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Abstract 

In nested case-control studies the controls are sampled from the risk set at 
the failure times of the case. The analytical basis for such studies has been 
limited to semi-parametric estimators under proportional hazard models. In 
this paper it is observed that conditional inclusion probabilities of ever being 
included in the nested case-control study can be obtained, here conditioning 
is on the information needed to carry out a nested case-control study. The 
inclusion probabilities are used in pseudo-likelihoods by weighting by their in­
verse. This makes it possible to fit parametric regression models. Also a new 
semi-parametric estimator under the proportional hazard model is obtained. 
The methods are illustrated by simulation experiments and by application to 
a dataset. 

1 Introduction 

The two major types of epidemiological study designs are cohort studies and case­
control studies. Breslow & Day, (1980, 1987) discuss the advantages and problems 
associated with both types of studies. With the intent to retain the virtues of both 
type of studies so-called case-control within cohort studies have been constructed. 

The most commonly applied of these study designs is probably the nested case-control 
design suggested by Thomas (1977). In this design controls are selected from the 
population at risk at the event times. Subsequent samples of controls are independent. 

° Key words: Epidemiology; Inclusion probabilities; Nested case-control studies; Parametric re­
gression; Partial likelihood; Pseudo-likelihood; Semi-parametric regression; Survival analysis. 

0 Abbreviated title: Pseudo-likelihood for nested case-control. 
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Thomas suggested, under a proportional hazard model, an estimator of relative risks 
maximizing a Cox-type likelihood which is in fact a partial likelihood (Oakes, 1982). 
The asymptotic properties of the estimator have been formally derived (Goldstein 
& Langholz, 1992, Borgan, Langholz & Goldstein, 1995) using counting process / 
martingale theory (Andersen et al., 1993). Recent papers also extend the nested case­
control design to counter matching, i.e. stratified sampling of the controls (Langholz 
& Borgan, 1995), and show how base-line hazards and local standardized mortality 
ratios (Borgan & Langholz, 1993) as well as excess risk models (Borgan & Langholz, 
1995) may be fitted. 

Another type of case-control study within a cohort study is the case-cohort design of 
Prentice (1986) in which a subcohort is randomly chosen from the complete cohort 
at the outset of the study. Covariate information is obtained for the cases at their 
failure times and on a follow-up basis for the subcohort. Under a proportional hazard 
model Prentice showed how to obtain estimates of relative risks also by maximizing 
a Cox-type likelihood. This "likelihood" is however not a partial likelihood because 
each case is compared to the subcohort, thus the control sets at different event times 
are dependent. Prentice used the term pseudo-likelihood for the function that was 
maximized. 

The pseudo-likelihood idea has been further discussed in relation to case-control stud­
ies within a cohort framework. Kalbfleisch & Lawless (1988) showed how to fit para­
metric and semi-parametric regression models when cases and controls are sampled 
with specified probabilities. For the parametric case the estimators are obtained by 
maximizing the pseudo-log-likelihood '£ l;jp; where l; is the log-likelihood contribu­
tion and p; the probability of sampling individual i. The sum is taken over sampled 
cases and controls. In the semi-parametric case it was pointed out how one may 
extend the pseudo-likelihood of Prentice. In the parametric setting Kalbfleisch & 
Lawless also suggested the asymptotic properties of their pseudo-likelihood estimator 
when individuals are sampled independently of each other. Flanders & Greenland 
(1991) extended this to the simple random sampling of cases and controls. Similar 
issues have been discussed in Samuelsen (1989). 

The point of this paper is to note how pseudo-likelihoods similar to those of Kalbfleisch 
& Lawless can be constructed for the nested case-control design. The essential idea 
here is that the conditional probability that an individual will ever be chosen as a 
control in a nested case-control study can be obtained. These inclusion probabilities 
have a simple representation resembling Kaplan-Meier estimates. The conditioning 
here is on who is in the risk set at failure times and on which individuals become cases. 
In order to perform nested case-control studies this skeleton of the cohort information 
is required. Also noting that conditional on this skeleton cases are included with 
probability 1 the pseudo-likelihood idea can be applied directly. 
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The outline of the paper is as follows. In the next section notation and models 
for the complete cohort study are introduced. Furthermore the sampling to the 
nested case-control data is described and the (conditional) probabilities for ever being 
included in the nested case-control study are derived. It is also described how pseudo­
likelihoods corresponding to conventional likelihoods and to the Cox-partial likelihood 
are constructed. In Section 3 the asymptotic variance of the normalized pseudo­
score and the asymptotic value of the information matrix is derived and hence the 
asymptotic distribution of the pseudo-likelihood estimators are motivated. Estimators 
for variance of the pseudo-likelihood estimators are also given. In Section 4 a small 
simulation study is presented. In Section 5 the methods is employed on data from a 
cohort study. The paper ends with a discussion on some extensions and modifications. 

2 Mathematical description of the cohort study 
and nested case-control study 

2.1 The cohort study 

We assume that the cohort study consists of n individuals and that individual no. 
i enters the study at age bi, and is followed up until time Ci. The individuals are 
assumed not to have the disease under investigation when they enter the study. If the 
disease is developed at age Ti and bi < Ti :::; Ci this is recorded in the cohort study. 
Also if Ti > Ci then the Ti is right censored at Ci. Associated with individual no. i is 
a p-vector of possibly time-dependent covariates Zi(t) = (Z1i(t), .... , Zpi(t)). Models 
for the Ti are typically formulated through the hazard functions Ai ( t) dependent on 
the covariates Zi(t). We will in particular discuss the proportional hazard model 

(2.1) 

where {3' = ({31 , ... , f3v) is a regression parameter and A0 (t) some common baseline 
hazard function. Another model of interest is the accelerated hazard model for which 

Ai( t) = exp(f3' Zi( t) ),\0 ( t exp(f3' Zi( t))) (2.2) 

where again f3 is a regression parameter and ,\0 (t) is a common hazard function. 
A further choice might be additive models Ai(t) = f30 (t) + "L.j=1 {3j(t)Zji(t) where 
f3(t)' = (f30 (t), ... , f3v(t)) may be functions (Aalen, 1980, 1989). The point of mention­
ing two models in addition to the proportional hazard model is to emphasize that 
(2.1) may very well give a poor fit and an inappropriate interpretation of particu­
lar data. Methods that are not restricted to the model (2.1) is thus of considerable 
importance. 

The model (2.1) is frequently estimated by maximizing the Cox partial likelihood 
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Lc(f3) = IJ:[ exp(f3'Zi(Xi)) fi = fnexp(f3'Zi(Xi))]v; (2.3) 
i=l LjER; exp(f3'Zj(Xi)) i=l S(0l(f3,Xi) 

where xi = min(Ti, Ci), Di = I(Xi = Ti), Ri = {j : Xj ~xi > bj} and 

s(o)(/3, t) = L exp(f3'Zj(t)). 
j:bj<t·:5Xj 

If we specify the hazard rate as ,\0 (t) = ,\0 (t; B) for some parameter B, e.g. as a Weibull 
hazard or a as piecewise constant hazard, the maximum likelihood estimates (MLE) 
of (/3, B) under models (2.1) and (2.2) are obtained by maximizing the log-likelihood 
(minus a constant depending on the censoring) 

l(/3, B)= ~[Ddog(,\i(Xi)) -1:i Ai(s)ds]. (2.4) 

Of course the log-likelihood (2.4) is valid for all other parametric regression mod­
els defined by Ai(t) = Ai(t; B). For instance one may specify the additive models 
mentioned above parametric letting f3j(t) = f3j(t, Bj)· 

