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The theory of abstract computational complexity in ordinary 

recursion theory (ORT) was initiated by Rabin [7] and Blum [1]. 

Jacobs [5] generalized the notions to recursion theory on an admis­

sible ordinal a (a-recursion theory) and proved in this setting 

certain main theorems such as Blum's theorem and the Compression 

theorem. 

In ORT the notions of "finite" and "bounded" coincide. Thus 

when lifting a theorem from ORT to ex-recursion theory, "finite 11 

may be translated to either "bounded below ex n or to the stronger 

and more natural "a- finite". Jacobs conjectured that "bounded 

below a 11 was the best possible in the t~eorems mentioned above. 

In this paper we shall prove that the stronger versions of these 

theorems are in fact true. Furthermore our constructions are uni-

form for all admissible a . 

Rather than restricting ourselves to a-recursion theory we 

shall consider transitive rudimentarily closed structures l'1 = <M,€ ,R> ...., 

which admit what we call an acceptable prewellordering. The 

special cases ~ = <Lex,€> and ~ = <S 8 ,E> where a is admissible 

and B a limit ordinal constitute respectively a-recursion theory 

and a-recursion theory (see Friedman [4]). 
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We shall prove Blum's theorem and the Compression theorem for every 

weakly admissible structure 11 • This should be contrasted with 
""" 

the results in [9], where we showed that the structure of the tamely 

r.e. M-degrees is rich for every adequate such M , combined with ,.... ,.., 

Simpson's result [8) that (assuming AD) some additional hypothesis 

on M, such as adequacy, is necessary for a positive solution to 
""' 

Post's problem. 

I would like to thank J.V. Tucker for discussions on the useful-

ness of a (generalized) analysis of computational complexity. 

For a treatment of the rudimentary functions vJe refer to Devlin 

[2] where a proof of the following lemma can be found. 

Lemma 1.1. 

m-ary and 

:r: 
1- n { · Th · h - M = < 1 , x 1 , ••• , xm > : e 1 : t 

M t::,...,cp(x 1 , ••• ,x )} is uniformly :r:l:l ,..., m n 

mentarily closed structures M. ,.., 

:r:n formula cp is 

for transitive rudi-

The recursion theoretic notions are· defined as follows: 

A set A c M is D-r.e. if A E :r: 1 (~), i.e. A is definable over 

by a formula with parameters from M . A is M-recursive ,..., 

if A and M - A are both M-r. e. If A € M then A is M-finite. 
f"W f"W . 

A partial function is M-recursive if its graph is ,..., M-r.e. ,..... 

Definition 1.2. M admits an acceptable prewellordering if there 

is an M-recursive prewellordering ~ on M such that ...., 

(i) Lx = {yEM: y-<.x} is uniformly M-finite. ,.... 

(ii) l:$1 = ordinal of ~ = limit ordinal and for each IS < 1~1 , 
1° n 1-<1 = o • ,..., 

(iii) :r 1 -cf( 1~1) = limit ordinal, where :r: 1 -cf( 1;51) = least ordinal 

y for which there is ij-finite x c 1Y and M-recursive 
f"W 

function f : x + 1~1 , unbounded in 1~1 
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. (iv) If x E LT then there is a such that x c L0 • If xELT and 

-r<i!~cf( 1~1) then there is a < r 1-cf( 1~1) such that x c L0 • 

Henceforth M = <M,E,R> will denote a transitive rudimentarily ..... 

closed structure which admits an acceptable prewellordering ~ . 

rl -cf (I :S I ) will be denoted by K • The reader is referred to [9] 

for elementary recursion theoretic results such as the existence of 

M-recursive enumerations of the M-r.e. sets, the existence of an ,.... ..... 

