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Abstract
Background: Despite the fact that metastases are the leading cause of colorectal cancer deaths,
little is known about the underlying molecular changes in these advanced disease stages. Few have
studied the overall gene expression levels in metastases from colorectal carcinomas, and so far,
none has investigated the peritoneal carcinomatoses by use of DNA microarrays. Therefore, the
aim of the present study is to investigate and compare the gene expression patterns of primary
carcinomas (n = 18), liver metastases (n = 4), and carcinomatoses (n = 4), relative to normal
samples from the large bowel.

Results: Transcriptome profiles of colorectal cancer metastases independent of tumor site, as well
as separate profiles associated with primary carcinomas, liver metastases, or peritoneal
carcinomatoses, were assessed by use of Bayesian statistics. Gains of chromosome arm 5p are
common in peritoneal carcinomatoses and several candidate genes (including PTGER4, SKP2, and
ZNF622) mapping to this region were overexpressed in the tumors. Expression signatures stratified
on TP53 mutation status were identified across all tumors regardless of stage. Furthermore, the
gene expression levels for the in vivo tumors were compared with an in vitro model consisting of
cell lines representing all three tumor stages established from one patient.

Conclusion: By statistical analysis of gene expression data from primary colorectal carcinomas,
liver metastases, and carcinomatoses, we are able to identify genetic patterns associated with the
different stages of tumorigenesis.
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Background
Colorectal cancer (CRC) is the second most common
cause of cancer related deaths in developed countries,
including Norway [1,2]. Despite the fact that metastases
are the leading cause of colorectal cancer deaths, the
majority of genetic studies of colorectal carcinogenesis
have focused on changes found in primary carcinomas,
and the knowledge about the underlying molecular
changes in more advanced disease stages remain limited.
To obtain insights to this process, identification of molec-
ular key events that distinguish primary from metastatic
tumors is important. DNA microarray technology has
become powerful for whole-genome investigations [3].
Recently, several reports have shown that results obtained
by this technology can distinguish among subgroups of
the same cancer tissue [4-7] as well as among different
cancer types [8]. Additionally, genetic profiles have been
identified that predict patients' clinical outcome in can-
cers of the breast, lung, central nervous system, digestive
system, and prostate [9-15]. Several studies has investi-
gated the expression profile of primary colorectal carcino-
mas [16]. However, only a few have investigated the gene
profiles of lymph node and liver metastases derived from
colorectal carcinomas [17-24], and so far none have stud-
ied metastasis to the peritoneal cavity by DNA microar-
rays. Whereas previous reports have focused only on the
comparisons between normal mucosa and primary carci-
nomas, or primary carcinomas and metastases, we aimed
to investigate the relationship between the primary carci-
nomas and metastases regardless of site, as well as the
genetic patterns that might distinguish the different meta-
static sites from each other. Therefore, we have analyzed
the gene expression profiles of normal colon, primary car-
cinomas, liver metastases and peritoneal metastases, as
well as an in vitro model of CRC progression by oligo
microarrays, to compare the genetic patterns from the dif-
ferent stages of the colorectal tumorigenesis.

Results
Gene expression pattern in metastases versus those of 
primary tumors
In order to find a gene expression pattern that distin-
guishes metastatic tumors from primary carcinomas, dif-
ferentially expressed genes between metastases
independent of site and primary carcinomas were identi-
fied. BAMarray [25] was used with a posterior variance
between 0.92 and 1.06. The hundred most statistically sig-
nificant genes associated with metastases (n = 8, liver
metastases and carcinomatoses) and primary carcinomas
(n = 18) were chosen, with a Z-cut absolute values ranged
from 4.41 to 2.84 for metastases and 3.77 to 2.32 for pri-
mary carcinomas. Among these genes, 89 were expressed
more than two-fold differently between the groups
(twenty of these more than three-fold). Forty of the 89
genes were associated with the metastasis group, and thus,
49 with the primary group [see Additional file 1]. By using

the 89 genes found from BAMarray, primary carcinomas
and liver metastases were distinguished by hierarchical
clustering (Figure 1). Liver metastases and carcinomatoses
were intermingled, with the exception of one liver metas-
tasis (76L) that is seen as an outlier compared to the rest
of the metastases group. The gene expression profiles of
three primary carcinomas (984P, 1029P, and 1296P) that
later developed metastases did not show any similarity
with each other or with the metastasis group when clus-
tered on these selected genes. To find differentially
expressed genes that distinguish the two metastatic sites
from each other, as wells as from primary carcinomas, the
dataset was grouped into primary carcinomas, liver metas-
tases and carcinomatoses and further analyzed by BAMar-
ray. A posterior variance between 0.93 and 1.19 were
chosen, providing 51 genes associated with carcinoma-
toses, with absolute Z-cut from 3.59 to 2.30. Twenty-nine
of these 51 genes were expressed more than two-fold com-
pared to normal mucosa (Table 2). For primary carcino-
mas and liver metastases the hundred most statistically
significant genes for each group derived from BAMarray
were chosen, with absolute Z-cut at 4.15 to 2.95 for liver
metastases, and 3.79 to 2.40 for primary carcinomas. Alto-
gether, 251 differentially expressed genes from the three
different tumor stages were chosen, and 53 of these genes
revealed an expression level above three-fold in the
median of the tumor stages (17 genes were associated
with primary carcinomas, 28 with liver metastases, and
eight with carcinomatoses), and among these, 23 genes
were expressed above four-fold. To visualize the difference
of the most statistically significant genes associated with
each tumor site we performed PCA and HCA on the 53
genes derived from primary carcinomas, liver metastases,
and carcinomatoses with expression above three-fold
(Figure 2). The PCA plot distinguishes the three tumor
stages from each other based on this gene list, except for
one liver metastasis (2L) that shows a closer association to
the carcinomatoses than to the other tumors (Figure 2A).
These results were confirmed by HCA, where the dendro-
gram distinguishes seven out of the eight metastatic
tumors from all of the primary carcinomas (Figure 2B).
Three of four liver metastases clustered together, while 2L
clustered in close association with the carcinomatoses as
seen by PCA. One carcinomatosis (64C) appeared alone.
We did not find a specific expression pattern of any of the
genes in the selected gene list within the primary carci-
noma group stratified by localization, Dukes' status, TP53
mutation status, or recurrence.