2.2 The nested case-control study 

For the description of the sampling of the controls we follow Goldstein & Langholz 
(1992). Within their framework the cohort is followed up prospectively with respect 
to membership in the cohort and with respect to occurrence of disease. Thus the 
risk sets Ri for all Xi are known, in particular when Di = 1. At the times Xi we 
thus know Y,; = #Ri, i.e. the number of individuals at risk in the cohort. For 
each of the Xi with Di = 1 there will now be sampled without replacement a set 
Rio= {ji1 , ... ,Jim} of individuals (where m(< Y,;)) from Ri \ {i}. The sets Rio are 
assumed to be independent (for the i with Di = 1). Letting Ri = Rio U {i} it is 
assumed that the covariate values Zj(Xi) are obtained when j E Ri. An estimate 
of the regression parameter in proportional hazard model (2.1) is now obtained by 
maximizing the following partial likelihood, suggested by Thomas (1977), 

Lc(f3) = fn exp(f3'Zi(Xi)) ]Di 
i=l 'LjER; exp(f3'Zj(Xi)) 

(2.5) 

i.e. the same expression as (2.3) only with the summation in the denominator being 
over Ri rather than over Ri. This is in fact a partial likelihood. Relevant literature 
is mentioned in the Introduction. Note also the formal equality of Lc(f3) with the 
conditional likelihood for matched case-control studies (Breslow & Day, 1980). 
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2.3 The inclusion probabilities in a nested case-control study 

As the risk sets Ri and the Di need to be known in order to carry out the nested 
case-control study we also know 

:F = {(bi, Xi, Di); i = 1, ... , n }. 

Conditionally on this "skeleton" of the cohort :F the probability that individual j is 
ever being selected as a control in the nested case-control study is given by 

m 
Poj = 1 - IJ [1 - y; _ 1 Di]· (2.6) 

bj<Xi<Xj 2 

This follows because the probability of being selected ~t time xi is ( mDi) I (Y;_ - 1) if 
bj < Xi < Xj and because the sampled control sets Rio are independent. Equation 
(2.6) is the key result of this paper. 

In order to make use of this result we make the following 

• Assumption: The complete covariate histories are obtained for both cases and 
controls. 

Thus we need to know the functions Zj(t) for bj < t ~ Xj if individual j is either a 
case or a control. This is trivially fulfilled if the covariates are constants. In general 
the assumption appears not to be very restrictive. Valid methods of inference can be 
constructed if the assumption is weakened to requiring that the covariate histories are 
obtained only for the controls, but it is hard to imagine that this can be of practical 
importance. We will in the following make use of the probabilities, conditional on :F, 

P] = { 1 
Poj 

of being included in the nested case-control study. We will also let "Vj0 be the indicator 
that individual j is ever selected as a control, and "Vj = max( D j, "Vj0 ) the indicator 
that individual j is ever either a case or a control. The set of al!._controls and cases 
ever sampled in the nested case-control study is denoted n, i.e. n = uni where the 
union is taken over all i such that Di = 1. 

2.4 The pseudo-likelihood approach 

Similarly to Kalbfleisch & Lawless (1988) we now suggest to fit models that result 
in a log-likelihood like (2.4), e.g. models (2.1) and (2.2) with a parametric specified 
-A0 (t) = -A0 (t; B), by maximizing 

(2.7) 
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where 

i.e. the log-likelihood contribution of individual i in the cohort. 

Following Kalbfleisch & Lawless we use the term pseudo-log-likelihood for (2.7). We 
will also call derivatives of pseudo-log-likelihoods for pseudo-score functions and sec­
ond derivatives for pseudo-information matrices. 

For the proportional hazard model we further suggest that regression parameters be 
estimated by maximizing the following pseudo-partial-likelihood 

(2.8) 

where 

Similar estimators were suggested in Prentice (1986), Prentice & Self (1988) and 
Kalbfleisch & Lawless (1988) for the case-cohort design. The estimators of Prentice 
and of Self & Prentice are somewhat simpler since the weighting by the inverse of 
the inclusion probabilities can be omitted. The pseudo-score function for Prentice's 
estimator has expectation zero just like the score-function from the usual estimator 
for nested case-control studies obtained from (2.5). 

Kalbfleisch & Lawless consider strata in which all individuals have the same prob­
ability of being selected, whereas in our situation these probabilities will generally 
differ from individual to individual. In our situation the pj are functions of :F and 
hence random variables. Although Kalbfleisch & Lawless consider given probabilities 
of being selected in the different strata the membership in for instance the stratum of 
cases is random. Thus the probability that an individual is being selected is a random 
variable also in the setting of Kalbfleisch & Lawless. This problem is not explicitly 
discussed by those authors and a formal justification of several of their results requires 
arguments similar to those that will be presented in the next section. In the setting 
of Kalbfleisch & Lawless the indicators of being selected are independent. This is in 
contrast with our situation and will make our calculation of the covariance matrices 
of the score functions more difficult also from a large sample perspective. 
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3 Outline of asymptotic properties 

3.1 The inclusion probabilities 

Let 

i.e. 9 denotes the complete information in the cohort study. The skeleton of the 
cohort F is contained in 9, but all information regarding the sampling is given by F. 
We now have 

[ Voi I l [ Voi I l . . [ Vi I Vi I l E - 9 = E - F = 1 and s1m1larly E - 9] = E[- F = 1. 
Poi Poi Pi Pi 

Define Y(t) as the number of individuals at risk and R(t) the risk set at time t-. 
When the cohort size n is large the probability of being included in the nested case­
control study as a control for a particular individual i can then be approximated 
by 

Poi ~ 1 - exp( -m {X; >..(t)dt) 
Jb; 

under the assumptions that inft Y(t) goes to infinity and that for some function >..(t), 

1 
Y( ) L Ai(t) -t >..(t) 

t iER(t) 

uniformly in probability as n -t oo. This is so because under the stated assumptions 

II [1 - Y; m Di] -t exp( -m r >..( s )ds) 
X;<t i- 1 lxk<t 

uniformly in probability. This limit is obtained along the lines of the proof of consis­
tency for the Kaplan-Meier estimator (Andersen et al., 1993). 

We will furthermore need the conditional (on 9 and on F) probabilities Poij where 
i -/:- j that both individual i and individual j are selected as controls, or equivalently, 
the conditional probabilities qoij that neither i nor j are selected as controls. Letting 
VOi(t) be the indicator that individual i is selected as a control at timet we thus need 

qoij = E[(1- Voi)(1- Voi)IF] = E[ll(l- Voi(t))(l- Voi(s))IF] 
t,s 

Now, the control samples at different times are independent. Hence, if t -/:- s then 
Voi(t) and VOj(s) are independent. Also if t ::; bj or t ~ Xj only individual i may 
sampled as a control and similarly for individual j. Thus 
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qoij =II E[1- VOi(t)fF]E[1- VOj(s)fF] II E[(1- VOi(t))(1- VOj(t))fF] 

where the first product is taken over those ( t, s) such that bi < t < Xi, bj < s < Xj 
and t-!- s and the second over those tin < m 1ij, m2ij > where m 1ij = max(bi, bj) and 
m2ij = min( Xi, Xj). If m2ij ::::; m 1ij then the second product is replaced by 1. Now if 
mlij < xk < m2ij we have 

for k with Dk = 1. Thus with 

Pij = qoij - 1 
(1- Poi)(1- Poj) ' 

we obtain Pij = 0 if m2ij ::::; ffilij and 

(3.1) 

otherwise. Again the product is taken over k such that m 1ij < Xk < m 2ij. The 
interpretation of Pij is given by 

Cov(Voi, Vo1fQ) = Cov(1- Voi, 1- VojfF) = Pij(1- Poi)(1- Poj) (3.2) 

Equation (3.1) and (3.2) both imply that Pij ::::; 0. In Appendix A it is shown that 
asymptotically we have Pij = -(m/n) J >-.(t)jy(t)dt + Op(n- 2 ) = Op(n- 1 ) if in addi­
tion to the assumptions used for the asymptotic considerations of Poi we also have 
Y(t)jn-+ y(t) uniformly in probability where for some E > 0 it hold that inft y(t) > E. 