M-recursive selection operator and the ability to define M-recursive. 
"" 

functions by recursion on K • 

In order to define the degree of admissibility of M ,_ we need 

consider the following notion of projectum. Let 1~1* = least 

ordinal y for which there is a partial 11-recursive function 

. 1y, onto M q . ) • M is said to be admissible if K = 1~1 , weakly ,_ ,..,. 

inadmissible if I< I* ,.... ~ K < I~ I and strongly inadmissible otherwise. 

In case M ,..., is said to be weakly admissible. 

Definition 1.3. Let D c M be M-recursive. Then 
~ 

~ = <{cj> 8 :e EM} , {<Pe:e EM}> is a D-complexity measure for M if 

{ ~ : e EM} is an M-recursive enumeration of the partial M-recursive e "' ,..,. 

functions with domain a subset of D such that the s-m-n theorem 

holds, each <Pe is a partial function with range a subset of K , 

and the following conditions hold: 

( i) For each e E M , dom ¢ e = dom ~ e 

(ii) <P 9 (x) = o ~s an M-recursive relation 0f e, x and o 

An M-complexity measure is simply called a complexity measure. 

We are, of course, mainly interested in complexity measures. The 

reason for introducing the parameter D is that it allows for a 

simple reduction of the weakly inadmissible case to the admissible 

case. 
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Using lemma 1.1 it lS not difficult to see that there are 

M-recursive enumerations of the partial M-recursive functions such ...... ~ 

that the s-m-n theorem holds. Let { cf> : e € M} be such an enumel1 -e 

ation and let VJ = {<e,x,y>:cfl (x) =y}. 
e 

Let ~ cr vl 0 ( cr < K ) be an 

M-recursive enumeration of \".1 • ,..., Define l%le(x) = 

1T • 
l 

is the i:th projec-

tion function. Then ~ = <{cf> :eEM} ,{<1> :e EM}> is a complexity e e 

measure for 11 • ,.., 

Blum 1 s theorem. Let be a weakly admissible structure and let 

be a complexity measure for M. Suppose g is a partial M-

recursive function with range a subset of K • Then there J.S a 

par-tial M-recursive function f such that dom f = dom g and if 

f = <P e then { x: <1> e ( x) < g ( x)} 

an index for g • 

is M-finite uniformly in e and ,.., 

In order to state the Compression theorem we need the following 

definition. 

Definition 1 • 4. Let D c:H be M-recursive. Then '¥ = {1/Je:e EM} ,.... 

is a D-measur•ed set if dom ljle c D and ran t/J C: K for each e ' e -

and 1/J (x) = 0 lS an M-recursive relation of e, X and 0 • e 

An M-measured set lS called a measured set. If <1> is a D-

complexity measure then {<1> :eEM} e is a D-measured set. 

Compression theorem. Let M be a weakly admissible structure, ¢ 

a complexity measure for M ,.... and a measured set. Then there are 

total M-recursive functions h and s such that the following 

holds for each e E M 

(i) dom cf> s(e) = dom we 
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(ii) If cf> - <fl then {X: 4> (X) < 1jJ (X)} 
£ - s(e) £ e is M-finite uniformly ,.... 

in e and e . 

( iii) { X : h ( X ~ 1jJ e ( X ) ) < 4> S ( e ) ( X ) } is M-finite uniformly in e . ,...,. 

2. Admissible M -
In this section we prove slight generalizations of Blum's 

theorem and the Compression theorem for admissible structures M • 

It should be remarked that the notion of a complexity measure can 

naturally be formulated in ·the axiomatic framework of I1oshovakis [ 6 ] 

and Fenstad [3] and that the constructions of this section can be 

carried out in that framework for any infinite computation theory. 

Theorem 2.1. Let r-1 be an admissible structure and let <P be a 

D-complexity measure for H . Suppose g is a partial M-recursive 

function with domain a subset of D and range a subset of 1~1 . 
Then there is a partial M-recursive function f such that dom f = 

dom g and if f = cp then e is H-finite. ,.., 

Proof. The proof is a cancellation argument. \>Je construct sets F 

and A in stages cr for cr < I~~ . A is the set of indices 

cancelled during the construction and F is the graph of the func­

tion constructed. We use the notation A0 to denote the M-finite .... 
part of A constructed by stage cr . A<cr denotes U{AT :T < cr} . 

