
Master Thesis, Department of Geosciences

Thermal regimes and horizontal surface

velocities on Hellstugubreen and

Storbreen, Jotunheimen, Southern Norway

Mathieu Tachon

Thermal regimes and horizontal surface

velocities on Hellstugubreen and Storbreen,

Jotunheimen, Southern Norway

Mathieu Tachon

Master Thesis in Geosciences

Discipline: Physical Geography, Hydrology and Geomatics

Department of Geosciences

Faculty of Mathematics and Natural Sciences

University of Oslo

October 1st 2015

© Mathieu Tachon, 2015

Supervisors : Pr. Jon Ove Hagen (UiO) , Dr. Liss Marie Andreassen (NVE)

This work is published digitally through DUO – Digitale Utgivelser ved UiO

http://www.duo.uio.no

It is also catalogued in BIBSYS (http://www.bibsys.no/english)

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means,

without permission.

Cover photo: Ground Penetrating Radar surveys on Storbreen in a sunny day, April 2014.

http://www.bibsys.no/english
http://www.duo.uio.no/

1

Abstract

Radio-Echo Sounding (RES) surveys are an e�ective way to map the thermal regime of glaciers.

RES measurements at two di�erent center frequencies were conducted on Hellstugubreen and

Storbreen, two mountain glaciers located in Jotunheimen, Southern Norway. The ice thickness

was investigated from measurements at a frequency of 10 MHz, from 2011 at Hellstugubreen and

from 2005-2006 at Storbreen. In 2014, RES surveys at a frequency of 50 MHz was used to map

the internal thermal layering of the glaciers. Ice temperature variations in the subsurface were

also explored with shallow borehole measurements. The results revealed a polythermal regime for

both glaciers, which are cold-based near the front and their margins, and with a cold surface layer

underlain by temperate ice in their central parts. A maximum ice thickness of 177 m (±15 m)

was recorded at Hellstugubreen. The bedrock was encountered at a maximum depth of 233 m

(±15 m) at Storbreen (uncorrected for the surface lowering of the past 10 years). The depth of

the Cold-temperate Transition Surface (CTS) generally increased with elevation, and reached a

maximum depth of 90 m at Hellstugubreen and 55 m at Storbreen. By the end of the summer

season, remaining cold ice was found in the subsurface of Hellstugubreen,whereas on Storbreen,

the cold wave was completely eliminated at same depth levels.

Stake surveys based on accurate Di�erential Global Navigation Satellite System (DGNSS) geo-

referencing were carried out since September 2009 on Hellstugubreen and since September 2006

on Storbreen. The data available were exploited to gain an insight into the surface velocities of

both glaciers. For the period 2013-2014, the surface velocities ranges from 0.5 m.yr-1 to 15.8 m.yr-1

at Hellstugubreen. Between 2010 and 2014, the measurements at Storbreen indicated surface

velocities ranging from 2.5 m.yr-1 up to 16.2 m.yr-1.

2

Acknowledgements

I would like to thank my supervisors Jon Ove Hagen and Liss Marie Andreassen for their support

and their help during this investigation. I also truly appreciated the superb �eld work spent in their

company. I thank UiO and NVE for the �nancial and logistical supports during the �eld work. I

am also grateful to Thomas Schuler and Trond Eiken, for their valuable help provided during �eld

work preparations and the �eld data acquisition. I wish to thank Thorben Dunsen for his technical

help during the GPR data processing. I address my special thanks to Oda Jonette Røyset and

Alex Walmsley for the nice team work on the �eld and for exchanging ideas on this investigation.

I extend my special thanks to the students from the study desk 214 for their contributions to a

nice working environment. Lastly I would like to thank my wonderful girlfriend and my son, for

their continuous support during this work and to cheer me up during stressful periods.

Contents

Abstract 1

Acknowledgements 2

List of Figures 6

List of Tables 7

Introduction 8

� 1 Theoretical background and geographical setting 10

A Theoretical background 11

1 Glaciers thermal regimes and dynamics . 11

1.1 Temperature distribution and glacier classi�cation 11

1.2 Temperature pro�les . 12

2 Processes a�ecting the temperature gradient . 14

2.1 Heat conduction and mean annual surface temperature 15

2.2 Refreezing . 15

2.3 Cryo-hydrologic warming . 16

2.4 Heat advection and ice velocity . 17

2.5 Ice deformation . 17

2.6 Sliding frictions . 17

2.7 Geothermal heat �ux . 18

3 Temperature and dynamics . 19

3.1 Ice temperature and Glen's �ow law . 19

3.2 Basal thermal regimes . 19

4 GPR principles and applications in glaciology . 20

4.1 Overview of the Ground Penetrating Radar principles 20

4.2 GPR applications in glaciology . 21

B Study sites 23

1 Hellstugubreen . 23

2 Storbreen . 23

3

4 CONTENTS

� 2 Methods 26

A Ice thickness 27

1 Field data acquisition . 27

1.1 GPR antenna . 27

1.2 GPR pro�les . 27

2 Data analysis . 28

2.1 Post-processing . 28

2.2 RES pro�les from 2011 at Hellstugubreen . 31

2.3 Ice thickness on Storbreen . 36

B Investigating the thermal regime and air temperature measurements 37

1 Hellstugubreen . 37

1.1 Subsurface ice temperature pro�les at Hellstugubreen 37

1.2 Air temperature . 38

2 Storbreen . 39

2.1 Subsurface ice temperature at Storbreen . 39

2.2 Air temperature . 41

3 Mapping the Cold-temperate transition surface with GPR 41

C Ice �ow velocity 44

1 Hellstugubreen . 44

1.1 DGNSS measurements at stake positions . 44

1.2 Ice surface velocity interpolation . 46

2 Storbreen . 47

2.1 DGNSS measurements at stake positions . 47

2.2 Subsurface deformation rate . 47

� 3 Results and discussions 50

A Ice thickness 51

1 Ice thickness at Hellstugubreen . 51

2 Comparison of the ice thickness map with the RES measurements from 2014 51

3 Discussion . 53

4 Ice thickness at Storbreen . 55

CONTENTS 5

B Temperature distribution and thermal regimes 57

1 Hellstugubreen . 57

1.1 Subsurface temperature variations . 57

1.2 Internal layering and basal thermal regime at Hellstugubreen 60

2 Storbreen . 63

2.1 Subsurface temperature variations . 63

2.2 Internal layering and basal thermal regime at Storbreen 64

3 Discussion . 68

C Ice �ow velocity 73

1 Ice surface velocity at Hellstugubreen . 73

2 Ice surface velocity at Storbreen . 76

3 Subsurface deformation rate at stake S2 . 77

4 Discussion . 78

Conclusions 80

References 90

Appendices 91

Appendix A Surface lowering at Hellstugubreen . 92

Appendix B Ice thickness di�erences between RES measurements from 2011 and 2014,

Hellstugubreen . 94

Appendix C Ice and air temperature at Hellstugubreen 95

Appendix D Ice and air temperature at Storbreen . 114

Appendix E Mapping of the Cold-temperate Transition Surface 134

Appendix F Ice surface velocity . 141

Appendix G Surface slope at Hellstugubreen and Storbreen 151

List of Figures

� 1.1 Simulated temperature pro�les (with and without Cryo-Hydrologic Warming) vs.

borehole measurements . 13

� 1.2 Study area : Hellstugubreen and Storbreen . 24

� 2.1 GPR RTA antenna and georeferencing with Di�erential GNSS 27

� 2.2 RES pro�les on Hellstugubreen and Storbreen, 2014 34

� 2.3 Snow depth at Hellstugubreen, April 2014 . 35

� 2.4 Setup for air and ice temperature measurements, stake H13 37

� 2.5 Temperature approximation using the calibration curve 38

� 2.6 Setup for air and ice temperature measurements, stake S2 39

� 2.7 CTS mapping on Hellstugubreen and Storbreen, 2014 43

� 2.8 DGNSS stake georeferencing and potential errors from multipath e�ects 45

� 3.1 Ice thickness at Hellstugubreen, 2014 . 52

� 3.2 Thickness di�erences (1) from RES measurements done in 2011 and 2014 at Hell-

stugubreen . 53

� 3.3 Thickness di�erences (2) from RES measurements done in 2011 and 2014 at Hell-

stugubreen . 54

� 3.4 Ice thickness at Storbreen, 2005-2006 . 56

� 3.5 Air and ice temperature at Hellstugubreen, 2014 . 58

� 3.6 CTS mapping and GPR internal re�ections along the pro�le H166 61

� 3.7 CTS mapping and GPR internal re�ections along the pro�le H168 62

� 3.8 CTS mapping and GPR internal re�ections along the pro�le S179 65

� 3.9 CTS mapping and GPR internal re�ections along the pro�le S178 66

� 3.10Air temperature di�erences at stakes H13 and H44, 2014 68

� 3.11Air and ice temperature at Storbreen, 2014 . 70

� 3.12Surface velocity at Hellstugubreen, 2013-2014 . 74

� 3.13Surface velocity at Storbreen . 76

� 3.14E�ects of ice temperature variations on the ice deformation rate in the subsurface . 77

6

List of Tables

� 3.1 Temperature measurements at stake H13 . 59

� 3.2 Temperature measurements at stake H44 . 59

� 3.3 Ice surface velocity measurements at Hellstugubreen, 2013-2014 75

7

Introduction

This thesis investigates the thermal regime of two glaciers located in the Jotunheimen mountains,

Southern Norway. Most glaciers are considered to have a temperate thermal regime in mainland

Norway (Andreassen et al., 2012). However, previous studies pointed out that it exists several ex-

ceptions to this general trend in the eastern part of Southern Norway (Urdahl, 2005; Ødegård et al.,

2011; Sørdal, 2013). A large part of Jotunheimen area is located above the Mountain Permafrost

Altitude (MPA) and the Equilibrium Line Altitude (ELA), and therefore o�ers a favourable climate

to develop and sustain polythermal structures in glaciers (Etzelmüller and Hagen, 2005). On small

glaciers characterized by relatively low accumulation rates, the snow cover do not su�ce to impede

the cold winter wave to penetrate deep into the ice (Björnsson et al., 1996). In the high-alpine

environment of Jotunheimen, the summer temperatures are not always warm enough to eliminate

this cold wave, which allows a cold surface layer to persist. In widespread permafrost areas, the

glaciers thermal regime can also be a�ected from underneath, and transit from a temperate to a

partly cold-based thermal regime (Björnsson et al., 1996; Hagen et al., 2003).

The thermal regime of glaciers is of great importance, as it a�ects both their hydrology and

dynamics. Temperature variations in ice have direct e�ects on its physical properties and defor-

mation rate. Moreover, hydrological processes present in temperate glaciers are not sustainable

in cold ice. Temperate-based regime allows for basal sliding and leads to higher �ow velocities.

In temperate ice, the water from the summer surface melt can �nd its ways down to the bottom

of glaciers through water channels, and lubricate the bed. This water input in the subglacial

drainage system can result in signi�cant increases of the surface velocity (Rabus and Echelmeyer,

1997; Copland et al., 2003). The presence of a cold surface layer in polythermal glaciers can limit

or inhibit completely this process. The prior knowledge of the temperature distribution in glaciers

is therefore essential for ice �ow modelling.

The initial focus of this thesis was to get an insight into the ice thickness and the thermal

regimes of Hellstugubreen and Storbreen, both suspected to be polythermal. This work, carried

out in collaboration with the Norwegian Water Resources and Energy Directorate (NVE), was

extended to horizontal surface velocity assessments. The speci�c objectives of this thesis are as

follows :

1. Mapping and estimate at a regional scale the ice thickness and thermal regimes of Hell-

stugubreen and Storbreen, by using multi-frequency Radio-Echo Sounding (RES) measure-

ments.

2. Investigating the ice temperature variations in the subsurface with shallow borehole temper-

8

LIST OF TABLES 9

ature measurements.

3. Estimating horizontal surface velocities from stake surveys, based on non-continuous Di�er-

ential Global Navigation Satellite System (DGNSS) georeferencing.

This thesis is organised into three main parts. The �rst one includes a theoretical chapter on

temperature distributions and classi�cation of glaciers. A following section highlights the main

processes that contribute to heat transfers in ice masses. A third section gives an overview of the

e�ects of temperature on glacier dynamics. A last section sheds a light on basic RES principles

and applications in glaciology. The second and last chapter is devoted to the description of the

study area, with a short overview of the geographical setting and the data available from past

measurements. The second part describes the �eld and data analysis methods. The last part

presents the results from this work, with separate chapters for the ice thickness, the thermal regimes

and the surface velocities assessments of the two glaciers of interest. Each result is followed by

a discussion section. This thesis ends with a last chapter highlighting the main conclusions from

this work.

Part � 1

Theoretical background and geographical

setting

Chapter A

Theoretical background

1 Glaciers thermal regimes and dynamics

1.1 Temperature distribution and glacier classi�cation

The temperature distribution in glaciers and ice-sheets de�ne their thermal regimes. The tem-

perature distribution in a glacier results from the combination of numerous processes and heat

sources, which e�ects on ice temperature are more or less signi�cant, at a local or glacier-wide

scale. In addition, a number of these processes and heat sources depend on the on-site climatic

conditions, and therefore on the geographical location of the ice masses. Cu�ey and Paterson

(2010) identi�ed four types of temperature distribution in ice masses : the ice temperature can

either be (i) below the melting point across the full ice thickness; (ii) at the melting point only at

the ice/bed interface; (iii) at the pressure-melting point for a basal layer of a �nite thickness; and

(iv) at the pressure-melting point for the full ice thickness. The di�erent temperature distributions

enable to distinguish three types of glacier (Maohuan, 1990, 1999; Cu�ey and Paterson, 2010) :

cold or polar type glaciers, polythermal or sub-polar type glaciers, and temperate glaciers.

Cold/Polar glaciers

Cold or polar glaciers describe typically the glaciers for which the ice is below the melting point.

If only the ice at the ice/bed interface reaches the pressure-melting point, the glacier can also be

regarded as a polar type one (Maohuan, 1999). Polar glaciers usually stand at high altitude or

lay in cold and dry regions of the Earth. As the ice is below the melting point, the small amount

of surface melt water, produced during the warmest periods, never reaches the bed and refreezes

almost instantly (Maohuan, 1999). The cold ice cannot sustain a subglacial hydrological network,

and therefore the glacier is `frozen' to its bedrock. Thus, the velocity of cold glacier depends on a

single component, which is the deformation rate of the ice (see section Ice temperature and Glen's

�ow law). Therefore, their velocity is often relatively low compared to the other types of glacier

(Cu�ey and Paterson, 2010). The surface velocity during summer is also not much di�erent from

the winter surface velocity (Maohuan, 1999), as cold glaciers are not a�ected by the development of

a hydrological network that lubricate the base, and makes the ice less viscous by cryo-hydrological

11

12 � 1. Theoretical background and geographical setting

warming.

Polythermal/Sub-polar glaciers

Polythermal or sub-polar glaciers belong to type which has only a �nite thickness of ice at the

melting point. The parts of temperate ice are often at the base of the glacier, where higher

basal pressures allow the ice to reach the pressure melting point (Cu�ey and Paterson, 2010). In

the accumulation area, the melt water produced early in the ablation season will refreeze (see

section Refreezing) in the upper layers (i.e. snow and �rn mainly), where temperature is below

0◦C, and thus allowing an early warming of these layers (Hagen et al., 2003). In the ablation zone,

melt water percolates down to the base of the glacier, through moulins, crevasses and fractures

that propagate due to this melt water input. The melt water is then drained through a subglacial

hydrologic network within the temperate ice, or directly contributes to the ground water �ow,

beneath the glacier. Hagen et al. (2003) and Gilbert et al. (2012) support the idea that no refreezing

occurs in the ice in the ablation zone of polythermal glaciers. Thus, as the air temperature is most

likely negative in sub-polar regions, the upper part of the ice remains cold all through the year.

Temperate glaciers

Temperate glaciers are at the pressure melting point throughout their entire mass. They form in

regions at lower latitude than the types of glaciers mentioned above, and usually require a more

maritime climate or a mountainous climate below a certain elevation threshold, where amounts

of precipitation are larger and ablation-season temperatures are greater. Owing to the fact that

most of the ice is at the melting point, subglacial hydrological systems can easily develop in the

ice mass. These subglacial hydrological systems have two di�erent regimes (Fountain and Walder,

1998). During the winter season, when the melt water production is low, it is a highly pressurized

cavity-based system that drains melt water down to the glacier front (Nye, 1973). When summer

comes and the melt water production increases, the subglacial hydrological network switch to

a more e�cient but less pressurized channel-based drainage system (Röthlisberger, 1972). The

higher basal temperature gives them a di�erent basal regime which is explained more deeply in

section Basal thermal regimes.

1.2 Temperature pro�les

So far, only one measurement method enable to obtain accurately the temperature pro�les of

glaciers and ice-sheets. This consists in drilling a borehole into the ice, and to set up thermistors

inside the borehole, at multiple depths. The main inconvenience of this method is its limited

A. Theoretical background 13

spatial resolution, due to the time required to drill down to great depths, for studies of tempera-

ture distribution on ice-sheets for instance. Temperature pro�les have been measured in di�erent

regions, representing various climates. For the polar and sub-polar climate, characterized by a

dry air and mean annual temperatures below freezing (e.g. Antarctica, Greenland and glaciers

in Arctic latitudes), boreholes measurements were performed at shallow depths and at depths

greater than 2 300 meters with a vertical accuracy of ∼2 meters for the deeper measurements,

and with uncertainties ranging from ±0.01 to ±0.5◦ K after calibration of the thermistors (Pa-

terson, 1968; Jania et al., 1996; Price et al., 2002; Rolandone et al., 2003; Phillips et al., 2013).

Figure � 1.1: Simulated temperature pro�les superim-
posed with observations (dots) performed
at two borehole sites, on Sermeq Avan-
narleq, West Greenland (Phillips et al.,
2013). The blue curves are simulations
without the e�ect of the cryo-hydrologic
warming, and the red curves are simula-
tions accounting for this e�ect.

Cold and polythermal glaciers have

also been identi�ed in regions with

a more continental/alpine climate,

such as in the Himalayas (Maohuan,

1990, 1999; Conway and Rasmussen,

2000), in the Alps (Haeberli and

Funk, 1991) or even in southern Nor-

way (Andreassen et al., 2012). A

large number of studies were likewise

carried out on glaciers subjected to a

maritime climate, which can be de-

�ned as mild temperatures and im-

portant precipitations during winter,

and with higher summer tempera-

tures . The work of Andreassen et al.

(2012) points out that most glaciers

are temperate in these regions.

Radio-echo soundings provide other

means of measuring temperature pro-

�les in ice masses. Radar signal at-

tenuation is proportional to the depth

penetration and the conductivity of

the ice. Changes in dielectric prop-

erties of the ice are dependent of the

ice temperature (Hughes, 2008), and

such changes lead to polarisation and

conductivity losses in the radar sig-

nal. The method using radar sound-

14 � 1. Theoretical background and geographical setting

ing relies on estimating these changes which depend on the ice temperature, in order to obtain

the temperature itself. However, the ice conductivity variations can be the result of other factors,

such as the impurities concentration (Hughes, 2008). In addition, water pockets and subglacial

hydrological channels that are present in temperate ice prevent the radio waves to penetrate fur-

ther. Radar sounding has therefore several limitations when it comes to measure temperature

distributions in glaciers.

Finally, the last approach to estimate the temperature distribution of ice masses is by using

models. For cold glaciers, a temperature pro�le can be estimated from a limited number of data

(Robinson, 1984), such as : the ice geometry, the mean annual near-surface temperatures, the

ice velocities and the geothermal heat in�ux. When it comes to temperate and polythermal

glaciers, more data sets are required. Firstly, for both types, the surface velocity results from the

combination of two components : the deformation rate of the ice (see sections Ice deformation

and Ice temperature and Glen's �ow law), and the basal sliding (Section Basal thermal regimes).

The actual surface velocity �elds can be measured accurately using several techniques, such as

Interferometric Synthetic Aperture Radar (InSAR) or ground-based measurements (i.e. Global

Positioning System) (Phillips et al., 2013). However, in ice �ow models, the basal sliding is

often the unknown parameter since no accurate method to measure its velocity is available at

the present's day. The second ambiguity that derives from the temperate and the polythermal

type is their ability to sustain a complex subglacial drainage system, which evolves seasonally.

This subglacial hydrological network is likely to a�ect the temperature gradient throughout the

ice thickness (Phillips et al., 2013) and therefore to change its �ow properties. It is essential

to account for the Cryo-Hydrologic Warming (CHW) (see section Cryo-hydrologic warming) to

model the temperature distribution in polythermal and temperate glaciers. The e�ect of the

inclusion of the CHW (Cryo-Hydrologic Warming) in a thermo-mechanical model is illustrated by

the Figure � 1.1.

2 Processes a�ecting the temperature gradient

As mentioned in section Temperature distribution and glacier classi�cation, the temperature in

ice masses depends on numerous processes such as : the heat conduction, the heat convection,

refreezing, the ice deformation, the sliding friction, or even the geothermal �ux. The strength of

these processes depends on the geographical location of the glaciers, or ice-sheets, and therefore it

is related to a certain climate and to certain types of ice mass.

A. Theoretical background 15

2.1 Heat conduction and mean annual surface temperature

The heat conduction is the heat energy transfer by microscopic di�usion. It is the process that

can lead an ice mass to reach a steady-state temperature distribution, if no other heat sources

interact with the ice mass and if the boundary conditions are unchanged (i.e. stable air surface

temperature and constant geothermal in�ux). An ice mass is assumed reach the thermal steady-

state if its temperature gradient is constant across the full ice thickness. In most cases, an ice

mass shows large deviations from the thermal steady-state, as many processes contribute to heat

transfers throughout the medium, and not only conduction. The heat conduction depends on

the thermal conductivity of the medium. For ice, dry snow and �rn, Van Dusen (1929) gave the

following empirical formula to calculate the thermal conductivity :

kT = 2.1× 10−2 + 4.2× 10−4ρ+ 2.2× 10−9ρ3 (� 1.1)

where ρ is the density of the material. The heat conductivity (q) can be expressed as the amount

of energy �owing across unit area, per unit of time, and it is proportional to the temperature

gradient (∂T/∂z) :

q = −kT ·
∂T

∂z
(� 1.2)

where T is the temperature, and z is the distance, measured in the direction of the temperature

variation. In order to obtain the temperature pro�le, z is taken as the di�erence in depth between

the two boundaries of the medium. The minus sign in (� 1.2) stands for the direction of the �ux

propagation towards lower temperatures. The heat conduction can be the dominant heat transfer

across a stagnant ice mass in polar regions (Paterson, 1968; Rolandone et al., 2003). In summer,

however, for most glacial areas that experience surface melt or receive precipitation as rain, the

energy transfer in the upper layers from heat conduction is often negligible in comparison with that

of the refreezing process(see section Refreezing), especially in the accumulation area (Maohuan,

1990; Ødegård et al., 1992; Gilbert et al., 2012).

2.2 Refreezing

Refreezing is the process that results from the melt water input, via percolation through snow,

�rn and ice, and which turns back to the solid phase, owing to the temperature below melting

point of the environment. The energy (i.e. radiations, warm temperatures) consumed by the snow

or ice surface for melt is then released as latent heat when the melt water refreezes. This release

in energy warms up the medium where the process occurs. Refreezing can therefore be expressed

as an amount of heat available per units of time and volume. The following equation enables to

16 � 1. Theoretical background and geographical setting

quantify refreezing of surface water in �rn (Cu�ey and Paterson, 2010) :

R = L · ws · ρs ·
mf

zm
(� 1.3)

where L denotes the speci�c latent heat fusion, ws stands for the vertical velocity of percolation

at the surface, ρs is the density of the surface layer, mf represents the melt fraction (fraction

of annual �rn layer, in weight units, formed by refreezing), and zm is the maximum depth of

percolation. Refreezing is one of the most e�cient heat source in areas covered by a �rn layer, and

that experiences surface melt (Ødegård et al., 1992; Gilbert et al., 2012). Refreezing 1 g of water

releases enough energy to warm up 160 g of snow or �rn by 1◦C (Cu�ey and Paterson, 2010). The

study of Maohuan (1990) show that the warming penetration depth can reach 30 meters. This

partly explains the temperature distribution of certain sub-polar glaciers, with warmer ice in the

accumulation than in the ablation zone, at lower altitude for the latter. During the ablation season,

melt water percolates through the �rn, then refreezes and warms up the �rn. The temperature

of the underlying ice increases by conduction. At the same period of the year, there is only

little refreezing in the ablation area (Hagen et al., 2003), where the ice is not snow-covered and

exposed directly to the air surface temperatures. During winter, the snow/�rn cover that remains

in the accumulation zone acts as an �insulating blanket�, owing to its low thermal conductivity, and

impedes the cooling of the underlying ice by the low air temperatures. The ice in the accumulation

area is therefore at the melting point all through the year. However, in the ablation zone, the

temperature of the uppermost layer �uctuates with air temperature, and underneath, a �nite layer

of ice remains below the melting point since the mean annual temperatures in the sub-polar regions

are below 0◦C.

