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1. Introduction

The theory of abstract computational complexity in ordinary
recursion theory (ORT) was initiated by Rabin [7] and Blum {[1].
Jacobs [5] generalized the notions to recursion theory on an admis-
sible ordinal o (a=-recursion theory) and proved in this getting
certain main theorems such as Blum's theorem and the Compression
theorem.

In ORT the notions of "finite" and "bounded" coincide. Thus
when 1lifting a theorem from ORT to a=-recursion theory, "finite™”
may be translated to either "bounded below a " or to the strbnger
and more natural " a- finite'". Jacobs conjectured that *"bounded
below o "™ was the best possible in the theorems mentioned above.

In this paper we shall prove that the stronger versions of these
theorems are in fact true. Furthermore our constructions are uni-
form for all admissible «a

Rather than restricting ourselves to a-recursion theory we
shall consider transitive rudimentarily closed structures M= <M,€,R>
which admit what we call an acceptable prewellordering. The
special cases M = <La,€> and M = <SB’€> where o 1is admissible
and B a limit ordinal constitute respectively a-recursion theory

and B-recursion theory (see Friedman [4]).




We shall prove Blum's theorem and the Compression theorem for every
weékly admissible structure M. This should be contrasted with
the results in>[9], where we showed that the structure of the tamely
r.e. M-degrees is rich for every adequate such M, combined with
Simpson'’s result [8] that (assuming AD) some additional hypothesis
on M, such as adequacy, is necessary for a positive solution to
Post's problem.

I would like to thank J.V. Tucker for discussions on the useful-
ness of a (generalized) analysis of computational complexity.

For a {reatment of the rudimentary functions we refer to De?lih

[2] where a proof of the following lemma can be found.

z

n . . .
Lemma 1.1. hm = {<1,x1,...,xm> : The i:th Zn formula ¢ 1is
m-ary and M k= ¢(x1,...,xm)} is uniformly ZE for transitive rudi-

mentarily closed structures M.

The recursion theoretic notions are defined as follows:
Aset Ac M is M-r.e. if A € Zl(g) , i.e. A 1is definable over

M by a £, formula with parameters from M. A 1is M-recursive

if A and M-A are both M-r.e. If A€M then A is M-finite,

A partial function is M-recursive if its graph is M-r.e.

~

Definition 1.2. M admits an acceptable prewellordering if there

is an M-recursive prewellordering < on M such that
(i) L* = {y€M: y<«x} is uniformly M-finite.
(ii) |g| = ordinal of 4 = limit ordinal and for each § < |g]| ,
oni<l = 6.
(iii) ¥, ~-ef([g]) = limit ordihal, where I -cf(|£]) = least ordinal
y for which there is N-finite x < LY and M-recursive

function f :x » |Z| , unbounded in |[%] .




(iv) If x € L' +then there is ¢ such that x c L°. If x€e LT and

t<¥rcf(|g]) then there is o < I -cf(|Z]) such that x ¢ LY.

Henceforth M = <M,€,R> will denote a transitive rudimentarily
closed structure which admits an acceptable prewellordering < .
£, -cf(|g]) will be denoted by « . The reader is referred to [9]
for elementary recursion theoretic results such as the existence of
M-recursive enumerations of the M-r.e. sets, the existence of an
g—récursive selection operator and the ability to define M-recursive

functions by recursion on «x .

In order to define the degree of admissibility of M we need
consider the following notion of projectum. Let [Z|* = least
ordinal y for which there is a partial M-recursive function

q: LY 2nto, M is said to be admissible if « = [<| , weakly

inadmissible if [X|* < « < |<| and strongly inadmissible otherwise.

In case |<|* <k, M is said to be weakly admissible.

Definition 1.3. Let D < M be M-recursive. Then

~

® = <{q‘>e:e€M} 5 {tbe:eEM}> is a D-complexity measure for M if
{¢e:e€bﬂ- is an M-recursive enumeration of the partial M-recursive
functions with domain a subset of D such that the s-m-n fheorem
holds, each R is a partial function with range a subset of « ,
and the following conditions hold:

(i) TFor each e € M, dom ¢, = dom o _ .

(ii) ¢_(x) = & is an M-recursive relation of e, x and ¢ .

An M-complexity measure is simply called a complexity measure.

We are, of course, mainly interested in complexity measures. The
reason for introducing the parameter D 1is that it allows for a

simple reduction of the weakly inadmissible case to the admissible

case.