Genes located to chromosome arm 5p were of particular
interest, as we have previously identified gain of 5p to be
important for the CRCs' ability to metastasize to the peri-
toneal cavity [26]. Among the 115 genes at 5p in the data-
set, 20 genes were more than two-fold higher expressed in
carcinomatoses, as compared to liver metastases and pri-
mary carcinomas (Table 3).
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Table 1: Clinicopathological information.

Tumor Tumor ID Dukes' stagea TP53 mutation statusb Sexc Aged

primary carcinomas 923P C wildtype M 85
974P B ex8, c273, CGT→CAT, Arg→His M 73
980P C wildtype F 75
984P C wildtype F 88
988P B wildtype F 66
1029P C wildtype M 83
1069P B wildtype M 74
887P B wildtype F 82
927P B ex6, c190, CCT→CTT, Pro→Leu F 73
953P B ex6, 5 bp insertion; c216–217: GTG GTG to GTGgtggtGTG M 68
976P B wildtype M 58
1027P B ex7, c241–242, TCCTGC→TTCCGC, Ser-Cys→Phe-Arg M 79
868P B wildtype M 64
904P B ex8, c272, CTG→ATG, Val→Met M 78
912P B wildtype F 66
941P B ex8, c282, CGG→TGG, Arg→Trp M 78
1276P B wildtype M 79
1296P B ex7, c244, GGC→GTC, Gly→Val M 76

liver metastases 136L D ex5, c132, AAG→AGG, Lys→Arg M 68
81L D wildtype M 74
2L C wildtype M 75
76L D ex7, c241, TCC→TC, 1 bp deletion M 55

carcinomatoses 98C D wildtype M 72
1C D wildtype F 62
17C C ex5, c175, CGC→CAC, Arg→His F 67
64C D wildtype M 40

aDukes' stage of the primary tumors, and the primary tumor of liver metastases and carcinomatoses. bex, exon; c, codon; bp, base pair. cM, male; F, 
female. dAge at diagnosis.

Dendrogram from differentially expressed genes between metastases and primary tumorsFigure 1
Dendrogram from differentially expressed genes between metastases and primary tumors. Dendrogram from 
hierarchical clustering of the 89 most statistical differentially expressed genes between metastases (n = 8; carcinomatoses and 
liver metastases together indicated in red) and primary carcinomas (n = 18 indicated in black), with a more than two-fold 
change derived from BAMarray.
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Table 2: Genes (n = 29) associated with colorectal carcinomatoses as compared to primary tumors and liver metastases.

Genebank Acc. Gene Symbol Gene Name Z-cut Fold change liver Fold change carcinomatoses Fold change primary Relative difference, 
carcinomatosis vs. primary

BC035498 CCNE1 cyclin E1 -3,59 -1.51 -2.15 1.05 2.24

AB011124 ProSAPiP1 ProSAPiP1 protein 3,24 1.37 2.26 1.28 1.77

NM_022772 EPS8L2 EPS8-like 2 -3,16 -1.64 -2.28 1.29 1.74

AK025824 EPS8L2 EPS8-like 2 -3,12 -1.63 -2.12 1.22 1.74

BC005245 C1orf41 chromosome 1 open reading frame 41 -3,07 -1.40 -2.63 -1.35 1.88

NM_017515 SLC35F2 solute carrier family 35, member F2 -2,89 -1.48 -2.75 -1.31 1.08

U73778 COL12A1 collagen, type XII, alpha 1 2,85 -1.72 2.34 1.15 1.77

BC004260 CAPN10 calpain 10 -2,85 4.54 -4.09 -2.34 2.03

NM_033018 PCTK1 PCTAIRE protein kinase 1 2,84 1.88 2.51 1.50 1.66

AK096896 ASB12 ankyrin repeat and SOCS box-containing 12 2,82 1.68 2.00 1.70 1.18

NM_033254 BOC brother of CDO 2,81 1.26 2.09 1.30 1.61

NM_018043 TMEM16A transmembrane protein 16A 2,78 -1.92 2.68 -1.84 5.08

BC012915 MPRP-1 metalloprotease related protein 1 -2,76 -1.70 -2.18 -1.57 1.39

BC002728 THRA thyroid hormone receptor, alpha (erythroblastic 
leukemia viral (v-erb-a) oncogene homolog, avian)

-2,73 -1.41 -2.15 -1.23 1.73

X06482 HBQ1 hemoglobin, theta 1 2,71 1.69 2.61 1.28 2.09

X78947 CTGF connective tissue growth factor 2,65 2.32 3.94 1.85 2.22

AF067817 VAV3 vav 3 oncogene -2,63 -1.79 -2.50 -1.29 4.14

U86602 EBNA1BP2 EBNA1 binding protein 2 -2,63 -1.19 -4.81 -1.16 1.94

AL834404 NETO2 neuropilin (NRP) and tolloid (TLL)-like 2 -2,59 -1.96 -4.33 -1.47 2.93

M94065 DHODH dihydroorotate dehydrogenase -2,58 -1.63 -2.17 -1.04 2.08

NM_025109 MYOHD1 myosin head domain containing 1 -2,57 -1.68 -2.65 -1.03 2.55

NM_016234 ACSL5 acyl-CoA synthetase long-chain family member 5 -2,52 -2.52 -3.51 -1.52 2.07

NM_005132 REC8L1 REC8-like 1 (yeast) -2,50 -1.41 -2.15 -1.11 1.19

NM_003412 ZIC1 Zic family member 1 (odd-paired homolog, 
Drosophila)