This result will imply that though the VOi are asymptotically uncorrelated the de­
pendence may contribute also in the large sample variance of the pseudo-likelihood 
estimators. 

3.2 The pseudo-likelihood estimator 

In this subsection asymptotic properties of the pseudo-likelihood estimator (PSMLE) 
are addressed. We will obtain a formal requirement for consistency when assuming 
that the complete log-likelihood is concave. For asymptotic normality of the PSMLE 
we will rely on heuristics. Expressions for the covariance matrix of the pseudo-score 
and the expectation of the pseudo-information matrix are derived. Then assuming 
that the pseudo-score function divided by yin has a limiting normal distribution 
and that the usual Taylor-argument hold the approximate normal distribution of the 
PSMLE is determined by these two matrices and the true parameter value. The 
expressions for the covariance matrix of the pseudo-score and the expectation of the 
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pseudo-information matrix have natural estimators based on the data from the nested 
case-control study. From these one immediately obtains estimators of the covariance 
matrix of the PSMLE. 

Let 1 = ((3, 0) summarize the q(> p) dimensional parameters of the model and 
1' = (/3', if') the PSMLE of I· We now have 

We assume that the complete log-likelihood l(r) is concave, that l(r)/n-+ lo(l) in 
probability for each 1 and that the true parameter value /o is the unique maximum 
of lo(l)· Using the argument of Andersen & Gill (1982) it turns out that the MLE 
i is consistent. But since l( 1) is concave it also holds true that the the pseudo­
likelihood l(p) (r) is concave. This is so because the pseudo-likelihood will coincide 
with a complete likelihood when observing 1/pi individuals with the same covariates 
Zi(.), being observed for the same period< bi,Xi] and having the same indicator Di 
as individual i (among those with Vi= 1). If now for an, 

(3.4) 

then we also have pointwise convergence of l(p)(r)/n -+ lo(l) in probability and 
a second application of the argument of Andersen & Gill gives consistency of the 
PSMLE ;y. From (3.3) we see that (3.4) hold if 

1 
V a r ( - ( l (p) ( 1) - l ( 1) ) ) -+ 0. 

n 

Since Cov(Vi, Vjl9):::; 0 we also have, similarly to (3.7) below, that 

and thus Hn (r) -+ 0 is sufficient to ensure consistency. It is however far from a 
necessary condition, indeed (3.4) alone without assuming a concave log-likelihood 
provide a strong heuristic argument for consistency of 1. 

Turning towards the covariance matrix of the PSMLE let u( 1) be the score-function 
and J(1) be the observed information of l(r). Similarly let U(p)(r) and J(P)(r) be the 
pseudo-score-function and the pseudo-information. We will also need the contribution 
ui( 1) to the score function from individual no. i. Now u( 1) = L:i=1 ui( 1) and U(p)( 1) = 
L:i=1 Viui(r)/Pi and similar equations hold true for I and I(p)· At the true parameter 
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value lo we write l = l( lo), u = u( lo), I = I( lo), U(p) = U(p)('-ro), I(P) = I(P)( lo) and 
Ui = ui( Ia). 

Similarly to (3.3) we have that 

Eu(P)(I) = Eu(1) and EI(P)(I) = EI(1) 

and also that u(P) and u(P) - u are uncorrelated, thus 

V AR(u(p)) = V AR(u) + V AR(u(p)- u) 

(3.5) 

(3.6) 

where V AR(X) denotes the covariance matrix of X. The last term in (3.6) can be 
written with vQ\12 = vvt 

' ' 

thus 

A =E[~ Q\121-pi +" . t(l-pi)(1-pj)Pijl 
Un LJ U~ LJ U~UJ . 

i=1 Pi i=h PiP] 
(3.7) 

Also letting ~n = V AR( u) = E I = E I(P) we conjecture that ;y has an approximate 
normal distribution with expectation lo and covariance matrix ~;:;- 1 + ~;:;- 1 ~n~;:;- 1 . 
Letting n--+ oo we will under weak assumptions have that n- 1 ~n--+ ~and n- 1 ~n--+ 
~ for semi-positive matrices ~ and ~- We will assume that ~ and ~n are positive 
definite. Note here that the second term in n-1 ~n generally will not vanish since 
Pij = Op( n-1 ), thus the dependence between the sampling indicators may matter also 
when the sample is large. 

From the nested case-control study we may estimate the covariance matrix of 1 by 
estimates iSn = I(P)(1) of ~n and 

A' ~ 17 (-)Q\121 -Pi +" ViVj (1 - Pi)(1 - Pj )Pi] (-) (-)t 
Un = LJ ViUi I --2 - LJ-- Ui I Uj I 

i=1 Pi i-:f-j Poij PiP] 
(3.8) 

of ~n· Here Poij = E[VoiVojiF] = Pij(1- Poi)(1- Poj) + PoiPOj· Since Pij = Op(n- 1 ) 

we can substitute Poij by PiPj if n is large. Note that in Lin only controls contribute 
to the sums and it thus does not matter if we write Pi or Poi· 

In order to formalize the above argument it appears natural to follow the approach 
of Self & Prentice (1988). Let F(x; f) denote the cumulative of the q-dimensional 
normal distribution with expectation zero and covariance matrix r. It is known 
that pr(u/vn::; x) --+ F(x; ~). Assume that also, when Yn is the complete cohort 
information with n individuals, 
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Then 

pr()n-u::::; x, )n(u(P)- u)::::; y) = EI{)nu :S x}pr()n-(u(P)- u) :S Yl9n) 
-t F(x; L.,)F(y; ~) 

(3.9) 

by the dominated convergence theorem. Thus uj Vn and ( U(p)- u) / Vn each converge 
to normal distributions and they are asymptotically independent. The problem here is 
proving the convergence of (u(P)- u)/Vfi. In the situation of Self & Prentice (1988) 
the variables corresponding to the V,: were indicators of being sampled by simple 
random sampling. They thus could apply a finite population large sample result of 
Hajek(1961) discussed by e.g. Cochran (1977) and Lehman (1975). In the present 
situation the sampling distribution is rather nonstandard and it is not much hope 
of finding a result directly from the literature. However, conditionally on the cohort 
information Q, the sampling distribution of the VOi is fairly simple and one would 
believe that it is possible to furnish a proof of such a result. 

3.3 The pseudo partial likelihood estimator 

We now turn to semi-parametric estimators in the proportional hazard model. Let, 
with ve9° = 1 vl2i1 = v and vl2i2 = vvt 

' ' 

s(r)(f3,t) = L zrexp(f3'Zj) and S(r)(j3,t) = L Vj zrexp(f3'Zj)· 
jE'R.(t) jE'R.(t) Pi 

The score-function and the information matrix of the Cox-likelihood (2.3) then equals 

while the pseudo-score U(P)(f3) and pseudo-information J(p)(f3) corresponding to (2.8) 
are given by substituting S(r)(f3, t) in the equations above by §(r)(f3, t). 