Using lemma 1.1 it is not difficult to see that there are
M-recursive enumerations of the partial M-recursive functions such
that the s-m-n theorem holds. Let {¢e:e€Pﬂ- be such an enumer-—
ation and let W = {<e,x,y>:¢e(x) =y} . Let AoW?® (o<k) be an
M-recursive enumeration of W . Define ¢e(x) =
least oi(3y€ 1r2"WU)(<e,x,y>€wo)] where =, is the i:th projec-
tion function. Then & = <{¢e:eEM},{¢e:e€5M}> is a complexity

measure for E'

Blum's theorem. Let M be a weakly admissible structure and let

¢ Dbe a complexity measure for M. Suppose g 1is a partial M-
recursive function with range a subset of «x . Then there is a
partial M-recursive function f such that dom f = dom g and if
f = 9o then {x:@e(x)-<g(x)} is M-finite uniformly in e and
an index for g.

In order to state the Compression theorem we need the following

definition.

Definition 1.4. Let D c ™ be M-recursive. Then V¥ = {we:eGEM}

is a D-measured set if dom we < D and ran ¢e c k for each e,

and we(x) = § 1is an M-recursive relation of e, x and §.

~

An M-measured set is called a measured set. If ¢ 1is a D-

complexity measure then {@e:eﬁlﬁ} is a D-measured set.

Compression theorem. Let M be a weakly admissible structure, ¢

a complexity measure for M and V¥ a measured set. Then there are
total M-recursive functions h and s such that the following
holds for each e € M:

(i) dom ¢ = dom vy -

s(e)




(i1) If ¢ = ¢

. s(e) Then {x:@e(x) <¢e(x)} is M-finite uniformly

in € and e.

(iii) {x:h(x,we (x)) <9 >(x)} is M-finite uniformly in e.

s(e

2. Admissible M

In this section we prove slight generalizations of Blum's
theorem and the Compression theorem for admissible structures M.
It should be remarked that the notion of a complexity measure can
naturally be formulated in the axiomatic framework of Moshovakis [6]
and Fenstad [3] and that the constructions of this section can be

carried out in that framework for any infinite computation theory.

Theorem 2.1. Let M be an admissible structure and let & be a

D~complexity measure for M. Suppose g is a partial g—recursive
function with domain a subset of D and range a subset of Iﬁl .
Then there is a partial M-recursive function f such that dom f =

dom g and if f = ¢, then {x:@e(x) <g(x)} is M-finite.

Proof. The proof is a cancellation argument. We construct sets F
and A in stages o for o < |£| . A is the set of indices

cancelled during the construction and F is the graph of the func-

tion constructed. We use the notation A% to denote the M-finite
part of A constructed by stage o. AY9 denotes U{AT:t <o} .
Let 20g’ be an M-recursive approximation of g . To be

~o

g(x) = § < 3to(x,8,t) and put g° = {<x,6>€1% xo:(3t€L)0(x,5,t)}.

|
h
precise, let 6 be a AO(M) formula such that
|
Note that an index for an approximation of g can be obtained uni- ﬁ

!

|

formly from an index for g.



The construction at stage o : Let

H = {eeL%:c A7 & (axeno"(goeg(o))(@e(x) <g%(x))} . Here

¢e(x) <g%(x) stands for g% x)+ & (35 <gc(x))(®e(x) =§), which is
an M-recursive relation. Put Kg = {xevo"(gc—g<°):®e(x) <g%(x)}
and let h(o) = some = [(VeEHO)(VXEKg)(¢e(x) €L")]. Finally we

put A% = ASyH® anda F° = F<Gl1[<xf,h(o)>:x€no"(g°°g<°)} .

To complete the construction put A = U{A%:0< x|} and
F=u{F:0<]|g|}.

Let f be the partial M-recursive function whose graph is F.
It is immediate from the construction that f 1is in fact a function,
dom £ = dom g and ran f < |Z]| .

Suppose e € A. Let o be such that e € A -A%Y ., Then
e € H and hence Kg # ). Choose x € Kg . Then
f(x) = h(o) > ¢e(x) so f#+¢,. Thus if f = ¢_ then e € A.