2.3 Cryo-hydrologic warming

The Cryo-Hydrologic Warming (CHW) is the combined e�ects of refreezing and heat conduction

and convection. It occurs when a surface melt water input �ows through a Cryo-Hydrologic System

(CHS) (Fountain and Walder, 1998), or is simply standing in crevasses and other conduits (Phillips

et al., 2013). Because of its temperature equal to zero or even positive, melt water can signi�cantly

a�ect the temperature gradient of the ice. In response to a higher temperature gradient, the heat

transfer by conduction and convection lead to an e�ective warming of the ice surrounding the CHS

(Cryo-Hydrologic System), whose intensity is controlled by the density and the geometry of the

CHS (Phillips et al., 2010). As the surface melt water need �rst to reach the CHS for the onset of

the CHW, this combination of processes occurs mainly in the ablation zones of glaciers. Indeed,

the snow cover that remains during summer in the accumulation area traps the melt water that

percolates and refreezes in the snowpack, before reaching the ice. Thus, the surface melt water

A. Theoretical background 17

in the accumulation zone alters only the temperature gradient of the uppermost ice layer (see

section Refreezing). The �uctuations of the snowline is therefore a controlling factor on the glacier

area that may be a�ected by CHW.

2.4 Heat advection and ice velocity

The heat convection or heat advection is the process by which the internal temperature distribution

of an ice body is altered due to a displacement of ice with di�erent temperature. As such, cold

ice �owing towards zones with relatively warm ice may increase the temperature gradient at some

point, and the other way around for warm ice �owing towards cold ice areas. On a vertical pro�le,

the temperature can be a�ected by convection occurring on both horizontal and vertical directions :

∂T

∂t
= −w∂T

∂z
− u∂T

∂z
(� 1.4)

where t is the elapsed time between the start and the end of the calculation, and where w and u are

the vertical velocity and the horizontal velocity respectively. Equation (� 1.4) enables to calculate

changes of temperature over time, at a particular point of the ice mass (∂T/∂t), and if convection

would be the only heat transfer. For fast �owing ice streams (e.g. > 1 km.yr-1 for some outlets of

the Antarctica ice-sheet), ice convection is one of the main heat transfer component (Huybrechts

and Oerlemans, 1988; Cu�ey and Paterson, 2010; Pattyn, 2010). Conversely, in relatively stagnant

ice masses, the convection term is near to zero in the heat transfer equation (Paterson, 1968).

2.5 Ice deformation

The ice deformation is another type of heat source. The energy produced by the ice deformation

is proportional to the stress applied by the environment on the ice, and to the strain rates of the

medium. Considering the ice as incompressible is a good approximation, and the energy released

as heat by the ice deformation can then be expressed as follows (Cu�ey and Paterson, 2010) :

dice = ε̇jk · τjk (� 1.5)

where ε̇jk and τjk are the deviatoric strain rates and stresses respectively. Hence, the temperature

gradient contribution of the ice deformation is usually more important at the interface ice/bed or

in lateral shear margins of glaciers and ice-sheets.

2.6 Sliding frictions

The heat production that results from the friction between a �owing ice mass and its bedrock is a

potential contributor to the ice temperature gradient variations. It leads to an increase in the basal

18 � 1. Theoretical background and geographical setting

layer temperature gradient and keeps the basal ice at pressure melting point in fast �owing zones

of glaciers (Blatter, 1987; Pattyn, 2010). This heat source is generally more signi�cant along the

center line of glaciers, and decreases towards the margins (Robinson, 1984). The energy generated

is equal to the product of the ice velocity and the resistive force :

fb = ub · τb (� 1.6)

where ub is the basal ice velocity, and τb is the shear stress of the ice against the bedrock. Cu�ey

and Paterson (2010) pointed out that for a thickness and a slope of the bed corresponding to a

shear stress of 100 kPa, combined with a basal slip ranging from ∼15 to 20 m.yr-1, the heat released
by basal sliding friction is of the order of a typical geothermal heat �ux (see section Geothermal

heat �ux).

2.7 Geothermal heat �ux

Most of the material in section Geothermal heat �ux is based on the work of Sclater et al. (1980).

The geothermal heat �ux a�ects the temperature gradient in ice masses from beneath. This �ux

results partly from the formation of the continental crust from the warm mantle of the astenosphere.

The temperature of this newly formed lithosphere decreases gradually over time, which leads to

spatial variations of the geothermal �ux.

In addition to the initial warmth of the young lithosphere, other factors contribute to the total

geothermal �ux, at speci�c points of the Earth's surface. Orogenic events triggered by continental

collision, or even continental stretching are potential heat producers. As for the ice deformation (see

section Ice deformation), the deformation of the continental crust is an exothermic transformation.

The stresses and strains arising from the lithosphere motions can be sources of signi�cant amounts

of energy.

Furthermore, radio-elements can also be heat-producing elements, when it comes to their decay

into radio-genic compounds. Hence, the geothermal in�ux in ice masses depends likewise on

the radio-elements content of the underlying lithosphere, especially the content in uranium (U),

thorium (Th) and potassium (K).

The last major contributor to the geothermal �ux is certainly volcanoes, especially in regions,

such as Iceland, where both volcanoes and glaciers are close, or even in contact, to each others.

The non-radiogenic component of the geothermal �ux reduces to a constant value of ∼21-
25 mW.m-2, after a period ranging from 200 to 400 Ma following the lithosphere formation. The

total geothermal �ux would decrease to reach the constant value of ∼42-50 mW.m-2 after 800 Ma.

In their work, Sclater et al. also contend that most of the continental crust dates back to∼3 800 Ma.

However, orogenic events or even erosion tend to modify continuously the age of the continental

A. Theoretical background 19

crust. Therefore, the continents have been divided into four age provinces. A mean geothermal

�ux of ∼77 mW.m-2 has been recorded for the youngest province (<250 Ma), and the averaged

geothermal �ux measured at the oldest (>1 700 Ma) neared ∼46 mW.m-2.

3 Temperature and dynamics

3.1 Ice temperature and Glen's �ow law

One the main contributions of temperature in the glaciers dynamics is its e�ect on the ice defor-

mation rate. An increase in the ice temperature has as consequences to decrease the ice viscosity.

The creep or shear strain rate of the ice is directly proportional to the viscosity of the material as

illustrated by the Glen's �ow law (Glen, 1955) :

ε̇ = A · τn (� 1.7)

where A is the creep factor dependant on temperature, τ is the dominant shear stress and n is an

empirical creep exponent with a mean value of about 3. As an order of magnitude, a cooling of

the ice from -10◦C to -25◦C increases its viscosity, and hence the shear strain rate, by a factor of 5

(Cu�ey and Paterson, 2010). Changes in ice temperature have therefore direct e�ects on the �ow

velocity of glaciers.

3.2 Basal thermal regimes

Ice masses can be characterized by two di�erent basal thermal regimes, which re�ect if the basal

ice is sliding over the bed or not. The basal regime has likewise a signi�cant role in the subglacial

hydrology of glaciers, and can determine whether the melt water will �nd its way to bed or not.

Cold-based glaciers have a well de�ned basal thermal regime. The basal ice of these glaciers

is at temperature below the melting point, which prevents basal sliding. Cold-based regime can

also be characterized by its inability to sustain subglacial hydrological system. If ablation-season

temperatures are high enough to produce surface melt water, the water would refreeze before

reaching the bed, while percolating in the overlaying �rn, or in contact with the cold ice. Mountain

and small valley glaciers in polar regions are typical glacier with a cold-based regime (Blatter, 1987;

Maohuan, 1990; Haeberli and Funk, 1991; Maohuan, 1999; Lovell et al., 2015). Polythermal glaciers

may partly be cold-based, usually close to the front and their margins (Björnsson et al., 1996; Jania

et al., 1996). For land terminating glaciers, a cold-based regime usually leads to weak proglacial

streams, generated by a relatively poor annual melt water input reaching the glacier front. The

water feeding these streams may be a good approximation for the total surface run-o� of the

20 � 1. Theoretical background and geographical setting

glacier.

Temperate glaciers have another thermal regime. Owing to the presence of temperate ice at

the base of these glaciers, basal sliding is therefore possible. This component must be taken into

account in ice �ow models (Shannon et al., 2013). Increases in velocity during the melt season is

often an indicator of temperate or polythermal basal ice (Rabus and Echelmeyer, 1997). Studies

performed at Jakobshavn Isbrae using temperature borehole measurements, combined with surface

velocity measurements, support this theory (Iken et al., 1993; Funk et al., 1994; Lüthi et al., 2002;

Zwally et al., 2002). As opposed to cold ice, temperate or polythermal ice enable the development of

a subglacial drainage system (see Temperature distribution and glacier classi�cation). The sudden

acceleration at Jakobshavn Isbrae is thought to result from enhanced basal lubrication, due to

the melt water input produced during the ablation-season, together with an active basal sliding.

The basal sliding can occur on account for the presence of polythermal ice at the lower part of

the ice-sheet. Basal ice at the melting point can therefore a�ect signi�cantly glaciers dynamics,

and consequences of a temperate/polythermal basal regime can be observed even on high latitudes

glaciers (Rabus and Echelmeyer, 1997; Copland et al., 2003). Other �eld observations referred to

temperate/polythermal basal ice and its ability to shelter a subglacial drainage system (Fountain

and Walder, 1998). Such assumptions were done when a supraglacial lake, which presumably

drained to the base of the ice-sheet, triggered an uplift of the ice, followed thereafter by a �ow

acceleration (Das et al., 2008). Accelerated �ows downstream of moulins in Greenland support

also the idea of the basal lubrication process (van de Wal et al., 2008).

4 GPR principles and applications in glaciology

4.1 Overview of the Ground Penetrating Radar principles

Ground Penetrating Radar (GPR) is a geophysical investigation device widely used in Earth sci-

ences since the 1960s. This remote sensing technology belong to the Radio-Echo Sounding (RES)

systems. It consists of two separate antennas, one emitting an electromagnetic signal, and the

other one receiving back the signal. The signal is sent by pulse with a known frequency, and is

partly re�ected by the inhomogeneities of the medium investigated. The re�ections of the signal

by these inhomogeneities produce various amplitudes of the signal return, for each pulse. A layer,

commonly called Internal Re�ection Horizon (IRH), can act as a re�ector if its dielectric properties

are di�erent from the ones of the overlaying material. The depth of the signal propagation is also

strongly dependent on the used frequency. A high frequency enables to determine the location

of internal re�ection horizons with a higher vertical resolution. However, as the electromagnetic

waves are more quickly dissipated into heat with a high frequency, lower frequencies will enable

A. Theoretical background 21

a greater depth of investigation. The frequencies used for glaciological applications usually range

from 50 to 1000 MHz (Plewes and Hubbard, 2001).

The radar signal propagation in a medium depends mainly on two electrical of this medium : the

relative permittivity (relative to the permittivity in free air) and the conductivity, often expressed

in mS.m-1. The relative permittivity describes the ability of the material to store an electrical

charge, and the conductivity describes the ability of the material to transmit an applied electrical

charge (Plewes and Hubbard, 2001).

Finally, the GPR system records a two-way time return (travel of the signal before and after

re�ection), as well as an amplitude of the signal return. If one knows the velocity of propagation of

the electromagnetic signal, the time return corresponding to each internal re�ection horizon can be

converted to depth. The amplitude of the signal return gives information about the characteristics

of the re�ecting layers.

4.2 GPR applications in glaciology

GPR has numerous application in glaciology. It has proven to be very useful for mass balance

measurements. The traditional way to calculate the winter balance on small valley glaciers is

to probe manually the snowpack at multiple locations to get an overview of the snow depth

distribution, and to combine the measurements with snow density pro�les. However, this method

is time consuming and does not enable to cover large areas. The use of the GPR technology

revolutionised mass balance measurements for its ability to map the snow depth distribution at a

regional scale over a short time, and with a high spatial resolution. Kohler et al. (1997) mapped

the depth of the last summer surface on glacier sections of several hundreds of meters, with a point

measurement every 20 cm.

The accumulation rate over a glacier is variable both in time and space. A prior knowledge

of the past accumulation rates is therefore essential in climatic archives and ice cores analysis.

In order to obtain a reliable accumulation rates, measurements must be averaged over several

years. Certain IRHs with a known date can be used to compute the mean accumulation rates,

such as sulfate-rich layers marked by volcanic eruptions, or even layers showing a high content in

radioelements (Pinglot et al., 2001). These IRHs can be detected on radargrams, and their depth

calibrated from ice core sites. The GPR can then be used to map the depth of the IRHs over

large distances in order to get an insight into the spatial variability of the accumulation rate for a

given period. Palli et al. (2002) used the Chernobyl layer together with the 1963 bomb horizon to

calculate the mean accumulation rate between 1963 and 1986 on Nordenskjöldbreen, a Svalbard

glacier. The 11.4 km GPR pro�le was calibrated from four drilling sites.

In addition to its valuable use for mass balance measurements, GPRs can be used to record

the depth of the bedrock IRH of ice masses. When coupled with the ice surface topography,

22 � 1. Theoretical background and geographical setting

the glaciers thickness enable to determine the bedrock topography. The ice thickness and the

bedrock topography are boundary conditions for numerical modelling of the ice �ow of glaciers,

and therefore essential in glacier dynamics studies (Dowdeswell et al., 2004).

GPRs are useful devices to investigate the internal structures and thermal layering in glaciers.

Borehole measurements can be used to assess the temperature distributions in glaciers. However,

for great depths of investigations, these can be expensive and time-consuming operations. Multi-

frequency GPR surveys enabled to map at a regional scale the thermal regimes of numerous

polythermal glaciers (Björnsson et al., 1996; Jania et al., 1996; Moore et al., 1999; Pettersson

et al., 2003).

Finally, the use of GPRs can shed a light on bedrock properties and basal conditions of ice

masses, such as the roughness, the wetness of the ice-bed interface, the existence of basal crevasses,

or even the presence of subglacial debris (Bamber, 1989; Plewes and Hubbard, 2001).

Chapter B

Study sites

1 Hellstugubreen

Hellstugubreen (61◦34'N, 8◦26'E) is valley glacier laying in the mountains of Jotunheimen (Fig-

ure � 1.2a). The glaciers has mostly north-facing slopes and has an area of 2.81 km2. On the upper

part, the ice divide separate Hellstugubreen and Vestre Memurubre glacier. Length measurements

were conducted since 1901 and mass balance measurements were carried out annually since 1962

(Andreassen et al., 2012). In 2009, the glacier front elevation was 1494 m.a.s.l. and the uppermost

part of the glacier at 2212 m.a.s.l. Figure � 1.2a shows the retreat since 1941, with the glacier

outlines for di�erent years. The glaciers outlines were derived from orthophotos. The map shows

that a large ice patch was disconnected from the glacier between 1968 and 1980. The results from

mass balance measurements indicates a predominance of the ablation area over the accumulation

area, with the ELA �uctuating between 1840 m.a.s.l. and the maximum elevation of the glacier

for the past 20 years. In 2010, the speci�c net balance was -1.34 m water equivalent, resulting in

a volume loss of 3.89·106 m-3. The surface topography of the glacier is known from Light Detec-

tion And Ranging (LiDAR) measurements conducted in 2009 by the mapping Norwegian company

Blom Geomatics AS. The output data is available at a 5 m spatial resolution. The glacier ice thick-

ness is known from GPR measurements conducted in 2011, with an measurement uncertainties of

±15 m (Andreassen et al., 2015). The �rst ice surface velocities were estimated by triangulation

methods in the 1940s and 1960s (Pay, 2014). Accurate surface velocities can be derived from stake

surveys, which are based on DGNSS georeferencing and available from September 2009.

2 Storbreen

Storbree (61◦34'N, 8◦8'E) is another mountain glacier situated in Jotunheimen (Figure � 1.2b). A

map from 2009 estimate the glacier area to be 5.1 km2 (Andreassen et al., 2011b). The minimum

elevation is at 1400 m.a.s.l. and the maximum elevation at 2102 m.a.s.l. The glacier slopes are

north-east oriented. Length measurements were carried out since 1902 at Storbreen (Andreassen

et al., 2012). The map in Figure � 1.2b shows the glacier front positions at di�erent times since

1940. The glacier outlines were also derived from orthophotos. As the glacier retreated, a nunatak

23

2
4

�
1
.
T
h
e
o
r
e
tic
a
l
b
a
c
k
g
r
o
u
n
d
a
n
d
g
e
o
g
r
a
p
h
ic
a
l
se
ttin

g

(a) (b)

Figure � 1.2: The �gure shows the study sites with Hellstugubreen in (a) and Storbreen in (b). In (a), the map shows the glacier retreat
since 1941, with the �uctuations of the glacier outlines position. In (b), the glacier retreat from 1940 is shown. For both
maps, the elevation contour lines were generated from the 2009 LiDAR data, and the outlines are derived from orthophotos
(data : NVE).

B. Study sites 25

separated the front into two glacier tongues. The glacier mass balance was measured annually

since 1949 (Andreassen et al., 2011b). The ELA showed larger �uctuations than observed at

Hellstugubreen, oscillating between 1650 ma.s.l. and the maximum elevation of the glacier during

the past 20 years (Andreassen et al., 2011b). The work from Andreassen et al. (2011b) indicated a

speci�c net balance of -1.76 m w.e. in 2010, resulting in a total mass loss of 9.07·106 m-3. Regarding

the surface topography, the same LiDAR data are available for Storbreen in 2009. The surface

velocity was estimated from previous triangulation works carried out in the 1960s (Liestøl, 1967).

Stake surveys with DGNSS referencing started in September 2006 at Storbreen. At Storbreen,

the ice thickness is also know at points measurements, covering most of the elevation range of the

glacier. The uncertainties of the measurements are also estimated to be ±15 m (Andreassen et al.,

2015).

Part � 2

Methods

Chapter A

Ice thickness

1 Field data acquisition

1.1 GPR antenna

Figure � 2.1: GPR RTA 50 MHz antenna and DGNSS rover
towed by snowmobile.

The ice thickness of both Hell-

stugubreen and Storbreen was ob-

tained along GPR transects during

the �eld work of April 2014. The

thickness for both glaciers was mea-

sured earlier (see section ??) using

a 10 MHz antenna. As for the �eld

work in April 2014, a 50 MHz MALÅ

Rough Terrain Antenna (RTA) was

chosen (Figure � 2.1), since the main

objective was to observe a potential

layering regarding the temperature

distribution in the ice, and to identify

the cold/temperate ice interface. As

the choice of a frequency is a trade-o�

between vertical resolution and pene-

tration depth of the signal (see section GPR principles and applications in glaciology), the higher

frequency chosen for this �eld work resulted in an IRH from the bedrock not always visible on the

GPR pro�les.

1.2 GPR pro�les

A set of six transects was obtained on Hellstugubreen (Figure � 2.2a). The antenna was dragged

along the surface, towed by a snowmobile, and a separate sledge, a DGNSS rover was install to

georeferencing the radar pro�les (Figure � 2.1). The base station used as reference for the rover

is located a few hundred meters away from the glacier front. The RES transects were obtained

27

28 � 2. Methods

using a common-o�set geometry with a distance of 4.2 meters separating the transmitter and

receiver antennae. A sampling frequency of ∼510 MHz and a time window of ∼3110 ns were

chosen, resulting in about 1900 samples per traces. While pro�ling, the snowmobile went at a

constant speed of ∼1 m.s-1, and the time interval between consecutive traces was 0.5 s. This gave

about two records every meter along the pro�les. The pro�les distances range between ∼315 and

∼1430 meters. The elevation of the pro�les spans from the glacier front (1490 m.a.s.l. in 2013)

to ∼2080 m.a.s.l. The elevation range covered by the glacier obtained from the 2009 LiDAR data

was 1484-2222 m.a.s.l., which makes a coverage of 80% of the total elevation range by the RES

transects. No measurements were performed in the two upper cirques of the glacier, as both zones

are heavily crevassed and therefore were inaccessible by snowmobile.

As for Storbreen, �ve pro�les were obtained in the same manner, with a slightly di�erent setup.

The sampling frequency was set to ∼610 MHz, and a shorter time window of ∼2460 ns, as the

thickness along the pro�les to be mapped on Storbreen was expected to be generally smaller than

the pro�les obtained on Hellstugubreen. The number of samples per trace neared 1250. The RES

pro�les on Storbreen were between ∼150 and ∼1115 meters long (Figure � 2.2b), and the trace

interval distance was about the same as for Hellstugubreen. The elevation of the pro�les ranges

from the glacier front (1438 m.a.s.l. in 2014) to ∼1630 m.a.s.l. Only the lower part of Storbreen

was mapped during the �eld work of April 2014. The upper part was unapproachable with the

snowmobile due to crevasses and steep topography.

2 Data analysis

2.1 Post-processing

Software and �ltering

All the post-processing of the radargrams were e�ectuated in the 2D data-analysis module of the

REFLEXWTM Sandmeier software, version 7.5. The radargrams were �rst �ltered horizontally by

removing certain traces obtained while the snowmobile stopped, and which do not give additional

information on depth variations of the IRHs. The start time of the records was then re-adjusted

to remove the direct wave travel time. This delay is the time that the radar signal takes to travel

from the transmitter antenna directly to the receiver antenna.

The next processing steps were to use 1D-�lters on the radargrams, such as subtract-mean

(dewow) and bandpass �lters. The subtract-mean �lter was used to remove some of the low

frequency noises. This �lter a�ects each traces of the pro�le independently. On each trace, it

computes a running mean for each value and for a given time window. This mean is then subtracted

from the center value of the time window. A time window of 20 ns was chosen, as one principal

A. Ice thickness 29

period of the radar signal is a suitable value (Sandmeier, 2014). The bandpass frequency �lter

aims to improves the signal-to-noise ratio by suppressing unwanted frequencies (noise) from the

traces, that di�er too much from the center frequency of the signal (50 MHz). A low-cut frequency

and a high-cut frequency were de�ned, and outside the interval of these frequency, the frequency

spectrum was set to zero.

Finally, a gain �lter was used on the radargrams to improve the readable signal at depth.

Indeed, as the signal penetrates deeper in the ice, the electromagnetic energy is dissipated into

heat, which causes a loss in signal strength. It is to limit this e�ect that the energy decay �lters

come in handy. First a mean amplitude decay function is computed automatically by the software

from all the traces. The traces are then corrected by dividing all sample values by the values of

the decay function for the corresponding depths.

Time-depth conversion

A mean velocity of 168 m.µ s-1 was used to convert the two-way time return of the signal into

depth. Neither a Common Midpoint (CMP) analysis, nor comparisons of radar and boreholes

measurements were done on the �eld to determine the propagation velocity of the signal in the

ice. The choice of the mean value was based on numerous previous studies (Glen and Paren, 1975;

Murray et al., 1997; Pettersson et al., 2003; Navarro et al., 2005; Urbini et al., 2006). The constant

velocity for the time-depth conversion assumes that the medium in which the signal propagates is

homogeneous regarding its dielectric properties.

Digitizing and visualisation

Once the coordinates of the traces were de�ned based on the DGNSS measurements, the IRH

matching to ice/bedrock interface was picked manually on the radargrams, every 2-10 meters.