2,47 -1.90 2.53 -1.43 2.97

BC007300 CHC1 chromosome condensation 1 -2,47 -1.66 -2.78 -1.81 1.70

NM_139160 DEPDC7 DEP domain containing 7 -2,46 -1.07 -3.07 -1.15 2.66

NM_015419 DKFZp564I19
22

adlican 2,45 -2.51 3.54 1.82 1.96

M55905 ME2 malic enzyme 2, NAD(+)-dependent, mitochondrial -2,41 -2.10 -3.72 -1.53 2.20

NM_017744 ST7L suppression of tumorigenicity 7 like -2,33 -1.56 -2.11 -1.28 1.54

Z-cut is derived from BAMarray. Fold change; expression in fold change using medians of each group as compared to normal colonic tissue. Gene symbols in bold denote genes which are most dysregulated 
in the carcinomatosis cell line IS3, as compared to IS1 and IS2.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC035498
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB011124
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_022772
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK025824
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC005245
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_017515
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U73778
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC004260
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_033018
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK096896
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_033254
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_018043
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC012915
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC002728
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X06482
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X78947
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF067817
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U86602
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL834404
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M94065
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_025109
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_016234
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005132
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003412
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC007300
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_139160
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_015419
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M55905
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_017744
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Cluster analysis of differentially expressed genes between primary carcinomas, liver metastases and carcinomatosesFigure 2
Cluster analysis of differentially expressed genes between primary carcinomas, liver metastases and carcinom-
atoses. A) PCA of the 53 most statistical differentially expressed genes between of primary carcinomas (n = 18, black), liver 
metastases (n = 4, blue), and carcinomatoses (n = 4, pink) expressed over three-fold derived from BAMarray. B) HCA of the 
same genes, with the same color coding. Genes are colored based on association to tumor site.
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Table 3: Genes (n = 20), located to chromosome arm 5p that are upregulated in carcinomatoses.

Genebank Acc Gene Symbol Gene Name Fold change 
carcinomatoses

Fold change liver Folde change 
primary

Fold change 
carcinomatoses 
as compared to 

liver and primary

L28175 PTGER4 Prostaglandin E receptor 4 
(subtype EP4)

1.02 -4.41 -2.03 4.24

AK024116 FLJ14054 Hypothetical protein 
FLJ14054

1.20 -2.06 -3.46 3.96

AB061834 RPL37 Ribosomal protein L37 3.62 -1.02 1.04 3.61

BC000518 BASP1 Brain abundant, membrane 
attached signal protein 1

1.18 -1.96 -1.65 2.98

AF155135 RAI14 Retinoic acid induced 14 1.78 -1.35 -1.02 2.96

AF064876 HCN1 Hyperpolarization 
activated cyclic nucleotide-
gated potassium channel 1

1.53 -1.31 -1.18 2.77

AK001989 FLJ11127 Hypothetical protein 
FLJ11127

1.25 -1.16 -1.52 2.58

BC008752 ZNF622 Zinc finger protein 622 1.29 -1.36 -1.05 2.49

AB020647 FBXL7 F-box and leucine-rich 
repeat protein 7

1.43 -1.03 -1.09 2.49

AK025310 FLJ21657 Hypothetical protein 
FLJ21657

1.07 -1.62 -1.15 2.45

U28043 SLC9A3 Solute carrier family 9 
(sodium/hydrogen 
exchanger), isoform 3

1.01 -1.45 -1.39 2.43

BC001380 SDHA Succinate dehydrogenase 
complex, subunit A, 
flavoprotein (Fp)

1.34 -1.04 -1.05 2.39

AF338650 PDZK3 PDZ domain containing 3 1.02 -1.68 -1.02 2.37

AB019494 NIPBL Nipped-B homolog 
(Drosophila)

1.28 -1.13 -1.03 2.36

AF009301 MARCH-VI Membrane-associated 
RING-CH protein VI

1.15 -1.32 -1.06 2.34

BC022339 PC4 Activated RNA polymerase 
II transcription cofactor 4

1.12 -1.28 -1.07 2.30

BC003353 MGC5309 Hypothetical protein 
MGC5309

1.15 -1.18 -1.08 2.27

AF189011 RNASE3L Nuclear RNase III Drosha 1.04 -1.35 -1.07 2.26

BC017586 MGC26610 Hypothetical protein 
MGC26610

1.17 -1.08 -1.06 2.24

AY029177 SKP2 S-phase kinase-associated 
protein 2 (p45)

1.04 -1.00 -1.07 2.08

Ratios; expression in fold change using medians of each group as compared to normal colonic tissue. Fold change carcinomatoses; expression fold 
in carcinomatoses – (fold in liver metastases + primaries)/2.
Genes in bold are upregulated in the carcinomatoses cell line IS3.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=L28175
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK024116
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB061834
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC000518
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF155135
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF064876
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK001989
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC008752
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB020647
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK025310
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U28043
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC001380
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF338650
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB019494
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF009301
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC022339
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC003353
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF189011
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC017586
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY029177
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We selected five of the genes with different expression lev-
els between metastases and primary carcinomas for exper-
imental validation by real-time RT-PCR. Out of these,
three genes were validated as differentially expressed
between the groups. These were upregulation of TM4SF1
and downregulation of ELAC1 (Figure 3) and CCNE1 in
metastases. CCNE1 had particularly low expression in the
carcinomatosis group. RT-PCR data of INCENP was only
weakly following the same trend as the microarray data,
whereas validation failed for PIAS2.