In this case we now longer have EU(P)(f3) = EU(f3) or E~P)(f3) = EI(f3). Rather the 
equalities that correspond to (3.5) are 

Pointwise convergence in probability of n-1(S(r)(f3, t) - S(r)(f3, t)) to zero can be 
ensured by assumptions corresponding to those e.g. leading to (3.4). We will assume 
the stronger 
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in probability. As the standard conditions of convergence of the Cox-estimator require 
that n-15(0 )((3, t) converge to a function bounded away from zero we then have 

1 - 1 n 5(0 )({3 X·) 
-(ln(L(p)(/3)) -ln(Lc(/3))) =- :l:ln( ' ' )Di--+ 0 
n n i=l 5(0)((3, Xi) 

(3.10) 

in probability. The Cox-likelihood (2.3) is log-concave and the pseudo-partial likeli­
hood (2.8) retains this property by the corresponding argument for concave pseudo­
~g-likelihoods. The pointwise convergence (3.10) implies that the maximizer of (2.8) 
(3 is consistent by the same argument giving consistency of the usual Cox-estimator 
(Andersen & Gill, 1982). 

Define Yj(t) = I{bj < t::::; Xj}· Now letting 

0 n 5(1)({3, Xi) 1 Di 
wj ((3) = ~[Zj(Xi)- 5(0)((3, Xi) ]Yj(Xi) exp(/3 Zj(Xi)) S(0)((3, Xi) 

we find, with Uc and iJ(P) being the score and the pseudo-score and Wl being Wl(/3) 
at the true parameter value that 

It can be shown that with 

- ~ Vj 0 u(p l - u c = L..J 1 - -) wj . 
j=l Pj 

then Wj- Wl --+ 0 in probability. Under regularity assumptions it also hold that 

1 [(- ) ~( Vj) l 1 ~ Vj )( 0 ) - U(p) - U c - L.J 1 - - Wj = - L...J(1 - - w. - Wj --+ 0 
Vn j=l Pj Vn j=l Pj 1 

in probability. From this it follows that n-~ iJ(P) and 

1 1 r V· 
-Uc + -2::(1- _}_)Wj 
Vn Vn j=l Pj 

(3.11) 

has the same limiting distribution. Note that the Wj do not depend on the sampling, 
but only on the cohort information Q. The two terms in (3.11) both have expectation 
zero. Furthermore they are uncorrelated likewise u and U(p) - u in the parametric 
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setting. We have that the covariance matrix of the score Uc equals ~~ = Eic(f30 ) 

and that the covariance matrix of the second term in (3.11) is given by 

By the assumptions of Andersen & Gill (1982) we have that n-1 ~~ -+ ~c for some 
positive definite matrix ~c. It will also hold true that n-1 ~P) will converge to ~a­
Furthermore n- 1 ..6.~ will converges to a semi-positive definite matrix ..6.0 . Assuming 
that also 

1 n V· -2:::(1- _}_)Wi 
Vn j=1 Pi 

is converging in distribution to normal distribution with expectation zero and co­
variance matrix ..6.c an argument corresponding to (3.9) shows that n-112fJ(P) is also 
approximately normal with expectation zero and with covariance matrix ~c + ..6.c. 
The usual Taylor expansion argument then gives that ..jn(/3 - (3) is approximately 
normal with expectation zero and covariance matrix ~(/ + ~01 ..6.c~0 1 . Estimators 
of the matrices ~c and ..6.c are respectively n-1J(P)(/3) and 

where wp 
PoiPOj· 

W?(/3). In the last equation we may, as for (3.8), substitute Poij by 

3.4 Estimators given by explicit expressions 

By estimators given by explicit expressions we have in mind for instance the Kaplan­
Meier estimator F(t) = 1 - Ilx;<t[1 - Di/Y(Xi)] of a common distribution func­

tion F(t), the Nelson-Aalen esti~ator A(t) = L-x;-9 Di/Y(Xi) of the correspond­
ing cumulative hazard function A(t) = -ln(1 - F(t)) and the Breslow-estimator 
A0 (t) = L-x;-9 Dd S(o)(fj, Xi) of a cumulative baseline hazard under the proportional 

hazard model. Here fJ is he Cox-estimator obtained by maximizing (2.3). 

Letting Y(t) = "'£f=1 ~"Yi(t)/Pi and substituting Y(Xi) by Y(Xi) in the Kaplan-Meier 
and Nelson-Aalen estimators we get estimators F(t) and A(t) of F(t) and A(t) using 
only data from the nested case-control study. Similarly substituting S(0)(fj, Xi) by 
S(o)(jj,Xi) in A0 (t) we also arrive at an analogue A0 (t) from the nested case-control 
study. 
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We refrain from going through the details in conjecturing the asymptotic properties 
of these estimators. This however can be done by arguments similar to those in 
the parametric and semi-parametric situations presented above. The conjectures, 
however, are stated below. 

Let under an i.i.d. model >.(t) equal the common hazard rate and let y(t) be proba­
bility of being in the risk set at timet. Define vi(t) = J~Yi(s)y(st 1 >.(s)ds and 

6.~(t) = t vi(t)z1 -Pi + L vi(t)vj(t) (1 - Pi)(1- Pj )Pij. 
i=l Pi i=h PiPj 

Assuming that n- 1 6_~(t) is converging in probability to 6.v(t) then yn(A(t)- A(t)) 
is approximately normal with expectation zero and variance h(t) = J~ y(s)-1>.(s)ds + 
6_v(t). Similarly yn(F(t)-F(t)) is also normal, having expectation zero and variance 
(1 - F(t))Zh(t). One may also derive corresponding expressions for the covariance 
functions of yn(A(.)- A(.)) and yn(F(.)- F(.)). Estimates of 6_v(t) and hence the 
variance of F(t) and A(t) are obtained as equations similar to (3.8) and (3.12). 

Actually the Kaplan-Meier and Nelson-Aalen estimators on the complete cohort is 
determined by the skeleton :F and these estimators can thus be calculated within the 
nested case-control study. The estimators S(t) and A(t) are then necessarily inferior. 
However, we may be interested in the incidence in some subgroup indexed by S that 
is identified only on the cases and controls. This incidence may be estimated by 
S(t) and A(t) redefined taking the sums and products only over i E S. The same 
asymptotic properties follows only by redefining y(t) as the probability of being under 
observation in the subgroup S. 

Under the proportional hazard model ( 2.1) let B( t) be the asymptotic variance func­
tion of yn(A0 (t) - A0 (t)). The explicit form of B(t) can be found in e.g Andersen 
& Gill (1982) or Andersen et al. (1993). Let furthermore s(0)((3, t) the limit (in 
probability) of n-1S(0)((3, t) and 

wi(t) = fotYi(s)exp(f3'Zi)s( 0)(f3,st1>-o(s)ds. 

Define 6_w(t) in the same way as 6_v(t) above only substituting vi(t) by wi(t). Now 
yn(A0(t)- A0 (t)) converge to a normal distribution with expectation zero and vari­
ance B(t) + 6.w(t). 

We mention that Borgan & Langholz (1995) present other estimators of F(t), A(t) 
and A0 (t) in nested case-control studies. The relative merits of their estimators and 
those presented here is a worthwhile problem that have not yet been studied. Borgan 
& Langholz (1995) also discuss estimation of time-varying standardized mortality 
ratios. One may construct alternative estimators in the same spirit as A(t) and A0 (t). 
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4 A simulation study 

The models that have been simulated are proportional hazard models with Weibull 
baseline hazards. This way it is possible to check how the pseudo-likelihood ( 2. 7) 
may work with a parametric regression model and at the same time compare the 
performance of the usual partial likelihood estimator (2.5) with the pseudo-partial 
likelihood estimator (2.8). The issues that are considered are bias of the estimators 
and their variance estimators, normal approximation of the estimators and efficiency 
of the pseudo-likelihood estimators compared to the complete cohort estimators and 
to the partial likelihood estimator of nested case-control data. Efficiency is given both 
as asymptotic and empirical relative efficiency. Asymptotic relative efficiency (ARE) 
between two estimators is defined as the ratio between the average of the estimated 
variances of the estimators. Empirical relative efficiency (ERE) is similarly defined as 
the ratio between the empirical variances. It is also looked at coverage probabilities 
determined as the proportions of the simulations for which the true parameter value 
falls within the usual Wald 95 %confidence interval, i.e. the estimate ±1.96 estimated 
standard deviations. 