The points were then exported into pick�les (∗.pck) at the ASCII format, and imported into

Quantum GIS for analysis.

Errors estimates in ice thickness

As mentioned previously, the use of a constant propagation velocity for the time-depth conversion

relies on the homogeneity of the investigated medium, regarding its dielectric properties. This

method therefore assume the absence of a snow/�rn layer at the surface. Moreover, the radio-

wave velocity is very sensitive to the water content as the relative permittivity of ice and water

respectively di�er by more than one order of magnitude (Moore et al., 1999; Pettersson et al., 2004;

Navarro and Eisen, 2009). Since the water content may vary widely in space, with time and depth

in polythermal glaciers (Jania et al., 1996; Murray et al., 2000; Pettersson et al., 2003; Bingham

30 � 2. Methods

et al., 2005; Irvine-Fynn et al., 2011), the assumption of a constant propagation velocity may be

inaccurate for Hellstugubreen and Storbreen (see Temperature distribution and thermal regimes).

As an example, Benjumea et al. (2003) show that a change of 1% in the water content results in

a variation by ∼3% of the propagation velocity of the signal.

As mentioned above, the calculation of the ice thickness depends both on the two-way time

return and the propagation velocity of the signal. The error propagation of the ice thickness

resulting from errors in the electromagnetic signal velocity and the two-way travel time can be

estimated using the following equation (Navarro and Eisen, 2009) :

eIT =
1

2

√
(τ 2e2v + v2e2τ) (� 2.1)

where τ is the two-way time return, v is the propagation velocity, and eτ and ev are the error

estimates from the two-way travel time and the propagation velocity respectively. Considering the

previous years GPR data, the maximum ice thickness to be expected along the pro�les on both

Hellstugubreen and Storbreen is about 180 meters. With an error estimate of the two-way travel

of half a principal period of the signal (10 ns), and an error of 2% for the propagation velocity, the

equation (� 2.1) gives an error of ∼3.70 m in ice thickness at the thickest zones of the glaciers.

The theoretical vertical resolution of GPR antennae is about a quarter of the wavelength (λ/4)

of the propagating signal (Sheri� and Geldart, 1995; Jol, 2009). In practice, however, half of the

wavelength (λ/2) is a more sensible estimation of the range resolution (Navarro and Eisen, 2009),

and can therefore be calculated using the following formula :

r ≈ λ

2
≈ 0.5 · vp

fc
(� 2.2)

where λ is the wavelength of the electromagnetic signal, vp is the propagation velocity in the

medium, and fc is the center frequency of the antenna. With a propagation velocity of ∼168 m.µ
s-1 in ice and a center frequency equal to 50 MHz, the range resolution expected is ∼1.7 m.

Regarding the horizontal resolution, as no migration methods were performed on the radar-

grams from April 2014, its value is dependent on both the wavelength and the depth of the IRHs.

The horizontal resolution of the non-migrated radar pro�les is determined by the footprint of the

radar beam, the also called �rst Fresnel zone (Navarro and Eisen, 2009). The radius of the �rst

Fresnel zone can be calculated with the following formula (Robin et al., 1969) :

rF =

√
λz

2
+
λ2

16
(� 2.3)

where λ is the wavelength and z is the depth of the re�ector. With λ ' 3.4 m and a maximum

ice thickness of ∼180 m, the radius of the �rst Fresnel zone is about 17.4 m. This means that

A. Ice thickness 31

on the deepest zones of the glaciers, every re�ector matching to the bedrock and visible on the

radargrams resulted from the contribution of an area with a radius of ∼17.4 m. This may result in

large uncertainties for the ice thickness measurements, especially where the bedrock topography

is steep such as near the valley walls, at the glacier margins (Moran et al., 2000; Jol, 2009). The

study from Moran et al. (2000) pointed out that performing a three-dimensional migration method

on GPR data may improve the depth accuracy by 36%.

Further errors of the ice thickness may result from di�erent sources. The digitization process

can be subjective and leads to uncertainties in ice thickness along the radar pro�les. By comparing

same pro�les digitized several months apart, Pettersson et al. (2003) noted di�erences of ±0.25 m
for the ice thickness. A crossover analysis is a common method to assess the uncertainties coming

from vertical accuracy and digitizing (Pettersson et al., 2011; Navarro et al., 2014; Andreassen et al.,

2015). However, owing to a bedrock rarely visible on the radargrams from April 2014, there was

not enough crossover points available after digitization to perform this analysis. Finally, between

pro�les, the interpolation of the ice thickness (see Thickness data interpolation) also results in

uncertainties, which are larger at greater distance from the pro�les. No performance analysis was

done to test the accuracy of the interpolated values.

The uncertainties for the RES measurements at Hellstugubreen from 2011 and at Storbreen

from 2005-2006 are both estimated to be ±15 m, at the point measurements (Andreassen et al.,

2015). According to the above errors and uncertainties assessment, along with previous stud-

ies on the ice thickness mapping of sub-polar glaciers (Björnsson et al., 1996; Pettersson et al.,

2003; Andreassen et al., 2015), the errors on the ice thickness is estimated to be ±25 m for the

measurements from April 2014, at both Hellstugubreen and Storbreen.

2.2 RES pro�les from 2011 at Hellstugubreen

The ice thickness at Hellstugubreen was for the most part determined from the RES pro�les from

2011 owing to the dense spatial coverage of the pro�les (e.g. Andreassen et al., 2015, Figure � 3.1),

and as the ice/bedrock IRH was not much visible on the radargrams from 2014, due to the use of a

higher frequency antenna for this year. The transects from 2011 were corrected for the melt from

2011 to 2014, and for the snowpack thickness from April 2014 (Figure � 2.3). The RES pro�les

from 2014 were used to compare with the results from 2011, and validate the correction methods.

Surface lowering derived GPS pro�les and LiDAR data di�erentiation

During the �eld work in April 2014, the GPR pro�les were georeferenced using the Real Time

Kinematics DGNSS technique. The height of the GPR transects were therefore obtained while

pro�ling. The height of the rover antenna attached on the sledge was subtracted from the height

32 � 2. Methods

recorded by the rover antenna. The accuracy of the vertical coordinates is expected to be only a

few centimetres, as the base station is located in the vicinity of the measurements.

The thickness of the snowpack from April 2014 had values ranging from ∼145 to ∼475 cen-

timetres. Those values were derived from manual probings. 167 manual snow probings were e�ec-

tuated in the same period as the GPR measurements, at elevations spanning from ∼1550 m.a.s.l.

to ∼2100 m.a.s.l. The snow depth values were then interpolated in ArcGIS software, developed

by ESRI. The interpolation was done using the Ordinary Kriging algorithm of the Spatial Ana-

lyst toolbox. A spherical model was chosen to �t the empirical semivariogram, with 12 lags of

100 meters each. The result is the snow depth map presented in Figure � 2.3. The snow depth

map was then used to correct the elevation of the RES pro�les, in order to obtain the height of

the ice surface. However, in the higher parts of the glacier, it is likely that the snow probings

values represents the snow depth to the �rn surface, as the probings were intended to measure the

snowpack thickness of the winter 2013-2014. The ice/�rn surface elevation along the pro�les was

then compared with the elevation of the 2009 LiDAR data at the same locations. The di�erence

between both datasets gives an estimate of the surface lowering experienced by the glacier between

2009 and 2014.

The surface lowering values estimated along the pro�les were also interpolated using the Ordi-

nary Kriging algorithm. A spherical model was also used to �t the empirical semivariogram, with

15 lags of 100 meters each. The interpolation resulted in the surface lowering map for the period

2009-2014, as shown in Appendix A.2. The calculated surface lowering ranges from ∼15.8 meters

near the front, to an increase of the surface elevation (accumulation) by about 3.1 meters (Ap-

pendix A.1). The area that experienced an increase in surface elevation is situated near the ice

divide between Hellstugubreen and Vestre Memurubreen.

Corrections of the RES pro�les

In order to use the GPR pro�les from 2011 to generate an updated ice map for 2014, the surface

lowering between these two years needed to be subtracted from the the GPR measurements. The

comparison between the ice/�rn surface elevation pro�les from April 2014 and the laser scanning

from 2009 gives an estimate of the surface lowering between 2009 and 2014. The surface lowering

presented in Appendix A.2 can therefore not be used directly to correct the GPR pro�les. Contin-

uous mass balance measurements for the period 2009-2014 were obtained at stakes H13, H26 and

H44. The stakes H13, H26 and H44 were located in September 2014 at 1570, 1687 and 1890 m.a.s.l.,

respectively. The surface lowering between May 2011 and April 2014 represent ∼71.2% of the to-

tal surface lowering experienced by the glacier at stake H13, between September 2009 and April

2014. The same calculations at stakes H26 and H44 resulted in percentage values of ∼75.1 and

63.0, respectively. The average value of ∼69.8% was used as a multiplying factor to correct the

A. Ice thickness 33

surface lowering map. However, the use of a constant correcting factor over the entire map has its

limitations : it assumes (i) the net mass balance at any points with same elevations on the glacier

is identical; and (ii) the net mass balance changes are synchronized and proportionally the same

at any elevation.The GPR pro�les from 2011 were then corrected by subtracting from each records

the value of the resulting map at the corresponding locations. To obtain better results, one should

use mass balance measurements at more stakes and to use a correcting factor that varies spatially.

However, continuous mass balance measurements for 2009-2014 were only available at these three

stake positions.

34 � 2. Methods

(a) (b)

Figure � 2.2: RES pro�les on Hellstugubreen (a) and Storbreen (b) covered in April
2014. The elevation contours and glacier outlines for both glaciers are
derived from the 2009 laser scanning and orthophotos (data : NVE).

A. Ice thickness 35

Figure � 2.3: Snow depth map at Hellstugubreen in April 2014, derived from manual snow probings.
The probings were georeferenced with a hand-held GPS. The elevation contours and glacier
outlines are derived from the 2009 laser scanning and orthophotos (data : NVE).

36 � 2. Methods

Thickness data interpolation

In order to create the ice thickness map of Hellstugubreen, the ice thickness was set to 0 along the

glacier oultines from 2009, and along the glacier front georeferenced with DGNSS in September

2013. The corrected RES pro�les and the glacier oultines were interpolated using Ordinary Kriging.

A spherical model was used to �t the empirical semivariogram, with 15 lags of 100 meters. The

resulting map is shown in Figure � 3.1, in Ice thickness at Hellstugubreen.

2.3 Ice thickness on Storbreen

Much scattering was observed on GPR pro�les done on Storbreen during the �eld work of April

April. This made di�cult the manual picking of the IRH matching to the interface ice/bedrock.

The interface was digitized at only 85 points. Moreover, the GPR measurements covered only the

lower part of the glacier. It was therefore not possible to get an overview of the ice thickness of the

whole glacier. Past RES measurements were performed in April 2005 and May 2006. The mea-

surements cover also the upper parts of the glaciers. However, owing to technical problems during

the �eld works, the ice thickness was only recorded at point locations, as opposed to continuous

measurements along pro�les. As such, the ice thickness was measured at about 130 points, over

the period 2005-2006.

As the GPS pro�les did cover only the lower parts of the glacier in April 2014, changes of the

surface elevation could not be assessed for the whole glacier by comparing with the LiDAR data.

In addition, the snow depth during the �eld work of April 2014 did not have a global coverage

either. Therefore, no correction was applied on the RES measurements of 2005-2006, nor on the

measurements from 2014. The ice thickness data for Storbreen is shown in Figure � 3.4, in Ice

thickness at Storbreen.

Chapter B

Investigating the thermal regime and air

temperature measurements

1 Hellstugubreen

1.1 Subsurface ice temperature pro�les at Hellstugubreen

Figure � 2.4: Thermistors line and Hobo external
temperature data logger mounted on
stake H13.

The ice temperature in the subsurface was mea-

sured at two stake locations on Hellstugubreen.

The �rst location was stake H13 (1570 m.a.s.l.),

which is near the glacier front, and the sec-

ond location was at stake H44 (1890 m.a.s.l.)

(see Figure � 2.7a). One borehole was drilled at

each site, using a steam drill. A depth approx-

imating 14 meters was reached at both sites.

One thermistor line was inserted in each bore-

hole, allowing to to obtain the ice tempera-

ture at several depth levels, inferior to 13 me-

ters. The thermistor lines were mounted on 8-

conductor shielded cables. Seven NTC ther-

mistors PR103J2 were installed on each line,

at 2-meter intervals. Each thermistor was con-

nected soldered to one conductor lead and the

metallic shield, and was then protected by heat-

shrink tubing. The thermistors have an accu-

racy of ±0.05◦C within the temperature range

measured. After the mounting of the thermis-

tor, each of the sensors were calibrated for a

temperature of 0◦C. The factory-tested resis-

tance value for this type of sensor is 32.65 kΩ, however after the mounting of the line, the re-

37

38 � 2. Methods

sistance value observed at 0◦C ranged from 32.4 to 32.7 kΩ. For the sensors that shown a shift

between the observed value and the factory-tested value at 0◦C, each point of the calibration curve

(Appendix C.1) was corrected for the same di�erence. As such, the calibration curve was corrected

for each sensor before converting the resistance value into a temperature value.

Figure � 2.5: Temperature approximation using a linear in-
terpolation on the calibration curve of the NTC
thermistors.

A weight was attached to the bottom of each

line to ease the cable insertion, and the cable

was then taped to the stake (Figure � 2.4). At

stake H13 and at the time of setup, the lower-

most and uppermost sensors were at a depth of

∼12.6 m and ∼0.6 m respectively. At stake

H44, the lowermost and uppermost sensors

were at a depth of ∼12.1 m and ∼0.1 m respec-

tively. As the thermistors lines were mounted

on shielded cables at Hellstugubreen, the ice

temperature could only be obtained manually,

by using a multimeter device. As such, ice

temperature measurements have a low tempo-

ral resolution. At stake H13 the resistance of

each thermistor was measured seven times between the 2nd of April 2014 and the 19th of Septem-

ber 2014. At stake H44 and for the same period, the resistance of each thermistor was measured

eight times. From the resistance read with the multimeter device, the temperature value was di-

rectly obtained from the calibration curve. As the calibration curve was a set of points and not a

continuous function, if the resistance value read on the multimeter fell between two known points,

the temperature was approximated by a linear interpolation between both neighbouring points as

shown in Figure � 2.5. This is not a bad approximation as the calibration curve is nearly linear

within the temperature range of measurements (Appendix C.1). The length of the cable for the

tape on the stake to the �rst sensor was known for both thermistors lines. The distance between

sensors on the same line was also a known variable. Therefore, for each measurements, the length

of the cable from the tape to the ice surface enabled to obtain the depth of the sensors at the

time of measurements. This assume the thermistors lines remained straight and vertical in the ice,

which goes against the presence of signi�cant ice deformation in the subsurface.

1.2 Air temperature

The air temperature was also measured at stakes H13 and H44. At each location, one HOBO Pro

V2 2x External Temperature data logger was installed on the stake. Two wires were connected to

the loggers, with a temperature sensor at the other wires end. On of the sensors was set as far

B. Investigating the thermal regime and air temperature measurements 39

down in the borehole as possible. At both stakes, the restricted length of the sensor-logger wires

and the thickness of the snowpack at the time of setup did not give enough reach to the sensor

for being installed in the ice. The other sensor connected to the data logger was inserted in a

radiation shield and mounted on the stake (see Figure � 2.4). At the time of setup, the height of

the radiation shield above the surface was 87 cm at stake H13 and 53 cm at stake H44. However,

the height changed rapidly over the period of measurements with the �uctuations of the surface

level, associated with melt processes and snow accumulation. From the 2nd of April to the 19th

of September 2014, the data loggers recorded the air temperature at 30-minute intervals, with an

accuracy ranging from ±0.2 to ±0.3◦C and with a resolution inferior to 0.05◦C (see Appendix C.3).

2 Storbreen

2.1 Subsurface ice temperature at Storbreen

Figure � 2.6: Digital thermistors
string and GeoPrecision
M-Log5W data logger
mounted on stake S2.

On Storbreen, the subsurface temperature was mea-

sured at only one location. The ice temperature was

recorded using a digital thermistor string connected to a

GeoPrecision M-Log5W data logger (Figure � 2.6). The

advantage of a digital thermistor string is that it records

automatically data at a prede�ned time-interval, as

opposed to the manual temperature measurements on

Hellstugubreen. The data could then be collected when

needed. The thermistor string was mounted on stake

S2 on the 3rd of April 2014, but the data logger was pro-

grammed and mounted only on the 20th of May. The

stake was located at 1527 m.a.s.l. in September 2014,

at 400 m from the glacier front (Figure � 2.7b). On the

18up of September, an attempt to move the data logger

on a neighbouring newly drilled stake, the thermistor

string was severed, and therefore no temperature data

are available beyond this time. This resulted in about

4 months of ice temperature data, at 2-hour time inter-

vals and for various depth levels. The digital thermistor

string was ready mounted with ten sensors. These sen-

sors measure temperature with an accuracy of ±0.25◦C
and with a resolution of 0.065◦C. The uppermost sen-

40 � 2. Methods

sor was at 3 meters from the logger, the second sensor was at 3 meters from the �rst one, the

third sensor at 2 meters further away on the line, and all the remaining sensors were at 1-meter

interval from each other. Owing a snowpack with a thickness of ∼2.58 m at the time of setup, the

uppermost sensor was not in the ice when the thermistor string was inserted in the borehole. At

the end of the period of measurements and as melt processes occurred, a second sensor was out of

the ice.

Modelling the depth changes of the sensors

As the ice temperature measurements at Storbreen had a much better time resolution than the

measurements at Hellstugubreen, another method was chosen to update the depth of the sensors in

the ice. The depths were updated every day for the whole period of measurements, using a Positive

Degree Day (PDD) melt model (see Appendix D.2). The degree day melt factor was computed

using the on-site daily mean air temperature (see Air temperature). The model de�ned Control

Periods (CP), which are periods between two consecutive �eld observations during which the ice

surface was not snow covered. For each CP (Control Periods), the PDD (Positive Degree Day)

values were summed, and the total amount of ice melt computed from the �eld observations (stake

readings). The melt factor was obtained by dividing the amount of melt by the sum of the PDD

values. The melt factor happened to be slightly di�erent between CPs. For this reason, each CPs

kept its own melt factor in the model. For the periods de�ned between two �eld observations,

where the ice surface was overlaid by snow for one or both observations, the melt factor used was

the average of the factors computed for all CPs. The mean melt factor was computed giving a

weight to each CP directly proportional to the number of days of the CPs. This was based on

the assumption than the longer a CP is, the less likely to be error-prone the calculation of the

melt factor is. For each day, the amount of melt could then be calculated by multiplying the daily

mean air temperature by the melt factor. It is assumed that no melt occurred for the days with a

negative mean air temperature. Finally, the depths of the sensors was then updated every day by

subtracting the amount of melt from the previous day depths.

In the model it was likewise assumed that no ice melt occurred if the surface was snow covered.

A special procedure was therefore used for the periods de�ned between two consecutive �eld

observations, which one them was done when the ice surface was snow cover. If there was no ice

ablation, the depth of the sensors did not need to be updated. If there was ice ablation, the depth

of the sensors was updated every day, starting from the �eld observation where the ice surface was

snow-free towards the one where the surface was snow covered, until reaching the total amount of

melt for the period. When the total amount of ice melt is reached, the ice surface is considered to

be snow covered, and therefore no ice melt occurs.

B. Investigating the thermal regime and air temperature measurements 41

Estimating the ice surface temperature

In order to have a continuous ice temperature pro�le over the period of measurements, and starting

from the surface to the lowermost sensor, the surface temperature needs to be known. As the

thermistors string melted out, it happened that a sensor was exactly at the ice surface level, but

this rather seldom and never lasting. To obtain information about the ice surface temperature,

a temperature value was estimated from the other temperature values of the pro�le. For each

temperature pro�le (every other hour), a second degree polynomial function was �tted to the

data. The ice surface temperature was estimated by extrapolation of the polynomial function and

reading the value for a depth of 0. A second degree polynomial was chosen to be able to represent

diurnal temperature changes in the near surface, to a certain extent. Diurnal temperature changes

are likely to happened if the ice surface is not snow covered or if there is only a thin snowpack

(see Appendix D.1). No higher degree polynomials was used for the estimation method, as they

are prone to much divergence outside the observation range due to Runge's phenomenon. Lastly,

if the estimation method resulted in a positive ice surface temperature, this value was set to 0.The

maximum positive value estimated was around 0.076◦C.

2.2 Air temperature

At stake S2 on Storbreen, the air temperature was measured by the GeoPrecision data logger itself

(Figure � 2.6). It this temperature dataset that was used to compute the PDD for the melt model

in Modelling the depth changes of the sensors. The logger recorded air temperature from the 20th

of May to the 18th of September 2014, at 12-hour intervals. The air temperature was measured

at 4:00 in the morning and at 4:00 in the afternoon. An Automatic Weather Station (AWS) was

also located in the glacier, about hundred meters away from stake S2. It measures air temperature

at two di�erent levels, as well as other climatic variables and snow surface parameters such as

humidity, albedo, wind speed and direction, solar radiations... The measurements are e�ectuated

every few minutes and are averaged every 30 minutes. The air temperature measurements from

the AWS were not used in this work as there was no time for the necessary pre-processing of the

data, such as corrections for radiative heating of the sensors.

3 Mapping the Cold-temperate transition surface with GPR

The last focus of the thesis regarding ice temperature was to map the internal layering and partic-

ularly the Cold-temperate Transition Surface (CTS) of both Hellstugubreen and Storbreen. It is

common to use Ground Penetrating Radar to map the CTS (Cold-temperate Transition Surface)

of polythermal glaciers (Björnsson et al., 1996; Jania et al., 1996; Moore et al., 1999; Pettersson

https://en.wikipedia.org/wiki/Runge's_phenomenon

42 � 2. Methods

et al., 2003). The principles of this method is based on the behaviour of the radio-wave that

propagates in a medium that has inhomogeneities regarding dielectric properties. As mentioned

in GPR principles and applications in glaciology, the lower the center frequency of the GPR an-

tenna, the larger is the depth of investigation. For glaciological studies, the depth of investigation

also depends on the conductivity and dielectric constant of the ice. The low conductivity of ice

enables the electromagnetic signal to propagate without much attenuation, and GPRs are there-

fore suitable tools for great depths of investigations (Plewes and Hubbard, 2001). On temperate

glaciers, the center frequency of the GPR antenna commonly used is ∼15 MHz or lower (Watts

and England, 1976; Sætrang and Wold, 1986; Kennett et al., 1993; Navarro et al., 2005). Higher

frequencies for temperate ice leads to strong scattering and signal attenuation, owing to water

inclusions (Watts and England, 1976; Navarro et al., 2005). Ultra High Frequencies (UHF) are

often use for cold ice to improve the vertical resolution of the RES measurements. The absence of

liquid water in cold ice and its relatively homogeneity regarding its dielectric properties makes it

transparent to the radar signal. On polythermal glaciers, the use of UHF (Ultra High Frequencies)

allows to investigate the depth of the CTS, which is thought to be where much scattering occur,

owing to the liquid water content in temperate ice. Using lower frequencies enables to see the

ice/bedrock interface, otherwise masked by the scattering at the CTS with UHF (Björnsson et al.,

1996; Moore et al., 1999; Pettersson et al., 2003).

On Hellstugubreen and Storbreen, the center frequency of the GPR antenna used to observe

thermal layering in the ice was the same (50 MHz) as the one used for ice thickness measurements.

The same processing steps were done on the radargrams as for the ice thickness, except for the

digitizing. The assumption of a constant velocity of propagation results in less uncertainties than

for the ice thickness measurements, as the medium overlaying the CTS is mostly cold ice. The

uncertainties on the depth measurements of the CTS are expected to be less signi�cant than for

the ice thickness measurements. Indeed both vertical and horizontal accuracies depends on errors

in the propagation velocity and depth of investigation (see equations (� 2.1) and (� 2.3)).

Figure � 2.7a and Figure � 2.7b show the GPR pro�les on Hellstugubreen and Storbreen, along

which the CTS was digitized.

