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Abstract

Introduction: Dysregulated choline metabolism is a well-known feature of breast cancer, but the underlying
mechanisms are not fully understood. In this study, the metabolomic and transcriptomic characteristics of a large
panel of human breast cancer xenograft models were mapped, with focus on choline metabolism.

Methods: Tumor specimens from 34 patient-derived xenograft models were collected and divided in two. One part
was examined using high-resolution magic angle spinning (HR-MAS) MR spectroscopy while another part was analyzed
using gene expression microarrays. Expression data of genes encoding proteins in the choline metabolism pathway
were analyzed and correlated to the levels of choline (Cho), phosphocholine (PCho) and glycerophosphocholine (GPC)
using Pearson’s correlation analysis. For comparison purposes, metabolic and gene expression data were collected from
human breast tumors belonging to corresponding molecular subgroups.

Results: Most of the xenograft models were classified as basal-like (N = 19) or luminal B (N = 7). These two
subgroups showed significantly different choline metabolic and gene expression profiles. The luminal B xenografts
were characterized by a high PCho/GPC ratio while the basal-like xenografts were characterized by highly variable
PCho/GPC ratio. Also, Cho, PCho and GPC levels were correlated to expression of several genes encoding proteins in
the choline metabolism pathway, including choline kinase alpha (CHKA) and glycerophosphodiester phosphodiesterase
domain containing 5 (GDPD5). These characteristics were similar to those found in human tumor samples.

Conclusion: The higher PCho/GPC ratio found in luminal B compared with most basal-like breast cancer xenograft
models and human tissue samples do not correspond to results observed from in vitro studies. It is likely that
microenvironmental factors play a role in the in vivo regulation of choline metabolism. Cho, PCho and GPC were
correlated to different choline pathway-encoding genes in luminal B compared with basal-like xenografts,
suggesting that regulation of choline metabolism may vary between different breast cancer subgroups. The
concordance between the metabolic and gene expression profiles from xenograft models with breast cancer
tissue samples from patients indicates that these xenografts are representative models of human breast cancer
and represent relevant models to study tumor metabolism in vivo.
Introduction
Breast cancer is not a single disease with variable mor-
phologic features, but rather a group of molecularly dis-
tinct neoplastic disorders [1]. According to the gene
expression-based intrinsic classification, breast carcinomas
can be categorized into at least five subtypes: luminal A,
luminal B, normal breast-like, human epidermal growth
* Correspondence: mariatg90@hotmail.com
1Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
2St. Olavs University Hospital, Trondheim, Norway
Full list of author information is available at the end of the article

© 2014 Grinde et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
factor receptor 2 (HER2) enriched, and a basal-like sub-
type [2,3]. In addition to the distinctly different gene ex-
pression patterns, the subgroups also show significantly
different clinical outcomes [3], likely to be caused by alter-
ations in specific cellular pathways. Moreover, tumors that
appear to have similar diagnostic features, do not always
respond to treatment in the same way. This can, among
other factors, be caused by differences in mutational pro-
file, signaling redundancy and the particular tumor micro-
environment [4].
Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Most of the existing in vivo preclinical breast cancer
models are established from a limited number of cell lines
isolated from human tumors grown in cell culture before
implantation into immunodeficient animals. These models
do not reflect the breast cancer heterogeneity since they
usually have a monomorphic, poorly differentiated
histology and lack of tissue organization [5]. A panel of
patient-derived xenograft models has been established in
which human breast tumor tissue has been engrafted dir-
ectly into mice [6-8]. Patient-derived xenograft models
generally maintain key features of the original tumors,
including histologic subtype, degree of differentiation,
growth pattern, and gene expression profiles, even after
several passages in vivo [5-10]. Furthermore, the drug re-
sponse in these models shows a good correlation with the
primary patient tumors [5,6,11], and altogether the xeno-
grafts are representative model systems for studies of
metabolic and genetic patterns in human breast cancer.
Abnormal choline metabolism is a well-known feature

of breast cancer. An elevated total choline (tCho) signal
can be observed using magnetic resonance spectroscopy
(MRS) and is an in vivo biomarker for malignant disease
[12]. In line with this, a reduction in tCho has been sug-
gested as an in vivo marker for response to treatment
[13]. High-resolution magic angle spinning (HR-MAS)
MRS has proven to be a useful technique for assessment
of choline (Cho) metabolism, as it allows detection of in-
dividual Cho metabolites in intact tissue specimens.
High levels of Cho and phosphocholine (PCho), which
are the main contributors to the tCho signal, have been
demonstrated in cultured breast cancer cells [14,15],
while high levels of glycerophosphocholine (GPC) have
been detected in human breast cancer biopsies and xe-
nografts [16-18]. Cho metabolism has been shown to be
altered following chemotherapy [19,20], and several en-
zymes involved in Cho metabolism have been identified
as potential drug targets [21,22]. Despite the potential
diagnostic value of Cho-containing compounds, the
underlying mechanisms causing the alterations in Cho
metabolism are not fully understood [23]. Integration of
metabolic abnormalities and altered gene expression
profiles provides new insights into the underlying regu-
latory network. Elucidation of the biochemical mecha-
nisms governing Cho metabolism may be useful in the
development of prognostic and predictive tools in breast
cancer management.
The purpose of this study was to map the metabolo-