The models have one covariate Zi sampled from a uniform [0, 1] distribution. The 
model is thus given by Ai(t) = exp(,BZi+!')ete-1 • The shape parameter e is alway put 
equal to 2, the regression parameter (3 is put equal to 1, the value zero is used for the 
intercept 1 and the cohort size n is 1000. The simulation schemes differ with respect 
to the number of controls per case with values m = 1 or 3 and to the correspondence 
between the right censoring times Ci and the covariates Zi. In Schemes 1 and 2 Ci 
and Zi are independent whereas in Schemes 3 and 4 the Ci are proportional to Zi. 
In both case the censoring times are uniformly distributed. The upper limit in the 
uniform distribution of Ci is chosen so that the expected number of cases is 125. The 
simulations are repeated 500 times. 

The parameter and variance estimates were computed on the the simulated cohort 
in all simulations. This permits calculation of ARE and ERE relative to the cohort 
data. For the pseudo-likelihood estimator under the parametric model the efficiencies 
are relative to the parametric estimates, for both partial and pseudo-likelihood they 
are relative to the Cox-estimator. For ease of presentation other results on the cohort 
are omitted when they are not relevant to the behavior on the sample data. 

The simulations were carried out in Splus. With the baseline hazard being the left 
unspecified estimates were obtained by the Cox-regression procedure in that program, 
directly on the cohort, by stratification on case-control set for the partial likelihood 
nested case-control estimator and by weighting by 1/ Pi for the pseudo-likelihood es­
timator. With the Weibull baseline hazard a Splus function was written optimizing 
the parametric likelihood by the Newton-Raphson method. This function allowed for 
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weighting and it was thus possible to calculate the pseudo-likelihood estimates. To 
correct the covariance matrices calls to separately written C-routines calculating the 
matrices Lin and LS..~ were applied. The C-routines were necessary because for-loops 
in Splus proved to be impractically slow and a matrix approach besides being slower 
than the C-routines needed matrices having high dimensions. Appendix B contains 
some details. 

In simulation scheme 1 the Ci are uniformly distributed on [0, 0.5] and independent 
of Zi. The number of controls per case m equals 1. The results from simulating this 
model are presented in Table 4.1. 

Table 4.1. Averages, minimum and maximum of parameter estimates, average of 
variance estimates, empirical variances, coverage probabilities of 95% confidence in-
tervals and asymptotic and empirical relative efficiencies from 500 simulations under 
Scheme 1 for pseudo-likelihood under parametric model and pseudo-likelihood and 
partial likelihood under semi-parametric model. ARE and ERE are relative to the 
cohort. 

Aver. Min. Max. Aver. Emp. Cover. ARE ERE 
est. est. est. var. var. (%) 

Parametric 
pseudo-likelihood, 
Shape par. () 2.008 1.571 2.531 0.0267 0.0287 94.4 0.81 0.78 
Intercept 'Y 0.013 -0.847 0.854 0.0919 0.1004 94.8 0.71 0.69 
Regr. par. (3 0.999 -0.108 2.143 0.1845 0.1871 95.0 0.55 0.55 

Semi-parametric 
pseudo-likelihood 
Regr. par. (3 1.002 -0.119 2.196 0.1842 0.1896 94.6 0.47 0.46 

Semi-parametric 
partial likelihood 
Regr. par. (3 0.999 -0.231 2.460 0.2167 0.2232 94.6 0.55 0.54 

There is no bias to be found on the parameter estimates in this scheme. The variance 
estimates appears slightly smaller than the unbiased empirical variance estimates, but 
they are within what may be explained by random variation. The coverage probabil­
ities are in good agreement with a 95 % confidence level. The normal approximation 
seemed to be acceptable for all estimators. The results on the parametric and semi­
parametric regression parameter are quite similar, indeed the empirical correlation 
between these two estimates is as high as 0.998. The corresponding correlations with 
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the partial likelihood estimator are about 0.92. Actually the partial likelihood estima­
tors appears to be more dispersed than the two pseudo-likelihood estimators. We find 
that both the ARE and the ERE between the semi-parametric pseudo-likelihood and 
the partial likelihood estimators are 0.85. On the regression parameter the efficien­
cies relative to the cohort were in good agreement on the case-control rule of thumb 
m/(m + 1) = 0.5, but the other parameters seem to be estimated more efficiently. 

Scheme 2 is the same as Model 1 for the cohort but in this case the number of controls 
m equals 3. Results for this model is given in Table 4.2. 

Table 4.2. Averages, minimum and maximum of parameter estimates, average of 
variance estimates, empirical variances, coverage probabilities of 95% confidence in­
tervals and asymptotic and empirical relative efficiencies from 500 simulations under 
Scheme 2 for pseudo-likelihood under parametric model and pseudo-likelihood and 
partial likelihood under semi-parametric model. ARE and ERE are relative to the 
cohort. 

Aver. Min. Max. Aver. Emp. Cover. ARE ERE 

Parametric 
pseudo-likelihood, 
Shape par. () 
Intercept'"'( 
Regr. par. (3 

Semi-parametric 
pseudo-likelihood 

est. est. est. var. var. 

2.024 1.553 2.629 0.0232 0.0248 
0.034 -0.753 0.830 0.0724 0.0783 
0.989 -0.060 1.929 0.1211 0.1162 

(%) 

94.6 
93.6 
95.6 

Regr. par. (3 0.988 -0.051 1.935 0.1212 0.1164 95.4 

Semi-parametric 
partial likelihood 
Regr. par. (3 0.998 -0.148 2.095 0.1364 0.1315 96.2 

0.94 
0.90 
0.83 

0.93 
0.91 
0.88 

0.83 0.88 

0.74 0.78 

In Scheme 2 it appears that there is some bias on the shape parameter and inter­
cept estimates. However, this bias is present also on the cohort. Again there are 
no indications that the variance estimates are biased, the coverage percentages of 
the confidence intervals are in fair agreement with the 95% confidence level and the 
distributions of the estimates seems to be well approximated by normal distribu­
tions. The efficiencies relative to the cohort increases as would be expected, but the 
pseudo-likelihood estimates ofthe regression parameter are now better than what the 
m/ ( m + 1) rule would indicate. Again the semi-parametric pseudo-likelihood estimate 
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is efficient to the partial likelihood estimate (ARE/ERE=0.89). 

In Scheme 3 the we have the relation Ci = Zi/2.24 between the censoring times Ci 
and the covariate Zi. The number of controls equals 1. Results for the model is given 
in Table 4.3. 

Table 4.3. Averages, minimum and maximum of parameter estimates, average of 
variance estimates, empirical variances, coverage probabilities of 95% confidence in-
tervals and asymptotic and empirical relative efficiencies from 500 simulations under 
Scheme 3 for pseudo-likelihood under parametric model and pseudo-likelihood and 
partial likelihood under semi-parametric model. ARE and ERE are relative to the 
cohort. 