Expression profile stratified by TP53 mutation status
Altogether, ten of 26 tumors harbor TP53 mutation in
exons 5–8 (seven of 18 primary carcinomas, two of four
liver metastases, and one of four carcinomatoses; Table 1).
In order to investigate the influence of the TP53 mutation
status on the gene expression signatures, BAMarray analy-
sis was performed on all tumors dependent on TP53
mutation status. A posterior variance between 0.90 and

1.13 were used, and the hundred most differentially
expressed genes (with statistical significance) both in the
tumors with TP53 mutation (absolute Z-cut ranging from
3.49 to 2.41) and from those with wild type TP53 were
chosen (absolute Z-cut 3.64 to 2.24). Among these two
hundred genes, 75 were expressed more than two-fold dif-
ferently between the groups (27 genes with expression
level above 3.0). Of these 33 genes were associated with
tumors harboring TP53 mutation, and 42 genes with
those without [see Additional file 2]. PCA and HCA were
performed on the 75 genes chosen from BAM analysis,
and both analyses show a clear tendency to discriminate
the tumors with TP53 mutation from those without, inde-
pendently of stage [see Additional file 3]. In the same
manner, the mutant TP53 primary tumors (n = 7) have
been analyzed versus the wild type TP53 primary tumors
(n = 11), and the gene lists associated with either group is
overlapping with the ones found for all tumors stratified
by TP53 mutation status.

ELAC1 downregulation in metastasesFigure 3
ELAC1 downregulation in metastases. We used real-time RT-PCR to validate the expression of five genes with altered 
expression in metastases. ELAC1 was validated as a downregulated gene in colorectal cancer, with a particular downregulation 
in the liver metastases and carcinomatoses. Values are here normalized according to values from normal colon mucosa before 
log2-transformation. Red and blue colored circles denote results from individual samples using real time RT-PCR and microar-
ray experiments, respectively. N, normal colon mucosa; P, primary carcinoma; L, liver metastasis; C, carcinomatosis.

-3

-2

-1

0

1

N P L C
Page 7 of 16
(page number not for citation purposes)



Molecular Cancer 2007, 6:2 http://www.molecular-cancer.com/content/6/1/2
Cell line model
The three cell lines IS1, IS2, and IS3 are derived from a pri-
mary carcinoma, liver metastasis, and carcinomatosis
from the same patient. We have previously shown com-
mon and specific chromosomal changes for each of the
cell lines [27] (Figure 4A). Here, we analyzed the gene
expression profiles for the same cell lines. IS1 had 1553
genes, IS2 had 1503 genes, whereas IS3 had 1448 genes
with an expression level above two-fold as compared to
normal colonic mucosa. Among these genes, 609 genes
were common in all the three cell lines, whereas IS1 and
IS2 share 263 genes, and IS1 and IS3 share 130 genes. IS2
and IS3 share 225 genes with an expression above two-
fold, which might be considered general metastasis genes
independent of site (Figure 4B). Among the genes dysreg-
ulated more than two-fold in the three cell lines, we chose
the 200 most dysregulated genes solely for each cell line.
This resulted in a list of 600 genes associated with the dif-
ferent tumor stages (data not shown).

Comparisons of in vivo tumors with in vitro model
To address whether the cell lines derived from the differ-
ent stages are representative models of in vivo tumors, we
performed hierarchical cluster analysis on the primary car-
cinomas (n = 18), liver metastases (n = 4), and carcinom-
atoses (n = 4), based on the most dysregulated genes
found associated with each cell line [see Additional file 4].
Three of the four liver metastases cluster close to each
other, whereas the carcinomatoses are spread among the
primary tumors.

When comparing the most differentially expressed genes
specific for in vivo tumors (primary carcinomas, liver
metastases, and carcinomatoses; Figure 2) with the in vitro
model, we found that 40 of 59 in vivo specific genes were
regulated in the same direction in both cell lines and solid
tumors. For the genes associated with liver metastasis, 19
of 28 genes were regulated in the same way in IS2. Five of
the 28 genes were as well most dysregulated in IS2 as com-
pared to IS1 and IS3. For the genes associated with carci-
nomatosis, 6 of 8 genes were confirmed in IS3 (2 of 8
genes are most dysregulated in IS3 compared to IS1 and
IS2), and for the genes specific for primary carcinomas, 15
of 17 genes were confirmed in IS1 (4 of 17 genes are most
dysregulated in IS1 compared to IS2 and IS3) (Table 4).

When evaluating the genes associated with carcinomato-
sis from in vivo and in vitro (IS3) models, we found that 20
of the 29 genes defined from the in vivo data had the same
type of alteration also in the cell line model (six of 29
genes were most dysregulated in IS3 compared to IS1 and
IS2; Table 2). Among the upregulated genes on 5p in car-
cinomatoses (in vivo model), four genes showed the same
type of alteration in the carcinomatosis cell line IS3 as
compared to IS1 and IS2 (Table 3).

Discussion
Several studies have investigated the expression profiles of
human tumors taking advantage of the microarray tech-
nology, including some studies of primary colorectal car-
cinomas [16]. Despite the fact that metastases are the
leading cause of CRC deaths, few have investigated the
expression profiles of metastases, and the reports pub-
lished have focused on lymph nodes and liver metastases
from CRC [19-24,28,29]. Using 22k oligo microarrays we
have nearly doubled the number of DNA sequences stud-
ied compared to most previous publications investigating
gene expression levels of CRC metastases [18-21,24]. By
comparing the genetic profile from different tumor stages
of CRC, including primary tumors and two metastatic
sites, liver and peritoneum, we were able to find potential
genes associated with metastasis, which might play an
important role in the metastatic process. By using Baye-
sian ANOVA for microarray [25], we were able to identify
differentially expressed genes associated with the groups
included. This method has its strengths when comparing
more than two groups. Further statistical tools, such as
HCA and PCA, visualize the differences in the gene expres-
sion between the different stages of CRC, as well as
between the two metastatic sites, liver and the peritoneum
(Figures 1 and 2). Tumors from the two metastatic sites
reveal gene expression profiles more closely related to
each other than to the primary carcinomas. We selected
the primary samples in order to obtain a similar represen-
tation from the different topographical sites in colon and
rectum, from patients from the intermediate clinical
groups (Dukes' B and C). Thus, it seems reasonable to
expect that the expression profiles of these are representa-
tive, supporting the findings of distinct profiles of the
metastases.