B
.
In
v
e
stig

a
tin

g
th
e
th
e
r
m
a
l
r
e
g
im
e
a
n
d
a
ir
te
m
p
e
r
a
tu
r
e
m
e
a
su
r
e
m
e
n
ts

4
3

(a) (b)

Figure � 2.7: RES pro�les from 2014 where the CTS was digitized, at Hell-
stugubreen (a) and at Storbreen (b). The elevation contours and
glacier outlines for both glaciers are derived from the 2009 laser scan-
ning and orthophotos (data : NVE).

Chapter C

Ice �ow velocity

The mapping of Hellstugubreen and Storbreen was also related to ice dynamics. As the datasets

available for both glaciers were not all the same and of same quality, this chapter is also divided

in two parts, one for each glacier.

1 Hellstugubreen

1.1 DGNSS measurements at stake positions

One of the techniques enabling to measure the surface velocity of glaciers is the repeated surveys of

stakes drilled at the surface. On Hellstugubreen, the �rst stake surveys with accurate georeferencing

from DGNSS started in September 2009. Horizontal velocity changes were already studied by

comparing accurate data from the period 2009-2012, with triangulation measurements performed

in the 1940s and 1960s (Pay, 2014). The quality of the data depends on the continuity and the

density of the measurements. On Hellstugubreen, the stakes position was recorded at the beginning

of almost melt season, usually during the �rst two weeks of May. The positions were measured

a second time in September, at the end of melt season. A few years have also measurements in

August. For each �eld work between 2009 and 2013, it was the locations of 5 to 13 stakes that were

recorded. In 2014, the stake network density was improved, and 21 stakes were georeferenced on

the 16th of September. To computed the surface velocity at stakes locations, the following formula

was used :

Vsurface =

√
(xend − xstart)2 + (yend − ystart)2

∆t
(� 2.4)

where xend and xstart are the Easting coordinates of two consecutive measurements, yend and ystart
are the Northing coordinates, and ∆t is the time lapse between the measurements. The Easting and

Northing values were given in meters, and were Universal Transverse Mercator (UTM) coordinates,

in the zone 32V. The ∆t was computed in second, but the �nal velocity values were in m.yr-1.

It is also to be noted that the equation (� 2.4) does not include any vertical component, as such

the values calculated using this formula re�ects the horizontal surface velocity. In addition, the

equation does not account for changes in the surface velocity between consecutive measurements,

this results in average values of the velocity between measurements. Lastly, the formula is based

44

C. Ice �ow velocity 45

on the assumption of a horizontal linear displacement, which means that it does not account

for �ow divergence. In other words, when two di�erent positions of a same stake and from two

di�erent times are compared, it is assumed that the stake displacement was e�ectuated along the

linear and minimum distance between both positions. This assumption is not bad as the stakes

surveyed were not close from the glacier margins, where divergence of the ice �ow can be signi�cant.

Furthermore, the time interval between two consecutive measurements at each stake was relatively

short, which limits the occurrence of large errors due to �ow divergence for the calculation of the

stakes displacement.

Figure � 2.8: Stake georeferencing on Hell-
stugubreen using DGNSS. The
accuracy of the measurements may
be altered by multipath e�ects.

To georeference the stakes positions, the

rover antenna was either upstream, on top or

downstream of the stake. The antenna was usu-

ally placed downstream as the stake was too

high. In case of a downstream location, the dis-

tance from the antenna to the stake was sub-

tracted from the minimum displacement (nu-

merator term in equation (� 2.4)). In case of

an upstream location, the distance between the

antenna and the stake was added to the min-

imum displacement. These corrections assume

that the �ow lines follow the surface topography

gradient. For newly drilled stakes, the antenna

was positioned in the hole before inserting the

stake, or over the stake. As such, their positions

did not require any correction. The scripts in

Appendix F.2 and Appendix F.2 enable to enter

the stakes coordinates, to apply the necessary

corrections, and to compute the horizontal ve-

locities for each stakes and between all consec-

utive measurements.

As the base station was located only a few

hundred from the glacier front, the stakes positioning is expected to have an accuracy of a few

centimetres only. However, the position of the rover antenna near the stake as shown in Figure � 2.8

may results in georeferencing errors due to multipath e�ects (King and Watson, 2010; Nilsson,

2011). Indeed, the satellite signal received by the rover antenna may be re�ected by the stake

before or after reaching the DGNSS antenna. Thus, the accuracy of the stakes positioning may be

a�ected by these e�ects. No multipath mitigation was done on the measurements.

46 � 2. Methods

1.2 Ice surface velocity interpolation

The observed surface velocity depends on numerous variables. The surface velocity can be esti-

mated by the following formula (Cu�ey and Paterson, 2010) :

us = ub +
2A

n+ 1
· τnb ·H (� 2.5)

where ub is the basal sliding velocity, A is the creep �ow parameter (see Ice temperature and Glen's

�ow law), n the empirical exponent with a mean value of 3, τb is the basal shear stress and H is

the ice thickness. Cu�ey and Paterson (2010) shows that it is a good approximation to assume

that : τb = f ′ · τd
τd ≈ ρgHα

(� 2.6)

where τd is the driving stress component of the ice �ow, f ′ refers to a number usually of order one,

ρ is the ice density (∼917 kg.m-3), g is the gravitational acceleration constant (∼9.81 m.s-1), and

α is the surface slope in radian.

In equation (� 2.5), the basal sliding component is a variable di�cult to measure, as the base

of glaciers is usually not directly accessible. The remaining terms of the equation are either

constants or calculable. Amongst the latter variables, the basal shear stress can be estimated as it

require the knowledge of the ice thickness, which is available on Hellstugubreen from the corrected

GPR pro�les from 2011, and the surface topography which is easily calculated from the LiDAR

data from 2009. The value of the creep �ow parameter A was hard to estimate over the whole

ice thickness, as it depends physical and chemical properties of the ice (Cu�ey and Paterson,

2010), and this information being not available throughout the entire mass of the glacier. The

interpolation of ice surface velocity data was performed using the autocorrelation velocity dataset

itself, together with cross-correlations between the velocity data and the ice thickness on the one

hand, and between the velocity and the surface slope on the other hand. In order to include the

relationships between the surface velocity and these two parameters, the cokriging algorithm was

used in ArcGis to interpolate the velocity data. For the autocorrelation of the velocity values at

the stake location, a stable model was used to �t the empirical semivariogram, with 12 lags of each

∼130 meters. Exponential models were used to �t the semivariograms resulting from the cross-

correlation between the surface velocity and the ice thickness, and between the surface velocity

and the surface slope. The ice thickness data used for the interpolation is shown in Figure � 3.1,

in section Ice thickness at Hellstugubreen. Likewise, the surface slope map used in the cokriging

algorithm is presented in Appendix G. As the density of the stake network was much better for

C. Ice �ow velocity 47

2013 and 2014, only the horizontal velocity values were interpolated. The interpolation resulted

in an averaged surface velocity map for 2013-2014.

2 Storbreen

2.1 DGNSS measurements at stake positions

Repeated surveys of stakes were also performed on Storbreen. The �rst stakes positions were

recorded with DGNSS in September 2006 (Andreassen et al., 2007), and stake measurements are

available until the 18th September 2014. The stake network density is less than on Hellstugubreen,

with 5 stakes georeferenced at minimum during one �eld work, and up to 14 stake positions

recorded in 2014. Most of the stakes on Storbreen are georeferenced at least once a year. About

half of the stakes of have their position recorded twice a year since 2012, with both measurements

done between the beginning of August and the end of October.

The same method to estimate the horizontal surface velocities was used on Storbreen, by

calculating the minimum linear surface displacement between consecutive �eld observations. As

the stakes positions was mostly measured during the end of the summer or the beginning of the

autumn, the equation (� 2.4) gives an estimate of the annual mean horizontal velocity for each

stake. The same corrections were also applied on the �nal velocity values, to account for the rover

antenna o�set position, relatively to the stakes.

As the stake network had a lower spatial resolution than on Hellstugubreen, no surface velocity

map was generated for Storbreen. In addition, the density and amount of the ice thickness data

on Storbreen was also less than on Hellstugubreen. The relationship between the ice thickness and

the surface velocity would therefore have given poorer results using the cokriging algorithm when

interpolating the velocity data.

2.2 Subsurface deformation rate

The subsurface deformation rate was the last element studied on Storbreen. The ice temperature

in the subsurface measured at stake S2 and at a high temporal resolution enabled to account

for its e�ects on the ice viscosity, and therefore on the deformation rate (see Ice temperature

and Glen's �ow law). The ice deformation rate changes with depth was estimated based on the

assumption that the glacier deforms in simple shear, in the same way as a laminar �ow. For a

simple shear deformation, the z-component of the deformation velocity is 0 and the only deviatoric

stress component is τxz. The creep relation is then as follows (Cu�ey and Paterson, 2010) :

1

2

du

dz
=

1

2

∂u

∂z
= A · τnxz (� 2.7)

48 � 2. Methods

where u is the x-component of the deformation rate and z is the depth axis.

If we assume that the ice density is constant throughout the thickness of the glacier and fol-

lowing the equation (� 2.6), the shear stress component increases linearly with depth and therefore

we have :

τxz = τb

[z
H

]
(� 2.8)

where τb is the value of τxz at the bed and H the total ice thickness. By substitution of τxz in

equation (� 2.7) with equation (� 2.8), we have :

du

dz
= 2Aτnb

[z
H

]n
(� 2.9)

In order to compute the creep �ow parameter A, Cu�ey and Paterson (2010) give the following

formula that account for e�ects of temperature and hydrostatic pressure which lower the melting

point of ice : 
A = A∗ · exp

(
−Qc

R
·
[

1

Th
− 1

T∗

])
Th = T + 7× 10−8P ; T∗ = 263 + 7× 10−8P ;

Qc = Q− if Th < T∗; Qc = Q+ if Th > T∗.

(� 2.10)

where A∗ is a constant, Qc is the activation energy for creep, R is the universal gas constant

(8.314 J.mol-1.K-1), T is the ice temperature in Kelvin and where P is the pressure in Pascal

(positive in compression). The prefactor A∗ is the value of the creep �ow parameter A for a

temperature of -10◦C. The recommended value 3.5×10−25Pa-3.s-1 was used for further computations

(Cu�ey and Paterson, 2010). The activation energy for creep for warm ice (Q+) is equal to

115 kJ.mol-1, and is equal to 60 kJ.mol-1 for cold ice (Q−). The value of the activation energy

changes at about -10◦C.

For each temperature record (every two hours), the subsurface deformation was calculated by

cumulative trapezoidal integration of the equation (� 2.9). A constant value of ∼120 kPa was

given to the shear stress component at the bed (τb). This value was calculated with an ice density

equal to 917 kg.m-3, an ice thickness of 85 meters at the stake location, estimated from the GPR

measurements from 2005-2006 (see Figure � 3.4, in Ice thickness at Storbreen), and a surface slope

of 9 degrees (Appendix G), derived from the LiDAR data from 2009. The empirical exponent n

was given a �xed value of 3. In order to use the trapezoidal rule, hundred points equally spaced

were generated for each pro�le, with depth values ranging from zero to the depth of the lowermost

sensor of the thermistor string. The temperature at each point was obtained from the thermistors,

for which the depth was known. In case the depth value of a point was di�erent from that of a

sensor, the temperature was obtained by linear interpolation of the values recorded at both closest

C. Ice �ow velocity 49

sensors. This gave a temperature value measured or estimated every ∼10.7 cm at the beginning

of the measurements period, on the 20th of May 2014. On the 18th September of the same year,

as the depth of the lowermost sensor was less and that the same number of points was used to

apply the trapezoidal rule, a temperature value was measured or estimated for every ∼8.2 cm.

For every temperature pro�le, the creep �ow parameter A was calculated at all hundred points

using the equation (� 2.10). While integrating cumulatively the equation (� 2.9), A was replaced

by the calculated values and z by the depth assigned to each point. Finally, it was assumed

that no deformation occurred at the surface, as the shear stress component is there equal to 0

(see equation (� 2.8)).

Part � 3

Results and discussions

Chapter A

Ice thickness

1 Ice thickness at Hellstugubreen

The ice thickness map resulting from the interpolation of the corrected GPR pro�les from 2011 is

shown in Figure � 3.1. The interpolated values of the ice thickness range from 0 to ∼177 meters.

The thickest part is located at the ice divide on the southern part, between Hellstugubreen and

the larger glacier Memurubreen, not shown on the map. The ice thickness decreases gradually

towards the front. A local depression of the thickness appears between the elevation contour lines

1820 and 1880. The bu�er-like area (value equal to zero) between the glacier contour lines and the

thickness values superior to zero results from the interpolation algorithm. The ordinary kriging

used to produce the ice map interpolated the thickness values recorded along the RES pro�les

from 2011, as well as the values of the contour lines equal to zero. The density of points along the

contour lines is too high which gives a weight too important to the border lines in the interpolation

process. The width of the bu�er area depends on the distance between the RES pro�les and the

contour lines. The greater this distance, the broader the bu�er area is. Similarly to the �eld work

from April 2014, the ice thickness was not measured in the two upper cirques in 2011, for the

di�cult access with snowmobile.

2 Comparison of the ice thickness map with the RES mea-

surements from 2014

The ice thickness map produced for Hellstugubreen (Figure � 3.1) was compared with RES mea-

surements from 2014. To every thickness record from the 2014 RES measurements was subtracted

the thickness value estimated/measured from the 2011 RES data. The ice thickness map was

created with a spatial resolution output of 15 m as interpolation parameter. As such, if the RES

records from 2011 and 2014 were separated by less than 15 m, the 2014 RES values were di-

rectly compared with the nearest 2011 RES measurements, to limit averaging artifacts from the

interpolation algorithm.

The ice thickness was digitized at 564 points on the radargrams from 2014, excluding the

points located in the 0 m bu�er area (Figure � 3.1). The combined uncertainties from the

51

52 � 3. Results and discussions

Figure � 3.1: Ice thickness map at Hellstugubreen for 2014, derived from GPR measurements conducted
in 2011. The elevation contours and glacier outlines are derived from the 2009 laser scanning
and orthophotos (data : NVE).

A. Ice thickness 53

2011 RES (±15 m) and the 2014 RES (±25 m) records can explain ice thickness di�erences

up to ±40 m for both years. 29 points (5.1%) showed a di�erence larger than the total uncer-

tainty. Out of 29, 8 points overestimate the ice thickness from the 2014 RES, relatively to the ice

thickness map. This make 21 points that underestimate the ice thickness relatively to the map.

Accounting for all 564 point records, 435 points (77 %) present a negative di�erence value (relative

underestimation of the measurements from 2014), 129 a positive value (relative overestimation of

the measurements from 2014). The average of the absolute di�erences between RES records from

2011 and 2014 is 18 m.

3 Discussion

(a) (b)

Figure � 3.2: Thickness di�erences from RES measurements done in 2011 and 2014 at Hellstugubreen.
(a) shows the relationship between thickness di�erences and the ice thickness values from
Figure � 3.1. (b) shows the relationship between thickness di�erences and the surface
slope. In the red shaded zones are the points with thickness di�erence values that exceed
the uncertainties expected from the RES measurements.

In order to explain the di�erences between the 2014 RES records and the ice thickness map,

the relationships between the di�erences and four parameters was assessed. First, the thickness

di�erences were compared with the interpolated thickness values from the 2011 RES measurements

(Figure � 3.2a). A linear regression analysis shows that the higher the interpolated thickness values

are, the more positive the thickness di�erences are. The relationship between both variables has

however a low determination coe�cient (R2 = 0.26). The comparison between interpolated values

and absolute di�erence values show that, generally, the greater the interpolated thickness values

54 � 3. Results and discussions

are, the larger the thickness di�erences are (Appendix B). It is also to be noted that all di�erences

superior to the global uncertainty occur for an ice thickness larger than 120 m on the map.

The relationship between thickness di�erences and surface slope (R2 = 0.19) shows that a

steeper surface slope leads towards an overestimation of the 2014 RES records, relatively to the

ice thickness map (Figure � 3.2b).

(a) (b)

Figure � 3.3: Thickness di�erences from RES measurements done in 2011 and 2014 at Hellstugubreen.
The distance between the 2014 RES records and the glacier oultines are plotted against
the ice thickness di�erences in (a). (b) shows the relationship between thickness di�erences
and the minimum distance between RES records from 2011 and 2014. In the red shaded
zones are the points with thickness di�erence values that exceed the uncertainties expected
from the RES measurements.

As mentioned earlier, the bedrock topography is usually steeper near the valley walls, at the

glacier margins. For non-migrated radar pro�les, the steep bedrock topography may lead to large

ice thickness errors (Moran et al., 2000; Jol, 2009). Therefore, the relationship between thickness

di�erences and the distance separating the glacier outlines and the 2014 RES measurements was

also assessed (Figure � 3.3a). However, a simple linear regression shows a very low correlation

between both variables (R2 = 0.05). In 2014, the ice thickness was measured at closest ∼30 m

from the glacier margin. The large errors expected with a steep bedrock topography may not occur

at such distance. A direct comparison of the thickness di�erences and the bedrock slope did not

give any correlation between both variables. The errors larger than the global data uncertainties

happened to occur at a minimum of 200 m away from the glacier outline. This con�rms that larger

errors occur for a greater ice thickness, as the ice thickness values are more important away from

the margins.

A. Ice thickness 55

Finally, the distances between closest RES records from the years 2011 and 2014 could be

another factor in�uencing the ice thickness di�erences. If a greater distance separating the mea-

surements from both years lead to a large ice thickness di�erence, this would point out to the

limits of the interpolation algorithm. However, the distance between RES records does not seem

to be an explanatory factor for large ice thickness di�erences, as the relationship between both

variable has a very low determination coe�cient (Figure � 3.3b).

When interpolating the thickness data, a model was �tted interactively in ArcGIS to the empir-

ical semivariogram. To further investigate errors resulting from the ordinary kriging interpolation,

a cross-validation analysis or similar model validation technique should be used. The results from

such validation technique would give a predictive accuracy of the model used, and therefore give

a better insight on potential interpolation errors. Alternatively, the kriging algorithm could be

compared with other geostatistical or deterministic methods, and look where the largest di�erences

occur.

In order to improve the accuracy of the thickness measurements from April 2014, several op-

tions are available. First, a migration method should be used on the radargrams. For migrated

radargrams, the horizontal resolution is no longer dependant on the depth and can be approxi-

mated by λ/2 (Welch et al., 1998). Instead of the initial horizontal resolution of ∼35 m (see Errors

estimates in ice thickness, equation (� 2.3)), the horizontal resolution of the migrated radargrams

would become ∼3.4 m. A radio-wave velocity varying spatially would also be more appropriate

for the time-depth conversion of the radar signal. As the propagation velocity depends on the ice

water content (Benjumea et al., 2003), the hydro-thermal structure of Hellstugubreen may have

large e�ects on the ice thickness measurements (see Hellstugubreen). To limit the e�ects of the

spatial variations of the ice water content, one could perform local or regional Common-Midpoint

measurements for a better estimation of the signal propagation velocity (Navarro et al., 2014).

4 Ice thickness at Storbreen

On Storbreen, as much scattering was observed on the radargrams from April 2014, the bedrock

was almost not visible and therefore hard to digitize. Figure � 3.4 presents the thickness data

for Storbreen, obtained during the years 2005 and 2006. The ice thickness measurements were

conducted at an elevation ranging from ∼1450 to ∼1890 m.a.s.l., corresponding to about 64%

of the elevation range covered by the whole glacier. The maximum thickness recorded by the

RES measurements was ∼233 m, and was located on the upper parts of the glacier with a low

topographic gradient. Figure � 3.4 also shows the locations of the RES records from 2014 where

the ice thickness was measured.

56 � 3. Results and discussions

Figure � 3.4: Ice thickness at Storbreen, derived from GPR measurements performed April 2005 and May
2006. The red dots are the locations of the RES records from April 2014. The elevation
contours and glacier outlines are derived from the 2009 laser scanning and orthophotos
(data : NVE).

Chapter B

Temperature distribution and thermal

regimes

1 Hellstugubreen

1.1 Subsurface temperature variations

On Hellstugubreen, the ice temperature variations in the subsurface was observed at stake H13

and H44. The measurement period started on the 2nd of April and ended on the 16th of September

2014. At the time of setup, the lowermost sensor was located at a depth slightly over 12 m, at both

sites (see Subsurface ice temperature pro�les at Hellstugubreen). Seven temperature pro�les were

obtained during the entire measurement period at stake H13, including the pro�le recorded right

after the setup of the thermistor line. At stake H44, eight pro�les were recorded over the same time

period, also including the pro�le measured right after the thermistor line setup. Figure � 3.5 show

the ice temperature pro�les measured at both stakes, with above the air temperature variations

recorded by the HOBO data loggers every 30 minutes at both locations. The measured data used

to plot the ice temperature pro�les are presented in Table � 3.1 and Table � 3.1.

In average over the the whole measurement period, the air temperature was 2.6◦C warmer

at stake H13 than at stake H44. With an elevation di�erence of 320 m between both stake

locations, the mean temperature gradient is -0.81◦C/100 m. Sudden temperature peaks appeared

in the recorded data, which may result from measurement errors. The temperature high that

occurred at stake H13 on the 10th of May at 3.30 pm is not seen at stake H44 and is certainly a

measurement error from the HOBO data logger. The temperature reaches a peak of 20.5◦C, while

the temperature recorded 30 minutes earlier was 4.2◦C, and the temperature recorded 30 minutes

later was 3.0◦C.

Regarding the ice temperature, the presence of cold ice was observed in the subsurface at

both stake locations. The temperature measurements performed in April were a�ected by drilling

disturbances, as the ice temperature measured later in May show lower temperatures at the same

levels. The pro�le recorded at the time of setup also show higher temperature gradient, with a

near zero temperature at the bottom of the borehole related to the presence of melt water, and

57

5
8

�
3
.
R
e
su
lts

a
n
d
d
isc

u
ssio

n
s

(a) (b)

Figure � 3.5: Air temperature and ice temperature pro�les at stake H13 (a) and
H44 (b), Hellstugubreen 2014. Note that the scale of the ice temper-
ature axis is di�erent for both �gures.

B
.
T
e
m
p
e
r
a
tu
r
e
d
istr

ib
u
tio

n
a
n
d
th
e
r
m
a
l
r
e
g
im
e
s

5
9

Table � 3.1: Results of temperature measurements at stake H13 (accuracy: ±0.05◦C). Missing data or tem-
perature values recorded above the surface are indicated with the × symbol.

2014-04-02
at 10:30

2014-04-02
at 16:15

2014-05-01
2014-05-14
at 13:00

2014-06-19
at 18:00

2014-08-21
at 13:00

2014-09-16
at 13:55

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

0.56 -3.05 0.56 -3.10 0.56 -2.80 0.56 -2.60 0.37 0.00 -2.12 × -2.80 ×
2.56 -2.38 2.56 -2.48 2.56 -2.48 2.56 -2.42 2.37 -0.93 -0.12 × -0.80 ×
4.56 -1.38 4.56 -1.60 4.56 -1.92 4.56 -1.97 4.37 -1.17 1.88 0.00 1.20 -0.08
6.56 -0.12 6.56 -0.28 6.56 -1.38 6.56 -1.42 6.37 -0.88 3.88 -0.12 3.20 -0.53
8.56 -0.08 8.56 -0.12 8.56 -0.93 8.56 -0.97 8.37 -0.23 5.88 -0.48 5.20 -0.35
10.56 -0.08 10.56 -0.12 10.56 -0.62 10.56 -0.70 10.37 -0.17 7.88 -0.48 7.20 -0.43
12.56 -0.08 12.56 -0.12 12.56 -0.48 12.56 -0.48 12.37 0.00 9.88 -0.35 9.20 -0.35

Table � 3.2: Results of temperature measurements at stake H44 (accuracy: ±0.05◦C). Missing data or temperature values recorded above
the surface are indicated with the × symbol.

