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Abstract. Variograms are fundamental in the application of random fields, 
but they are frequently difficult to estimate from data. This is particularily 
true when the assumption of isotropy is dropped. In such cases, we propose 
to obtain the estimate using Bayesian statistics, where prior knowledge may 
be used in a structured way. 

In this article, several approaches are presented and tested on a simple 
model. We also discuss extensions to more complex models, as well as a 
case study. 
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1. Introduction 

In most applications of random fields there is a need to estimate the vari­
ogram, i.e., the function that describes the spatial covariance between differ­
ent locations. When few observations are available, as is frequently the case 
in petroleum applications, variogram estimation becomes quite difficult. In 
practice one may have to combine the observations with prior knowledge 
to obtain an estimate. In this article, we discuss several ways to make such 
a combination in a rigorous manner using a Bayesian framework. 

It is particularily difficult to estimate variograms when the assumption 
of isotropy is dropped. To illustrate how our methods may help here, we 
will focus on a class of parametric variograms incorporating geometric 
anisotropy, i.e., anisotropy resulting from combining an isotropic covari­
ance function with a linear transformation of the underlying space. 

Section 2 discusses some traditional approaches, in particular, maximum 
likelihood estimation. A simple example is presented to illustrate the meth­
ods. Section 3 explains the Bayesian approaches and applies them to the 
example. Section 4 then extends the previous ideas to more complex and 
versatile models, and contains a discussion of some of the problems and 
possibilities involved. It also discusses an application to real data. Finally, 
Section 5 draws some conclusions and points to further work. 

2. Traditional estimates 

There is a classical non-parametric estimator for variograms based on mea­
suring covariance between pairs of observations. It may be turned into a 
parametric estimator by fitting a parametric variogram to the nonparamet­
ric estimate. Such estimators may yield good answers in many cases, but 
may be suspect when there is little data, and when one is trying to esti­
mate anisotropy. We will not consider these methods here, but for more 
information the reader is referred to Cressie (1991). 

2.1. MAXIMUM LIKELIHOOD ESTIMATOR 

A standard approach to estimation is to specify a parametric model and es­
timate its parameters using the maximum likelihood principle. For the pur-
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pose of an example in this article, we use a model with a two-dimensional 
Gaussian field with expectation 0 and variance 1. If Zd = (z1 , ... , zn) 
are the values at points x1 , ... , Xn, they follow a multinormal distribution 
Zd ,....., N(O,K) with covariance matrix K defined by Kii = [k(xi- xi)]. 
To incorporate the possibility of geometric anisotropy, we introduce the 
following covariance function: 

0 l [ COS[3 

1} - sin13 

sin13 

COS[3 J xll). (1) 

This is a way to parametrize geometric anisotropy. Any exponential covari­
ance function with geometric anisotropy may be brought to the form above 
by using a singular value decomposition of the linear transformation of the 
underlying space. Analogue parametrizations exist in higher dimensions. 
The advantage with the form above is that the parameters [ 1 , 12 , and 13 

are easy to interprete. 11 corresponds to the geometric average of the range, 
12 to the anisotropy degree, (the length of the major axis divided by the 
length of the minor axis), while 13 corresponds to the direction of the ma­
jor axis. We may illustrate a particular choice of [S by plotting an ellipse 
outlining the set of points whose covariance with the center is e-3 ~ 0.05 or 
more (see Figure 1). In the parametrization above, we assume that 11 > 0, 
12 2: 1, and 0 ~ 13 < 180 (degrees). 

To find the maximum likelihood (ML) estimate for the [S in our simple 
example, we must determine numerically the [S maximizing -log /K/ -
ZdK- 1 Z~, where K is the function of the [S indicated above. 

2.2. SIMULATED EXAMPLE 

To illustrate the methods discussed in this article, we have simulated some 
test data at 40 points located (by simulating from a homogeneous Poisson 
distribution) in a disc of radius 2500 m. They appear as points in Figure 1, 
and may represent wells in an oil field. Data values have been simulated (us­
ing Splus) at each point using a Gaussian field with expectation 0, variance 
1, and an exponential variogram with average range 11 = 1000, anisotropy 
degree 12 = 4, and angle of anisotropy 13 = 60 degrees. That is, the major 
axis of anisotropy has an angle of 30 degrees with the y-axis and 60 degrees 
with the x-axis, and the correlation range is 2000 along this axis, while the 
correlation length along the perpendicular axis is 500 (Figure 1). The data 
could represent average porosities, or any other measurement in the wells, 
suitably transformed. 
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Figure 1. The figure shows 50 points simulated with a homogeneous Poisson distribu­
tion within the disc with radius 2500 around the origin. The ellipse marked "Simulated" 
illustrates the covariance function used for simulating values at these points. The other 
ellipses represent the estimates derived from the ML method, and by taking the expec­
tation of the posterior, using prior number 2. 