Aver. Min. Max. Aver. Emp. Cover. ARE ERE 
est. est. est. var. var. (%) 

Parametric 
pseudo-likelihood, 
Shape par. () 2.020 1.578 2.515 0.0309 0.0313 94.6 0.99 0.99 
Intercept "Y 0.050 -1.892 1.948 0.3944 0.3763 95.4 0.81 0.81 
Regr. par. (3 0.968 -0.871 3.327 0.4500 0.4380 96.2 0.71 0.71 

Semi-parametric 
pseudo-likelihood 
Regr. par. (3 0.953 -0.981 3.451 0.4677 0.4573 95.8 0.72 0.72 

Semi-parametric 
partial likelihood 
Regr. par. (3 1.001 -1.239 3.834 0.7160 0.7033 96.4 0.47 0.47 

The variances of the estimators are larger under this simulation scheme. This is so 
because the variation in the covariates is small for large failure times. Thus although 
the average estimate values deviate more from the true parameter values there is no 
obvious bias. Again variance estimates correspond well to empirical estimates and the 
coverage is in accordance with the confidence level. The normal approximations of 
the estimators still seem roughly to be justified, but there are signs of heavy right tails 
on the regression parameter estimators. The parametric estimate is somewhat more 
efficient than the semi-parametric, a trend also found on the cohort, and this is likely 
explained by the strong dependence between censoring time and covariate. Regarding 
efficiencies there is hardly any loss on the shape parameter. Also the pseudo-likelihood 
regression parameter estimators do well compared to the case-control rule of thumb. 
The efficiency of the usual nested case-control partial likelihood estimator compared 

18 



to the pseudo-likelihood estimators is now as small as 0.65. 

Scheme 4 equals Scheme 3 for the cohort, but the number of controls m is like in 
Scheme 2 equal to 3. 

Table 4.4. Averages, minimum and maximum of parameter estimates, average of 
variance estimates, empirical variances, coverage probabilities of 95% confidence in­
tervals and asymptotic and empirical relative efficiencies from 500 simulations under 
Scheme 4 for pseudo-likelihood under parametric model and pseudo-likelihood and 
partial likelihood under semi-parametric model. ARE and ERE are relative to the 
cohort. 

Parametric 
pseudo-likelihood, 

Aver. Min. Max. Aver. Emp. Cover. ARE ERE 
est. est. est. var. var. (%) 

Shape par. () 2.005 1.580 2.754 0.0300 0.0349 91.4 1.00 1.00 
0.94 0.95 
0.91 0.90 

Intercept 'Y 
Regr. par. (3 

Semi-parametric 
pseudo-likelihood 
Regr. par. (3 

Semi-parametric 
partial likelihood 
Regr. par. (3 

-0.015 -1.688 1.910 0.3339 0.3840 94.4 
1.033 -0.641 2.801 0.3490 0.3807 94.4 

1.051 -0.564 2.931 0.3668 0.4004 95.6 0.91 0.90 

1.062 -0.773 3.235 0.4498 0.4852 93.6 0.74 0.75 

The averages of the semi-parametric estimators in Scheme 4 borders to a significant 
bias, however they are not much worse than the average semi-parametric cohort 
estimator of 1.044. Similarly the coverage percentage of 91.6 on the shape parameter 
is significantly to small, but the corresponding number on the cohort is 92.2. The 
averages of the variances are all smaller than the empirical variances, assuming that 
499S2 / CY 2 ,....., x~99 where S 2 is an empirical variance and CY 2 the true variance they are 
on the borderline of the confidence interval based on the empirical variances. The 
empirical and asymptotic efficiencies, however, are in good agreement, and as would 
be expected bigger than those of Model 3. The partial likelihood estimator is still 
less efficient than the semi-parametric pseudo-likelihood estimator, now with a factor 
about 0.8. 

The behavior of the pseudo-likelihood estimators have also been studied in several 
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other situations. For one it has been looked at how the estimators perform when 
there is no effect of the covariate, i.e. f3 = 0. In order to compare with the previous 
results 4 new schemes, comparable to Schemes 1-4 respectively were carried out. Thus 
in all 4 the cohort size was 1000 and the expected number of cases were 125. The 
new schemes thus differed from each other with respect to the number of controls 
and whether the censoring times and covariates were independent. They also differed 
from Scheme 1-4 with respect to the value of f. In general the results in the new 
schemes were quite similar to those of the previous schemes with respect to bias of 
parameter and variance estimators and with respect to normal approximations. The 
efficiency results were also quite comparable, but the gains for the semi-parametric 
pseudo-likelihood estimators over the partial likelihood counterpart were somewhat 
smaller. 

It has furthermore been studied how the cohort size affects the results. New schemes 
were set up with cohort sizes of 5000, but with the expected number of cases still 
at 125. The regression parameter had values 1 and 0, censoring was independent 
or proportional to the covariate and the intercepts were adjusted accordingly. In 
these schemes there were only one control per case. Again there was no indication 
that the pseudo-likelihoods failed to work and the efficiency results were similar to 
those already presented. When censoring was independent of covariates the efficiency 
improvement of the pseudo-likelihood estimator relative to the partial likelihood es­
timator was negligible, but when zi ex ci and f3 = 1 the improvement was still about 
30%. 

A couple of schemes were set up to see how the estimators performed with a very small 
expected number of cases, chosen to 25. The cohort size was 5000 and the regression 
parameter was 1 in both schemes. In the first scheme there was one control per 
case and the covariates and censoring times were independent. In the second scheme 
there were 3 controls per case and censoring was proportional to covariates. There 
were no indications of bias, but the distributions of the parameters began to show 
skewness and some heavy tails. In both situations the pseudo-likelihood estimators 
were less efficient compared to the cohort than in the previously presented models, 
but the semi-parametric pseudo-likelihood still was better than its partial likelihood 
counterpart. 

In a last set of the schemes the situation in Scheme 1 was repeated only increasing 
the cohort size to 5000. The purpose of these runs were to check the performance of 
the variance estimates of normalized differences, say yin(§- B0). It turned out that 
the empirical variances of these variance estimates were about one fifth of those when 
the cohort size was 1000. This is in accordance with the variances of these variance 
estimates decreasing at the usual rate 1/n. 
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5 Application on a data set 

Eskild et al. (1993) report a follow-up study of 1009 intravenous drug users (IVDU) 
in Oslo, Norway. The drug users were included in the study when taking a test 
of having been infected with the human immunodeficiency virus (HIV). The aim of 
the study was to compare mortality rates between HIV positive and HIV negative 
IVDUs and at the same time adjust for potentially confounding variables. The HIV 
tests were taken in the period 1985-1991, follow up is until death or the end of the 
study period January 1st 1991 and time is measured as time since inclusion in the 
study. Time of death was obtained from the National Cause of Death Registry for 
totally 87 individuals. The mean follow up time was 3 years (range 1-67 months). 
In this paper only the covariates HIV serostatus (positive / negative) at inclusion 
in the study, age at inclusion in the study and sex are used. 18% of the IVDUs 
were HIV-positive, 36% were women and the mean age was 27 years (range 14-50). 
Here the data are reanalyzed using the developed and the usual nested case-control 
methodology. Of course the complete follow up data are available and our aim is only 
to give an example on how the pseudo-likelihood approach work on a real data set. 

The data are analyzed under the proportional hazard model given by Ai(t)j)..0 (t) = 

exp(,81 Z1i + ,82Z2i + ,83 Z3i) where Z1i is age in years divided by 10, in order to get 
estimates of the same order of magnitude, and Z2i and Z3i binary covariates indicating 
respectively HIV-infection and women. The baseline hazard function is specified as 
a Weibull hazard )..0 (t) = exp(t)Bt(B-l), an exponential hazard (0 = 1) and is left 
unspecified. The cohort estimators are obtained under all three specifications. Nested 
case-control sampling is performed 500 times with 1 and with 3 controls per case. 

When the baseline hazard was Wei bull or left unspecified the Splus routines developed 
for the simulation study were used. Under the exponential hazard data are fitted 
with the generalized linear model procedure (with a Poisson family specification) in 
Splus. This procedure allows for weighting. The variances for the pseudo-likelihood 
estimators were calculated by help of calls to the C-routines used in the simulations. 