2014-04-02
at 15:00

2014-05-01
2014-05-14
at 09:45

2014-06-19
at 15:40

2014-07-15
at 17:30

2014-08-05
at 17:30

2014-08-21
at 10:00

2014-09-16
at 18:55

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

Depth
(m)

Temp.
(◦C)

0.20 -4.00 0.20 -4.65 0.20 -4.50 0.20 × 0.20 × -0.18 × -0.57 × -1.68 ×
2.20 -3.38 2.20 -3.48 2.20 -3.38 2.20 × 2.20 0.00 1.82 -0.08 1.43 -0.08 0.32 ×
4.20 -2.70 4.20 -2.90 4.20 -2.80 4.20 -0.40 4.20 -1.15 3.82 -1.50 3.43 -1.23 2.32 ×
6.20 -1.60 6.20 -2.23 6.20 -2.12 6.20 -1.60 6.20 -1.32 5.82 -1.82 5.43 -1.67 4.32 -1.17
8.20 -1.28 8.20 -1.77 8.20 -1.67 8.20 -1.52 8.20 -0.93 7.82 -1.77 7.43 -1.72 6.32 -1.60
10.20 -0.93 10.20 -1.52 10.20 -1.47 10.20 -1.10 10.20 -0.48 9.82 -1.67 9.43 -1.67 8.32 -1.67
12.20 -0.28 12.20 -1.42 12.20 -1.47 12.20 -1.02 12.20 -1.02 11.82 -1.52 11.43 -1.52 10.32 -1.60

60 � 3. Results and discussions

with a colder temperature approximating the temperature at the bottom of the snowpack recorded

by the uppermost sensors (-3.05◦C at H13 and -4.00◦C at H44). The temperature pro�le measured

∼6 hours after setup at stake H13 already starts stabilizing towards a lower temperature gradient

through heat conduction.

A temperature gradient inversion can observed at both stake locations from the 19th of June.

The inversion is not seen on the 14th of May, which suggests that the snowpack covering the ice

surface thinned considerably or disappeared completely between the 14th of May and the 19th

of June. Field observations locate the snow line above the stake H13 at the end of June, and

the snow line migrated above the stake H44 between the 17th of July and the 5th of August

(Oda J. Røyset (pers. communication)). The insulating e�ect of a thick snowpack simultaneously

stopped, and the ice temperature in the near surface were a�ected by warmer air temperatures.

The inversion seems to occur around the sensor at a depth of ∼4.37 m at stake H13 (Table � 3.1),

while occurring around the sensor located at ∼6.20 m at stake H44 (Table � 3.2). After the 19th of

June the temperature gradient below the temperature inversion become less steep with time, while

the temperature gradient above is a�ected by diurnal variations of the surface air temperature.

At stake H13 at the end of the summer, the ice is almost temperate but remained cold from a

depth between 1.20 and 3.20 m, accounting for the sensors accuracy (Table � 3.1). At stake H44,

the cold winter wave is clearly not eliminated in the subsurface, with ice temperatures lower than

-1.17 ± 0.05 ◦C from a depth superior to 4.32 m (Table � 3.2).

1.2 Internal layering and basal thermal regime at Hellstugubreen

The thermal layering was mapped at Hellstugubreen using RES measurements at a center frequency

of 50 MHz (Mapping the Cold-temperate transition surface with GPR). The digitization of the CTS

along two pro�les are presented in this section. The pro�le H166 (Figure � 3.6) was chosen as it

followed approximately the center �ow line of the glacier (Figure � 2.7a), where the ice is expected

to be thickest. The second pro�le presented is H168 (Figure � 3.7), as it includes several transverse

sections of the glacier, and therefore shows the thermal layering both close to the margins and

close to the center line (Figure � 2.7a). The results for the third pro�le (H167) are shown in

Appendix E.1. On these results, the glacier surface along the pro�le is derived from the 2009 laser

scanning data. Likewise, the depth of the ice/bedrock interface is estimated from the di�erence

between the glacier surface and the ice thickness map (Figure � 3.1).

Figure � 3.6a shows the digitization of the CTS from the radar measurements along H166.

Hellstugubreen has a surface cold layer almost along the whole length of the pro�le H166. The

cold surface layer seems to disappear at two di�erent locations, though, in the neighbourhood of

stakes H29 and H43. On the radargrams from Figure � 3.6b and Figure � 3.6c, much scattering

of the radio-waves can be observed near the surface, at these two same locations. Large crevasses

B. Temperature distribution and thermal regimes 61

(a) CTS mapping on pro�le H166

(b) H166 pro�le (�rst half)

(c) H166 pro�le (second half)
F
ig
u
re

�
3.
6:

R
E
S
on

H
el
ls
tu
gu
b
re
en

al
on
g
th
e
p
ro
�
le

H
16
6.

O
n
(a
),
th
e
C
T
S
w
as

d
ig
it
iz
ed

on
ra
d
ar
gr
am

s
fr
om

20
14

(5
0
M
H
z)
,
th
e
gl
ac
ie
r
su
rf
ac
e
is
d
er
iv
ed

fr
om

L
iD
A
R
d
at
a
(d
at
a
:
N
V
E
,
20
09
),
an
d
th
e

ic
e/
b
ed
ro
ck

in
te
rf
ac
e
is
d
er
iv
ed

fr
om

R
E
S
m
ea
su
re
m
en
ts

(1
0
M
H
z)

fr
om

20
11

(d
at
a
:
N
V
E
).
(b
)

an
d
(c
)
ar
e
in
te
n
si
ty
-m

o
d
u
la
te
d
p
lo
ts
of

in
te
rn
al
re
�
ec
ti
on
s
of

th
e
50

M
H
z
G
P
R
an
te
n
n
a
(2
01
4)
.

T
h
e
d
is
ta
n
ce

al
on
g
th
e
p
ro
�
le
sh
ow

n
in

(b
)
an
d
(c
)
in
cr
ea
se
s
fr
om

le
ft
to

ri
gh
t.

62 � 3. Results and discussions

(a) CTS mapping on pro�le H168

(b) H168 pro�le (�rst half)

(c) H168 pro�le (second half)

F
ig
u
re

�
3.
7:

R
E
S
on

H
el
ls
tu
gu
b
re
en

al
on
g
th
e
p
ro
�
le

H
16
8.

O
n
(a
),
th
e
C
T
S
w
as

d
ig
it
iz
ed

on
ra
d
ar
gr
am

s
fr
om

20
14

(5
0
M
H
z)
,
th
e
gl
ac
ie
r
su
rf
ac
e
is
d
er
iv
ed

fr
om

L
iD
A
R
d
at
a
(d
at
a
:
N
V
E
,
20
09
),
an
d
th
e

ic
e/
b
ed
ro
ck

in
te
rf
ac
e
is
d
er
iv
ed

fr
om

R
E
S
m
ea
su
re
m
en
ts

(1
0
M
H
z)

fr
om

20
11

(d
at
a
:
N
V
E
).
(b
)

an
d
(c
)
ar
e
in
te
n
si
ty
-m

o
d
u
la
te
d
p
lo
ts
of

in
te
rn
al
re
�
ec
ti
on
s
of

th
e
50

M
H
z
G
P
R
an
te
n
n
a
(2
01
4)
.

T
h
e
d
is
ta
n
ce

al
on
g
th
e
p
ro
�
le
sh
ow

n
in

(b
)
an
d
(c
)
in
cr
ea
se
s
fr
om

le
ft
to

ri
gh
t.

B. Temperature distribution and thermal regimes 63

can be seen during summer around stake H29, which could be the reason for the radio-waves

scattering (Plewes and Hubbard, 2001). Overall, the thickness of the cold surface layer increases

up glacier, with a sudden deepening of the CTS at ∼1940 m.a.s.l., from a depth of ∼40 m to

∼90 m. The CTS is almost not visible in the lower parts of the pro�le H166, where the glacier

is at the pressure-melting point almost throughout the whole ice thickness. Hellstugubreen has a

temperate basal thermal regime along the entire pro�le H166.

Figure � 3.7a presents the results of the CTS digitizations of the RES measurements along

the pro�le H168. The depth of the CTS shows greater variations as regards to the pro�le H166.

The ice/bedrock interface is not always shown in the parts where the pro�le was close to the

glacier margins. This results from the bu�er-like area that appeared on the ice thickness map

after interpolating the thickness values (see Ice thickness at Hellstugubreen). The depth of the

bedrock was not estimated at these locations. Overall, the variations of the CTS depth follows the

variations of the depth of the bedrock. The glacier seems to be cold-based close to the margins, and

to have a temperate basal thermal regime where the ice is thicker. The temperate basal layer was

encountered at about 80 m and 90 m at the stake H62 and H45 respectively. A sudden deepening

of the CTS was also observed on the pro�le H168, at around 1965 m.a.s.l. The CTS seemed to

disappear over ∼300 m along the pro�le, between the stakes H70 and H45. The radar signal was

completely re�ected at the surface at this location (Figure � 3.7c).

2 Storbreen

2.1 Subsurface temperature variations

On Storbreen, the ice temperature variations were measured at stake S2 from the 21st of May to

the 18th of September 2014 (Figure � 2.7b). The temperature was recorded at ten depth levels,

every two hours, which give twelve temperature pro�le per day (see Subsurface ice temperature

at Storbreen). The ice temperature pro�les were plotted in Figure � 3.11, with above the air

temperature recorded by the GeoPrecision data logger. The temperature pro�les were interpolated

in order to visualize ice temperature variations with time, and the e�ect of the air temperature on

the subsurface ice temperature.

The ice melt occurring at the surface was modelled using a Positive Degree-Day (PDD) model,

which Degree-Day Factor was computed from the Control Periods (CPs) (see Modelling the depth

changes of the sensors). The �rst CP lasted from the 5th of August to 23rd August (18 days). The

DDF computed for this period was 1.6 mm ◦C-1 d-1 or 1.47 mm ◦C-1 d-1 water equivalent (w.e.)

with an ice density of 917 kg.m-3. The second and last CP started on the 23rd of August and ended

on the 18th of September 2014 (26 days). The DDF estimated for this period was 4.1 mm ◦C-1.d-1

64 � 3. Results and discussions

or 3.76 mm w.e. ◦C-1 d-1. The average DDF calculated from the CPs, and weighted by the number

of days of each CP, was equal to 2.84 mm w.e. ◦C-1 d-1. For the measurement periods other than

CPs, a DDF equal to 2.84 mm w.e. ◦C-1 d-1 was therefore used to model the surface melt and

update the depth of the sensors in the ice. Only one measurement period happened to be between

�eld observations during which the ice surface was snow covered. This period started on the 21st

of May, when the snowpack was 2.58 m thick, and ended on the 5th of August. The snowpack

had completely melted away by the end of the period. Therefore, the surface melt was computed

starting from the end of the period, in order to update the sensors depth, and using the mean

DDF. Once the total amount of melt for the period was reached, the ice surface was assumed to

be snow covered. For the �rst simulation, the disappearance of the snow cover was modelled on

the 25th of May, four days after the start of the period. The melt of a snowpack 2.58 m thick in

four days is very unlikely and could not be explained by the temperature only. The elimination of

the snowpack through melt processes was modelled too early, owing to a mean DDF certainly too

minor.

Regarding the ice temperature, the temperature gradient show an inversion from the beginning

of the whole measurements period, at a depth of about 2 m. The measured/modelled ice surface

temperature (see Estimating the ice surface temperature) is equal to -2.0◦C on the 21st at midnight,

and becomes temperate starting from the 6th of July, around 4 pm. This means that it took about

46 days for the ice to be temperate near the surface. This is inconsistent with mostly positive air

temperatures and the absence of a snowpack over the major part of this period. The cold winter

wave is completely eliminated in the subsurface on the 1st of August, with ice at the pressure-

melting point along the entire pro�le.

2.2 Internal layering and basal thermal regime at Storbreen

The internal thermal layering was also mapped on the lower parts of Storbreen, using a GPR

antenna with a center frequency of 50 MHz (Mapping the Cold-temperate transition surface with

GPR). In the same way as done for Hellstugubreen, two pro�les along which the CTS was digitized

are presented for Storbreen. The pro�le S179 (Figure � 3.8) was chosen for its medial location,

as regards to the glacier margins (Figure � 2.7b). The second pro�le (S178, see Figure � 3.9) is

also presented as it includes several traverse sections of the glacier (Figure � 2.7b), and therefore

shows the relationship between the distance to the glacier margins and the CTS depths variations.

The results of the CTS digitization for the pro�le S180 and S181 (Figure � 3.8) are shown in

Appendix E.2.

On these results, the glacier surface is derived from the 2009 LiDAR data. As for the depth

of the ice/bedrock interface, no ice thickness map was produced for Storbreen, as opposed to

Hellstugubreen, and therefore a di�erent method was used to estimated the depth of the bedrock

B. Temperature distribution and thermal regimes 65

(a) CTS mapping on pro�le S179

(b) S179 pro�le (�rst half)

(c) S179 pro�le (second half)

F
ig
u
re

�
3.
8:

R
E
S
on

S
to
rb
re
en

al
on
g
th
e
p
ro
�
le

S
17
9.

O
n
(a
),
th
e
C
T
S
w
as

d
ig
it
iz
ed

on
ra
d
ar
gr
am

s
fr
om

20
14

(5
0
M
H
z)
,
th
e
gl
ac
ie
r
su
rf
ac
e
is

d
er
iv
ed

fr
om

L
iD
A
R

d
at
a
(d
at
a
:
N
V
E
,
20
09
),

an
d
th
e

ic
e/
b
ed
ro
ck

in
te
rf
ac
e
is
d
er
iv
ed

fr
om

R
E
S
m
ea
su
re
m
en
ts

fr
om

20
05
-2
00
6
(1
0
M
H
z,
d
at
a
:
N
V
E
)

an
d
fr
om

20
14

(5
0
M
H
z)
.
(b
)
an
d
(c
)
ar
e
in
te
n
si
ty
-m

o
d
u
la
te
d
p
lo
ts

of
in
te
rn
al

re
�
ec
ti
on
s
of

th
e

50
M
H
z
G
P
R
an
te
n
n
a
(2
01
4)
.
T
h
e
d
is
ta
n
ce

al
on
g
th
e
p
ro
�
le
sh
ow

n
in

(b
)
an
d
(c
)
in
cr
ea
se
s
fr
om

le
ft
to

ri
gh
t.

66 � 3. Results and discussions

(a) CTS mapping on pro�le S178

(b) S178 pro�le (�rst half)

(c) S178 pro�le (second half)
F
ig
u
re

�
3.
9:

R
E
S
on

S
to
rb
re
en

al
on
g
th
e
p
ro
�
le

S
17
8.

O
n
(a
),
th
e
C
T
S
w
as

d
ig
it
iz
ed

on
ra
d
ar
gr
am

s
fr
om

20
14

(5
0
M
H
z)
,
th
e
gl
ac
ie
r
su
rf
ac
e
is

d
er
iv
ed

fr
om

L
iD
A
R

d
at
a
(d
at
a
:
N
V
E
,
20
09
),

an
d
th
e

ic
e/
b
ed
ro
ck

in
te
rf
ac
e
is
d
er
iv
ed

fr
om

R
E
S
m
ea
su
re
m
en
ts

fr
om

20
05
-2
00
6
(1
0
M
H
z,
d
at
a
:
N
V
E
)

an
d
fr
om

20
14

(5
0
M
H
z)
.
(b
)
an
d
(c
)
ar
e
in
te
n
si
ty
-m

o
d
u
la
te
d
p
lo
ts

of
in
te
rn
al

re
�
ec
ti
on
s
of

th
e

50
M
H
z
G
P
R
an
te
n
n
a
(2
01
4)
.
T
h
e
d
is
ta
n
ce

al
on
g
th
e
p
ro
�
le
sh
ow

n
in

(b
)
an
d
(c
)
in
cr
ea
se
s
fr
om

le
ft
to

ri
gh
t.

B. Temperature distribution and thermal regimes 67

along the pro�les. The available thickness data (Figure � 3.4) were interpolated using a bicubic

spline algorithm, with four control points for each spline. The glacier outlines, for which the

depth was set to zero, were also used in the interpolation process. The interpolated output had a

spatial resolution of 25 m. The ice thickness along the pro�les was derived from this interpolation.

However, as the amount of point measurements was scarce in the studied glacier area, only the

interpolated values located at 50 m or less from a GPR record were considered. This 50 m

proximity threshold was used to limit the occurrence of interpolation errors in the results. The

GPR records from 2005-2006 were not corrected for the surface lowering experienced by the glacier

between the measurements and the �eld work in April 2014 (see Ice thickness on Storbreen). As the

thickness of the snowpack was unknown along the GPR pro�les of 2014, while mapping the CTS,

the depth of the digitized ice/bedrock horizon on the same pro�les was not corrected for the snow

thickness. The depth to the bedrock was then estimated in the same way as with Hellstugubreen,

by calculating the di�erence between the glacier surface elevation and the assessed ice thickness

values, where available. Large portions of the pro�les were situated farther than 50 m away from

the nearest GPR records. As such, the ice/bedrock interface is not represented in the results at

several parts of the pro�les (Figure � 3.8, Figure � 3.9).

Figure � 3.8a shows the digitization of the CTS along the pro�le S179. Storbreen has a tem-

perate basal layer along the entire pro�le length. At an elevation lower than ∼1550 m.a.s.l., this

temperate layer is almost as thick as the full ice thickness of the glacier. Downstream this point,

the glacier seems to have a thin surface layer below the pressure-melting point. However, the

CTS was not digitized on this part of the pro�le, as it could not be done accurately owing to

subsurface structures and frequent signal scattering patterns (Figure � 3.8b). The subsurface ice

temperature measurements performed at stake S2 con�rm the presence of a thin cold surface layer

(Figure � 3.11). The thickness of the cold layer increases abruptly up glacier between stake S2

and S3yr11 (∼1000 m from the glacier front), to a value nearing 50 meters. The cold surface layer

becomes thinner again higher up along the pro�le, where the depth to the CTS oscillates around

a value of 30 m.

Figure � 3.9a presents the results of the CTS digitization along the pro�le S178. Similarly

to traverse sections at Hellstugubreen, the CTS level seems to sink with increasing ice thickness.

However, this pattern is obvious only upstream the stake SIMAU (1555 m.a.s.l. in 2013). At lower

elevation, the CTS was not digitized due to the same di�culties as encountered with the pro�le

S179. The glacier is cold-based in the proximity of the margins. The cold surface layer reaches a

thickness of ∼55 m at about 1570 m.a.s.l. (horizontal distance of ∼2180 m on Figure � 3.9a), and

the CTS was detected at about 50 m depth at ∼1590 m.a.s.l., in the vicinity of stake S3yr11.

68 � 3. Results and discussions

Figure � 3.10: Air temperature di�erences observed between the stake locations H13 and H44 on Hell-
stugubreen. The values plotted are the temperature records at H13 minus the temperature
measured at H44, at di�erent times of the day.

3 Discussion

At Hellstugubreen, the temperature pro�le measurements at stakes H13 and H44 both witness the

existence of cold ice in the subsurface. H13 is clearly in the ablation area in the lower part of

the glacier, whereas H44 is in the upper part of the glacier. The stake H13 was located under

the ELA for the last 50 years (Andreassen et al., 2011a). The stake H44 was mostly under

the ELA for the last 10 years, except in 2008 and 2012 where remaining snow was observed at

the stake location, by the end of the summer (Andreassen et al., 2011a, Liss M. Andreassen

(pers. communication), Appendix A.1). As such, the ice is rarely snow covered early in winter

at these two stake locations, and is therefore not or poorly insulated from cold temperatures in

this season. At the end of the summer, the cold winter wave is almost eliminated at stake H13,

B. Temperature distribution and thermal regimes 69

while the subsurface ice temperature at stake H44 remains well below the pressure-melting point.

This di�erence is explained by the higher elevation of stake H44 resulting in lower yearly air

temperatures. Air temperature measurements pointed out a mean di�erence of 2.6◦C between

both locations. However, the air temperature is not always warmer at stake H13. Figure � 3.10

shows the air temperature di�erences at both stakes, and at di�erent times of the day. The air

temperature gradient is not constant in time over the glacier. During the morning, the upper

parts of the glacier are exposed to the sun, while the steeper lower parts are still hidden from the

sun. This resulted occasionally in warmer temperatures at stake H44 than at stake H13, owing to

di�erent intensities of the radiative heating of the air by direct solar radiations. In summer, as the

solar elevation angle is larger, the shading e�ects from the surface topography is diminished in this

high latitude area. Therefore, the air temperature was almost always colder at H44. The surface

orientation and surface slope have an in�uence on the subsurface ice temperature, by a�ecting the

time of the onset and of the end of the diurnal signal penetration in the ice. However, on a glacier,

the elevation and the presence of a snow cover or not are more signi�cant contributors to the ice

thermal regime.

Regarding the temperature measurements at stake S2 on Storbreen, the results show that a

cold ice surface layer remained from the last cold winter wave, down to a depth of ∼6 m, until

the month of July. After this month, the ice is temperate along the entire pro�le. The DDF

calculated from the CPs is too small, as it model the melt of a 2.58 m thick snowpack in four days.

For the calculation of the DDF, the model assumed that no precipitation events occur during the

CPs. A snowfall event during a CP may a�ect signi�cantly the estimation of the DDF, as new

snow would increase the surface albedo and decrease the melt rate. If the glacier surface receives

precipitation as rain, the relatively warm water would bring energy to the ice surface, available for

melt. However, the heating from rain is often a minor contributor the energy balance of glaciers

(Benn and Evans, 2010). The DDF is an empirical factor used in degree-day models, and has

the purpose to represents parameters that a�ect the melting rate, other than temperature. These

parameters (e.g. wind, radiations, precipitation...) are variable in time and space and are therefore

di�cult to represent with a constant coe�cient. Furthermore, the DDF should be calculated over

longer CPs. On Storbreen, Engelhardt (2014) estimated from all summer ablation measurements

available a DDF equal to 5.3 mm w.e. ◦C-1 d-1. Figure � 3.11 show the results using the same

DDF.

Using the new DDF in the model, the 2.58 snowpack melted away after 45 days and the ice

surface was snow-free starting from the 7th of July. This result is much more sensible than when

using the computed DDF from the CPs. The snowpack had experienced considerable thinning

in a month time, as the e�ects of the air temperature diurnal variations are visible in the ice,

down to a depth of ∼1.4 m on the 20th, 21st and 22nd of June (see Appendix D.1). With a

70 � 3. Results and discussions

Figure � 3.11: Air and ice temperature at stake S2, Storbreen 2014. The depth of the sensors in ice are
updated using the corrected DDF (5.3 mm w.e. ◦C-1 d-1) from Engelhardt (2014).

DDF of 5.3 mm w.e. ◦C-1 d-1, the disappearance of the snowpack is well synchronized with the

transition towards a temperate thermal regime in the subsurface. The use of a DDF equal to

5.3 mm w.e. ◦C-1 d-1 gives more consistent results. This value should be adopted for further

studies on Storbreen.

The RES measurements enabled to get an insight into the thermal regimes of Hellstugubreen

and Storbreen at greater depths of investigations. The RES surveys were only conducted in the

ablation area of the glaciers. The temperature distribution of both glaciers is typical of the one

observed in the ablation area of polythermal glaciers (Björnsson et al., 1996; Hagen et al., 2003;

Pettersson et al., 2003). On the radargrams from April 2014, the glaciers seems cold based at the

front. This is con�rmed from the borehole temperature measurements. The CTS was however

not digitized in this locations, as surface structures and heavy signal scattering made di�cult

the digitizing process. At the end of the summer, the cold winter wave is not eliminated at

B. Temperature distribution and thermal regimes 71

Hellstugubreen, with only the only the uppermost layer that is a�ected by diurnal temperature

variations. At Storbreen, however, the cold wave seemed to be completely eliminated at stake S2 .

Further up on the glacier, the cold surface layer reaches a thickness of ∼50 m at certain locations.

The summer temperatures are there not su�cient to restore a temperate thermal regime.