Let a >..a g 

precise, let e 

be an M-recursive approximation of g . ,.., To be 

be a A ( '!'vf) uo ;..; formula such that 

g(x) = o ..:~ 3t e(x,o,t) and pu·t ga = {<x,o>ELaxa:(3tELa)e(x,o,t)}. 

Note that an index for an approximation of g can be obtained uni-

formly from an index for g . 
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The construction at stage a : Let 

Ha = {eELa:e(A<a & (3xE1T 0 "(ga-g<a))(<Pe(x) <ga(x))}. Here 

<P (x) < ga(x) stands for ga(x)t & (3o < ga(x))(<P (x) = o) which ~s 
e e 

an !1,-recursive relation. Put K~ = {xE 1T 0 "(ga-g<a):<Pe(x) < ga(x)} 

and let h(a) =some -r [(VeEHa)(VxEKa)(cp (x) EL-r)]. Finally He 
e e 

put Aa = A<a U Ha and a <a a <a F = F tJ ( <x , h ( a ) >: x E 1T 0 " ( g - g ) } . 

To complete the construction put A = U {A a: a < I ;:S.I } and 

F = U { Fa : a < I ;S I } 
Let f be the partial !1,·-recursive function whose graph is F . 

It is immediate from the construction that f is in fact a function~ 

dom f = dom g and ran f c I ;:SI • 

Suppose e E A • 

e E Ha d h an ence 

Let a be such that e E Aa -A<a. 

Choose x E Ka • 
e Then 

Then 

f(x) = h (a) >- q, ( x) so f * cp • e e Thus if f = cp e then e ( A • 

To complete the proof we show {x:<P (x) < g(x)} 
e is M-finite 

.-J 

whenever f = cj> • So suppose f = "' '~'e and choose T such that e 

which suffices since <P (x) < g-r(x) is an M-recursive relation of x. 
e -

To prove the non-trivial inclusion suppose <Pe(x) < g(x) . 

Choose a such that E " ( a <a ' Th x 1T 0 g -g J • en 

or e E H0 since cr > -r , contradicting the fact e ( A . 

x E 1r 0 "gT and the inclusion is proved. c 

Remarks. 

Suppose 

e E A <a 

Thus 

(i) The construction in the above proof is uniform in an index 

for g • To be precise, there is a partial M-recursive function 

m( e ,x) such that if e is an index for g then A. x m( e ,x) sat is-

fies the conclusion of the theorem. Thus, using the s-m-n theorem 

for cp , there is an M-recursive function ,... s such that 



A. x m(e,x) = <~>s{e) for such e . 

(ii) The set {x:il's(e)(x) < g(x)}, where e is an index for g, 

is obtained uniformly from e by finding the least T such that 

s(e) E LT. 

(iii) In case M = <L ,E> we choose the usual prewellordering of ...... a. 

L which lS definable t-Jithout infinite parameters. Then the con­a. 

struction is uniform for all admissible a. • This answers a question 

posed in Jacobs [5]. 

Theorem 2.2. Let be an admissible structure, $ a D-complexity 

measure for M and ~ a D-measured set. Then there are total 

M-recursive functions h and s such that for each e € M the 

following holds: 

(i) d d om <P s ( e ) = om 1/J e . 

( ii) Tf A- - , then - 't'c:-lps(e) {x:<P (x)<l/J (x)} 
c: e is M-finite uniformly ..... 

in c: and e . 

(iii) {x:h(x,l/J (x)) < ~ ( ,(x)} is M-finite uniformly in e. e s e1 ..... 

Proof. Let s be the M-recursive function mentioned in the 

remark following theorem 2.1. Then (i) and (ii) hold for each 

e € M. 