mic and transcriptomic characteristics of 34 patient-
derived breast cancer xenografts, with a special focus
on Cho metabolism. In order to evaluate the clinical
relevance of the xenograft models for metabolism stud-
ies, human breast cancer biopsies from the correspond-
ing molecular subtypes were analyzed using identical
methods.
Methods
Xenograft models
Patient-derived breast cancer xenograft models (N = 34)
were established at Institute Curie, France (N = 32) or
Institute for Cancer Research, Oslo University Hospital
(N = 2), either from primary tumor tissue (N = 28), axil-
lary lymph node metastases (N = 4) or metastasis from
distant organs (N = 2), as previously described [6-8].
Briefly, primary mammary tumor specimens were im-
planted into immunodeficient mice receiving estrogen-
enriched drinking water. After initial establishment, the
tumor tissue from the xenografts was serially trans-
planted in mice with passage times of two to eight
months. Histopathology and immunohistochemistry data
from the xenografts was obtained as previously de-
scribed [6,24]. Twenty nine xenograft tumors were clas-
sified as invasive ductal carcinomas (IDC), two were
classified as invasive lobular carcinomas (ILC), one as
ductal in situ carcinoma (DCIS), one as invasive cribri-
form carcinoma (ICC) and one as micropapillary carcin-
oma (IMPC). Hormone receptor status of estrogen (ER)
and progesterone (PgR) was determined where samples
with ≥10% staining cancer cells were considered recep-
tor positive [24]. For the HER2, only membranous
staining was interpreted as previously described [25],
and protein positivity was defined if ≥65% of the cells
were positive. The use of all tissue was evaluated and
approved by appropriate ethics research authorities
(Norway: Regional Committee for Medical and Health
Research Ethics (REC), South East, reference number
S-07398a. France: French Ethics Committee, Agree-
ment B75-05-18). Informed written consent was ob-
tained from all but for the two Norwegian patients,
who passed away before this issue was addressed. This
was evaluated and the need for such consent was
waived by the Regional Committee for Medical and
Health Research Ethics, South-East Norway. All experi-
ments were conducted according to the regulations of
the Federation of European Laboratory Animal Science
Association (FELASA).
Tumor tissue was harvested from each of the xenograft

models, immediately frozen in liquid nitrogen and stored
under cryogenic conditions until analysis. Tumor samples
from each model were later divided into two pieces, one for
HR-MAS MRS and one for gene expression analysis.

Human tissue samples
Three different patient cohorts were included in this
study. Human breast cancer biopsies were analyzed
using the same methods as for the xenograft models.
Gene expression data from breast cancer tissue samples
from patients (N = 152) in Cohort 1 (from three different
hospitals in the Oslo region, Norway) were used solely
to mean center global gene expression data from the
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xenografts before subclassification. Patient Cohort 2
(N = 50, from two different hospitals in the Trondheim
region, Norway) was used to evaluate metabolic charac-
teristics in breast cancer subgroups. The MR spectra
from the breast cancer tissue samples were selected
from our local spectral database based on ER receptor sta-
tus. The samples were previously classified as ER positive
(N = 37) and ER negative (N = 13) measured by immuno-
histochemistry (IHC). The ER staining cut-off point was
10% (that is, <10% considered negative). Breast cancer tis-
sue samples from patients (N = 115) in Cohort 3 (patients
enrolled at The Norwegian Radium Hospital) were used
for comparative analysis of gene expression between
human and xenograft samples. This patient material was
collected and gene expression analysis performed as previ-
ously described in [26,27]. Only basal-like (N = 18) and lu-
minal B samples (N = 14) were selected from the data set,
and only expression of genes directly involved in Cho me-
tabolism was used in the analyses. An overview of the
xenograft samples, patient cohorts and analyses is shown
in Figure 1. The use of all patient materials was approved
Figure 1 Flowchart of xenograft samples, human tissue samples and ex
and tissue samples from three patient cohorts (white rectangles). The experim
by dashed rectangles. ER, estrogen receptor; HER2; human epidermal growth
by Regional Committees for Medical and Health Research
Ethics (South East and Central Norway), and informed
written consent was obtained from all included patients.

Breast cancer subclassification using gene expression in
xenograft models
RNA extraction and microarray hybridization of
xenograft tissue
Total RNA from 34 snap frozen xenograft tissue samples
was isolated using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. Total
RNA concentration was measured using NanoDrop
(NanoDrop Technologies, Wilmington, DE, USA) and the
quality was evaluated using 2100 Bioanalyzer (Agilent
Technologies, Waldbronn, Germany). A total of 100 to
125 ng RNA was amplified and labeled with cy3-CTP fol-
lowing the Agilent Low Input Quick Amplification Label-
ing Kit protocol for One-Color Microarray-Based Gene
Expression Analysis. Hybridization was performed accord-
ing to the manufacturer’s protocol (Agilent One-Color
Microarray-Based Gene Expression Analysis v6.5) using
periments. The study includes 34 xenograft models (grey rectangles)
ents performed on the xenografts and human tissue samples are shown
factor receptor 2; ND, not determined; PgR, progesterone receptor.
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600 ng cy3-labeled cRNA per sample and SurePrint G3
Human Gene Expression 8x60K Microarrays. The microar-
rays were scanned using Agilent Technologies Microarray
Scanner (G2505C). Data were extracted from the scanned
images using Feature Extraction software (Agilent Tech-
nologies), version 10.7 and protocol GE1-107-Sep09 for
mRNA. Four xenograft samples (HBCx-11, HBCx-23,
HBCx-29, and HBCx-33) were excluded from further ana-
lyses due to poor data quality.