Traverse sections show that both glaciers are cold-based near their margins, and that the CTS

level deepens further away from the margins, as the ice thickness increases. Overall, the cold surface

layer was thickest where the ice was thickest on both glacier. This results from the fact that the

glaciers are thicker high up in the part of the ablation area mapped with GPR. At higher elevations

where the mean temperatures are lower, the cold winter wave is more intense and penetrate deeper

in the ice. This led to an increase of the CTS depth with increasing elevation observed on the

results. The cold surface was at maximum 90 m at Hellstugubreen and 55 m thick at Storbreen

along the the GPR pro�les.

Except at the front, both glaciers have a temperate basal thermal regime beneath their central

part. In the lowermost parts of the ablation area, the early winter temperatures, before the

settlement of a thick insulating snowpack, do not allow the cold wave to penetrate down to the

bedrock. At higher elevation where the winter temperatures penetrate deeper in the ice, the ice

is too thick to allow the transition towards a cold-based regime. Moreover, at greater depths the

pressure-melting point is depressed owing to the overburden pressure of the overlaying ice (Cu�ey

and Paterson, 2010).

As opposed to Svalbard and other polar latitude locations (Ahlmann, 1935; Schytt, 1964;

Liestøl, 1988; Björnsson et al., 1996; Jania et al., 1996; Hagen et al., 2003), most glaciers in

mainland Norway are considered to be temperate (Andreassen et al., 2012). However, in Southern

Norway and above the lower limit of alpine permafrost, where the local climate is characterized by

low winter temperatures and precipitations (Etzelmüller and Hagen, 2005), the presence of cold

ice was observed in several glaciers. Borehole temperature measurements combined with GPR

surveys conducted at Nedre Steindalsbre indicated ice temperatures below the pressure-melting

point close the glacier front (Urdahl, 2005). Gråsubreen also located in Jotunheimen region has a

thermal regime similar to the one observed at Hellstugubreen and Storbreen (Sørdal, 2013).

The Internal Re�ecting Horizons (IRHs) observed on the GPR pro�les may not show the actual

CTS. A study on a Hansbreen polythermal glacier in southern Spitsbergen compared temperature

pro�les obtained from borehole measurements with IRHs (Internal Re�ecting Horizons) obtained

both from airborn Ultra High Frequency (UHF) radio-echo soundings and low frequency radio-echo

soundings (Jania et al., 1996). Internal re�ections observed from the radio-echo soundings occurred

all at greater depth than the interface cold/temperate ice obtained from borehole measurements.

Jania et al. (1996) explain these di�erences by a speci�c layering : A �nite temperate ice layer with

a low water content underlying the isotherm limit, which is underlain by temperate ice with a high

72 � 3. Results and discussions

water content. The temperate with lower water content is transparent to the radio-echo soundings.

However, much scattering of the radar signal occurs when the water content increases. This

increases the uncertainties of the CTS depth estimation from RES surveys. To map accurately the

CTS positions, GPR measurements should be combined with borehole temperature measurements

(Pettersson et al., 2004).

Chapter C

Ice �ow velocity

1 Ice surface velocity at Hellstugubreen

At Hellstugubreen, the ice surface velocity data were interpolated, using the information from

cross-correlations between the velocity data and the ice thickness on the one hand, and between

the velocity and the surface slope on the other hand (see Ice surface velocity interpolation). The

surface velocity map resulting from the cokriging algorithm is shown in Figure � 3.12. The same

bu�er-like area along the glacier outlines is present on this map, as the input thickness data used

by the algorithm have a value of zero at this location. The estimated surface velocity values range

from ∼0.5 m.yr-1, in the upper parts of the glacier close to stake H45, up to ∼15.8 m.yr-1 near stake
H29. The velocity values measured directly at stake locations are presented in Table � 3.3, together

with the ice thickness and surface slope parameters estimated at each location. It must be noted

that the surface velocity values are not all averaged from the same measurement period. The stake

network density was improved in 2013-2014 on Hellstugubreen. Prior to 2013, less measurements

were available, and the resulting values were not interpolated, as large distances between stake

leads to larger uncertainties in the interpolated velocity values. As the surface velocity of a glacier

is not constant in time, the stake surveys conducted before 2013 were not used to produce the

surface velocity map.

73

74 � 3. Results and discussions

Figure � 3.12: Ice surface velocity map at Hellstugubreen for 2013-2014. The velocity values are derived
from DGNSS measurements performed at di�erent times, and are averaged between con-
secutive measurements. The elevation contours and glacier outlines are derived from the
2009 laser scanning and orthophotos (data : NVE).

C
.
Ic
e
�
o
w
v
e
lo
c
ity

7
5

Table � 3.3: Horizontal surface velocity values derived from repeated stake surveys between 2013 and 2014
at Hellstugubreen. The symbol × means that the stake position was recorded with DGNSS,
and the symbol � indicates the absence of measurement at this date. The thickness (±25 m)
at the stake locations are extracted from the ice thickness map, and the surface slope is derived
from the 2009 LiDAR data (data : NVE).

Stake
Elevation in 2014

(m.a.s.l.)
DGNSS georeferencing Ice thickness

(m)
Surface slope
(degrees)

Averaged surface
velocity (m.yr-1)2013-09-10 2014-05-15 2014-09-16

H13 1570 × × × 69 10.1 4.5
H20 1638 × × � 80 11.6 11.0
H26 1693 × × � 73 10.3 14.8
H29 1743 × × × 94 11.5 15.8
H43 1864 × � × 103 7.9 6.5
H44 1890 × × × 108 5.8 4.1
H45 1937 × × × 133 4.1 0.5
H48 2068 � × × 66 8.0 5.2
H60 1795 × × × 124 7.3 10.2
H61 1807 × × � 131 6.6 10.2
H62 1815 × � × 137 5.7 8.6
H70 1891 � × × 129 6.3 4.2
H72 1945 � × × 103 8.0 2.4
H73 1934 � × × 106 12.6 6.1

76 � 3. Results and discussions

2 Ice surface velocity at Storbreen

At Storbreen, the ice surface velocity estimated at stake locations were not interpolated, as the

stake network was less rich than at Hellstugubreen. However, the stake surveys were more contin-

uous in time. Figure � 3.13 shows the horizontal velocity variations in time at each stake location

where velocity measurements are available. The stake locations are shown in Figure � 2.7b. A

surface slope map of the glacier, derived from the 2009 laser scanning, is available in Appendix G,

and the thickness at each stake can be estimated from Figure � 3.4, in section Ice thickness at

Storbreen. The averaged surface velocities range from a value nearing 0 m.yr-1 at stake up to

∼18.3 m.yr-1 at S1yr12. All surface velocity values are not averaged over the same measurement

period and time of the year. As such, some may represent the yearly mean surface velocity, while

others may give an estimate of the summer or winter surface velocities.

Figure � 3.13: Ice surface velocity at Storbreen at di�erent stakes. The velocity values are de-
rived from DGNSS measurements performed at di�erent times, and are averaged
between two consecutive measurements.

C. Ice �ow velocity 77

3 Subsurface deformation rate at stake S2

At stake S2 on Storbreen, the ice temperature was accurately measured in the subsurface. The high

temporal resolution of the measurements allows to estimate the e�ects of temperature variations on

the ice deformation rate. Figure � 3.14 shows the result of the integration of the creep relation of

ice (equation (� 2.9)), accounting for changes of the temperature dependent creep �ow parameter

A. It was assumed that the ice has a constant density of 917 kg.m-3 for the calculations.

Figure � 3.14: E�ects of ice temperature variations on the ice deformation rate in the subsurface at stake
S2, Storbreen 2014. A DDF of 5.3 mm w.e. ◦C-1 d-1 was used to update the depth of the
sensors as the surface melts.

The results show that the ice deformation rate increases from a value equal to zero at the

surface to a value of ∼1.5 mm.yr-1 at a depth of ∼12 m, at the beginning of the measurement

period. The increase of the deformation rate with depth is not linear. This results from the cubic

78 � 3. Results and discussions

relationship between the deformation rate and the shear stress component (equation (� 2.7)). The

e�ects of temperature variations are very minor on the deformation rate at this depth level.

4 Discussion

The output product from the ice surface velocities interpolation at Hellstugubreen indicates that

higher velocities are found between stake H20 (1634 m.a.s.l.) and stake H60 (1795 m.a.s.l.). In

summer when the ice surface is snow-free, this area appears to be heavily crevassed. Crevasses

are known to form under relatively large strain-rates (Wu and Christensen, 1964; Vaughan, 1993;

Campbell et al., 2013). Higher surface velocities and surface velocities increasing over a short

distance are associated to larger strain-rates. The transverse crevasses formation in this zone

of Hellstugubreen is therefore consistent with higher local surface velocities. The highest sur-

face velocity measured (15.8 m.yr-1) was at stake H29. The lowest velocity recorded (0.5 m.yr-1)

was at stake H45, in a relatively �at area close to the ice divide separating Hellstugubreen from

Vestre Memurubreen.

Both on Hellstugubreen and on Storbreen, the measured surface velocities can be hard to

compare and interpret, as they are not derived from continuous measurements. They are averaged

velocities, estimated over di�erent periods and times of the year. Some represents yearly velocities,

other estimates summer or even winter surface velocities. To assess surface velocity changes over

time, the stake surveys should be conducted at regular time intervals, several times every year if

one wants to get an insight into seasonal variations of the ice �ow.

No general conclusion on surface velocity changes can be drawn from the stake surveys on

Storbreen. Ice �ow accelerations and decelerations are not synchronized between all stake locations.

The highest velocity measured at stake S1yr12 (∼18.3 m.yr-1) is likely to result from observational

error, as previous velocities measured at the neighbouring stake S1 were all lower than ∼10 m.yr-1.
Likewise, the velocity drop observed at stake S4 and minimum velocity estimated on Storbreen

(∼0.2 m.yr-1) is most likely based on a measurement error. Indeed, this deceleration of the ice

�ow occurs at the end of the summer, between the 13th of August and the 12th of September,

when velocities are generally higher than the mean annual velocity. The earlier estimated value of

∼2.6 m.yr-1 is therefore more sensible for the surface velocity at this stake location. The surface

velocity values averaged over short periods are very sensitive to errors of measurement.

Velocity measurements had already been conducted on Storbreen in 1960s (Liestøl, 1967). The

surface velocity was estimated using a triangulation method. The velocity values estimated ranged

from a few millimetre per day to ∼21.5 m.yr-1. The highest velocity measured was downstream

stake S7 (see Figure � 2.7b) at ∼1640 ma.s.l. An overview map from this work is shown in

Appendix F.1. Storbreen had a that time a di�erent geometry and its ice thickness must have been

C. Ice �ow velocity 79

larger at the today's stake locations.

For the parts of Hellstugubreen and Storbreen mapped with radio-echo sounding, the glacier

has mainly a temperate basal thermal regime, which allow for basal sliding (see Basal thermal

regimes). Therefore, part of the ice �ow velocity observed at the surface may result from the basal

sliding component. The temperate basal thermal regime can sustain a subglacial hydrological

network, which lubricates the bed and increases the ice �ow. On polythermal glaciers, the melt

water input in subglacial drainage pathways during the summer season may result in signi�cant

increases of the horizontal surface velocity (Rabus and Echelmeyer, 1997; Copland et al., 2003).

In order to isolate the e�ects of this speed-up event on averaged velocities, a higher frequency of

stake surveys becomes even more important.

The ice temperature variations in the subsurface do not a�ect signi�cantly the surface velocity.

The changes of the creep �ow parameter resulting from temperature variations are not important

under low shear stress conditions for the calculation of the total surface velocity. However, under

larger shear stress conditions, the thermal regime of the ice becomes an import contributor to the

total surface velocity. At stake H45, where the ice is estimated to be ∼133 m thick and the CTS is

encountered at a depth of ∼90 m, the measured surface velocity was only 0.5 m.yr-1. If the stake

was located far in the accumulation instead, where an insulating snowpack impedes the cold winter

wave to penetrate deeper than the subsurface layers, the ice would likely have a temperate thermal

regime across the full ice thickness (Hagen et al., 2003). With a temperate thermal regime under

such stress conditions, the measured surface velocity at stake H45 may have been signi�cantly

higher. The snow line was however located in the uppermost part of the glacier during the last

past years (Andreassen et al., 2011a). On the long term, the �uctuations of the snow line may be

an important contributor to ice �ow velocity variations on polythermal glaciers.

Conclusions

The aim of this work was to gain an insight into the thermal regime of Hellstugubreen and Stor-

breen, two glaciers in Jotunheimen area thought to be polythermal. The thermal regime assess-

ments were based on Radio-Echo Sounding surveys at two di�erent center frequencies and on

shallow borehole temperature measurements. The RES measurements enabled to map the ice

thickness and the Cold-temperate Transition Surface on a regional scale. The horizontal surface

velocities on both glaciers were also investigated. The velocities were estimated from stake surveys

based on non-continuous DGNSS georeferencing. The conclusions from this work can be brie�y

summarized as follows :

� Generally, the ice thickness estimated from RES measurements conducted in 2014 at Hell-

stugubreen are consistent with the corrected RES records from 2011. Only 5.1% of the ice

thickness di�erences observed between the measurements for both years show a value greater

than the total measurement uncertainty, with a mean absolute di�erence of 18 meters. The

largest di�erences between measurements occurred where the ice was thickest.

� The borehole temperature measurements at Hellstugubreen indicated the presence of ice

below the pressure-melting point in the subsurface. At stake H44, by the end of the summer,

the cold winter wave is not eliminated at the depths investigated. At stake H13, the ice almost

transited towards a temperate regime, but remained cold at a depth of 3.2 m, accounting

for the measurement uncertainties. On Storbreen, at stake S2, the borehole measurements

also pointed out the existence of a thin cold surface layer. At this location, however, the ice

became temperate along the entire pro�le from the start of August.

� The RES surveys con�rmed that both Hellstugubreen and Storbreen have a polythermal

regime. The RES measurements were conducted the ablation area of these glaciers. The

glaciers seemed cold-based at the front and near their margins. Beneath their central parts,

the glaciers have a temperate basal thermal regime. Generally, the thickness of the cold

surface layer increases up glacier, and reaches a maximum value of 90 m at Hellstugubreen

and 55 m at Storbreen.

� The surface velocities estimated on Hellstugubreen for 2013-2014 ranges from 0.5 m.yr-1, at

stake H45 (1937 m.a.s.l.) near the ice divide between Hellstugubreen and Vestre Memu-

rubreen, to a maximum value of 15.8 m.yr-1 at stake H29 (1743 m.a.s.l.). The surface

velocities estimated on Storbreen ranged from nearly to 0 m.yr-1 to 18.3 m.yr-1. However,

80

C. Ice �ow velocity 81

these values are both suspected to result from measurement errors. Sensible values range

from ∼2.5 m.yr-1 at stake S4 (1708 m.a.s.l.) up to ∼16.2 m.yr-1 at stake S6 (1851 m.a.s.l.).

� The ice temperature variations in the subsurface do not lead to large deformation rate dif-

ferences. The ice temperature at shallow depths is therefore not an important factor in the

surface velocities modelling of glaciers. The use of simple Degree-Day models is an e�-

cient way to update the depth of the sensors in shallow borehole temperature measurements.

However, the Degree-Day Factor used in the model requires to be well calibrated, preferably

estimated from measurements over a long time period.

Further processing can be done on the radargrams from 2014, in order to improve the accuracy

of both the ice thickness measurements and the mapping of the CTS. The CTS was mapped only

in the lower part of Storbreen. The area investigated could be extended to the larger upper parts.

However this may not be possible with the use of snowmobile owing to the steep topography and

presence of crevasses. It would likewise be interesting to get an overview of the ice thermal regime

in the two upper cirques at Hellstugubreen. The higher elevations of the cirques, together with

the shadow from the surrounding topography lead to the presence of a snowpack more resistant

to the summer melt. The thermal regime of these zones may therefore be less a�ected by the cold

winter temperatures. Regarding the surface velocities, more frequent measurements and a denser

stake network would greatly improve the quality of the output products.

References

Ahlmann, H. W. (1935), `Contribution to the physics of glaciers', Geographical Journal 86(2), 97�

113.

Andreassen, L. M., Elvehøy, H., Jackson, M., Kjøllmoen, B., Tvede, A. M., Laumann, T. and

Giesen, R. H. (2007), Storbreen, in B. Kjøllmoen, ed., `Glaciological investigations in Norway

in 2006', Vol. 1, Norwegian Water Resources and Energy Directorate, Oslo, p. 99.

Andreassen, L. M., Elvehøy, H., Jackson, M., Kjøllmoen, B. and Giesen, R. H. (2011a), Hell-

stugubreen, in B. Kjøllmoen, ed., `Glaciological investigations in Norway in 2010', Vol. 3,

Norwegian Water Resources and Energy Directorate, Oslo, p. 89.

Andreassen, L. M., Elvehøy, H., Jackson, M., Kjøllmoen, B. and Giesen, R. H. (2011b), Storbreen,

in B. Kjøllmoen, ed., `Glaciological investigations in Norway in 2010', Vol. 3, Norwegian Water

Resources and Energy Directorate, Oslo, p. 89.

Andreassen, L. M., Huss, M., Melvold, K., Elvehøy, H. and Winsvold, S. (2015), `Ice thickness mea-

surements and volume estimates for glaciers in Norway', Journal of Glaciology 61(228), 763�

775.

Andreassen, L. M., Winsvold, S. H., Paul, F. and Hausberg, J. E. (2012), Inventory of Norwegian

Glaciers, Norwegian Water Resources and Energy Directorate, OSLO.

Bamber, J. L. (1989), `Ice/bed interface and englacial properties of Svalbard ice masses deduced

from airborne radio-echo sounding data', Journal of Glaciology 35, 30�39.

Benjumea, B., Macheret, Y. Y., Navarro, F. J. and Teixidó, T. (2003), `Estimation of water

content in a temperate glacier from radar and seismic sounding data', Annals of Glaciology

37(1), 317�324.

URL: http://www.ingentaconnect.com/content/igsoc/agl/2003/

00000037/00000001/art00049

Benn, D. I. and Evans, D. J. A. (2010), Glaciers and Glaciation, Hodder Arnold Publication, 2nd

edn, Hodder Education.

Bingham, R. G., Nienow, P. W., Sharp, M. J. and Boon, S. (2005), `Subglacial drainage processes

at a High Arctic polythermal valley glacier', Journal of Glaciology 51(172), 15�24.

82

http://www.ingentaconnect.com/content/igsoc/agl/2003/00000037/00000001/art00049
http://www.ingentaconnect.com/content/igsoc/agl/2003/00000037/00000001/art00049

REFERENCES 83

URL: http://www.ingentaconnect.com/content/igsoc/jog/2005/

00000051/00000172/art00002

Björnsson, H., Gjessing, Y., Hamran, S.-E., Hagen, J. O., Liestøl, O., Pálsson, F. and Erlingsson,

B. (1996), `The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo

sounding', Journal of Glaciology 42(140), 23�32.

Blatter, H. (1987), `On the thermal regime of an Arctic valley glacier: A study of White Glacier,

Axel Helberg Island, N.W.T., Canada', Journal of Glaciology 33(114), 200�211.

Campbell, S., Roy, S., Kreutz, K., Arcone, S., Osterberg, E. and Koons, P. (2013), `Strain-rate

estimates for crevasse formation at an alpine ice divide:Mount Hunter, Alaska', Annals of

Glaciology 54(63), 200�208.

Conway, H. and Rasmussen, L. A. (2000), Summer temperature pro�les within supraglacial debris

on khumbu glacier, nepal, in `Debris Covered Glaciers', number 264, International Association

of Hydrological Sciences, pp. 89�97.

Copland, L., Sharp, M. J. and Nienow, P. W. (2003), `Links between short-term velocity varia-

tions and the subglacial hydrology of a predominantly cold polythermal glacier', Journal of

Glaciology 49(166), 337�348.

Cu�ey, K. M. and Paterson, W. S. B. (2010), The Physics of Glaciers, 4th edn, Elsevier.

Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde, D. and Bhatia, M. P.

(2008), `Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake

drainage', Science 320(5877), 778�781.

Dowdeswell, J., Benham, T., Gorman, M., Burgess, D. and Sharp, M. (2004), `Form and �ow of

the Devon Island Ice Cap, Canadian Arctic', Journal of Geophysical Research 109.

Engelhardt, M. (2014), Glacier mass-balance and discharge modeling, PhD thesis, Faculty of Math-

ematics and Natural Sciences, University of Oslo.

URL: http://folk.uio.no/markusen/disputas/Avhandling_Markus.pdf

Etzelmüller, B. and Hagen, J. O. (2005), `Glacier-permafrost interaction in Arctic and alpine

mountain environments with examples from southern Norway and Svalbard', Geological Soci-

ety, London, Special Publications 242(1), 11�27.

Fountain, A. G. and Walder, J. S. (1998), `Water �ow through temperate glaciers', Review of

Geophysics 3, 299�328.

http://www.ingentaconnect.com/content/igsoc/jog/2005/00000051/00000172/art00002
http://www.ingentaconnect.com/content/igsoc/jog/2005/00000051/00000172/art00002
http://folk.uio.no/markusen/disputas/Avhandling_Markus.pdf

84 REFERENCES

Funk, M., Echelmeyer, K. A. and Iken, A. (1994), `Mechanisms of fast �ow in Jakobshavn Isbrae,

West Greenland : Part ii. Measurements of temperature and water-level in deep boreholes',

Journal of Glaciology 40(136), 569�585.

Gilbert, A., Vincent, C., Wagnon, P., Thibert, E. and Rabatel, A. (2012), `The in�uence of

snow cover thickness on the thermal regime of Tête Rousse Glacier (Mont Blanc range, 3200

m a.s.l.): Consequences for outburst �ood hazards and glacier response to climate change',

Journal of Geophysical Research: Earth Surface 117(F4), n/a�n/a. F04018.

URL: http://dx.doi.org/10.1029/2011JF002258

Glen, J. and Paren, J. (1975), `The electrical properties of snow and ice', Journal of Glaciology

15(73), 15�385.

Glen, J. W. (1955), The creep of polycrystalline ice, in `Proceedings of the Royal Society of

London', Vol. 228, pp. 519�538.

Haeberli, W. and Funk, M. (1991), `Borehole temperatures at the Colle Gnifetti core-drilling site

(Monte Rosa, Swiss Alps)', Journal of Glaciology 37(125), 37�46.

Hagen, J. O., Kohler, J., Melvold, K. and J.-G., W. (2003), `Glaciers in Svalbard : mass balance,

runo� and freshwater �ux', Polar Research 22(2), 145�159.

Hughes, M. (2008), Determination of glacial-ice temperature pro�les using radar and an antenna-

gain estimation technique, Master's thesis, University of Kansas.

Huybrechts, P. and Oerlemans, J. (1988), `Evolution of the East Antarctic ice sheet: a numerical

study of thermo-mechanical response patterns with changing climate', Annals of Glaciology

11, 52�59.

Iken, A., Echelmeyer, K. A., Harrison, W. D. and Funk, M. (1993), `Mechanisms of fast �ow in

Jakobshavn Isbrae, West Greenland : Part i. Measurements of temperature and water-level

in deep boreholes', Journal of Glaciology 39(131), 15�25.

Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., Vatne, G. and Hubbard, A. L. (2011),

`Polythermal glacier hydrology: A review', Reviews of Geophysics 49(4), n/a�n/a.

URL: http://dx.doi.org/10.1029/2010RG000350

Jania, J., Mochnacki, D. and G¡gdek, B. (1996), `The thermal structure of Hansbreen, a tidewater

glacier in southern Spitsbergen, Svalbard', Polar Research 15(1), 53�66.

Jol, H., ed. (2009), Ground Penetrating Radar: Theory and Applications, Elsevier Science, Ams-

terdam.

http://dx.doi.org/10.1029/2011JF002258
http://dx.doi.org/10.1029/2010RG000350

REFERENCES 85

Kennett, M., Laumann, T. and Cecile, L. (1993), `Helicopter-borne radio-echo sounding of Svar-

tisen, Norway', Annals of Glaciology 17, 23�26.

King, M. A. and Watson, C. S. (2010), `Long GPS coordinate time series: Multipath and geometry

e�ects', Journal of Geophysical Research: Solid Earth 115(B4), n/a�n/a. B04403.

