limiting distribution of 

the resulting quantity will be the limiting distribution of Vk [ ~; (x) - p2 (x) ]. Simi

larly, we can replace Xq = F~1 (q) by r 1 (q). By abuse of notation we from now on 

use xq to denote r 1. (q) rather than F~1 (q). Thus a (x) = [ m (Xp...J - m (~J f tf and 

b (x) = (xp+t - xp-1) 2 t 2 (x) are limiting versions of bn (x) and In (x). 

Proposition 6.1. Suppose that k --+ oo and (kin) --+ 0 as n --+ oo. Suppose that for 

each x e [ x1, x1_t1, {)( [in (x) - 1n (x)] and v1C [ bn (x) - b (x) 1 are asymptotically nor

mal N (J..L8 (x), a; (x)) and N (J..Lb (x), a; (x)), respectively. Then, for each x e [ x1, x1_1 ], 

~k [ p; (x) - p; (x) ], converges to a normal N (J..Lp (x), at (x)), distribution, where 

llp (x) = b (x) lla (x) + a (x) llb (x), at (x) = b2 (x) a; (x) + a2 (x) a~ (x). 

Moreover, if { .Jk [in (x) - 1n (x) ]; x e [ x1, x1_1]} and {.Jk [ bn (x) - bn (x) ]; 

x e [ x1, x1_1 ]} converge weakly in D [ x1, x1_1 ] to the respective processes W1 (x) and 

W2 (x), then {)( [ pJ (x) - p2 (x)] converges weakly in D [ x1, x1_t1 to the process 

{ [ 1 - p2 (x)] W 1 (x) + p2 (x) W 2 (x)} I [ a(x) + b(x) ], where W 1 and W 2 are indepen

dent. 

Proof. Since (kin) --+ 0 as n --+ oo, then there exists n0 such that for all n ~ n0, the 

three sets ~~· IP and ~~ do not intersect. It follows that in (x) and bn (x) are indepen

dent for n ~ n0, and the results follows. 

6(b). Nearest neighbor correlation curves. As in Section 5(b), let Pn (x) be the 

estimated correlation curve based on the nearest neighbor estimates jl (xp-1), jl (xp+1) 

and f!J2 (xp)• respectively. Then we are interested in the asymptotic normality of 

-~- A _/1 2 2 2 vk [An (x) - An (x)] = vk { [ jl (xp+1) - jl (xp-1) 1 - [ j..L (Xp+1) - j..l (xp-J] } Otn. 

Assuming that Ofn --+ Of, where Of is the variance in the distribution function F, we 

can use Slutsky's Theorem to replace Ofn by af. Similarly, using the expression 

(a - b)2 = (a- b)(a + b) we find that when sup J..L (x) < oo, v1C [An (x) - A (x) 1 has 
x.sxs:xH 
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the same asymptotic distribution as 

Proposition 6.2. Assume that k -+ - and (kIn) -+ 0 as n -+ oo. Suppose that 

{ Yi - J.1 (xi) : i e Iq) satisfy the Lindeberg - Feller Central Limit Theorem conditions 

for q = p - t and q = p + t. Assume that x1 , ••• , Xn is a regular sequence of covari

ates such that 

(6.3) '-'kmax {I xi- xql: i e Iq) -+ 0 as n-+ oo for q = p- t and q = p+t. 

Suppose that Ill (xi) - J.1 (xq) I s c I xi - xq I and that a2 (Xj) - a2 (xq) s c I xi - xq I for 

i e Iq, q = p - t and q = p + t, and some c > 0, then "k [ ~ (x) - A (x)] is asymptoti

cally normal, N (0, a~ (x)), where 

a 1 (x) = 4 [ ll (xp+-J - ll (Xp.-J f [ a2 (~t) + a2 (Xp-t)]. 

Proof. The proof follows from the expression (6.2), Lemma 5.2, the Lindeberg -

Feller Central Limit Theorem, and the fact that under the conditions given, 

k-1.I: al(xi)-+ al(xq) for q = p- t and q = p + t. 
I• Iq 

Remark 6.1. The Lindeberg - Feller conditions are satisfied if in model (5.2) we 

assume that e1 , ... , En are i.i.d. and 

{supa2 (xi): i e Iq) 

L 0'2 (Xj) 
i• Iq 

for q = p- t and q = p + t. 

-+ 0 as n-+ oo 

Remark 6.2. The condition (6.3) is satisfied if xi can be written as 

xi= F 1 ( i- 0·5 ) + o(n-1) with F 1 satisfying the Lipschitz condition (5.5) and pro
n 

vided (k312 / n) -+ 0 as n -+ oo. 

To find the asymptotic distribution of the nearest neighbor correlation curve p (x), 

it remains to find the asymptotic distribution of 

"k [ Bn (x) - Bn (x) ] = .fk ("P+t - Xp-J2 [ ~2 (x) - a2 (x) ] . 