A general gene expression pattern for metastases
HCA and PCA were used to visualize the different tran-
script levels of 89 genes in primary tumors and metas-
tases. Forty genes in this expression profile were specific
for the metastasis group [see Additional file 1], including
several genes previously reported in relation to cancer
metastasis. Interestingly, most of the genes have not pre-
viously been described in colorectal metastases, and the
genes of particular interest are involved in processes like
apoptosis and cell growth. Among the downregulated
genes are CASP1, ELAC1, INCENP, ME2, and PLA2G2A.
CASP1 has been shown to induce apoptosis, and disrup-
tion of apoptotic pathways is in general an important fac-
tor in tumor development, and downregulation of this
gene has also previously been reported in primary CRCs
[30]. ELAC1, encoding an RNA processing enzyme, is
located on the chromosome band 18q21, which chromo-
somal loss has previously been linked to poor prognosis
in colorectal cancer [31]. The ELAC1 locus was targeted in
a 300 kb homozygous deletion in lung cancer, which also
Page 8 of 16
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involved the ME2 gene [32]. INCENP is required for cor-
rect chromosome segregation and cytokinesis during
mitosis and complexes with Aurora B kinases [33]. Inhibi-
tion of INCENP is associated with chromosome aneu-
ploidy, and downregulation of this gene might be
important in metastases. Mice lacking expression of
PLA2G2A have revealed increased colonic polyposis, and
although gene mutations is not reported, lack of expres-
sion and sequence losses from this locus (chromosome
band 1p36) are found in human colorectal carcinomas
[34]. Interestingly, TM4SF1, a member of the transmem-
brane 4 superfamily, was upregulated in the metastases
group. This antigen is known to be highly expressed in
several cancer types, including CRC [22,35], and increased
level of TM4SF1 has been associated with development of
metastases and poor clinical outcome in patients with
lung cancer [36].

Genes differentially expressed between primary CRCs and
normal tissue have been reported by several studies [16],
but only few have shown the differences in expression
profiles between primary tumor and lymph node- and
liver metastases. By statistical analyses we found 49 genes

associated with primary carcinomas as compared with
both liver metastases and carcinomatoses [see Additional
file 1]. Among the genes with increased expression were
CDCA7, CXCL1, CXLC2, CXCL3, and LCN2. Cell division
cycle associated 7, CDCA7, upregulated among the pri-
mary carcinomas, is suggested to be involved in neoplastic
transformation as it acts as a direct Myc target gene [37].
The chemokines CXCL1, CXCL2, and CXCL3 also called
GRO oncogenes, are involved in angiogenesis, develop-
ment, and homeostasis. Upregulation of CXCL1
[16,21,38-41] and CXCL3 [42] has previously been
observed in CRCs and other cancer types [43]. LCN2
binds and transports small lipophilic molecules, and is
involved in cell regulation [44]. Additionally, LCN2 acts
as a subunit of the MMP-9 that has been observed in
increased levels in tumor cells in the transition from
colonic adenomas to carcinomas [45]. Among the down-
regulated genes in primary carcinomas were AKR1B10,
CD36, and LMNB1. The expression of aldo-keto reductase
(AKR1B10) and collagen receptor CD36 is highly reduced
in the primary group, and is previously reported downreg-
ulated in CRCs [46]. LMNB1 belongs to the lamin family,
where the proteins are involved in nuclear stability, chro-

Genome and transcriptome profiles of cell line modelFigure 4
Genome and transcriptome profiles of cell line model. A) Genomic changes in three cell lines IS1, IS2, and IS3 from a 
primary carcinoma, its corresponding liver- and peritoneal metastases derived from the same patient. B) Genes expressed in 
fold change above 2.0 in the same cell lines. 609 genes are found in common between the three cell lines, whereas 263 genes 
are shared between IS1 and IS2, 130 genes in common between IS1 and IS3, and 225 genes are shared between the metastases 
cell lines, IS2 and IS3. 551- (IS1), 406- (IS2), and 484 genes (IS3) are only seen in one cell line.
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Table 4: Genes in common among in vivo tumors and in vitro cell lines.

Genebank Acc. Gene Symbol Gene Name Z-cut Stage Fold change IS1 Fold change IS2 Fold change IS3