URL: http://dx.doi.org/10.1029/2009JB006543

Kohler, J., Moore, J., Kennett, M., Engeset, R. and Elvehøy, H. (1997), `Using ground-penetrating

radar to image previous years' summer surfaces for mass-balance measurements', Annals of

Glaciology 24, 355�360.

Liestøl, O. (1967), `Storbreen glacier in Jotunheimen, Norway', Norsk Polarinstitutt Skrifter

141, 63p.

Liestøl, O. (1988), `The glaciers in the kongsfjorden area, spitsbergen', Norsk Geogra�sk Tidsskrift

42(4), 231�238.

Lovell, H., Fleming, E. J., Benn, D. I., Hubbard, B., Lukas, S. and Naegeli, K. (2015), `Former

dynamic behaviour of a cold-based valley glacier on Svalbard revealed by basal ice and

structural glaciology investigations', Journal of Glaciology 61(226), 309�328.

URL: http://www.ingentaconnect.com/content/igsoc/jog/2015/

00000061/00000226/art00011

Lüthi, M., Funk, M., Iken, A., Gogineni, S. and Tru�er, M. (2002), `Mechanisms of fast �ow in

Jakobshavn Isbrae, West Greenland : Part iii. Measurements of temperature and water-level

in deep boreholes', Journal of Glaciology 48(162), 369�385.

Maohuan, H. (1990), `On the temperature distribution of glaciers in China', Journal of Glaciology

36(123), 210�216.

Maohuan, H. (1999), `Forty year's study of glacier temperature distribution in China : Review

and Suggestions', Journal of Glaciology and Geocryology 21(4), 310�317.

Moore, J. C., Pälli, A., Ludwig, F., Blatter, H., Jania, J., Gadek, B., Glowacki, P., Mochnacki, D.

and Isaksson, E. (1999), `High-resolution hydrothermal structure of Hansbreen, Spitsbergen,

mapped by ground-penetrating radar', Journal of Glaciology 45, 524�532.

URL: http://www.igsoc.org:8080/journal/45/151/igs_journal_vol45_

issue151_pg524-532.pdf

Moran, M. L., Green�eld, R. J., Arcone, S. A. and Delaney, A. J. (2000), `Delineation of a

complexly dipping temperate glacier bed using short-pulse radar arrays', Journal of Glaciology

http://dx.doi.org/10.1029/2009JB006543
http://www.ingentaconnect.com/content/igsoc/jog/2015/00000061/00000226/art00011
http://www.ingentaconnect.com/content/igsoc/jog/2015/00000061/00000226/art00011
http://www.igsoc.org:8080/journal/45/151/igs_journal_vol45_issue151_pg524-532.pdf
http://www.igsoc.org:8080/journal/45/151/igs_journal_vol45_issue151_pg524-532.pdf

86 REFERENCES

46(153), 274�286.

URL: http://www.ingentaconnect.com/content/igsoc/jog/2000/

00000046/00000153/art00012

Murray, T., Gooch, D. L. and Stuart, G. W. (1997), `Structures within the surge front at

Bakaninbreen, Svalbard, using ground-penetrating radar', Annals of Glaciology 24, 122�129.

URL: http://www.igsoc.org:8080/annals/24/igs_annals_vol24_

year1997_pg122-129.pdf

Murray, T., Stuart, G. W., Fry, M., Gamble, N. H. and Crabtree, M. D. (2000), `Englacial water

distribution in a temperate glacier from surface and borehole radar velocity analysis', Journal

of Glaciology 46(154), 389�398.

Navarro, F. and Eisen, O. (2009), Remote Sensing of Glaciers � Techniques for Topographic, Spatial

and Thematic Mapping, Taylor & Francis Group, London, chapter Ground-penetrating radar

in glaciological applications, pp. 195�229.

Navarro, F. J., Macheret, Y. Y. and Benjumea, B. (2005), `Application of radar and seismic

methods for the investigation of temperate glaciers', Journal of Applied Geophysics 57(3), 193

� 211.

URL: http://www.sciencedirect.com/science/article/pii/

S0926985104000989

Navarro, F. J., Martín-Español, A., Lapazaran, J. J., Grabiec, M., Otero, J., Vasilenko, E. V. and

Puczko, D. (2014), `Ice Volume Estimates from Ground-Penetrating Radar Surveys, Wedel

Jarlsberg Land Glaciers, Svalbard', Arctic, Antarctic, and Alpine Research 46(2), 394�406.

URL: http://www.bioone.org/doi/full/10.1657/1938-4246-46.2.394

Nilsson, J. (2011), Multipath mitigation of carrier-phase GPS position estimates from the Helheim

glacier: using new reduced sidereal �ltering approach, Master's thesis, Chalmers University

of Technology, Department of Earth and Space Sciences, Gothenburg, Sweden.

URL: http://publications.lib.chalmers.se/records/fulltext/164985.

pdf

Nye, J. F. (1973), Water at the bed of a glacier, in `Symposium on the Hydrology of Glaciers',

Vol. 95, International Association of Hydrological Sciences, pp. 189�194.

Ødegård, R., Nesje, A., Isaksen, K. and Eiken., T. (2011), Perennial ice patch studies - prelimi-

nary results from a case study in Jotunheimen, southern Norway, in `Geophysical Research

Abstracts', Vol. 13. EGU2011-12027.

http://www.ingentaconnect.com/content/igsoc/jog/2000/00000046/00000153/art00012
http://www.ingentaconnect.com/content/igsoc/jog/2000/00000046/00000153/art00012
http://www.igsoc.org:8080/annals/24/igs_annals_vol24_year1997_pg122-129.pdf
http://www.igsoc.org:8080/annals/24/igs_annals_vol24_year1997_pg122-129.pdf
http://www.sciencedirect.com/science/article/pii/S0926985104000989
http://www.sciencedirect.com/science/article/pii/S0926985104000989
http://www.bioone.org/doi/full/10.1657/1938-4246-46.2.394
http://publications.lib.chalmers.se/records/fulltext/164985.pdf
http://publications.lib.chalmers.se/records/fulltext/164985.pdf

REFERENCES 87

Ødegård, R. S., Hamran, S.-E., Bø, P. H., Etzelmuller, B., Vatne, G. and Sollid, J. L. (1992),

`Thermal regime of a valley glacier, erikbreen, northern spitsbergen', Polar Research 11(2), 69�

79.

URL: http://dx.doi.org/10.1111/j.1751-8369.1992.tb00413.x

Onset Computer Corporation (2014), `HOBO Pro v2 Data Logger (U23-00x) User's Manual',

http://www.onsetcomp.com/files/manual_pdfs/10694-N%20MAN-U23.pdf.

Accessed: 2014-09-07.

Palli, A., Kohler, J., Isaksson, E., Moore, J., Pinglot, J., Pohjola, V. and Samuelsson, H. (2002),

`Spatial and temporal variability of snow accumulation using ground-penetrating radar and

ice cores on a Svalbard glacier', Journal of Glaciology 48(162), 417�424.

Paterson, W. S. B. (1968), A temperature pro�le through the Meighen ice cap, Arctic Canada, in

`ASH General Assembly of Bern, Commission of Snow and Ice 1967.', number 79, Association

Internationale d'Hydrologie Scienti�que, Gentbrugge, Belgium, pp. 440�449.

Pattyn, F. (2010), `Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream

model', Earth and Planetary Science Letters 295(3�4), 451 � 461.

URL: http://www.sciencedirect.com/science/article/pii/

S0012821X10002712

Pay, I. (2014), Changes in driving stresses and horizontal surface velocity on Hellstugubreen,

Jotunheimen, Norway. An investigation of inter-decadal �uctuations., Master's thesis, Norges

Teknisk-Naturvitenskapelige Universitet, Trondheim. Unpublished.

Pettersson, R., Christo�ersen, P., Dowdeswell, J. A., Pohjola, V. A., Hubbard, A. and Strozzi, T.

(2011), `Ice thickness and basal conditions of vestfonna ice cap, eastern svalbard', Geogra�ska

Annaler: Series A, Physical Geography 93(4), 311�322.

URL: http://dx.doi.org/10.1111/j.1468-0459.2011.00438.x

Pettersson, R., Jansson, P. and Blatter, H. (2004), `Spatial variability in water content at the cold-

temperate transition surface of the polythermal Storglaciären, Sweden', Journal of Geophysical

Research 109(F02009). Part of urn:nbn:se:su:diva-161.

Pettersson, R., Jansson, P. and Holmlund, P. (2003), `Cold surface layer thinning on Storglaciären,

Sweden, observed by repeated ground penetrating radar surveys', Journal of Geophysical

Research: Earth Surface 108(F1), n/a�n/a. 6004.

URL: http://dx.doi.org/10.1029/2003JF000024

http://dx.doi.org/10.1111/j.1751-8369.1992.tb00413.x
http://www.onsetcomp.com/files/manual_pdfs/10694-N%20MAN-U23.pdf
http://www.sciencedirect.com/science/article/pii/S0012821X10002712
http://www.sciencedirect.com/science/article/pii/S0012821X10002712
http://dx.doi.org/10.1111/j.1468-0459.2011.00438.x
http://dx.doi.org/10.1029/2003JF000024

88 REFERENCES

Phillips, T., Rajaram, H., Colgan, W., Ste�en, K. and Abdalati, W. (2013), `Evaluation of cryo-

hydrologic warming as an explanation for increased ice velocities in the wet snow zone, sermeq

avannarleq, west greenland', Journal of Geophysical Research: Earth Surface 118, 1241�1256.

Phillips, T., Rajaram, H. and Ste�en, K. (2010), `Cryo-hydrologic warming: A potential mecha-

nism for rapid thermal response of ice sheets', Geophysical Research Letters 37(20), n/a�n/a.

L20503.

URL: http://dx.doi.org/10.1029/2010GL044397

Pinglot, J., Hagen, J., Melvold, K., Eiken, T. and Vincent, C. (2001), `A mean net accumulation

pattern derived from radioactive layers and radar soundings on Austfonna, Nordaustlandet,

Svalbard', Journal of Glaciology 47(159), 555�566.

Plewes, L. and Hubbard, B. (2001), `A review of the use of radio-echo sounding in glaciology',

Progress in Physical Geography 25(2), 203�236.

Price, P. B., Nagornov, O. V., Bay, R., Chirkin, D., He, Y., Miocinovic, P., Richards, A.,

Woschnagg, K., Koci, B. and Zagorodnov, V. (2002), Temperature pro�le for glacial ice at

the South Pole: Implications for life in a nearby subglacial lake, in `Proceedings- National

Academy of Sciences USA', Vol. 99, National Academy of Sciences, pp. 7844�7847.

Rabus, B. T. and Echelmeyer, K. A. (1997), `The �ow of polythermal glacier: McCall Glacier,

Alaska', Journal of Glaciology 43(145), 552�536.

Robin, G. D. Q., Evans, S. and Bailey, J. T. (1969), `Interpretation of Radio Echo Sounding

in Polar Ice Sheets', Philosophical Transactions of the Royal Society of London. Series A,

Mathematical and Physical Sciences 265(1166), 437�505.

URL: http://www.jstor.org/stable/73767

Robinson, P. H. (1984), `Ice dynamics and thermal regime of taylor glacier, South Victoria land,

Antarctica', Journal of Glaciology 30(105), 153�160.

Rolandone, R., Mareschal, J.-C. and Jaupart, C. (2003), `Temperatures at the base of the Lau-

rentide Ice Sheet inferred from borehole temperature data', Geophysical Research Letters

30(18), CRY 3.

Röthlisberger, H. (1972), `Water pressure in intra- and subglacial channels', Journal of Glaciology

11(62), 177�203.

Sætrang, A. C. and Wold, B. (1986), `Results from the radio echo-sounding on parts of the

Jostedalsbreen ice cap, Norway', Annals of Glaciology 8, 156�158.

http://dx.doi.org/10.1029/2010GL044397
http://www.jstor.org/stable/73767

REFERENCES 89

URL: http://www.igsoc.org:8080/annals/8/igs_annals_vol08_year1985_

pg156-158.pdf

Sandmeier, K. J. (2014), Re�exw 7.5 manual, Technical report, Sandmeier scienti�c software,

Zipser Strasse 1, 76227 Karlsruhe, Germany.

URL: http://www.sandmeier-geo.de/Download/reflexw_manual_a4.pdf

Schytt, V. (1964), `Scienti�c Results of the Swedish glaciological expedition to Nordaustlandet,

Spitsbergen 1957 and 1958', Geogra�ska Annaler 46(3), 242�281.

Sclater, J. G., Jaupart, C. and Galson, D. (1980), `The heat �ow through oceanic and continental

crust and the heat loss of the earth', Reviews of Geophysics 18, 269�311.

Shannon, S. R., Payne, A. J., Bartholomew, I. D., Van Den Broeke, M. R., Edwards, T. L.,

Fettweis, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer, H., Ho�man, M. J., Huybrechts, P.,

Mair, D. W. F., Nienow, P. W., Perego, M., Price, S. F., Smeets, C. J. P. P., Sole, A. J., Van

De Wal, R. S. W. and Zwinger, T. (2013), Enhanced basal lubrication and the contribution of

the Greenland ice sheet to future sea-level rise, in `Proceedings- National Academy of Sciences

USA', Vol. 110, National Academy of Sciences, pp. 14156�14161.

Sheri�, R. E. and Geldart, L. P. (1995), Exploration Seismology, 2nd edn, Cambridge University

Press, Cambridge.

Sørdal, I. (2013), Kartlegging av temperaturtilhøva i Gråsubreen og Juvfonne, Master's thesis,

University of Oslo.

Urbini, S., Cafarella, L., Zirizzotti, A., Bianchi, C., Tabacco, I. and Frezzotti, M. (2006), `Location

of a new ice core site at Talos Dome (East Antarctica)', Annals of Geophysics 49(4-5), 1133

� 1138.

URL: http://www.annalsofgeophysics.eu/index.php/annals/article/

view/3104

Urdahl, H. (2005), Temperaturregime og stabilitet med henblikk på isskred fra hengebreer- eksem-

pel fra Steindalsnosi, Sognefjellet, Vest Norge, Master's thesis, University of Oslo.

van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P., Reijmer, C. H.,

Donker, J. J. A. and Oerlemans, J. (2008), `Large and rapid melt-induced velocity changes in

the ablation zone of the Greenland Ice Sheet', Science 321(5885), 111�113.

Van Dusen, M. S. (1929), International Critical Tables of Numerical Data, Physics, Chemistry and

Technology, Vol. 5, McGraw Hill, New York, chapter Thermal conductivity of non-metallic

solids, pp. 216�217.

http://www.igsoc.org:8080/annals/8/igs_annals_vol08_year1985_pg156-158.pdf
http://www.igsoc.org:8080/annals/8/igs_annals_vol08_year1985_pg156-158.pdf
http://www.sandmeier-geo.de/Download/reflexw_manual_a4.pdf
http://www.annalsofgeophysics.eu/index.php/annals/article/view/3104
http://www.annalsofgeophysics.eu/index.php/annals/article/view/3104

90 REFERENCES

Vaughan, D. G. (1993), `Relating the occurrence of crevasses to surface strain rates', Journal of

Glaciology 39(132), 255�266.

Watts, R. D. and England, A. W. (1976), `Radio-echo sounding of temperate glaciers: ice properties

and sounder design criteria', Journal of Glaciology 17(75), 39�48.

Welch, B., Pfe�er, W., Harper, J. and Humphrey, N. (1998), `Mapping subglacial surfaces below

temperate valley glaciers using 3-dimensional radio-echo sounding techniques', Journal of

Glaciology 44(146), 164�170.

Wu, T. H. and Christensen, R. W. (1964), `Measurement of surface strain-rate on Taku Glacier,

Alaska', Journal of Glaciology 5(39), 305�313.

Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J. and Ste�en, K. (2002), `Surface

melt-induced acceleration of Greenland ice-sheet �ow', Science 297(5579), 218�222.

Appendices

91

Appendix A

Surface lowering at Hellstugubreen

A.1 Surface lowering gradient

Surface lowering gradient at Hellstugubreen for the period 2009-2014, derived
from GPS measurements and LiDAR data di�erentiation. The elevation on the
y-axis is derived from the 2009 LiDAR data.

92

A.2. Surface lowering map 93

A.2 Surface lowering map

Surface lowering map at Hellstugubreen for the period 2009-2014, derived from
GPS measurements and LiDAR data di�erentiation. The elevation contours
and glacier outlines are derived from the 2009 laser scanning and orthophotos
(data : NVE).

Appendix B

Ice thickness di�erences between RES

measurements from 2011 and 2014,

Hellstugubreen

Ice thickness from 2011 measurements plotted against thickness di�erences observed between RES records
from 2011 and 2014.

94

Appendix C

Ice and air temperature at Hellstugubreen

C.1 NTC thermistors calibration curve

Calibration curve for the thermistors PR103J2 for a temperature ranging between -20 and 0◦C.

95

96 Appendix C. Ice and air temperature at Hellstugubreen

C.2 Python code

temperature.py

Listing 1: This program converts the resistance values from the thermistors into temperature values.
It also formats the temperature data and allows to update the depth of the sensor.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4

5 import os
6 import fileinput
7 import re
8 import pickle
9 import time

10 import datetime
11

12

13 import functionstemperature as ft
14

15

16 ## Identification of the temperature string location
17 ID = ’H13’
18

19 ## Indicate the date of the field measurements date =
20 ## datetime.datetime(year,month(1-12),dom(1-31),hours(0-23),minutes(0-59))
21 date = datetime.datetime(2014,4,2,10,30)
22

23 ## Number of sensors on the string
24 num = 7
25

26 ## Defines the position of the sensors on the temperature string
27 ## The position of the sensors are relative to the uppermost one
28 ## Assign ’True’ to equidistant if the sensors are equidistant,
29 ## else assign ’False’
30 equidistant = True
31 loc = 2 # Value in meters that separates neighbouring sensors if
32 #equidistant
33

34 if equidistant:
35 dist = dict()
36 key = 1
37 pos = 0
38 count = 0
39 while count < num:
40 dist[key] = pos
41 key += 1
42 pos += loc
43 count += 1
44

45 ## Dictionary containing positions of the sensors if not equidistant
46 ## Key 1 is for the uppermost (closest to surface) sensor, key 2 the
47 ## one below and so on... The position is relative to the sensor 1. If
48 ## the sensor 2 is 3.5 meters away from sensor 1 on the line, the
49 ## value 3.5 should be assigned to key 2 (dist[2])
50 else:
51 dist = {1:0, 2:2}
52

53 ## Update the depth of all sensors Choose one sensor that you want to
54 ## update (its number on the line), and indicate its depth in meters
55 ## Note : A negative value can be used to tell how far out of the
56 ## borehole the sensor is
57 sensor = 1
58 sensor_depth = 2.23
59 depth = ft.get_depth(dist, sensor, sensor_depth)
60

61 ## Read the original calibration curve
62 calibration = ft.read_calibrationc(’calibration_curve’)
63

64 ## Correct the calibration curve for each sensor : indicate the
65 ## resistance value for each sensor at 0 degree C
66 zero_degree = {1:32.7, 2:32.6, 3:32.6, 4:32.6, 5:32.6, 6:32.6, 7:32.6}
67

68 ## Indicate resistance values measured by the sensors, manual input
69 ## for the first time, in order to create the main class
70 res_values = {1:38.3, 2:36.9, 3:35.1, 4:32.9, 5:32.8, 6:32.8, 7:32.8}
71

72 ## Convert the resistance values into temperature values
73 Ts = dict()
74 key = 1
75 count = 0
76 while count < num:

C.2. Python code 97

77 new_calib = ft.sensor_calib(zero_degree[key], calibration)
78 Ts[key] = ft.res_in_temp(res_values[key], new_calib)
79 key += 1
80 count += 1
81

82 ## Main class
83 class TempProfile:
84

85 """ A profile is defined by its ID (ID), the number of sensors
86 (num), the distance between sensors (dist), their depth (depth),
87 their temperature values (Ts) and the date of the temperature
88 measurements (date). The calibration of the sensors is included in
89 the last attribute (zero_degree), which represents the resistance
90 values indicated by the sensors at 0 °C.
91 """
92

93 def __init__(self, ID, num, dist, depth, Ts, date, zero_degree):
94 """ Create the object attributes
95 Keyword Arguments:
96 ID --
97 num --
98 dist --
99 depth --

100 Ts --
101 date --
102 zero_degree --
103 """
104 ## Creates data folder in current directory if it does not exists
105 if not os.path.exists(’data’):
106 os.makedirs(’data’)
107

108 ## Check that there is no thermistor string with the same ID
109 if not os.path.exists(’data/{}’.format(ID)):
110 if not ID.isalnum() or len(ID) < 2:
111 raise AttributeError(’ID not valid! It should be ’
112 ’alphanumeric and at least two caracters.’)
113 else:
114 self._ID = ID
115 else:
116 raise AttributeError(’A thermistor string has already this’
117 ’ ID, choose another ID.’)
118

119 ## Check that the number of sensors is superior to 0 and is an integer value
120 try:
121 num = int(num)
122 except ValueError:
123 print(’The value entered must be an integer!’)
124 else:
125 if num < 1 :
126 raise AttributeError(’There must be at least one sensor!’)
127 else:
128 self._num = num
129

130 ## Check that the attribute ’dist’ has the right format
131 if not isinstance(dist,dict):
132 raise AttributeError(’The attribute dist must be a ’
133 ’dictionary!’)
134 for value in dist.values():
135 try:
136 value = float(value)
137 except ValueError:
138 print(’The distances must either be integers of ’
139 ’floatting numbers!’)
140 count = 1
141 for key in dist.keys():
142 if key != count:
143 raise AttributeError(’The keys of the dictionary ’
144 ’"dist" must be integers,\nstarting from 1 (uppermost’
145 ’ sensor), and incremented by 1 every next key.’)
146 count += 1
147 self._dist = dist
148

149 ## Check that the attribute ’depth’ has the right format
150 if not isinstance(depth,dict):
151 raise AttributeError(’The attribute depth must be a ’
152 ’dictionary!’)
153 for value in depth.values():
154 try:
155 value = float(value)
156 except ValueError:
157 print(’The depth values must either be integers of ’
158 ’floatting numbers!’)
159 count = 1
160 for key in depth.keys():
161 if key != count:
162 raise AttributeError(’The keys of the dictionary ’
163 ’"depth" must be integers,\nstarting from 1 (uppermost’
164 ’ sensor), and incremented by 1 every next key.’)
165 count += 1
166 self._depth = depth
167

98 Appendix C. Ice and air temperature at Hellstugubreen

168 ## Check that the attribute ’Ts’ has the right format
169 if not isinstance(Ts,dict):
170 raise AttributeError(’The attribute Ts must be a ’
171 ’dictionary!’)
172 for value in Ts.values():
173 try:
174 value = float(value)
175 except ValueError:
176 print(’The temperature values must either be integers’
177 ’ of floatting numbers!’)
178 count = 1
179 for key in Ts.keys():
180 if key != count:
181 raise AttributeError(’The keys of the dictionary "Ts"’
182 ’ must be integers,\nstarting from 1 (uppermost sensor),’
183 ’ and incremented by 1 every next key.’)
184 count += 1
185 self._Ts = Ts
186

187 ## Check that the attribute ’date’ has the right format
188 if not isinstance(date,datetime.datetime):
189 raise AttributeError(’The date of temperature measurements’
190 ’ must be at the format datetime.datetime.\n’
191 ’e.g. date = datetime.datetime(year,month,dayofmonth[,’
192 ’hours[,minutes]])’)
193 self._date = date
194

195 ## Check that the attribute ’zero_degree’ has the right format
196 if not isinstance(zero_degree,dict):
197 raise AttributeError(’The attribute zero_degree must be a’
198 ’ dictionary!’)
199 for value in zero_degree.values():
200 try:
201 value = float(value)
202 except ValueError:
203 print(’The resistance values of the sensors at 0 °C’
204 ’ must either be integers or floatting numbers!’)
205 count = 1
206 for key in Ts.keys():
207 if key != count:
208 raise AttributeError(’The keys of the dictionary ’
209 ’"zero_degree" must be integers,\nstarting from 1 ’
210 ’(uppermost sensor), and incremented by 1 every next’
211 ’ key.’)
212 count += 1
213 self._zero_degree = zero_degree
214

215 ## Creates a specific folder for the data of the temperature string
216 if not os.path.exists(’data/{}’.format(ID)):
217 os.chmod(’data’,0o777)
218 os.makedirs(’data/{}’.format(ID))
219

220 ## Save the object in a file
221 with open(’data/{0}/{0}_object’.format(ID),’wb’) as file_object:
222 my_pickler = pickle.Pickler(file_object)
223 my_pickler.dump(self)
224

225 ## Write attributes in a text file
226 self._headers = (’TempString: {} (depth in meters and temp in ’
227 ’°C)\nTime\t\t’).format(ID)
228 count = 0
229 while count < self._num:
230 self._headers += ’\tdepth,temp’
231 count += 1
232

233 with open(’data/{0}/{0}.txt’.format(ID),’w’) as file_txt:
234 file_txt.write(self._headers)
235 count = 0
236 file_txt.write(’\n{}’.format(str(self._date)))
237 while count < self._num:
238 index = count + 1
239 file_txt.write(’\t{},{}’.format(self._depth[index],
240 self._Ts[index]))
241 count += 1
242 file_txt.write(’\n’)
243 ## Protect the files and directories created from writing by
244 ## changing permissions
245 ft.protect(ID)
246

247 ## Definition of properties for the attributes
248 def ID():
249 doc = """Property : Identification of the thermistor string"""
250 def fget(self):
251 print(’The identification of this thermistor string is : {}’\
252 .format(self._ID))
253 return self._ID
254 def fset(self, value):
255 print(’The Identification of a thermistor string cannot’
256 ’ be changed!’)
257 def fdel(self):
258 print(’You cannot delete the ID of a thermistor string!’)