Processing, normalization, and molecular subtyping
Raw signals were detrended for multiplicative effects using
Agilent’s GenomeAnalyzer and log2 transformed. Data
from control probes were excluded, as well as spots that
were defined as feature outliers from Feature Extraction
due to quality assessment and non-uniform signal distri-
bution. Data were then quantile normalized (R, limma
package) and missing values imputed using LLSimpute
(R, pcaMethods package). The dataset was generated by
additionally averaging the signal intensity of the mul-
tiple unique probes for each gene based on GeneSymbol
as provided by Agilent in the annotation file. This set in-
cluded data for 21,851 unique genes on 30 microarrays
from 30 breast cancer xenografts.
In order to determine the molecular intrinsic subtype

of the xenograft tumors, the gene expression data from
the 30 samples were mean centered against a larger,
more heterogeneous human breast cancer gene expres-
sion dataset of 152 tumors (Cohort 1): for each probe,
the mean expression in the reference dataset was sub-
tracted from the probe signal in each of the xenograft
samples. Probes from the xenograft dataset were
matched to the CloneIDs (CLID) representing the intrin-
sic genes by corresponding GeneSymbol, obtaining Gen-
eSymbols corresponding to each CLID from the Source
tool [28]. For each CLID, if there was more than one
matching probe, their expression values were averaged.
The molecular subclassification of the xenografts was

determined based on distinct variation in gene expression
pattern of 500 ‘intrinsic’ genes, characteristic for five major
molecular breast cancer subtypes. Five expression cen-
troids, calculated for the intrinsic core members of each of
the five subclasses [29] were used to determine correlation
coefficients between the centroids and each of the 30 xe-
nografts, estimating the xenograft molecular subtype by
assigning the subtype which had the highest correlation
coefficient to each of the xenografts. The microarray data
are available at the Gene Expression Omnibus (GEO) with
accession number GSE44666.

HR-MAS MRS analysis
HR-MAS MRS of xenograft tissue
HR-MAS MR spectra from 33 of the xenograft tumor
models were acquired. No tumor tissue was available
for HR-MAS MRS analysis from one of the models
(HBCx-26). Before running the HR-MAS MRS experi-
ments, 3 μL of phosphate-buffered saline (PBS in D2O)
containing the internal standards trimethylsilyl tetra-
deuteropropionic acid (TSP, 79.86 mM) and formate
(78.80 mM) was added to a disposable insert. The
xenograft samples (9.9 ± 2.6 mg) were cut to fit into the
disposable insert and placed into a zirconium HR-MAS
rotor (4 mm diameter, 80 μL). The HR-MAS MR spec-
tra were acquired using a Bruker Avance III 600 MHz/
54 mm US with a 1H/13C MAS probe with a gradient
aligned with the magic angle axis (Bruker Biospin,
Rheinstetten, Germany). Samples were spun at 5 kHz,
and all experiments were performed at 5°C.

1H MR spectra were obtained using a water presatura-
tion sequence (zgpr; Bruker) and a 90° pulse. Water sup-
pression was achieved by irradiation during recycling
delay (five seconds). Thirty-two Free Induction Decays
(FIDs) were acquired into 32 K points during 3.4 sec-
onds. Total acquisition time was about 4.6 minutes. The
FIDs were multiplied with a 0.3Hz exponential line broad-
ening and Fourier transformed with no zero filling. All
spectra were phased and baseline corrected. Chemical
shifts were calibrated to creatine at 3.04 ppm.

HR-MAS MRS of human tissue
Similarly to the xenograft samples, the MR spectra from
patient Cohort 2 were acquired at 5°C with a spin rate
of 5 kHz. In brief, a 50 μL rotor was filled with buffer
containing D2O, PBS, TSP (1.37 mM), and formate
(10.98 mM). The tissue samples (17.0 ± 4.7 mg) were cut
to fit the rotor. 1H MR spectra were obtained using a water
presaturation sequence (zgpr; Bruker) and a 90° pulse with
a Bruker Avance DRX600 spectrometer equipped with a
1H/13C MAS probe and a gradient aligned with the
magic angle axis (Bruker Biospin). Water suppression
was achieved by irradiation during recycling delay
(three seconds). Thirty-two FIDs were acquired during
2.7 seconds into 32 K and Fourier transformed with no
zero filling. Total acquisition time was about 3.8 minutes.
The spectra were phased and baseline corrected and
chemical shifts were calibrated to creatine at 3.04 ppm.

Quantification of metabolites
Pulse length based concentration determination (PUL-
CON) was used for quantification of Cho, PCho and
GPC in the xenograft tissue samples. PULCON can be
used to measure metabolite concentrations without the
use of an internal reference [30]. For quantification of
the metabolites in the human tissue samples in Cohort
2, metabolite peak areas of Cho, PCho and GPC were re-
lated to the internal standard TSP and sample wet
weight. The areas under the Cho, PCho and GPC peaks
were determined by curve fitting (PeakFit v 4, Systat
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Software Inc) using a combination of Gaussian and
Lorentzian line-shapes (Voigt function). Two-sample t-
tests were performed to assess differences in the metabol-
ite concentrations and ratios between the breast cancer
subgroups. The level of significance was set at P <0.05.