Proposition 6.3. Assume that the conditions of Proposition 6.2 are satisfied when 

t = 0. In addition assume that I a} (xi) - a} (x) I s c I xi - xI for i e IP, some c > 0 

and that { [ Yi - J.1 (xi) ]2 - a2 (xi) : i e lp} satisfy the Lindeberg-Peller Central Limit 

Theorem conditions. The "iC [ Bn (x) - B (x)] is asymptotically normal, N (0, a§ (x)), 

where 
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Proof. Using the proof of Lemma 5.3, we can write 

..fk [ o2 (x) - cr2 (x)] = k-l/2. I: { [ Yi - J.L (xi) ]2 - cr2 (xi)} + Rn.k 
t• lk(x) 

where Rn.k is a remainder tenn which tends to zero as n ~ oo, k ~ oo, (kin) ~ 0. 

Now the result follows by applying the Lindeberg-Feller Theorem to 

{ [ Yi - Jl (xi) ]2 - cr2 (xi): i e Ik (x)}. 

Remark 6.3. The Proposition 6.3 Lindeberg-Feller conditions are satisfied if in 

model (5.2) we assume that e1 , ... , En are i.i.d. and 

{ supcrf (xi) : i e Ik (x)} 
~ 0 as n ~ oo. 

Combining Propositions 6.3 and 6.4 we arrive at 

Theorem 6.1. Under the conditions of Propositions 6.3 and 6.4, the nearest neighbor 

correlation curve ~ (x) is asymptotically nonnal in the sense that as n ~ oo 

..fk [ ~ (x) - p (x)] tends in law to N (0, crt (x)), where 

crt (x) = { [I - p2 (x) ]2 crl (x) + p4 (x) cr§(x)} I [ a(x) + b(x) ]2 

7. Computing the Estimated Correlation Curve and a Bootstrap Confidence Pro

cedure. 

7(a). The Estimate. We let (x 1, y1), ..• , (xn, Yn) denote the observed data. We 

assume that these have been generated by the fixed covariate model (5.2) where the 

x's are nonrandom and ordered. We will describe an algorithm for estimating p (xp), 

where X.P = xm with m = [ np] + 1 and where [ x] denotes the largest integer less than 

or equal to x. We need to define three disjoint and adjoining neighbourhoods of size 

k, neighbourhoods about the points xp-£• xP and ~£· We will define them in terms of 

the indexes of x's closest to xq. q = p- €, p, p +E. Denote these neighbourhoods as 

Nl, Nil and NIII respectively. N II is then seen to be 

Nil = { [ np] + I - (k - 1) I 2 , ... , [ np] + 1 + (k - 1) I 2} . 

This neighborhood is of size k when k is odd and k + 1 otherwise. For simplicity, 

let us assume that k is odd. Likewise, 

NI = {[n(p- t)] + 1 - (k- 1)12, ... , [n(p- t)] + 1 + (k- 1)12} 

and 



- 18 -

NIH= {[n(p+t)] + 1- (k-1)/2, ... ,[n(p+t)) + 1 + (k-1)/2}, 

Choose t so that n · t is integer valued, say n · t = I. We require that the index

sets Nl, Nil and NIH are adjoining, non-overlapping and that they only contain posi

tive integers. These requirements lead to the following (recall that m = [ n · p 1 + 1): 

[ n (p - t)] + 1 - (k - 1) /2 ~ 1 <=> m ~ I + (k + 1) /2, 

[n(p- t)] + 1 + (k -1)/2 = [np1 - (k- 1)/2 => I= k. 

Thus, 

(3k + 1)/2 ~ m ~ n - (3k + 1)/2 

and 

(3k+ l)/2n ~ p ~ n + 1- (3k+ 1)/2n. 

The computer program Mathematica, which is widely available, can conveniently 

be used to compute the dependence function and produce a plot of the function. We 

assume that we have two functions to our disposal, Median[ y 1 and IQR[ y 1. that 

returns the median and the interquartile range respectively (or, if the mean and stan- ..:: 

dard deviation are preferred, Mean[ y] and SD[ y ]). In the notation of Mathematica, 

the sets above are called lists. Let J denote the list { 1 , ... , k}. Then 

Nil = m + J - 1 - Floor [ (k - 1) /2 ] will denote the list of integers in Nil. 

Correspondingly, 

NI = m - 1 - Floor [ (kk - 1) /2 1 + J - 1 

and 

NIII = m + 1 + Floor [ (k - 1) /2 1 + J - 1 . 

In the notation of Mathematica, if y is the list containing the Y -observations, then 

y [[ N]] is the list of Y -observations with indexes in the list N. 