We applied the ML method to these data, using the "ms" optimization 
method of Splus (Venables & Ripley 1994) and varying the starting point. 
This numerical optimization found a maximum when -y1 --+ oo, -y2 --+ oo, and 
-y3 = 65, whereas a more sensible local maximum was found at ("11 , -y2 , -y3 ) = 
(680, 6.75, 29.9). These last numbers appear in Table 1, and are indicated 
in Figure 1 by the 'ML' ellipse. 

Such behaviour seems to be fairly typical in the above model, although 
of course some examples seem to yield sensible ML estimates, especially 
when a lot of data points are used. The problem with multimodality is well 
known (Mardia & Watkins 1989), in particular when a spherical variogram 
is used instead of the exponential variogram above. The additional prob­
lems of finding a maximum at all indicate that ML methods may not be 
very well suited for this model. In fact, the theory that supports the ML 
method in most non-spatial models does not go through for the present 
type of spatial statistics models, so there is no a priori guarantee that the 
ML should produce better results than competing methods. The theory of 
maximum quasi-likelihood (Hjort & Omre 1994) may have better theoreti­
cal properties. Results in Kraggerud (1996), and Mostad, Egeland & Hjort 
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I 'Yl ')'2 I ')'3 Max. axis Min. axis 

True values I 1000 4 I 60 2000 500 

Maximum likelihood I (680) (6. 75) I (29.9) (1768) (262) 

Max. posterior (prior 2) I 719 3.99 I 30.2 1435 360 

Max. posterior (prior 3) I 627 3.33 I 30.8 1145 343 

Exp. posterior (prior 1) I 787 6.98 I 37.3 2079 298 

Exp. posterior (prior 2) I 827 3.87 I 40.0 1627 1 42o 

Exp. posterior (prior 3) I 772 3.90 I 39.8 1525 1 391 

TABLE 1. The results for the different methods. The two rightmost columns 
show the maximal and minimal ranges, computed from 'Yl and ')'2 in each case; 
they correspond to the major and minor axes of the ellipses that describe the 
covariance function. 

(1994) indicate that the estimates obtained from this method are similar to 
those from the ML method, while maximum quasi-likelihood is much faster 
to compute. 

3. Bayesian methods 

When the ML method does not give reliable answers, we may try to com­
bine it with prior information using a Bayesian framework. In our simple 
example above, we can choose a prior distribution f ( '"h, ')'2 , ')'3 ), and then 
compute the posterior distribution using Bayes theorem. We have chosen 
three different priors, to illustrate how the choice of prior influences the 
results. The first prior contains only the information that ')'1 and ')'2 are not 
too extreme; i.e., we assume we know that 100 :::; 'Yl :::; 5000 and ')'2 < 20. 
The second prior assumes we have quite good prior information, setting 
'Yl "'N(1000, 500) truncated at 0 (i.e., 'Yl has a distribution that is propor­
tional to the positive part of the normal distribution with expectation 1000 
and standard deviation 500), and setting ')'2 to follow a Gamma distribution 
with expectation 4 and standard deviation 2, truncated at 1. See Figure 2 
for an illustration of the priors. The third prior is based on vaguer, and 
slightly wrong information: We set ')'1 "' N(1500, 1500) (truncated at 0), 
and we let ')'2 have a Gamma distribution with expectation 3 and standard 
deviation 6, truncated at 1. Note that we have not included any prior in­
formation about the direction of anisotropy ')'3 , and that we have chosen a 
particular form of the priors where ')'1 and ')'2 are independent. Obviously, 
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one may instead choose to have independent priors on the maximum and 
minimum axes of the anisotropy, or indeed choose any other form of prior 
best reflecting actual prior knowledge. 
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Figure 2. Marginal probability distributions for the average range ( '"Yl) and the 
anisotropy degree ('"'12). The fully drawn curves correspond to prior 1, the curves with 
smallest dots to prior 2, and the curves with the longest dots to prior 3. The posterior 
distributions in the lower figure are obtained using the Metropolis simulation algorithm. 