Multivariate statistical analysis of MR spectra
For multivariate analysis, the MR spectra from the xeno-
graft samples were converted to ASCII-files, baseline
corrected [31] and peak aligned [32]. The spectral area
from 3.0 to 4.7 ppm was selected for multivariate ana-
lysis. Regions in the spectra with high signals from fatty
acids, water and ethanol contaminations were excluded.
The MR spectra were normalized and mean centered
prior to analysis. Principal component analysis (PCA)
was performed (PLS toolbox, Matlab) to visualize the
spectral characteristics and to compare the metabolic
differences between samples.

Statistical analysis of gene expression profiles
A total of 55 genes coding for proteins assumed to be
directly associated with Cho metabolism were selected.
The selection criteria were: 1) a selection of genes in-
volved in the KEGG Homo sapiens glycerophospholipid
pathway hsa:00564 which have a possible catalytic specifi-
city in this pathway [33]; and 2) genes coding for proteins
reported to be involved in Cho transport [34], or 3) in-
volved in degradation of GPC [35]. One gene (PLA2G4B)
was excluded because it was not found in the gene array.
PCA (PLS toolbox, Matlab) was performed on the gene
expression data from the 54 selected Cho genes to com-
pare gene expression characteristics between the xenograft
samples. The gene data were mean normalized and mean
centered prior to analysis.

Correlation analysis between choline metabolites and
genes in xenografts
In order to identify genes directly associated with regula-
tion of Cho metabolism, the correlation between the 54
selected Cho genes and the concentrations of three metab-
olites, Cho, PCho and GPC was calculated using Pearson’s
correlation test. This analysis was repeated separately for
the basal-like and luminal B subgroups, in order to evalu-
ate differences in regulation of Cho metabolism between
these subtypes.

Correlation analysis between choline genes in xenografts
and human tissue
In order to assess if the panel of xenograft models was
representative for human disease, the average difference
in expression of the 54 Cho-related genes between
basal-like and luminal B subtype samples was computed.
One gene (ASPG) was excluded because it was not
found in the gene array from the patient tissue samples.
Fifty three of the genes were present in the dataset both
for the patient samples (Cohort 3) and the xenografts. In
order to validate the relevance of the xenograft models,
a Pearson correlation test was performed between genes
from the patient and the xenograft subtypes. For all
these analyses, the level of statistical significance was de-
fined at fdr <0.1.

Results
The majority of xenograft tumors were classified as basal-
like and luminal B subtypes
The expression of ER, PgR and HER2 receptors of the 34
xenograft models was previously determined by IHC and
real-time quantitative reverse transcription-PCR (RT-PCR)
methods [6,7,24]. In order to further characterize these
models, the gene expression analysis was carried out
with the Agilent microarray platform. Nineteen samples
were classified as basal-like, one as luminal A, seven as
luminal B, and three samples as HER2 enriched. Five out
of seven luminal B tumors had positive ER status, while all
basal-like tumors were classified as ER negative. Two of
the three HER2 enriched tumors were characterized by
positive HER2 membrane staining. A detailed description
of each xenograft models is given in Table 1.

Metabolic characterization
PCho/GPC ratio in subtypes of breast cancer
Mean MR spectra from the basal-like (N = 19) and lu-
minal B (N = 6) xenograft samples are shown in Figure 2a
and 2b, respectively. The luminal-like samples were char-
acterized by a high PCho/GPC ratio (2.5 ± 0.9), and only
one sample with GPC > PCho. The basal-like samples
were characterized with a higher variation in the PCho/
GPC ratio (1.6 ± 1.2) and the majority of the samples with
GPC > PCho were present in this group (8 of 19 MR
spectra). Figure 2c and 2d show mean MR spectra of
xenograft samples from ER negative (N = 27) and ER
positive (N = 6) xenograft samples. Mean MR spectra
from the ER negative (N = 13), and ER positive (N = 37)
samples from patient Cohort 2 are shown in Figure 2e and
2f, respectively. A higher PCho/GPC level was observed in
the ER positive (2.0 ± 1.1) compared to the ER negative
(1.0 ± 0.7) human tissue samples (P < 0.01). PCho/GPC box
plots for the different subgroups are shown in Additional
file 1. In one MR spectrum from the xenografts, and two
MR spectra from patients, the measured PCho/GPC ratios
were excluded since they were classified as outliers by the
extreme studentized deviate analysis (P < 0.05) [36]. All
outliers had a high PCho/GPC ratio.

Multivariate analysis reveals metabolic differences between
subtypes of breast cancer
PCA was performed on the MR spectra from the xeno-
grafts to investigate the metabolic characteristics of the



Table 1 Molecular characteristics of the 34 xenografts

Intrinsic molecular subtype Receptor status Histological classification Metastasis

Model Basal-
like

Luminal
B

Luminal
A

HER2
enriched

Unknown ER
pos.

PgR
pos.

HER2
pos.