Results are given in Tables 5.1. In column 1 and 2 of Table 5.1 the parameter estimates 
and the standard error estimates for the cohort data (SE0 ) are given. (Under the semi­
parametric model the same results are reported both as pseudo-likelihood and partial 
likelihood). Columns 3 and 7 give the average parameter estimates over the control 
samples for respectively 1 and 3 matched controls. Column 4 and 8 gives the square 
root of the average estimated variances SE~ and column 5 and 9 gives the empirical 
standard deviations of the estimates S~ over the control samples. From this empirical 
standard deviations SE~ = (SE~ + S~) 1 1 2 are computed. As notation indicates one 
would expect SEm ~ SE~ if the variance-estimates are unbiased. 
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Table 5.1. Estimated coefficients and standard errors (SEa) for cohort, averaged 
estimated coefficients and standard errors (SEm), empirical standard deviations (Sm) 
over control samples and empirical standard errors (SE~ = (SE~+S~) 11 2 ) with m = 1 
and 3 controls. 

Cohort NCC, m=1 NCC, m=3 
coef SEa coef SEt St sEr coef SE3 s3 sE; 

Weibull baseline hazard 
(} 1.134 0.111 1.135 0.119 0.043 0.119 1.133 0.114 0.024 0.114 

'Y -5.684 0.646 -5.810 0.937 0.757 0.996 -5.711 0.747 0.379 0.749 

f3t 0.632 0.209 0.680 0.317 0.263 0.336 0.643 0.247 0.134 0.249 
(32 0.760 0.223 0.795 0.342 0.253 0.337 0.765 0.263 0.136 0.261 
(33 0.015 0.228 0.029 0.337 0.256 0.343 0.019 0.264 0.139 0.267 

Exponential baseline hazard 

'Y -5.487 0.625 -5.604 0.911 0.728 0.959 -5.513 0.725 0.373 0.728 

f3t 0.629 0.209 0.663 0.315 0.258 0.332 0.630 0.246 0.133 0.248 
(32 0.777 0.223 0.812 0.340 0.252 0.336 0.782 0.262 0.136 0.261 
(33 0.015 0.228 0.029 0.334 0.254 0.341 0.019 0.263 0.138 0.266 

Unspecified baseline hazard, pseudo-likelihood 
f3t 0.625 0.211 0.674 0.316 0.260 0.335 0.638 0.248 0.132 0.249 
(32 0.767 0.223 0.803 0.341 0.252 0.337 0.772 0.263 0.136 0.262 
(33 0.006 0.228 0.020 0.336 0.254 0.341 0.010 0.264 0.138 0.267 

Unspecified baseline hazard, partial likelihood 
f3t 0.625 0.211 0.652 0.337 0.252 0.329 0.626 0.256 0.138 0.252 
(32 0.767 0.223 0.827 0.380 0.297 0.371 0.789 0.280 0.159 0.274 
(33 0.006 0.228 0.128 0.359 0.272 0.355 0.068 0.275 0.158 0.278 

Table 5.2 contain some information derived from Table 5.1 concerning the evidence of 
bias and the efficiency of the case-control estimators relative to the cohort. Columns 
1 and 4 present statistics tm = .J500(1]- ij.)/ Sm where if is a cohort estimate and 
if. an average estimate over the control samples. Presumably tm is standard normal 
distributed if there is no bias. Columns 2 and 5 gives asymptotical relative efficiencies 
AREm = (SEa/SEm) 2 whereas column 3 and 6 give what may be called empirical 
relative efficiencies EREm = (SEa/SE~J 2 • 
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Table 5.2. Significance check of bias (t-values) and efficiencies relative to the cohort. 

m=1 m=3 
t ARE ERE t ARE ERE 

Weibull baseline hazard 
(} 0.52 0.87 0.87 -0.60 0.96 0.96 
'"'( -3.71 0.48 0.42 -1.55 0.75 0.74 

f31 4.02 0.44 0.39 1.86 0.72 0.71 
f3z 3.10 0.43 0.44 0.81 0.72 0.73 
(33 1.26 0.46 0.44 0.69 0.75 0.73 

Exponential baseline hazard 
'"'( -3.57 0.47 0.42 -1.55 0.74 0.74 

f31 3.82 0.44 0.40 1.80 0.72 0.71 
f3z 3.04 0.43 0.44 0.73 0.72 0.73 
(33 1.24 0.46 0.45 0.63 0.75 0.73 

Unspecified baseline hazard, pseudo-likelihood 

f31 4.21 0.44 0.40 2.07 0.72 0.72 
f3z 3.21 0.43 0.44 0.81 0.72 0.73 

/33 1.23 0.46 0.45 0.65 0.75 0.73 

Unspecified baseline hazard, partial likelihood 

f31 2.31 0.39 0.41 0.17 0.68 0.70 
f3z 4.51 0.35 0.36 3.01 0.64 0.66 

/33 10.01 0.40 0.41 8.69 0.69 0.68 

Table 5.2 indicates that the pseudo-likelihood adds bias to several parameters when 
there is one control. However comparing to the sampling induced variation this bias 
is hardly important. Actually the most sever bias is found on the partial likelihood 
estimates of (33 . The agreement between the estimated and empirical standard errors 
estimates is excellent with 3 controls, but with 1 control there are fairly large discrep­
ancies concerning the standard errors of '"'( and {31 . The efficiencies of the regression 
parameters are in accordance with case-control rule of thumb m/(m + 1) form= 3, 
but slightly below for m = 1. The efficencies on the intercept are comparable to 
of those the regression parameter and this differ from the results in the simulation 
study. The efficiencies on the shape parameter are in accordance with those in the 
simulation study. Also in this case the semi-parametric pseudo-likelihood estimator 
appears more efficient than the partial likelihood estimator. With m = 1 the AREs 
are 0.88, 0.80 and 0.88 for the covariates age, HIV and sex respectively. The corre­
sponding EREs are 1.04, 0.82 and 0.93. With m = 3 we get AREs of 0.94, 0.88 and 
0.92 and EREs of 0.98, 0.91 and 0.92. 
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6 Discussion 

The weighting method used in this paper has been applied within context of likeli­
hoods and partial likelihoods. It should be possible to apply this techinque also in 
most other situations where the estimators or estimating equations can be expressed 
as sums over the individuals. One interesting example may be non-parametric es­
timation of the excess risk / additiv model of Aalen (1980, 1989). Already Borgan 
& Langholz (1995) have shown that this model may be fitted non-parametrically if 
the number of matched controls per case is at least as large the number of covariate 
functions. With the techniques used in this paper the matched controls are reused 
and the restriction of Borgan & Langholz should be redundant. Indeed Borgan & 
Langholz experimented with reusing controls in neighbouring case-control sets with 
promising results. 

The semi-parametric pseudo-likelihood estimator have in both the simulation exper­
iments and the data example been efficient to the usually applied partial likelihood 
estimator. It may worth investigating how many control samples need to be joined 
before the essential efficiency gain is achieved. Deriving distributional results of such 
estimators could be very valuable. 

In the literature on case-control within cohort studies there has been some discus­
sion on whether designs that reuse controls actually improve accuracy of estimators. 
Langholz & Thomas (1991) developed several ingeneous designs with this purpose 
and found that little or nothing was gained compared to nested case-control. Their 
conclusion was that it is false that the nested case-control design does not not make 
good use of the data. This may be true, however, it also holds that reusing controls 
may give important improvements. 

In several papers (see e.g. Scott & Wild, 1986, 1991, Wild, 1991) it has been pointed 
out that weighthing techniques similar to those applied in this paper may be ineffi­
cient, even seriously so, within unmatched case-control studies. The pseudo-likelihood 
estimators may be inefficient in nested case-control studies too. It is also an open 
question whether it always is better than usual partial likelihood estimator. 