To complete the proof we show {x:cbe(x) <g(x)} is M-finite
whenever f = 9o So suppose f = ¢ and choose 1t such that
e € LY. We claim {x:rbe(x) <g(x)} = {XE'no"gT:Cbe(x) <gt(x)},

- . . T . . .
which suffices since @e(x) <g (x) 1is an M-recursive relation of x,

To prove the non-trivial inclusion suppose @e(x) <g(x) . Suppose
x € ﬂo"gT . Choose ¢ such that x € no"(gc—g<0) . Then e € A*°
or e € H since o>t , contradicting the fact e ¢ A. Thus

x € ﬂo"gT and the inclusion is proved. o

Remarks.

(i) The construction in the above proof is uniform in an index
for g. To be precise, there is a partial M-recursive function
m(e,x) such that if e 1is an index for g then Axm(e,x) satis-
fies the conclusion of the theorem. Thus, using the s-m-n theorem

for ¢, there is an M-recursive function s such that




Axm(e,x) = ¢ for such e.

s(e)

(ii) The set {x:¢ (x) <g(x)}, where e is an index for g,

s(e)
is obtained uniformly from e by finding the least =+t such that

s(e) € LT,

(iii) 1In case M = <L ,€> we choose the usual prewellordering of
L, which is definable without infinite parameters. Then the con-
struction is uniform for all admissible o . This answers a question

posed in Jacobs [5].

Theorem 2.2. Let M be an admissible structure, 2 a D-complexity

measure for M and ¥ a D-measured set. Then there are total

Mnrecursive functions h and s such that for each e € M the
following holds:
(i) dom bs(ey © dom by -
[ss - . . P .
(ii) 1f 9940 then {x.@e(x) <y, (x)} is M-finite uniformly

in € and e.

(iii) {x:h(x,we(x)) <®S(e)(x)} is M-finite uniformly in e.

Proof. Let s be the M-recursive function mentioned in the
remark following theorem 2.1. Then (i) and (ii) hold for each
e €E M.
We define a set H , the graph of h, in stages ¢ as follows:

Define

s(e)(X) 2 bo(x) =8

) (x) if o
k(eyx,8) { s(e)
Y0 otherwise

and let 1(x,8,0) some r[(VeGLG)(k(e,x,B)<r)]. Put




H = HS9 U {<x,8,1(x,8,0)> : <x,85€ L%%0 - LxL“%} and let
H= U{H°:0<|%£|}. Then h, the function with graph H, is
M-recursive, sirigle-valued and (can easily be extended to be)

total.
g

To prove (iii) we fix e and choose o, such that e€L®.
Suppose h(x,we(x)) < @S(e)(x) . Let 1t be the least ordinal
such that <x,p (x)> € L" xt . Suppose T > o Then
@S(e)(x) > h(x,tpe(x)) = 1(x,we(x),'r) >k(e,x,1pe(x)) . It follows
that @s(e)(x) < we(x) . By (ii) the set Ke = {x: <I>S(e)(x)<tpe(x)}

is M-finite uniformly in e . But then
{x: h(x,we(x)) < <I>S(e)(x)} = {x EKe : h(x,upe(x)) < @S(e)(x)}

o
u{xeL?: (33<oo)(1pe(x)=8 & h(x,8)<d>s(e)(x))} , which is

M-finite uniformly in e. o

Note that theorem 2.2 has the following converse: Suppose
¥y = {we: e €M} is an M-recursive enumeration of M-recursive
functions with domain a subset of D and range a subset of |&4] .
If the conclusions of the theorem hold then ¥ 1is a D-measured
set.

To see this let K, = {x :¢S(e)(x) <we(x)\/h(x,¢e(x)) <¢s(e)(x)}
which is M-finite uniformly in e by our hypotheses. If x € Ko
then we(x) is defined so we(x) = § can be decided M-recursively.

If X ¢ Ko then we(x) = 5> ¢S(e)(x) <h(x,8) & we(x) = § which

again is M-recursively decidable.

3. M weakly inadmissible

Let M denote a weakly inadmissible structure. In [9] we
associated to each such structure a transitive resolvable admissible
structure O( = <N,€,T>, the admissible collapse of M, such that

for each Ac N, A is (X-r.e. if and only if A is M-r.e.

~




Furthermore N has the following properties:

(i) There is a surjective M-recursive function q:N » M.
(ii) If x € N and Ac M is M-recursive, then xNA € N.
(iii) If f:N > M is M-recursive, then g:N » M defined by -~

g(x) = f'x 1is M-recursive (and in particular g(x) €M) .