An expression that in Mathematica defines a function that will return the value of 

~ (xp), is now given by 

Ro [ m 1 := deltay IQR [ x] I Sqrt [ (deltay IQR [ x 112 

+ ((x [[ m + I ]) - x [[ m- 1 1]) IQR [ y [[Nil 111121 

where deltay has to be given the value deltay = Median [ y [[ Nill]]] - [ y [[ NI ]]]. A 

plot of the dependence function is obtained through the following Mathematica state

ments: 

R = Range [ kk + (k + 1) /2, n - kk - (k + 1) /21 

ListPlot [Transpose [ { x [[ R ]], Map [ Ro, R 1} 11 
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7(b). A Bootstrap Simultaneous Confidence Procedure. From the collection 

( (xj, Yj),j e Nl) of pairs corresponding to the first index set, we select k pairs with 

replacement Then, independently, we do the same for the second and third index sets. 

This procedure is repeated B times resulting in B independent triples of independent 

bivariate samples. At the ith stage we have three independent bivariate samples whose 

index sets are denoted by Nit'. NIIt' and Nil~*; i = 1, ... , B. We let ~t (~)denote 
the estimate correlation curve based on ( (xj, Y} : j e Nit), ( (xj, Yj) : j e NIIt'} and 

{ (xj, Yj): j e NIIIt}. More precisely, Pt (~) is obtained by computing the formula in 

Section 5b (7a) with 6"1, ~tt ~· x~»1 unchanged but~ (x!»J - ~ <iv-J replaced by 

11/<x-. 1)- p,*<xp--J = k-1 :t y·- k-1 :t y· 
-t"" . Nlll• J . NI• J 

) 0 I J• i 

and fJ2 (xp) replaced by 

6"i2• (~) = k-1 . I: • [ Yj - flt (~) ]2 , where ~t (~ = k-1 . I: • Yj. 
p~ p~ 

Now we approximate the distribution of .fk I~ (Xp)- p (Xp) I with the empirical dis

tribution of { ..Jk I Pt (xp) - p (xp) 1. i = 1 , ... , B}. Let ~ denote the ( 1 - a)th quan

tile of this distribution, then our level (1 - a) confidence interval for p (Xp) is 

p (xp) = p (xp) ± ~ 

Suppose we are interested in the strength of the relationship between X and Y at 

several quantiles of the covariate, say at q1 : ... , q. where qi denote the Pith quantile 

of X. To get simultaneous confidence intervals for p (q1), ••. , p (q1), we consider the 

empirical distribution of ( -Jk m~ I ~t (qj) - p (qj) 1. i = 1 , ... , B). Let c; denote the 
I SJSI 

(1 - a)th quantile of this distribution, then our level (1 - a) simultaneous confidence 

intervals for p (q 1), ••. , p (q1 ) are 

8. Examples. 

• Ca' j = 1, ... , a 

8(a). A Data Example. Figure 3 below gives the scatter plot for pairs (x, y) of 

readings of plasma lipid concentrations taken on 371 diseased patients in a heart study; 

see Scott, Gotto, Cole and Garry ( 1978). This data set has also been analysed by 

Silverman (1986, pp.81-83). Figure 4 gives the corresponding empirical correlation 

curve with t = 100/n = 0.27. 
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Figure 3. Scatter plot of plasma liquid concentrations. 

x = plasma cholesterol concentration (mg/lOOml), 

y = plasma triglyceride concentration (mg/lOOml) 
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Figure 4. The correlation curve for the data in Figure 3. Here t = 0.27 and 
0.27 s p s 0.73. The horizontal bars indicate simultaneous confidence intervals. 

The empirical correlation curve indicates a strong to moderate association between 
cholesterol and triglyceride concentration for small to moderate values of cholesterol 
concentration. The correlation curve is nearly zero for x larger than the 57th quantile. 

The simultaneous confidence intervals show that at x = 180, the hypothesis of no 
association between tryglycerite and cholesterol can be rejected. The hypothesis of no 
association is not rejected at the values x = (94, 209, 228 and 289. 
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8(b). A Simulation Example. Figure 5 below gives the contour plots for the 

model (X, Y) = (20 - exp (S), T), where (S, 'D has the bivariate normal distribution 

N (2, 4, 1, 2, -0.5). Clearly a twisted pear effect is evident. Figure 6 below shows the 

true correlation curve p (x) and the empirical correlation curve ~ (x) based on n = 2000 

observations drawn from the given (X, Y) distribution. We used t = 0.15 and k = 150. 
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Figure S. Con_tour plots { (x, y): f(x, y) = c} with c = 0.05, 

0.10 and 0.15 for the transformed bivariate normal model. 
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Figure 6. The true correlation curve p (x) and estimated correlation curve 

~ (x) for the transformed bivariate normal model. 
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