The original purpose of the partial likelihood nested case-control estimator was to 
fit proportional hazard models on large data sets. If in addition the data are very 
time-dependent it is likely still the best option available. In such case the pseudo­
likelihood estimator is less attractive, because reusing controls will slow down the 
computations. Furthermore improvement of the estimators is easily achieved by in­
creasing the number of matched controls. 

A key requirement for constructing the pseudo-likelihood estimators was that covari-
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ate histories may be obtained for both cases and controls. It is possible to relax this 
to require that for the controls covariate histories are obtained, but that for the cases 
only covariate values at the failure time is available. In such case one may fit the 
models by maximizing parametric pseudo-likelihoods 

Similarly semi-parametric pseudo-likelihood estimates are obtained by substituting 
S(o)(f3, Xi) in (2.8) by S~0)((3, Xi) =I:; VQj exp((3'Zj(Xi))/Poj where the sum is taken 
over j E Ri. Distributional properties of such estimators should be possible to address 
with the techniques of this paper. 

This discussion has focused much on efficiency improvement. The main point of the 
paper, however, is that the pseudo-likelihood weighting approach relieves the nested 
case-control of restrictive model assumptions. Although some methods have been 
deviced that go beyond fitting proportional hazard models, virtually any method can 
be modified by weighting techniques. This also shows that most any model that is 
identifiable with cohort data, continues to be so with nested case-control data. 
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Appendix A: Asymptotic behaviour of Pij 

If not otherwise specified the integrals, sums and product in the following are taken over 
intervals< m1ij, mzij >assuming m1ij < mzij· To show that Pij = -(m/n) J >..(t)jy(t)dt+ 
Op(n- 2 ) = Op(n- 1 ) first note that the k-th term in the product in (3.1) can, after some 
algebra, be written 

m(Yk- 1-m) 0 mQl 
1- (Yk _ 1)2(Yk _ 2)Dk- QkDk = 1- Yf Dk 

where with u = mj(Yk- 1) and v = (m- 1)/(Yk- 2) we have 

0 1 1 
Qk = uv[(1 - u)2- 1]- 2u[(1 - u)2 - 1- 2u] 

It follows that both supk IQ~Yk2 1 -+ 0 and supk IQl- 11-+ 0 in probability as n-+ oo. We 
now get 
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Thus 

m j A(t) -2 -1 
Pij:::;---:;;: y(t)dt+Op(n )=Op(n ) 

The stated result now follows if the opposite inequality is established. The main interest in 
the result though is that Pij = Op(n- 1 ) and we will prove this first. By help of the trivial 
inequality 

1-:: 2:: (1- a) 1fx when 0:::; a:::; 1 and x 2:: 1 
X 

it now turns out, with Yo = inf k Yk, that 

The second inequality here requires that supk mQkJYk :::; 1 which will hold with a proba­
bility tending to 1. It now follows that also 

The result that Pij 2:: -(m/n) f A(t)jy(t)dt + Op(n- 2 ) follow by the same approach. Let 
to = 0 < t 1 < · · · be a partioning of the positive number and for tj_1 < t :::; tj define 
Yo(t) as the step function taking values infYk where infimum is taken over k such that 
Xk E< tj-1, tj]. We get 

1tJ ).(t) -2 
Pij 2:: -m L -() dt + Op(n ). 

j ti-l Yo t 

Noting that the partioning can be made arbitrarily fine the proof is completed. 

Appendix B: Some computer code for correcting 
covariance matrices 

The hardest part of obtaing the matrices ln and .6.~ lies in computing 

A' _ """"'ViVj (1- Pi)(1- Pj)Pij ·(-) ·(-)t 
L.l1n - L... u, "( u1 "( 

i=FJ Poij PiPj 

and the counterpart expression in (3.12). The direct approach would be a double for-loop, 
but this is to slow in Splus. Here parts of the computer code that was used is given. The 
code assumes that there is right censoring, but no left-truncation, on the cohort. Then we 
have that Pij = Pik if both Xi :::; Xj and Xi :::; Xk. It is also assumed that the individuals 
are sorted on the right censoring times. 
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In the simulations and the data example such calculations have been carried out using the 
Splus-procedure del ta1proc below. In this procedure p corresponds to Pi and rho to Pij for 
the sampled controls with Pi < 1. The number of such controls are n and q are the number 
of parameters that are estimated. The argument hrnat is the matrix of score-contributions 
for the n controls with the parametric specifications and the corresponding matrix of the 
Woi in the semi-parametric case. The Splus-variable to be assigned the call to del ta1proc 
need to be specified as a qxq-matrix before the call. 

delta1proc<- function(hrnat, p, rho, n, q) 
{ 

if (!is .loaded("delta1'')) 
dyn.load("delta1.o") 

delta1<-rnatrix(rep(o,q-2),nrow=q) 
storage.rnode(delta1) <- "double" 
.C("delta1", 

as.double(hrnat), 
as.double(p), 
as.double(rho), 
as.integer(n), 
as.integer(q), 
delta! = delta1)$delta1 

} 

This Splus-function call the compiled C-routine del tal. o. The source code del tal. c is 
given below. Note that the estimates use the approximation Poij::::::; PoiPOj· 

void delta1(double *h, double *p, double *rho, long *in, long *ip, 
double *odelta1) 

{ 

} 

long i,j,k,l,rninij; 
double v; 
for (k=O;k<(*ip);k=k+1){ 
for (l=O;l<(*ip);l=l+1){ 
v=O; 
for(i=O;i<(*in);i=i+1) 
{for(j=O;j<(*in);j=j+1) 
if((i-j) !=O){ 
if(i<j) rninij=i; else rninij=j; 
v=v+ 
h[k+(*ip)*i] *h[l+(*ip)*j] * (1-p [i]) * (1-p [j] )*rho [rninij] I (p [i] *P [i] *P [j] *P [j]); 

}} 

odelta1[l+k*(*ip)]=v;}} 

Alternatively 3..1n can be computed by a matrix-approach, thus avoiding the C-routine. This 
approach was somewhat slower, but should work well when only the covariance estimates 
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from one case-control data set is considered. The matrices are of dimension nxn where 
n is still the number of controls with Pi < 1. If this number is high Splus may run into 
memory problems. In the following Splus-code renkont is a vector indicating an individual 
with Pi < 1, thus putvO becomes the Pi for these controls and rhoO the vector of Pij where 
xi::; xj. 

putv0<-1/w[renkont] 
rhoO<-rho[renkont] 
PO<-matrix(putvO,ncol=1)\%*\%matrix(putvO,nrow=1) 
RhoO<-matrix(rep(rhoO,antkont),ncol=antkont) 
RhoO<-RhoO*(RhoO>t(RhoO))+t(RhoO)*(RhoO<=t(RhoO)) 
PO<-(matrix(1-putvO,ncol=1)\%*\%matrix(1-putvO,nrow=1))/PO 
PO<-PO/(matrix(putvO,ncol=1)\%*\'l.matrix(putvO,nrow=1)) 
QO<-PO*RhoO 

Then RhoO contains the matrix of Pij for the controls, whereas PO is the matrix with (1 -
Poi) ( 1-Poi)/ (PoiPoj) 2 as the ij-th element. The above code result in use of the approximation 
Poij ::::::; PoiPoj. Inserting the following statement between the third and fourth line above the 
approximation is avoided. 

PO<-PO+RhoO*(matrix(1-putvO,ncol=1)\%*\%matrix(1-putvO,nrow=1)) 

Whenever checked the effect of this correction was neglible. In either case one now obtains 
the ij-th element of Li1n by the commands 

H<-matrix(scorekont[i,],ncol=1)\%*\%t(scorekont[j,]) 
H<-H-diag(diag(H)) 
delta1[i,j]<-delta1[j,i]<-sum(H*QO) 

where scorekont is the matrix of score-contributions for the n controls. 
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