IDC ILC ICC DCIS IMPC Node Distant

HBCx-1 X X

HBCx-4B X X X

HBCx-7 X X X

HBCx-8 X X

HBCx-9 X X

HBCx-10 X X

HBCx-12A X X

HBCx-12B X X X

HBCx-14 X X

HBCx-15 X X

HBCx-16 X X

HBCx-17 X X

HBCx-24 X X

HBCx-27 X X

HBCx-28 X X

HBCx-30 X X

HBCx-39 X X

HBCx-41 X X X

MAS98.12 X X

HBCx-3 X X X

HBCx-5 X X X X X

HBCx-19 X X X

HBCx-26 X X X X

HBCx-31 X X

HBCx-34 X X X X

MAS98.06 X X X X

HBCx-21 X X X X

HBCx-13A X X X

HBCx-13B X X X X

HBCx-40 X X

HBCx-11 X X

HBCx-23 X X

HBCx-29 X X X X X

HBCx-33 X X

Total
numbers

19 7 1 3 4 7 4 6 29 2 1 1 1 4 2

The table reports on intrinsic molecular subtype, receptor status, histological classification and metastatic potential.
DCIS, ductal in citu carcinoma; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; ICC, invasive cribriform carcinoma; IDC, invasive ductal
carcinoma; ILC, invasive lobular carcinoma; IMPC, invasive micropapillary carcinoma; PgR, progesterone receptor
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models. Figure 3a shows the bi-plot (combined score
and loading plot). Most of the luminal B samples are
clustered in the top left corner of the score plot with a
low principal component 2 (PC2) score and a high PC3
score. Samples with low PC2 scores are characterized by
higher levels of PCho, creatine, taurine, glycine and lac-
tate, and lower levels of GPC and Cho, compared to
samples with a high PC2 score. PC2 accounted for 20%
of the variance between the samples, and the loading
profile indicates a large contribution from the amount of
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PCho and GPC. PC3 explained 8% of the variance be-
tween the samples. Samples with high PC3 scores are
characterized with higher levels of glycine, taurine, GPC,
Cho and creatine, and lower levels of lactate and PCho.
PC1 showed that the largest variance between the sam-
ples (43%) was caused by variations in lipid content (data
not shown). No clustering of breast cancer subgroups
was found in PC1.
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Gene expression analysis of the xenograft models and
human tissue samples
Multivariate analysis reveals differences in gene expression
of genes involved in choline metabolism between subtypes
of breast cancer
In order to map the gene expression characteristics of
the Cho metabolism pathway in the xenograft models, a
PCA was performed. Figure 3b shows the bi-plot from
PCA based on the expression data of the 54 genes in the
Cho pathway. Most of the luminal B samples are clus-
tered in the bottom left corner of the score plot with a
low PC1 and a low PC2 score. These samples are char-
acterized with a high expression of glycerol-3-phosphate
dehydrogenase 1-like (GPD1L), phospholipase C, delta 4
(PLCD4) and glycerophosphodiester phosphodiesterase
domain containing 3 (GDPD3). Most of the basal-like
samples are clustered to the right of the score plot with
a high PC1 score. These samples are characterized with
high expression of phospholipase C, gamma 2 (PLCG2),
phospholipase domain containing 3 (PNPLA3), phospho-
lipase C, epsilon 1 (PLCE1) and phospholipase A2, group
IVA (PLA2G4A).

Correlations between choline metabolites and gene
expressions in xenograft models
To detect associations between the expression of Cho
genes and the concentrations of Cho, PCho and GPC, a
correlation analysis was performed. Across all xenograft
models, ten of the 54 genes contributing to Cho metab-
olism were found to be correlated with Cho, PCho or
GPC concentration (P <0.05), as shown in Table 2 and
Figure 4a. Cho was positively correlated with the expres-
sion of CHPT1, phospholipase A2, group IB (PLA2G1B)
and patatin-like phospholipase domain containing 6
(PNPLA6). PCho was positively correlated with expres-
sion of choline kinase α (CHKA) and glycerophospho-
diester phosphodiesterase domain containing 5 (GDPD5).
GPC was positively correlated with CHKA, GDPD5, phos-
pholipase A2 group VI (PLA2G6), phospholipase C, delta
1 (PLCD1) and patatin-like phospholipase domain con-
taining 7 (PNPLA7), and negatively correlated with
lysophospholipase 1 (LYPLA1) and phospholipase D
family, member 3 (PLD3). In addition, a high expres-
sion of CHKA was also found to be correlated with high
expression of GDPD5, and PCho concentration was posi-
tively correlated to GPC concentration. Scatter plots of
correlations between metabolites and gene expressions are
shown in Figure 4c-4f.

Correlation between choline metabolites and gene
expression within the basal-like and luminal B subgroups
The correlation analysis was then performed separately
for basal-like and luminal B xenograft samples, in order
to identify potential differences in regulation of Cho



Table 2 Correlation coefficients (ρ) and levels of
significance (P) between concentration of Cho, PCho, and
GPC, and expression of genes contributing in the choline
metabolism pathway