X78947 CTGF connective tissue growth factor 2,65 C 1.11 1.59
AF067817 VAV3 vav 3 oncogene -2,63 C -24.77 -3.89 -1.23
AL834404 NETO2 neuropilin (NRP) and tolloid (TLL)-like 2 -2,59 C 1.82 1.21 -12.01
NM_016234 ACSL5 acyl-CoA synthetase long-chain family member 5 -2,52 C -4.64 -1.75 -3.09
NM_139160 LOC91614 novel 58.3 KDA protein -2,46 C -2.23 -1.59 2.58
M55905 ME2 malic enzyme 2, NAD(+)-dependent, mitochondrial -2,41 C 1.21 -1.80 -1.66
NM_000620 NOS1 nitric oxide synthase 1 (neuronal) 4,15 L 2.06 2.51 -1.69
NM_013317 T1A-2 lung type-I cell membrane-associated glycoprotein -3,95 L -9.86 -12.64 -2.37
AK097373 CYP4Z2P cytochrome P450 4Z2 pseudogene 3,92 L 1.78 1.19 -15.97
X98311 CEACAM7 carcinoembryonic antigen-related cell adhesion molecule 7 3,92 L 1.59 1.41 -7.00
NM_139284 LGI4 leucine-rich repeat LGI family, member 4 3,86 L 2.12 1.55 -3.53
AF227137 TAS2R13 taste receptor, type 2, member 13 3,81 L 1.35 1.20 5.73
K00422 HP haptoglobin 3,70 L 1.32 1.33 1.64
NM_001848 COL6A1 collagen, type VI, alpha 1 -3,62 L -5.51 -39.77 -1.60
X04898 APOA2 apolipoprotein A-II 3,57 L 7.16 5.61 -1.18
BC016147 NR4A1 nuclear receptor subfamily 4, group A, member 1 -3,41 L -6.69 -3.26 -6.91
NM_173650 DNAJC5G DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 3,37 L 2.20 2.70 -3.42
NM_152576 MGC24103 hypothetical protein MGC24103 -3,36 L -9.78 -14.62 -1.10
AK056254 KRT4 keratin 4 3,36 L 2.17 1.34 -8.59
NM_004671 PIAS2 protein inhibitor of activated STAT, 2 3,29 L 1.96 1.19 2.16
AF328788 AMN amnionless homolog (mouse) 3,12 L 2.44 3.06 -6.08
BC007287 ZNF213 zinc finger protein 213 3,07 L 3.11 1.81 -2.05
BC012125 SLC39A8 solute carrier family 39 (zinc transporter), member 8 -3,04 L -4.10 -2.34 2.97
NM_020249 ADAMTS9 a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 9 -2,98 L 1.03 -1.45 -2.91
M60828 FGF7 fibroblast growth factor 7 (keratinocyte growth factor) -2,95 L -7.06 -8.61 -15.00
M98398 CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor) -3,17 P -23.00 -21.88 1.11
NM_033201 BC008967 hypothetical gene BC008967 -2,95 P -7.38 -4.64 -2.15
BC001634 VAMP8 vesicle-associated membrane protein 8 (endobrevin) -2,78 P -1.78 -2.89 2.65
NM_022912 C2orf23 chromosome 2 open reading frame 23 -2,72 P -4.00 -7.64 1.80
M27110 PLP1 proteolipid protein 1 (Pelizaeus-Merzbacher disease, spastic paraplegia 2, uncomplicated) -2,67 P -3.05 -4.03 1.94
AB038518 COLEC12 collectin sub-family member 12 -2,62 P -9.65 -9.96 -10.22
AB020629 ABCA8 ATP-binding cassette, sub-family A (ABC1), member 8 -2,60 P -1.85 -2.07 -6.80
Y12653 UBD ubiquitin D 2,60 P 2.07 1.72 1.35
AK025416 UGCGL1 UDP-glucose ceramide glucosyltransferase-like 1 -2,60 P -5.63 -3.92 1.81
AK021429 SH3MD2 SH3 multiple domains 2 -2,59 P -1.07 -1.26 2.22
NM_032727 INA internexin neuronal intermediate filament protein, alpha -2,54 P -2.19 -2.48 -1.06
AK074207 SLC37A2 solute carrier family 37 (glycerol-3-phosphate transporter), member 2 -2,50 P -2.68 -2.25 1.38
AJ001014 RAMP1 receptor (calcitonin) activity modifying protein 1 -2,46 P -6.00 -4.48 -44.44
AB007895 FLJ11383 hypothetical protein FLJ11383 -2,41 P -1.11 1.09 2.92
NM_016397 TH1L TH1-like (Drosophila) 2,40 P 2.39 2.35 -1.27

Z-cut is derived from BAMarray., L; liver metastases, C; carcinomatoses, P; primary carcinomas Fold change; expression in fold change as compared to normal colonic tissue. Genes shown in bold are most 
dysregulated in the corresponding cell line when compared to solid tumors.
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matin structure and gene expression. Reduced expression
have been seen in several cancer types, including CRC
[47].

Genes associated with liver metastases
By using BAMarray on expression profiles of liver metas-
tases, in comparison with primary carcinomas and carci-
nomatoses, we identified the most statistically significant
genes associated with liver metastases (Figure 2B). These
genes might play a significant role in the metastasis to the
liver. Several interesting genes were found downregulated,
such as ADAMTS9 and COL6A1 in the liver metastasis
group. ADAMTS9, a thrombospondin metalloproteinase,
is a member of the ADAM-TS family, which controls organ
shape during development, inhibit angiogenesis, and are
implicated in cancer [48,49]. Recently, we have found
another gene in the same family, ADAMTS1, to be a novel
candidate for epigenetic inactivation by promoter hyper-
methylation in colorectal carcinomas [50]. COL6A1
belongs to a collagen family, and are previously reported
upregulated in metastases from medulloblastoma and
cancers of the breast and prostate [11]. Carcinoembryonic
antigen-related cell adhesion molecule 7 (CEACAM7) is
expressed in normal colon, but reported downregulated
in adenomas and colorectal carcinomas [42,51]. Contro-
versially, we found CEACAM7 upregulated in the liver
metastases, suggesting another function in the metastatic
tumors. Another gene with increased expression in liver
metastases of particular interest was PIAS2. Protein inhib-
itor of activated STAT2 (PIAS2) is a transcription factor
controlling cell cycle arrest after DNA damage through
various cellular pathways [52], such as STAT-, MYC- and
TP53 pathways, as transcriptional coregulators [53,54].
The conflicting RT-PCR and microarray data for PIAS2
may be due to their targeting of different mRNA splice var-
iants. The PIAS2 microarray probe targets the exon-exon
junction 12–13, whereas the RT-PCR primers target the
exon-exon junction 5–6 of the transcript.