We define a set H ~ the graph of h , 1n stages a as follows: 

Define 

=\ r ~os(e)(x) k(e,x,S) ~ 
if ~s(e)(x) > 1/Je(x) = B 

otherwise 

and let l(x~S,a) = some T[(Ve E L0 )(k(e,x,(3) < T)]. Put 



- 8 -

Ha = H<a U {<x,S,l(x,a,a)>: <x,S>€ Laxa- L<axL<a} and let 

H = U {Ha: a < I~~ } · Then h , the function with graph H , is 

~-recursive, single-valued and (can easily be extended to be) 

total. 

To prove (iii) we fix e and choose a 
0 

such that 

Suppose h(x,1/Je(x)) < ~s(e)(x). Let T be the least ordinal 

such that <X ' 1/1 ( X ) > E L T X T • e Suppose T > a • 
0 

Then 

~s(e)(x) > h(x,I/Je(x)) = i(x,I/Je(x),T) > k(e,x,we(x)). It follows 

that ~s(e)(x) < 1/Je(x) By (ii) the set Ke = {x ~s(e) (x) <1/Je(x)} 

is M-finite uniformly in e . ,.., But then 

{x: h(x,I/Je(x)) < ~s(e)(x)} = {xEKe: h(x,I/Je(x)) < ~s(e)(x)} 

ao 
U{xEL : (3f3<a0 ){1/Je(x)=f3 & h(x,S)<~s(e)(x))}, which is 

M-fini te uniformly in e . ,.., D 

Note that theorem 2.2 has the following converse: Suppose 

'I' = { 1/J e : e EM} is an M-recursive enumeration of M-recursive ,.., ,.., 

functions with domain a subset of D and range a subset of 1~1 . 
If the conclusions of the theorem hold then 'I' is a D-measured 

set. 

To see this let Ke = {x: ~s(e)(x) < 1/Je(x) v h(x,I/Je(x)) < ~s(e)(x)} 

which is ~-finite uniformly in e by our hypotheses. If x E Ke 

is defined so 1/Je(x) = 6 can be decided M-recursively. ,.., 

again is M-recursively decidable. ,.., 

3. l:1 weakly inadmissible 

Let ~ denote a weakly inadmissible structure. In [9] we 

associated to each such structure a transitive resolvable admissible 

structure 0( = <N ,€ ,T>, the admissible collapse of M , such that ,.., 

for each A c: N , A is a -r.e. if and only if A is M-r.e. 
~ 
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Furthermore N has the following properties: 

(i) There 1s a surjective M-recursive function ,..., q:N -+ M • 

(ii) If x E N and A c M is M-recursive, then x n A E N. ,..., 

(iii) If f:N-+ M 1s H-recursive, then g:N -+ M defined by_J~'-
"' 

g( X) : f 11 X 1s M-recursive (and in particular g(x) EM) • ,..., 

The admissible collapse a of a weakly inadmissible structure 

~ was used in [9] to reduce questions about the structure of the 

regular tamely r.e. M-degrees to questions about the structure of ,..., 

the regular Ot-r.e. degrees. Here we make a similar reduction by 

showing that Blum's theorem and the Compression theorem hold for 

since theorems 2.1 and 2. 2 hold for OL • 

Lemma 3.1 Let M be weakly inadmissible and 0{ = <N,E,T> its 

admissible collapse. Then there is ~-recursive (and hence at-re­

cursive) D c N and an M-recursive bijection p:D ~ M . ..... 

Proof. Let A a G0 be an 0t -recursive resolution of N , 1. e. 