Using the Bayesian paradigm, our estimates for the ')'S should now be based 
on the posterior distribution. In our simple example, this distribution is 
given, up to a constant, by 

IKI-~ exp( -~ZdK-1 Z~)J(/'1, ')'2, ')'3). (2) 

As before, K is the covariance matrix defined by Kij [k(xi- xj)] (see 
Equation 1), and zd = (zl, ... 'Zn) is the data vector. 

We have studied two alternatives for the actual estimate of the ')'S: The 
maximum of the posterior distribution and its expectation. The maximum 
must be found by numerical maximization of the function above. We used 
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the same optimization procedure as for the maximum likelihood. As we see, 
the only difference compared to the ML method is the factor f (r1 , "(2 , "(3 ), 

and so this approach suffers from some of the same problems. With prior 1, 
the maximum seems to be reached when "(2 = 20, but of course the same 
local maximum as the ML case appears. For prior 2 and prior 3, the results 
appear in Table 1. We see that the results are reasonable. In fact, this 
method generally gives reasonable estimates in simulated cases when the 
priors exclude extremely wrong answers. In practical use, the quality of the 
result depends on the quality of the prior, which again depends on how 
much the user of the method knows about for example the geology being 
described. 

As the variance of the ML estimate seems to be quite large in this model, 
the maximum posterior estimate inherits this problem (unless the chosen 
priors are narrow). It can also inherit the multimodality problem from the 
ML method. 

The second approach is to use the expectation of the posterior distribution 
as the estimate. We have studied two ways of computing this expectation: 
Numerical integration and simulation with the Metropolis algorithm. Only 
the latter approach is presented here. 

The Metropolis algorithm (Ripley 1987) is based on computing the quotient 
of the values of the probability density function at different points. The 
algorithm simulates from the distribution by using a transition function 
Q specifying the probability of choosing a new vector (r~, "Y~, "Y~), given a 
current vector (11 , "(2 , "(3 ). The choice is then kept or rejected based on 
the quotient above. The Q function must be symmetric with respect to 
switching (11, "(2, "(3) and (r~, "Y~, "Y~), and should be chosen to optimize the 
convergence speed and acceptance rate of the algorithm. We have used a 
transition function Q which independently updates the lengths of the major 
and minor axes and the anisotropy angle, using normal distributions. (A 
standard deviation of 50 was used to update the lengths of the axes, while 
a standard deviation of 0.1 radians was used for the angle.) We should 
mention how we have chosen to compute the "mean" of the periodic variable 
"(3: If "(31,"Y32, ... ,"f3m E [0, 180) is a sample, then we define the mean as 

1 ( 2:":':._1 sin 2"f3i [~ l ) - arctan "';:;; . + 180° · I ~cos 2"f3i > 0 , 
2 ui=l COS 2"f3t i=l 

(3) 

where I denotes the indicator function. (As 2"(3 has period 27r, we may 
construct unit vectors with angles 2"f3i with the x-axis and let the angle of 
their vector sum represent the "mean" . ) 



P. F. MOSTAD ET AL. 

The Metropolis method was applied to our example, with 10,000 triplets 
of ""(S simulated for each prior, and the first 1000 discarded. The resulting 
averages are shown in Table 1 and Figure 1. The estimates are reasonably 
good, although there are still sizable errors. In general, the method seems 
to give reasonable estimates. It avoids the perils of optimizing a possibly 
multimodal function, but it is time consuming to compute to a reasonable 
degree of accuracy. It also yields a sample from the entire posterior distri­
bution, which may be useful. The marginal distributions of this sample for 
our case-study example are plotted in Figures 2 and 3. Note, in particular, 
the information one obtains about the anisotropy direction ("Y3 ) without 
using any prior information about direction. 

Posteriors for anisotropy direction 

.. -... "\ 
0 ~,;,..=--""'--;...''-<'·'::::::·'-•:::.--'-~~--------

0~------~------~--------~----~ 
50 100 

gamma3 
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Figure 3. The marginal posterior distributions for /3, the direction of anisotropy, simu­
lated with the Metropolis algorithm. The curve with the highest maximum corresponds to 
prior 1, the second highest to prior 2, and the lowest to prior 3. Note the local maximum 
around 60 degrees. 