Genes associated with peritoneal carcinomatoses
To our knowledge, only one molecular genetic study has
previously been performed on carcinomatoses from
colorectal cancer [26], and for the first time, carcinoma-
toses are investigated at the gene expression level. By using
Bayesian ANOVA statistics we identified a gene pattern
associated with carcinomatoses (Table 2, Figure 2). Of the
29 genes expressed above two-fold in the carcinomatosis
group compared to primary carcinomas and liver metas-
tases, several of the genes found were of interest in rela-
tion to cancer biology, such as the upregulation of
DKFZp564I1922 (alias adlican), and CTGF, and the
reduced expression of CCNE1, CHC1, and MYOHD1. The
gene encoding the hypothetical protein adlican is previ-
ously seen highly expressed in colorectal cancer compared
to normal tissue [39]. Expression studies of primary CRCs

have observed dysregulation of several collagens
[16,40,55-57]. CTGF is a connective tissue growth factor
that promotes proliferation, and seems to play an impor-
tant role in the metastatic process, as this gene has been
associated with tumor progression in several types of can-
cer [58-61]. However, the expression of CTGF seems to
play a varying role in several cancer metastases, as expres-
sion of this gene is also reported as a factor for better prog-
nosis by suppression of tumor growth [62]. CCNE1 is an
important component in the cell cycle regulation, and as
a target in the carcinogenesis, overexpression over cyclin E
has been observed in several tumor types [63-65]. How-
ever, decrease of CCNE1 from primary colorectal carcino-
mas to liver metastases is seen, and reduction of cyclin E
in primary carcinomas is associated with poor prognosis
and metastasis to the peritoneum [66]. This is in line with
our observation, as CCNE1 showed a reduced expression
level in peritoneal carcinomatoses compared to primary
tumors. CHC1 is located at chromosome band 1p36 that
is commonly deleted in CRC [67]. It binds to chromatin
and is involved in the regulation of onset of chromosome
condensation [68], thus reduced expression of this gene
might lead to failure in the chromosome segregation. Sev-
eral myosin genes are previously associated with metasta-
sis [11], and interestingly, myosin head domain
(MYOHD1) is found dysregulated in carcinomatoses and
liver metastases in the present dataset.

By using genomic profiling techniques on different stages
of the CRC progression, we have previously identified
gain of 5p by DNA copy number alterations to be specific
for the metastatic process to peritoneal cavity [26,27]. In
this chromosomal region we found 20 genes upregulated
in carcinomatoses as compared to the other stages (more
than two-fold; Table 3), including FBXL7, PTGER4, SKP2,
and ZNF622.

TP53 gene profile
By using BAMarray, we distinguished the expression pat-
tern of the tumors according to their TP53 mutation sta-
tus. Mutations in TP53 are one of the most frequently
encountered genetic alterations in human solid tumors.
More than half of all primary CRCs carry a mutation
within this gene, and inactivation of TP53 is believed to
play a central role in the genetic tumor progression model
[69]. Interestingly, there seem to be differences in the
genetic pattern in tumors revealing mutation from those
with wild type TP53 across the tumor stages [see Addi-
tional files 2 and 3], supporting the importance of TP53
mutation independent of CRC stage. Additionally, the
same pattern is observed in the primary colorectal carci-
nomas. A similar pattern has been observed in breast car-
cinomas as tumors with TP53 mutation show a different
gene expression profile than those without [70]. Taken
together, these observations suggested that inactivation of
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TP53, indirectly or directly, leads to altered expression of
the downstream genes.

Comparison of in vitro models with in vivo tumors
The gene expression variations in the cell line model rep-
resenting three different tumor stages: primary carcino-
mas, liver metastasis, and peritoneal metastasis from the
same patient, provide clues to the understanding of the
cancer progression process (Figure 4) [27]. We arranged
the solid tumors by hierarchical clustering based on genes
derived from the cell line model [see Additional file 4].
The in vivo tumors are on the dendrogram partly posi-
tioned into correct stages, but not as successfully as by
using the genes derived from the in vivo tumors them-
selves (Figure 2). Comparisons of the genetic patterns
derived from analyses of the in vivo tumors with corre-
sponding expression patterns from the cell line model
reveal analogous expression changes of many genes, and
thus strengthen our findings in the solid tumors (Tables 2,
3, and 4). However, the relationship between cell lines
and in vivo tumors based on gene expression should be
handled with caution. Comparisons of gene expression
patterns in cell lines compared to their corresponding
tumor tissue reveal similarities, and cell lines are thought
to reflect the molecular signatures of the tissue from
which the cell lines originated. Nevertheless, it has been
shown that clustering algorithms separate cell lines from
the in vivo tumors of the same cancer disease [71,72].

Conclusion
By studying the gene expression of primary colorectal car-
cinomas, liver metastases and carcinomatoses, we were
able to identify genetic patterns associated with each of
the different stages. We emphasize the importance of the
genetic profiles, where the combination of several genes is
the key feature that is associated with the different stages
of CRC. Several interesting candidate genes representing
potentially therapeutic targets are found in the present
data set. Validation of gene expression signatures in larger
series needs to be performed to improve the understand-
ing of the metastatic process of CRC further.

Materials and methods
Material
Altogether, 29 tissue samples were included in this study;
three of these were from normal colon, eighteen primary
colorectal carcinomas (14 Dukes' B and four Dukes' C; 8
from the right side of colon, 5 from the left side, and 5
from rectum), four liver metastases, and four peritoneal
metastases (carcinomatoses). In addition, as an in vitro
model for cancer progression, three cell lines derived from
tumor samples of the same patient were included (Table
1). These were Isreco1 (IS1) from a primary carcinoma,
Isreco2 (IS2) from a liver metastasis, and Isreco3 (IS3)
from a peritoneal metastasis [27,73]. The cell lines were

kindly provided by Richard Hamelin, INSERM, Paris,
France. The normal colon samples from three patients
with colorectal cancer were taken in a distance from the
tumor sites. Microscopic evaluation of tissue sections
stained by haematoxylin and eosin confirmed that the
normal samples did not contain any tumor cells. For the
primary carcinomas the median age at diagnosis was 75.5
years (range 58 – 88 years), and the median survival time
for these patients was 116 months (range 13 – 147
months). The median age for patients with liver metas-
tases was 71 years (range 55 – 75) with a median survival
of 27 months (range 11 – 93). The median age for patients
with carcinomatoses was 64.5 years (range 40 – 72) with
a median survival at 28 months (range 19 – 65). The series
consisted of 8 females and 18 males. Frozen sections were
taken from all samples prior to RNA extraction, haema-
toxylin and eosin stained, and examined by a pathologist.
All tumors were confirmed carcinomas and visually esti-
mated to contain at least 40% tumor cells; for primaries
the median was 70% (range: 40–90%) for liver metastases
the median was 55% (range: 50–60%), and for the carci-
nomatoses 80% (range: 60–80%). The samples are taken
from a research bio-bank registered at the National Health
Institute and the project is approved by The Norwegian
Data Inspectorate according to the national legislation.