Subgroup Metabolite Gene ρ P-value

All samples (N = 30) Cho CHPT1 0.49 0.008

PLA2G1B 0.43 0.021

PNPLA6 0.41 0.028

PCho CHKA 0.43 0.021

GDPD5 0.38 0.041

GPC CHKA 0.44 0.017

GDPD5 0.56 0.002

LYPLA1 −0.40 0.030

PLA2G6 0.43 0.021

PLCD1 0.37 0.045

PLD3 −0.42 0.024

PNPLA7 0.39 0.035

Basal-like (N = 19) Cho CHKA 0.46 0.049

CHPT1 0.50 0.029

PLA2G10 0.53 0.021

PLA2G6 0.61 0.006

PCho CHKA 0.47 0.044

PLA2G2E −0.52 0.024

PLCB4 0.51 0.027

GPC CHKA 0.52 0.023

GDPD5 0.73 <0.001

PCYT1B 0.49 0.035

PLA2G6 0.67 0.002

PNPLA7 0.52 0.021

Luminal B (N = 6) Cho CHKB −0.96 0.002

PLA2G12B −0.91 0.012

PLA2G4A 0.86 0.029

PLCD3 −0.86 0.027

PCho PLCB1 −0.91 0.011

PLD1 0.89 0.017

GPC CHKB −0.97 0.001

PLCD3 −0.81 0.049

SLC22A2 −0.86 0.030
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metabolism between these subtypes. When considering
only the basal-like xenograft samples, nine genes were
found to be correlated to either Cho, PCho or GPC, as
shown in Figure 4b) and Table 2. Cho was positively
correlated with CHKA, CHPT1, phospholipase A2,
group X (PLA2G10) and PLA2G6. PCho was positively
correlated with phospholipase C, beta 4 (PLCB4) and
CHKA, and negatively correlated with PLA2G2E. GPC
was positively correlated with CHKA, GDPD5, phosphate
cytidylyltransferase 1, Cho, beta (PCYT1B), PLA2G6 and
PNPLA7. In the luminal B subgroup, Cho, PCho and GPC
were correlated with seven Cho genes. Cho was positively
correlated with PLA2G4A, and negatively correlated with
choline kinase beta (CHKB), phospholipase A2, group
XIIB (PLA2G12B) and phospholipase C, delta 3 (PLCD3).
PCho was found to be positively correlated with phospho-
lipase C, delta 1 (PLD1), and negatively correlated with
phospholipase C, beta 1 (PLCB1), while GPC was found to
be negatively correlated with solute carrier family 22,
member 2 (SLC22A2), CHKB and PLCD3. A list of all cor-
relations between Cho, PCho, and GPC versus Cho genes
is shown in Additional file 2.

Correlations between choline genes in xenografts and
human tissue
The differential expression of Cho genes between the
basal-like and luminal B subtypes was studied both in
xenograft and human tissue samples. A strong correl-
ation (ρ = 0.79, P <1.3e-12) was observed when expres-
sion of genes in the Cho metabolism pathway was
compared in tissue samples from xenografts and breast
cancer patients (Cohort 3). Figure 5 shows differences in
gene expression between basal-like and luminal B sam-
ples for xenografts and human tissue samples. The plot
demonstrates that six genes: PLCG2, PLCE1, PLA2G4A,
PNPLA3, PLCD1 and lecithin-cholesterol acyltransferase
(LCAT), were significantly higher expressed in basal-like
compared to luminal B samples, both for the xenografts
and human tissue samples. Five genes: PLCD4, GPD1L,
GDPD3, phospholipase A2, group XIIA (PLA2G12A)
and LYPLA1, were significantly lower expressed in
basal-like compared to luminal B samples, for both the
xenografts and human tissue samples. A list of all gene
expressions, differences in gene expressions between
basal-like and luminal B tissue samples, P-values and
fdr-values for the patients and the xenograft samples is
given in Additional file 3.

Discussion
In this study, metabolic and gene expression profiles of
34 patient-derived breast cancer xenograft models have
been characterized and compared with patient breast
cancer samples. The majority of the xenograft models
was classified as basal-like and had a triple-negative re-
ceptor status. The gene expression profiling was consist-
ent with IHC assessments previously reported for these
tumors [7,24]. The luminal B/ER positive xenograft sam-
ples were characterized by a high PCho/GPC ratio. For
the basal-like subgroup, a larger variation in the PCho/
GPC ratio was found within the xenograft samples. The
metabolic profiles of the xenografts corresponded well
with the profiles obtained from human breast cancer



a)

b)

c) d)

e) f)

Figure 4 (See legend on next page.)
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Figure 4 Major metabolites and genes contributing to the choline metabolism pathway. a) Genes (oval) in choline metabolism being
either positively (arrows upwards) or negatively (arrows downward) correlated with Cho, PCho or GPC (rectangles) in the xenograft models. High
expressions of CHPT1, PLA2G1B and PNPLA6 (marked with dots and solid outlines) are associated with high levels of Cho. High expressions of
CHKA and GDPD5 (black outlines) are associated with high levels of PCho. High expressions of CHKA, GDPD5, PLA2G6, PLCD1 and PNPLA7, and low
expressions of LYPLA1, and PLD3 (dashed outlines) are associated with high levels of GPC. b) Genes (oval) that are either positively or negatively
correlated with Cho, PCho or GPC (rectangles) in the basal-like, and luminal B subgroup. In the basal-like subgroup (red), high expressions of
CHKA, CHPT1, PLA2G10 and PLA2G6 (dots and solid outlines) are associated with high levels of Cho. High expressions of CHKA and PCLB4, and a
low expression of PLA2G2E (solid outlines) are associated with high levels of PCho. High expressions of CHKA, GDPD5, PCYT1B, PLA2G6 and PNPLA7
(dashed outlines) are associated with high levels of GPC. In the luminal B subgroup (cyan) a high expression of PLA2G4A, and low expressions of
CHKB, PLA2G12A and PLCD3 (dots and solid outlines) are associated with high levels of Cho. A high expression of PLD1, and a low expression of
PLCB1 (solid outlines), are associated with high levels of PCho. In addition, low levels of CHKB, PLCD3 and SLC22A2 (dashed outlines) are associated
with high GPC levels. c-f) Scatter plots of correlation between c) PCho and CHKA, d) GPC and GDPD5, e) PCho and GPC and f) GDPD5 and CHKA.
ρ: Pearson’s correlation coefficient, Gene expression: normalized log 2 transformed.
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tissue. The expression of genes associated with Cho me-
tabolism was found to be different in luminal B and
basal-like xenograft models, which also were in accord-
ance with findings in the corresponding subgroups of
human breast tumor tissue samples.
Significant at fdr<0.1
None
Patient cohort 3
Xenografts
Xenografts and Patient cohort 3
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Figure 5 Comparison of choline gene expressions between basal-like
Blue dots show genes being differentially expressed for basal-like versus lu
show genes being differentially expressed for basal-like versus luminal B fo
expressed for basal-like versus luminal B subgroups for the human tissue sa
between basal-like and luminal B samples in neither the xenografts nor the
Eighteen of twenty four triple-negative samples were
classified as basal-like cancers. These results corre-
sponded well with findings from other studies, since ap-
proximately 90% of triple-negative breast carcinomas are
classified as basal-like [29,37]. In addition, expression of
pression basal-like – luminal B