4. Extensions to more complex models 

Much of the above may be fairly straightforwardly extended to more com­
plex models. First of all, the mean of the Gaussian field, and the variance 
a 2 , may be unknown instead of fixed. We may also use trend functions 
fj ( x) (j = 1, ... , s) for the field, so that the total trend for the field at a 
point x may be expressed as a vector product [f1 (x), ... , fs(x)]/3, where f3 
is a vector of weights. The vector of observations Zd now has distribution 
Zd,....., N(F/3, a 2 K), where Fij = [fj(xi)], and K is defined as before. 



BAYESIAN VARIOGRAM ESTIMATION 

There are well-known formulas for the maximum likelihood estimates for f3 
and (}2 in this case, and from them, we get a formula in the 'Y parameters 
which must be numerically optimized in terms of these to find their ML 
estimates (see Mostad & Egeland (1995)). In the Bayesian framework, it 
is natural to use priors for f3 and (}2 ; we use priors of the form f3 I (}2 ,....., 

N((30 , (} 2T) and (}2 ,....., I9(a, b) to facilitate computations. (Here, I(} denotes 
the inverse Gamma distribution.) The special form of the prior is of course 
a limitation, but in practice, prior information will probably often fit into 
this form. If we use this framework together with a fixed variogram, we get 
Bayesian Kriging (Hjort & Omre 1994). One may instead use the full model 
to obtain posterior predictions for values at unsampled locations directly 
(Gaudard, Karson, Linder & Sinha 1995). Comparing this approach to one 
where we first estimate a variogram and then use this variogram to make a 
prediction by e.g. Kriging, we see that we implicitly use the entire posterior 
distribution for the variogram, instead of just a fixed estimate. 

However, one may prefer to fix a variogram before continuing on with other 
computations. In Kraggerud (1996), the above model is studied as the basis 
for Bayesian variogram estimation. The added unknown parameters seem 
to increase the variance of the estimates, thus making the inclusion of prior 
information even more pertinent. Among other things, there seems to be 
a bias in the ML estimate for "(2 , the degree of anisotropy. This should 
also be clear from theoretical arguments. However, the amount of bias is 
hard to compute. One possibility is to fix the positions of data points (the 
"well locations"), and simulate many data sets within the used model. By 
performing ML estimates of the parameters for each simulated data set, it 
should be possible to estimate the bias function numerically. However, such 
computations are likely to be very time consuming. 

The above model may of course also be extended further, for example, into 
more dimensions, or to other types of covariance functions. But adding 
more parameters is likely to increase the difficulty of estimation. It is also 
possible to apply the ideas above to data which are not normally distributed 
in the marginal by applying an appropriate transformation. 

4.1. APPLICATION TO POROSITY DATA 

The case study was based on porosity measurements from 43 wells ranging 
from 0.031 to 0.140 with a mean 0.078 and standard deviation 0.028. For 
each well, we used the average measured porosity. The data set has been 
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used on several previous occasions for various purposes, and Mostad & 
Egeland (1995) provide details beyond what space permits here. Presently, 
the aim is to interpolate the porosity surface as accurately as possible. 
In addition, we would like to estimate a model reflecting the uncertainty 
appropriately in some sense. Different models are compared based on leave­
one-out predictions. An initial model based on a spherical variogram with 
ranges 1000 and 3000 in the x and y directions performs poorly- the predic­
tions and the observations are slightly negatively correlated! The situation 
is improved by estimating the parameters and changing to an exponential 
variogram. Ranges 1000 and 3000 were retained as prior guesses while prior 
standard deviations were set to 750 and 1500. The ranges were estimated as 
291 and 3494, indicating that there is less continuity in the x direction and 
more in the y-direction than assumed a priori. Visual inspection revealed a 
better model. The mentioned correlation increases to 0.26, confirming that 
an improved model results from variogram estimation. 

5. Concluding remarks 

A Bayesian framework seems well suited to combine prior knowledge with 
data observations into a variogram estimate. Both the maximum posterior 
method and the posterior expectation method give reasonable estimates, 
although the variances of the estimates could still be large in many applica­
tions. The maximum posterior method is faster to compute, but may inherit 
the multimodality problem from the ML estimate, and it may have larger 
variance. There seems to be a bias (overestimation) in the estimation of 
the degree of anisotropy, and it should be interesting to try to measure this 
bias. Finally, the method of quasi-likelihood represents a different approach 
to the problems of the ML method, and should be investigated further. 
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