The admissible collapse Ot of a weakly inadmissible structure
M was used in [9] to reduce questions about the structure of the
regular tamely r.e. M-degrees to questions about the structure of
the regular Ol-r.e. degrees. Here we make a similar reduction by
showing that Blum's theorem and the Compression theorem hold for M

since theorems 2.1 and 2.2 hold for OL.

Lemma 3.1 Let M be weakly inadmissible and O{= <N,€,T> its
admissible collapse. Then there is M-recursive (and hence ({-re-

cursive) D € N and an M-recursive bijection p:D++M.

g

Proof. Let Ao G be an O( -recursive resolution of N, i.e.

roc® is an X -recursive function, o<t = c%« 6¢' and
N = U{G%:0 <k} where « = H-cf([4]) = [(N). Let q:N -+ M be an
M-recursive surjection and let A oq? (6 <x) Dbe an M-recursive

approximation of (the graph of) q . Define

least ol(3y € g%)(<y,x>€q°)] and put

Gk(X) N{y:<y,x>€ qk(x>} .

k(x)

Then r:M > N 1is a

r(x) V e v =
total M-recursive function such that Vx(r(x) #@) and

X, ¥#Xx, = r(g)!]r(xz) =0 . Let Aor® (o<k) be an M-recursive
approximation of r and let D = {<c;v>n/€v1"(rc—r<c)} . Then
Dc N is M-recursive. Define p:D -+ M by pl<o,v>) =

some x[r(x)=v]. It is easily verified that p 1is an M-recursive

bijection. o
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Assume ¢ 1is a complexity measure for a weakly inadmissible
structure M. Let OU be the admissible collapse of M and let
p:D >+ M be as in lemma 3.1. We define a D-complexity measure o'

for Or as follows:

y & y €N,

e(x) =y e 4oy (P(xD)

I
(=2

@é(x) 5§ o= @P(e)(p(x))

Lemma 3.2 ¢' is a D-complexity measure for Ot .

Proof. As a sample we show that the s-m-n theorem holds. Suppose
m(e,x) 1is a partial Ol -recursive function. Define

1(e,z2) =y = m(e,p_l(z)) =y. Then 1 is M-recursive so

1(e,z) = ¢S(e)(z) for some M-recursive function s . Thus

(x) whenever x € D. But

m{e,x) = ¢ (p(x)) = ¢

, .
s(e) p l(s(e))
t(e) = p‘ICS(e)) is M-recursive and hence OU-recursive, so the

s-m-n theorem holds for Ot -recursive enumerations of functions with

domain a subset of D. o

Proof of Blum's theorem. It remains to prove the theorem for weakly

inadmissible M. Let ¢ be a complexity measure for M and let

g be a partial M-recursive function such that ran g < « . Using
the notation above, define g'(x) =38 e g(p(x))=6. Then g' Iis
partial ¥ -recursive and dom g' < D. ' is a D-complexity
measure for & by lemma 3.2, so by theorem 2.1 there is a partial
Ol ~recursive function f' such that dom f' = dom g' and if

£' = ¢! then {x:0l(x)<g'(x)} is O(-finite. Let f(x)=£(p ' GO).

p~i(e)

so {x:e_(x)<g(x)} = p"{x:¢P11(e)(x) <g'(x)} is M-finite.

|

|

Then dom f = dom g . Furthermore if f = ¢, then f' = ¢° [
|

|

The uniformity is easily checked. o }
| |



Proof of the Compression theorem. Again we assume M is weakly

inadmissible. Suppose V¥ is a measured set for M. Define

y' = {wé:eEN} by wé(x)=6®e,x€D & Y (p(x))=68. Then V'

ple)
is a D-measured set for & . Let h' and s' be the functions

obtained from theorem 2.2. Define h(x,§) = h'(p—l(x),é) and
s(e) = p(s'(p~'(e))). To prove (iii) note that

{x:h(x,y (x)) <8 )(x)} =p"{x:h'(x,p'_, (x)) <o (x)}

p l(e) p l(s(e))

= p"{x:h'(x,p',  (x)) <o -1 (x)} . But
p (e) st(p “(e)

{x:h'(x,p', (x)) <o’ -1 (x)} 1is oOgr-finite by theorem 2.2
p (e) s'(p "(e))

o) {x:h(x,we(x)) <@S(e)(x)} is M-finite. (i) and (ii) are

s(e

proved similarly. o
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