and luminal B xenografts and human tissue samples (Cohort 3).
minal B, both for the xenografts and human tissue samples. Green dots
r the xenograft models only, while red dots show genes differentially
mples only. Black dots are genes not being differentially expressed
human tissue samples.
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estrogen receptors is a known feature of luminal A and B
subtypes of breast cancer [38], and all of the ER positive
xenografts were found to be luminal A or B. Overall, the
association between histopathological characteristics and
intrinsic molecular subclassification was in accordance
with previously published data [39]. This confirms that
the molecular subclassification of xenografts reflects the
typical characteristics seen in human disease despite the
presence of mouse stromal cells and thereby potentially
different tumor/host interaction than in human tumors.
In concordance with the high PCho/GPC ratio in the

luminal-like/ER positive xenografts, significantly higher
PCho/GPC levels were found in the ER positive versus
ER negative samples from breast cancer patients. These
results are in agreement with findings in other studies of
human breast cancer tissue and xenografts [17,40] but
do not correspond to results from in vitro studies. Stud-
ies of a panel of cultured cell lines have suggested that
malignancy is associated with high PCho and low GPC
levels [14]. High GPC levels found in vivo, both in xeno-
graft tissue and clinical samples, suggests that this hy-
pothesis has to be refined. Due to the discrepancy
between in vitro and in vivo data, it is tempting to
speculate that microenvironmental factors may play a
role in the in vivo regulation of Cho metabolism [41,42].
In addition, there is a possibility that high GPC concen-
trations could be linked to differences in driver muta-
tions between ER positive and ER negative tumors.
Luminal-like breast cancer is strongly associated with ER
expression, and metabolism is likely tightly regulated by
ER-mediated mechanisms. In basal-like breast cancer,
the impact of ER (and HER2) –mediated signaling plays
a smaller role. The activity in other signaling pathways,
such as PI3K and MAPK, is, therefore, comparatively
more important, resulting in a more heterogeneous
metabolic profile.
The results from the gene expression profiles indicated

that the genes involved in Cho metabolism were differ-
entially expressed in luminal B compared to basal-like
xenograft samples. The luminal B xenograft samples
were found to have a higher expression of PLCD4,
GDPD3 and GPD1L, while the basal-like samples were
characterized with higher expression of PLCG2, PNPLA3
and PLCE1. In addition, the concentrations of Cho,
PCho and GPC were correlated with the expression of
different genes in different breast cancer subgroups. This
suggests that luminal B and basal-like breast cancer may
have different mechanisms regulating Cho metabolism.
The concordance between the gene expression profiles
from the xenograft models and breast cancer tissue sam-
ples confirmed the assumption that these xenografts are
representative models of human breast cancer.
Although tCho is proposed as an in vivo biomarker in

breast cancer, the regulation of Cho metabolism is not
fully understood. The current consensus is that the
transport of Cho into cancer cells is increased com-
pared to normal cells. In vitro, increased expression of
various Cho transporter proteins has been demon-
strated, and in vivo PET studies using [11C]-choline or
[18 F]-fluorocholine have indicated increased uptake of
Cho both in preclinical models and clinical studies
[43-46]. Furthermore, it has been shown that CHKA is
upregulated in several cancers, and that CHKA expres-
sion correlates with PCho concentration in vitro
[45,47]. In our study, the positive correlation between
CHKA expression and PCho concentration in xenograft
tumors was confirmed. The regulation of GPC is poorly
understood [48], which is a challenge as this metabolite
contributes significantly to the tCho signal measured by
in vivo MRS. Several studies have demonstrated that
GPC may be a potential biomarker for response to
treatment [21,49-52], and it is, therefore, necessary to
elucidate the mechanisms responsible for regulating
GPC concentration in vivo. We found a positive correl-
ation between CHKA and GPC concentration, which is
not surprising as PCho and GPC concentrations are posi-
tively correlated. This suggests that malignant transform-
ation and upregulation of CHKA leads to a general
increase in PtdCho turnover, which is reflected by a high
concentration of both precursor (PCho) and degradation
products (GPC) of this cell membrane component. A
positive correlation between GDPD5 and PCho concen-
tration was also found which is in accordance with previ-
ous studies suggesting that GDPD5 may be upregulated in
ER negative breast cancer [53]. As GDPD5 has been sug-
gested to catalyze GPC degradation, the positive correl-
ation between GDPD5 and GPC concentration was not
anticipated. These results suggest that GDPD5 may be a
general marker for abnormal Cho metabolism, but not ne-
cessarily regulating GPC concentration. This interpret-
ation is further supported by the positive correlation
between expression of CHKA and GDPD5.
Various phospholipase enzymes are involved in deg-