A a G0 is an ·a -recursive' function, CJ T a < T ..,. G c G and 

N = U{G0 :a < K} where K = r:1-cf( !!! ) = 0 (N). Let q:N -+ M be an 

M-recursive surjection and let 
(J 

A. a q (a < K) be an M-recursive 
"' 

approximation of (the graph of) q . Define 

k(x) =least a[(3yEG,0 )(<y~x>Eq0 )] and put 

"' 

r ( x ) = v ¢=) v = Gk ( x) n { y: <y , x > E q k ( x) } Then r : M -+ N 

total £!-recursive function such that Vx(r(x) * )j) and 

1s a 

Let 
(J 

ACJr (a<K) be an M-recursive ,..., 

· · d 1 D - { · E 11 ( 0 <cr)} approx1mat1on of r an et - <a,v>.v 1r 1 r -r . Then 

D c N is M-recursive. Define p:D -+ M by p(<cr,v>) = 

M ,..., 

some x[r(x) = v] It is easily verified that p lS an M-recursive ,._, 

bijection. o 
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Assume ~ 1s a complexity measure for a weakly inadmissible 

structure M • Let ot be the admissible collapse of M and let ,.... ,.., 

p:D ~ M be as in lem~a 3.1. We define a D-complexity measure ~~ 

for or as follows: 

~~(x) = y ~ ~p(e)(p(x)) = y & y E N • 

<P~(x) = o q,p(e)(p(x)) = 0 . 

Lemma 3.2 q,' is a D-complexity measure for ot . 

Proof. As a sample we show that the s-m-n theorem holds. Suppose 

m(e,x) lS a partial ot -recursive function. Define 

l(e,z) = y <=* m(e,p- 1 (z)) = y Then 1 is M-recursive so .... 
l(e,z) = ~ (z) for some M-recursive function s • s(e) ,.... Thus 

m(e,x) = <fl s (e) ( P ( x) ) = cp ~ _ 1 ( ~ (e) ) ( x) whenever x E D . But 

t(e) = p- 1 (s(e)) is M-recursive and hence at-recursive, so the 

s-m-n theorem holds for ~-recursive enumerations of functions with 

domain a subset of D . c 

Proof of Blum's theorem. It remains to prove the theorem for weakly 

inadmissible M . Let be a complexity measure for and let 

g be a partial M-recursive function such that ran g c K • Using 

the notation above, define g' (x) = o ~ g(p(x)) = <S Then cr' 0 is 

partial or -recursive and dom g I c D . cf>' is a D-complexity 

measure for ~ by lemma 3.2, so by theorem 2.1 there is a partial 

~-recursive function f 1 such that dom f' ~ dom g' and if 

f' = cp' then e {x:<P~(x) < g' (x)} 1s at -finite. Let -1 f ( x) = f! ( p (x)) . 

Then 

so 

dom f = dom g . Furthermore if f = cp e 

= p"{x:<!> ! (x) < g 1 (x)} 
p-l(e) 

The uniformity is easily checked. c 

then f' = cp' 
p-l(e) 

is M-finite. 
"" 
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Proof of the Compression theorem. Again we assume is weakly 

inadmissible. Suppose '¥ is a measured set for M . Define 
'"" 

'¥' = { tjJ ~: e E N} by 1/J ~ ( x) = o <=* e, x E D & tjJ p (e) ( p ( x) ) = o Then '1'' 

is a D-measured set for 0( • Let h' and s' be the functions 

obtained from theorem 2.2. Define 
-1 

h(x,o) = h'(p Cx),o) 

-1 s(e) = p(s'(p (e))). To prove (iii) note that 

and 

{x:h(x,tjJ (x)) < ri1 ( )(x)} = p"{x:h'(x,tjJ 1 _ 1 (x)) < ri/ 1 (x)} 
e s e p (e) p-1(s(e)) 

= p" { x : h 1 ( x , tjJ 1 ( x ) ) < ri1 1 _ 1 ( x ) } . But 
p -1( e) s' ( p C e)) 

{x:h'(x,tjJ 1 _1 (x)) < ri/ 1 -1 (x)} is or-finite by theorem 2.2 
p (e) s'(p (e)) 

so {x:h(x,tjJe(x)) < ri/s(e)(x)} is !j-finite. (i) and Cii) are 

proved similarly. 0 
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