TP53 mutation status
DNA was extracted from tumor tissue pieces neighboring
the ones used for RNA extraction (se below). All tumor
samples were previously analyzed for TP53 mutations
within exons 5–8 by screening for aberrantly migrating
PCR fragments in constant denaturing gradient gel elec-
trophoresis followed by identification of the specific
mutations by direct sequencing (primary tumors, [31];
metastases, unpublished data).

Total RNA extraction
The tissues were ground in liquid nitrogen and homoge-
nized with a pellet pestle motor in 1ml of Trizol (Invitro-
gen, Carlsbad, CA). 0.2 ml of chloroform was added and
the samples were vigorously shaken for 20s, and then
incubated at RT for 5 min. After centrifugation at 12,000
× g for 15 min, the aqueous phase was mixed with 0.5 ml
isopropanol. The RNA was allowed to precipitate for 10
min and collected after centrifugation at 12,000 × g for 10
min at 4°C. The RNA pellet was washed with 75% etha-
nol, collected after a brief centrifugation, air dried, and re-
suspended in H2O at 55°C in 10 min. The purified RNA
was quantified by spectrophotometer (NanoDrop 1000,
NanoDrop Technologies, Boston, MA), and the quality
was evaluated by capillary electrophoresis (Agilent 2100
Bioanalyzer, Agilent Technologies, Palo Alto, CA).
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Expression profiling
For each of the test and reference samples, 20 µg total RNA
was reversely transcribed using the Agilent direct-label
cDNA synthesis kit (Agilent Technologies) according to
the manufacturer's directions. As a common reference for
all samples, we used the "Universal Human Reference
RNA", containing mRNA from ten cancer cell lines (Strat-
agene, La Jolla, CA). cDNA was labeled with cyanine 5-
dCTP for test samples and cyanine 3-dCTP for the com-
mon reference (PerkinElmer Life Science, Boston, MA),
and was purified using QIAquick PCR Purification col-
umns (Qiagen, Valencia, CA). The cDNA was suspended
in hybridization buffer and hybridized to Agilent Human
1A v2 22 k oligo microarrays (Agilent Technologies) for
17 h at 60°C according to the Agilent protocol. The slides
were scanned by a laser confocal scanner (Agilent Tech-
nologies).

Microarray data analyses
The image processing was performed with Agilent Feature
Extraction 7.5 (Agilent Technologies). Local background
subtraction and linear/LOWESS normalization were per-
formed. Semi-processed values were imported into BASE
(BioArray Software Environment; [74] customized for
Agilent microarrays by the Norwegian Microarray Consor-
tium), where spots with inadequate measurements were
flagged and ratios calculated. Oligonucleotide probes
with inadequate measurements in more than five of the
29 tumor samples were excluded from the analyses. For
further analyses, we used data corresponding to 18 264
unique gene bank accession numbers, represented by 16
553 unique gene symbols [75].

BAMarray 2.0 (Bayesian ANOVA Analyses of Variation of
Microarrays) [25] was used with default settings for
detecting differentially expressed genes between two or
more groups. BAMarray uses shrinkage estimation com-
bined with model averaging. This provides a good balance
between false rejection (the total number of genes falsely
identified as being differentially expressed) and false non-
rejections (the total number of genes falsely identified as
being non-differentially expressed). By combing Z-cut
and posterior variances from Bayesian ANOVA for micro-
array, we are likely to identify the differentially expressed
target genes. Missing values were estimated in J-Express
Pro 2.6 [76] with k-nearest neighbor imputation (k = 10).
The most statistically significant genes associated with
each group were reported with normal colon mucosa as
the "baseline group".

Principal component analysis (PCA) and hierarchical
cluster analysis (HCA) were performed in J-Express Pro
2.6 [76]. PCA reduces the dimensionality and detects
structure in the relationships among variables (classify
variables) [77]. HCA by use of average-linkage and Eucli-

dean distance similarity measure was used to arrange var-
iables according to groups based on their similarity.
Afterwards, the results were visualized in a dendrogram.
For each gene, expression values in tumor samples were
centered over the median expression of the normal colon
epithelial tissues before clustering.

Quantitative real-time gene expression analyses
The mRNA expression of five potential target genes,
CCNE1, ELAC1, INCENP, PIAS2, and TM4SF1, was meas-
ured by quantitative real-time fluorescence detection
using TaqMan 7900 HT (Applied Biosystems, Foster City,
CA). For each sample, cDNA was generated from five µg
total RNA using a high capacity cDNA archive kit (Applied
Biosystems) following the manufacturers' protocol. Ten
ng cDNA was amplified for each gene using pre-designed
assays (Hs00233356_m1, Hs00218846_m1,
Hs00220336_m1, Hs00190699_m1, and
Hs00371997_m1, respectively; Applied Biosystems). All
samples were amplified in triplicates and the quantitative
expression levels were measured against a standard curve
generated from dilutions of cDNA from the human uni-
versal reference RNA (containing a mixture of RNA from
ten different cell lines; Stratagene, CA). The median
expression value of each sample was normalized against
the average of the median of two endogenous controls,
ACTB (4352935E; Applied Biosystems) and GUSB
(4333767F; Applied Biosystems).
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