radation of PtdCho to GPC, PCho, and Cho but the
roles of the various isoforms are still not fully elucidated.
Several phospholipases are upregulated in cancer com-
pared to normal tissue [54-57], but their impact on the
concentration of Cho-containing metabolites is poorly
understood [58]. The results of this study indicate that
expression of phospholipases varies significantly between
the xenograft models within the different breast cancer
subgroups. However, the large number of phospholipase
isoforms and their complex biology makes it difficult to
interpret the significance of these differences. Numerous
studies have demonstrated complex and often reciprocal
interactions between oncogenic signaling pathways and
enzymes involved in Cho metabolism [23]. Several en-
zymes involved in Cho metabolism, including CHK,
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PLC, PLD, and PLA2, have been shown to be affected by
RAS-mediated signaling [59,60]. MYC and HIF1 have
also been shown to be involved in the regulation of
CHKA [61]. When we observe differences in the Cho
metabolic and gene expression profiles between cancer
subtypes, it may be caused by specific oncogenic signal-
ing pathways that are more frequently upregulated in
some subtypes.
More than 10 years after the first report on molecular

fingerprints in breast cancer [2], there are still active dis-
cussions on the optimal strategy for subtyping breast
cancer. Several research groups advocate an integrated
approach, where data from several –omics platforms are
combined for identification of clinically relevant sub-
types [62,63]. Since MR metabolomics reflect tumor
microenvironment to a larger degree than other –omics
techniques, it can contribute to improved understanding
of the underlying biology in different breast cancer sub-
types. Including metabolic profiles in the criteria for
novel breast cancer subtypes may, therefore, bring us
closer to personalized breast cancer treatment.
In this study, gene expression profiling and metabolo-

mic analysis of 34 patient-derived xenograft models
demonstrated significant difference between luminal B
and basal-like breast cancer. Similar patterns both in
metabolic profiles and expression of Cho genes were
found in the xenograft models and human breast cancer
with corresponding molecular subtype. This panel of
patient-derived xenograft models, therefore, represents a
unique and valuable tool for studies of molecular proper-
ties associated with sensitivity or resistance to chemother-
apy or targeted anticancer drugs. It also allows further
studies of the unique biology of the different subtypes of
breast cancer, which may be important for future clinical
applications based on molecular fingerprints.

Conclusion
HR-MAS MRS and gene expression analyses demon-
strated that the amount of Cho, PCho and GPC corre-
lated with the expression of several genes, including
CHKA and GDPD5, in the Cho metabolism pathway in
tissue samples from patient-derived breast cancer xeno-
grafts representing luminal-like, basal-like and HER2
enriched breast cancer. High PCho/GPC ratios were ob-
served for the luminal-like samples, while a larger vari-
ation in the PCho/GPC ratios was observed for the
basal-like samples. These results corresponded well with
the Cho profiles of human breast cancer samples where
a significantly higher PCho/GPC level was found in ER
positive compared to ER negative cancers. Both the Cho
metabolic profiles and the expression of genes involved
in the Cho metabolism pathway differed between lu-
minal B and basal-like xenografts. Similar differences
were found in human breast cancer samples, and the
differential gene expression between basal-like and lu-
minal B subtypes was correlated strongly in xenografts
and human samples. The amount of Cho, PCho and
GPC was also correlated to the expression of different
Cho genes in the luminal B compared to the basal-like
subgroup. Differences in the Cho metabolic and gene ex-
pression profiles between cancer subtypes can be caused
by specific oncogenic signaling pathways that are more
frequently upregulated in some subtypes. The findings in
this study indicate that the panel of patient-derived xe-
nografts is representative of human breast cancer, and
may be valuable for further exploration of subtype-
specific metabolic and transcriptomic traits. In addition,
the models are relevant for studies of targeted anticancer
drugs and molecular properties associated with sensitiv-
ity and resistance to chemotherapy.
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Additional file 1: PCho/GPC levels for different subgroups of breast
cancer xenografts and human tissue samples.

Additional file 2: Table S1. Correlation coefficients and P-values
between Cho, PCho, and GPC concentrations, and expressions of genes
contributing in choline metabolism for all samples (N = 29). All genes and
metabolites having a significant correlation (P <0.05) are emphasized in
bold. *: false positive, found by visual inspection. Table S2. Correlation
coefficients and P-values between Cho, PCho, and GPC concentrations,
and expressions of genes contributing in choline metabolism for the
basal-like tissue samples (N = 19). All genes and metabolites having a
significant correlation (P <0.05) are emphasized in bold. Table S3.
Correlation coefficients and P-values between Cho, PCho, and GPC
concentrations, and expressions of genes contributing in choline
metabolism for the luminal B tissue samples (N = 6). All genes and
metabolites having a significant correlation (P <0.05) are emphasized
in bold.

Additional file 3: Table S4. Mean choline gene expressions for basal-
like and luminal B, difference in expression basal-like-luminal B, P-values
and FDR values, for patient tissue samples and xenografts. All genes
being significantly differently expressed for basal-like – luminal B
(fdr <0.1) are emphasized in bold.
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