C.2. Python code 99

259 return locals()
260

261 ID = property(**ID())
262

263 def num():
264 doc = """Property : Number of sensors on the thermistor string"""
265 def fget(self):
266 print(’The number of sensors on the thermistor string {}’
267 ’ is {}’.format(self._ID,self._num))
268 return self._num
269 def fset(self, value):
270 print(’You cannot changed the number of sensors of the’
271 ’ thermistor string!’)
272 def fdel(self):
273 print(’You cannot delete the number of sensors of the’
274 ’ thermistor string!’)
275 return locals()
276

277 num = property(**num())
278

279 def dist():
280 doc = """Property : Distance between sensors on the thermistor
281 string (in meters)"""
282 def fget(self):
283 distances = dict(self._dist)
284 for key,value in distances.items():
285 distances[key] = str(distances[key]) + ’ m’
286 print("""The distance between sensors on the thermistor
287 string is given in meters by the dictionary :
288 {}
289

290 Sensor 1 is the uppermost sensor on the line (closest to
291 surface), the distance given to the other sensors is
292 relative to sensor 1.""".format(distances))
293 return self._dist
294 def fset(self, value):
295 print(’You cannot change the distance between sensors on’
296 ’ the line!’)
297 def fdel(self):
298 print(’You cannot delete this attribute!’)
299 return locals()
300

301 dist = property(**dist())
302

303 def depth():
304 doc = """Property : Depth of the sensors on the thermistor
305 string (in meters)"""
306 def fget(self):
307 depths = dict(self._depth)
308 for key,value in depths.items():
309 depths[key] = str(depths[key]) + ’ m’
310 print("""The depth of the sensors on the thermistor string
311 is given in meters by the dictionary :
312 {}
313

314 Sensor 1 is the uppermost sensor on the line (closest to
315 surface).""".format(depths))
316 return self._depth
317 def fset(self, value):
318 print(’The "depth" attribute cannot be modified by ’
319 ’re-assignment!\nUse the class method’
320 ’ update_depth() instead.’)
321 def fdel(self):
322 print(’You cannot delete this attribute!’)
323 return locals()
324

325 depth = property(**depth())
326

327 def Ts():
328 doc = """Property : Temperature measured by the sensors on the
329 thermistor string (in degrees Celsius)"""
330 def fget(self):
331 temperatures = dict(self._Ts)
332 for key,value in temperatures.items():
333 temperatures[key] = str(temperatures[key]) + ’ °C’
334 print("""The temperature values measured by the sensors on
335 the thermistor string are given in degrees Celsius by the
336 dictionary :
337 {}
338

339 Sensor 1 is the uppermost sensor on the line (closest to
340 surface).""".format(temperatures))
341 return self._Ts
342 def fset(self, value):
343 print(’The "Ts" attribute cannot be modified by ’
344 ’re-assignment!\nUse the class method’
345 ’ update_temperature() instead.’)
346 def fdel(self):
347 print(’You cannot delete this attribute!’)
348 return locals()
349

100 Appendix C. Ice and air temperature at Hellstugubreen

350 Ts = property(**Ts())
351

352 def date():
353 doc = """Property : Date of the temperature measurements"""
354 def fget(self):
355 print(’The temperature measurements were performed at ’
356 ’this date :\n{}’.format(self._date))
357 return self._date
358 def fset(self, value):
359 print(’The "date" attribut cannot be modified by ’
360 ’re-assignment!\nUse one of the two following class ’
361 ’methods to update the temperature profile:\n’
362 ’update_depth()\n’
363 ’update_temperature()’)
364 def fdel(self):
365 print(’You cannot delete this attribute!’)
366 return locals()
367

368 date = property(**date())
369

370 def zero_degree():
371 doc = """Property : Calibration of the sensors"""
372 def fget(self):
373 calibration = dict(self._zero_degree)
374 for key,value in calibration.items():
375 calibration[key] = str(calibration[key]) + ’ kiloOhms’
376 print(’The "zero_degree" attribute represents the sensor ’
377 ’calibrations\n(resistance values in kiloOhms at 0 °C) :\n’
378 ’{}\n\n’
379 ’Sensor 1 is the uppermost sensor on the line (closest to ’
380 ’surface).’.format(calibration))
381 return self._zero_degree
382 def fset(self, value):
383 print(’You cannot change the "zero_degree" attribute ’
384 ’(sensor calibration) !’)
385 def fdel(self):
386 print(’You cannot delete this attribute!’)
387 return locals()
388

389 zero_degree = property(**zero_degree())
390

391

392 def __repr__(self):
393 """ Function called when entering the class object directly in
394 the interpreter.
395

396 It is meant to ease the debug. It lists the most important
397 attributes of the object.
398 """
399 return (’Temperature string, object of the class "TempProfile"’
400 ’\n\n’
401 ’ID:\n{0}\n\n’
402 ’number of sensors:\n{1}\n\n’
403 ’depths of the sensors:\n{2}\n\n’
404 ’temperature measured lastly by the sensors:\n{3}\n\n’
405 ’date of the last field measurements:\n{4}\n\n’
406 ’calibration (resistance at 0°C):\n{5}\n\n’\
407 .format(self._ID,self._num,self._depth,self._Ts,
408 self._date,self._zero_degree))
409

410

411 @classmethod
412 def strings_list(cls):
413 """ This method lists the existing thermistor strings.
414 """
415 if not os.path.exists(’data’):
416 print(’No thermistor string has been created yet.’)
417 else:
418 existing_strings = [d for d in os.listdir(’data/’)
419 if os.path.isdir(’data/{}’.format(d))]
420 existing_strings.sort()
421 if len(existing_strings) > 0:
422 print(’There is/are {} existing thermistor string(s) :’\
423 .format(len(existing_strings)))
424 for string in existing_strings:
425 print(string)
426 else:
427 print(’No thermistor string has been created yet.’)
428

429

430 @classmethod
431 def update_depth(cls):
432 """This method enables to update the depth of the sensors in
433 the ice. The depth must be given in meters (floatting or
434 integer value). The sensor 1 is the upppermost sensor (closest
435 to the surface or the furthest out of the ice).
436 """
437 ## Update the depth
438 if not os.path.exists(’data’):
439 raise NameError(’No thermistor string has been created’
440 ’ yet.\nThere is no possible update.’)

C.2. Python code 101

441 cls.strings_list()
442 existing_strings = [d for d in os.listdir(’data/’)
443 if os.path.isdir(’data/{}’.format(d))]
444 ID = input(’Which thermistor string do you want to update ?\n’)
445 if not ID in existing_strings:
446 raise NameError(’{} is not a valid name for any existing’
447 ’ thermistor string!’.format(ID))
448 ## Make editable the files of the thermistor string
449 ft.unprotect(ID)
450

451 with open(’data/{0}/{0}_object’.format(ID),’rb’) as file_object:
452 my_unpickler = pickle.Unpickler(file_object)
453 content = my_unpickler.load()
454

455 count = 1
456 list_sensor = list()
457 while count <= content._num:
458 if count == 1:
459 print(’Sensor 1 (uppermost sensor)’)
460 elif count == content._num:
461 print(’Sensor {} (lowermost sensor)’.format(content._num))
462 else:
463 print(’Sensor {}’.format(count))
464 list_sensor.append(count)
465 count += 1
466 sensor = input(’Which sensor do you to update ? (number)\n’)
467 try:
468 sensor = int(sensor)
469 except ValueError:
470 print(’The sensor number is not an integer!’)
471 if not sensor in list_sensor:
472 raise NameError(’There is no sensor {}!’.format(sensor))
473 sensor_depth = input(’The sensor {0} had a depth of {1} m.\n’
474 ’What depth do you want to give to the’
475 ’ sensor {0} now?\nNote : A negative ’
476 ’value indicates how far out of the ice ’
477 ’the sensor is.\n’.format(sensor,
478 content._depth[sensor]))
479

480 if re.match(r’\d+,\d+’,sensor_depth):
481 raise ValueError(’The value entered must be an integer ’
482 ’or a floatting number!\nFloatting ’
483 ’numbers must be written with a dot for ’
484 ’the decimal separator.’)
485 try:
486 sensor_depth = float(sensor_depth)
487 except ValueError:
488 print(’The value entered must be an integer or a ’
489 ’floatting number!’)
490

491 content._depth = ft.get_depth(content._dist,sensor,sensor_depth)
492

493 ## Update the date of the field measurements
494 ## Find the date for the last field measurements
495 last_update = ft.last_update(ID)
496

497 year = input(’Last measurements date back to: {}\n’
498 ’What is the date matching to the update?\n’
499 ’Year : ’.format(last_update))
500 try:
501 year = int(year)
502 except ValueError:
503 print(’The year must be an integer value!’)
504 if not re.match(r’\d{4}’,str(year)):
505 raise ValueError(’The year is not valid (4 digits)!\n’
506 ’Example of valid year : 2014’)
507 month = input(’Month (1 - 12): ’)
508 try:
509 month = int(month)
510 except ValueError:
511 print(’The month must be an integer value!’)
512 if month < 1 or month > 12:
513 raise ValueError(’The month must be a value between 1 and’
514 ’ 12 included.’)
515 dom = input(’Day of month (1 - 31) : ’)
516 try:
517 dom = int(dom)
518 except ValueError:
519 print(’The day of month must be an integer value (1-31)!’)
520 if dom < 1 or dom > 31:
521 raise ValueError(’The day of month must be a value between’
522 ’ 1 and 31 included.’)
523 HM = str()
524 while HM.lower() != ’y’ and HM.lower() != ’n’:
525 HM = input(’Do you also want to update the time (hours and’
526 ’ minutes)? (y/n)\n’)
527 HM = HM.lower()
528 if HM == ’y’:
529 hours = input(’Hours (0-23) : ’)
530 try:
531 hours = int(hours)

102 Appendix C. Ice and air temperature at Hellstugubreen

532 except ValueError:
533 print(’The number of hours must be an integer value!’)
534 if hours < 0 or hours > 23:
535 raise ValueError(’The number of hours must be a value’
536 ’ between 0 and 23 included.’)
537 minutes = input(’Minutes (0-59) : ’)
538 try:
539 minutes = int(minutes)
540 except ValueError:
541 print(’The number of minutes must be an integer value!’)
542 if minutes < 0 or minutes > 59:
543 raise ValueError(’The number of minutes must be a ’
544 ’value between 0 and 59 included.’)
545 content._date = datetime.datetime(year,month,dom,
546 hours,minutes)
547 print(’The depth of the sensors has been updated!’)
548 else:
549 content._date = datetime.datetime(year,month,dom)
550 print(’The depth of the sensors has been updated!’)
551 ## Write in both the file.txt and the file_object
552

553 ## file.txt
554 replacement = False
555 pattern = str(content._date)
556 matched = re.compile(pattern).search
557 with fileinput.input(’data/{0}/{0}.txt’.format(ID),inplace=1) as file_txt:
558 for line in file_txt:
559 if not matched(line):
560 print(line, end=’’)
561 elif matched(line):
562 content._Ts = ft.temp_at_T(line)
563 count = 0
564 line = ’{}’.format(pattern)
565 while count < content._num:
566 index = count + 1
567 line += ’\t{},{}’.format(content._depth[index],
568 content._Ts[index])
569 count += 1
570 print(line)
571 replacement = True
572

573 if not replacement:
574 with open(’data/{0}/{0}.txt’.format(ID),’a’) as file_txt:
575 line = ’{}’.format(pattern)
576 count = 1
577 while count <= content._num:
578 line += ’\t{},{}’.format(content._depth[count],
579 content._Ts[count])
580 count += 1
581 line += ’\n’
582 file_txt.write(line)
583

584 ## Sorts field measurements in the text file
585 ft.sort_measurements(ID)
586

587 ## file_object
588 with open(’data/{0}/{0}_object’.format(ID),’wb’) as file_object:
589 content._Ts = ft.last_temp(ID)
590 content._depth = ft.last_depth(ID)
591 my_pickler = pickle.Pickler(file_object)
592 my_pickler.dump(content)
593

594

595 ## Protect files and directory of the thermistor string from
596 ## editing
597 ft.protect(ID)
598

599

600 @classmethod
601 def update_temp(cls):
602 """This method enables to update the temperature measured by
603 the sensors in the ice. The temperature must be given in
604 degrees Celsius (floatting or integer value). The sensor 1 is
605 the upppermost sensor (closest to the surface or the furthest
606 out of the ice).
607 """
608 ## Update the temperature
609 if not os.path.exists(’data’):
610 raise NameError(’No thermistor string has been created ’
611 ’yet.\nThere is no possible update.’)
612 cls.strings_list()
613 existing_strings = [d for d in os.listdir(’data/’)
614 if os.path.isdir(’data/{}’.format(d))]
615 ID = input(’Which thermistor string do you want to update ?\n’)
616 if not ID in existing_strings:
617 raise NameError(’{} is not a valid name for any existing’
618 ’ thermistor string!’.format(ID))
619 ## Make editable the files of the thermistor string
620 ft.unprotect(ID)
621

622 with open(’data/{0}/{0}_object’.format(ID),’rb’) as file_object:

C.2. Python code 103

623 my_unpickler = pickle.Unpickler(file_object)
624 content = my_unpickler.load()
625

626 count = 1
627 list_sensor = list()
628 while count <= content._num:
629 if count == 1:
630 print(’Sensor 1 (uppermost sensor)’)
631 elif count == content._num:
632 print(’Sensor {} (lowermost sensor)’.format(content._num))
633 else:
634 print(’Sensor {}’.format(count))
635 list_sensor.append(count)
636 count += 1
637

638 sensor = int()
639 first_sensor = True
640 temperatures = dict()
641 while str(sensor).lower() != ’q’:
642 sensor = input("Which sensor do you want to update ? "
643 "(number)\nType ’q’ to exit.\n")
644 sensor = sensor.lower()
645 if sensor == ’q’:
646 if first_sensor:
647 raise KeyboardInterrupt(’No update was performed’
648 ’ for the temperature ’
649 ’string {}.’.format(ID))
650 else:
651 print(’The temperature values measured by the ’
652 ’sensors have been updated!’)
653 break
654 try:
655 sensor = int(sensor)
656 except ValueError:
657 print(’The sensor number is not an integer, the update’
658 ’ was cancelled!’)
659 if not sensor in list_sensor:
660 raise NameError(’There is no sensor {}, the update’
661 ’ was cancelled!’.format(sensor))
662 sensor_res = input(’The sensor {0} indicated a temperature’
663 ’ of {1} °C.\nWhat is the new resistance’
664 ’ value measured by the sensor ? (kiloOhms)\n’\
665 .format(sensor,content._Ts[sensor]))
666

667 if re.match(r’\d+,\d+’,sensor_res):
668 raise ValueError(’The value entered must be an integer’
669 ’ or a floatting number!\nFloatting ’
670 ’numbers must be written with a dot ’
671 ’for the decimal separator.\nThe ’
672 ’update was cancelled!’)
673 try:
674 sensor_res = float(sensor_res)
675 except ValueError:
676 print(’The value entered must be an integer or a ’
677 ’floatting number!\nThe update was cancelled!’)
678 ## Compute new temperature using the calibration
679 calibration = ft.read_calibrationc(’calibration_curve’)
680 new_calib = ft.sensor_calib(zero_degree[sensor], calibration)
681 temperatures[sensor] = ft.res_in_temp(sensor_res, new_calib)
682

683 ## Update the date of the field measurements
684 ## Find the date for the last field measurements
685 while first_sensor:
686 last_update = ft.last_update(ID)
687

688 year = input(’Last measurements date back to: {}\n’
689 ’What is the date matching to the update?’
690 ’\nYear : ’.format(last_update))
691 try:
692 year = int(year)
693 except ValueError:
694 print(’The year must be an integer value! The ’
695 ’update was cancelled!’)
696 if not re.match(r’\d{4}’,str(year)):
697 raise ValueError(’The year is not valid (4 digits)!’
698 ’ Example of valid year : 2014.\n’
699 ’The update was cancelled!’)
700 month = input(’Month (1 - 12): ’)
701 try:
702 month = int(month)
703 except ValueError:
704 print(’The month must be an integer value! The ’
705 ’update was cancelled!’)
706 if month < 1 or month > 12:
707 raise ValueError(’The month must be a value between’
708 ’ 1 and 12 included.\nThe ’
709 ’update was cancelled!’)
710 dom = input(’Day of month (1 - 31) : ’)
711 try:
712 dom = int(dom)
713 except ValueError:

104 Appendix C. Ice and air temperature at Hellstugubreen

714 print(’The day of month must be an integer value ’
715 ’(1-31)! The update was cancelled!’)
716 if dom < 1 or dom > 31:
717 raise ValueError(’The day of month must be a value’
718 ’ between 1 and 31 included.\n’
719 ’The update was cancelled!’)
720 HM = str()
721 while HM.lower() != ’y’ and HM.lower() != ’n’:
722 HM = input(’Do you also want to update the time ’
723 ’(hours and minutes)? (y/n)\n’)
724 HM = HM.lower()
725 if HM == ’y’:
726 hours = input(’Hours (0-23) : ’)
727 try:
728 hours = int(hours)
729 except ValueError:
730 print(’The number of hours must be an integer’
731 ’ value! The update was cancelled!’)
732 if hours < 0 or hours > 23:
733 raise ValueError(’The number of hours must be’
734 ’ a value between 0 and 23 ’
735 ’included.\nThe update was’
736 ’ cancelled!’)
737 minutes = input(’Minutes (0-59) : ’)
738 try:
739 minutes = int(minutes)
740 except ValueError:
741 print(’The number of minutes must be an ’
742 ’integer value! The update was cancelled!’)
743 if minutes < 0 or minutes > 59:
744 raise ValueError(’The number of minutes must’
745 ’ be a value between 0 and 59’
746 ’ included.\nThe update was’
747 ’ cancelled!’)
748 content._date = datetime.datetime(year,month,
749 dom,hours,minutes)
750 else:
751 content._date = datetime.datetime(year,month,dom)
752

753 continue_update = input(’Do you want to update the ’
754 ’temperature of other\nsensors’
755 ’ for the same date ? (y/n)\n’)
756 continue_update = continue_update.lower()
757 while continue_update != ’n’ and continue_update != ’y’:
758 continue_update = input(’Do you want to update the’
759 ’ temperature of another\n’
760 ’sensor for the same date’
761 ’ ? (y/n)\n’)
762 first_sensor = False
763 if continue_update == ’y’:
764 sensor = int()
765 else:
766 print(’The temperature measured by the sensor has’
767 ’ been updated!’)
768 sensor = ’q’
769 break
770

771

772 ## Write in both the file.txt and the file_object
773

774 ## file.txt
775 replacement = False
776 pattern = str(content._date)
777 matched = re.compile(pattern).search
778 with fileinput.input(’data/{0}/{0}.txt’.format(ID),inplace=1) as file_txt:
779 for line in file_txt:
780 if not matched(line):
781 print(line,end=’’)
782 elif matched(line):
783 content._depth = ft.depth_at_T(line)
784 content._Ts = ft.temp_at_T(line)
785 for key,value in temperatures.items():
786 content._Ts[key] = value
787 count = 0
788 line = ’{}’.format(pattern)
789 while count < content._num:
790 index = count + 1
791 line += ’\t{},{}’.format(content._depth[index],
792 content._Ts[index])
793 count += 1
794 print(line)
795 replacement = True
796

797 if not replacement:
798 content._Ts = ft.last_temp(ID)
799 for key,value in temperatures.items():
800 content._Ts[key] = value
801 with open(’data/{0}/{0}.txt’.format(ID),’a’) as file_txt:
802 line = ’{}’.format(pattern)
803 count = 1
804 while count <= content._num:

C.2. Python code 105

805 line += ’\t{},{}’.format(content._depth[count],
806 content._Ts[count])
807 count += 1
808 line += ’\n’
809 file_txt.write(line)
810

811 ## Sorts field measurements in the text file
812 ft.sort_measurements(ID)
813

814 ## file_object
815 with open(’data/{0}/{0}_object’.format(ID),’wb’) as file_object:
816 content._Ts = ft.last_temp(ID)
817 content._depth = ft.last_depth(ID)
818 my_pickler = pickle.Pickler(file_object)
819 my_pickler.dump(content)
820

821 ## Protect files and directory of the thermistor string from
822 ## editing
823 ft.protect(ID)

106 Appendix C. Ice and air temperature at Hellstugubreen

plottemperature.py

Listing 2: This �le enables to plot the data formatted by the program temperature.py.

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3

4

5 import re
6 import pickle
7 from itertools import repeat
8 import datetime as dt
9 import os

10

11

12 import numpy as np
13 from pandas import DataFrame, Series
14 import pandas as pd
15 import matplotlib.pyplot as plt
16 from matplotlib import cm
17 from scipy.interpolate import griddata
18

19

20 from temperature import TempProfile
21 import functionstemperature as ft
22

23

24 ## Identification of the temperature string location
25 ID = ’H44’
26 ## Presence of air temperature data from HOBO logger as csv file
27 Hobodata = True
28

29 ## If in the same folder, look for the right csv file
30 if Hobodata:
31 pattern = re.compile(r’{}[\w-]+\.csv’.format(ID))
32 folder = [f for f in os.listdir() if os.path.isfile(f)]
33 for f in folder:
34 if pattern.match(f):
35 filename = f
36 # Which sensor was in the radiation shield (represents Air Temp)
37 Ta = ’T2’
38

39 ## Make editable the files of the thermistor string
40 ft.unprotect(ID)
41

42 ## Open the ice temperature data file formatted by the program
43 ## temperature.py
44 with open(’data/{0}/{0}_object’.format(ID), ’rb’) as file_object:
45 my_unpickler = pickle.Unpickler(file_object)
46 content = my_unpickler.load()
47

48

49 Sensor = list(range(1,content._num+1))
50 with open(’data/{0}/{0}.txt’.format(ID), ’r’) as file_txt:
51 lines = file_txt.readlines()[2:]
52 text = ’’.join(lines)
53

54 ## Creates a pattern to find dates in the txt file created by the
55 ## program temperature.py
56 datePattern = re.compile(r’^\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}’,
57 re.MULTILINE)
58 dates = datePattern.findall(text)
59

60 ## Assign a date to each sensor and for each field measurement
61 date = [x for item in dates for x in repeat(item, content._num)]
62 dateFormat = ’%Y-%m-%d %H:%M:%S’
63 date = [dt.datetime.strptime(i,dateFormat)
64 for i in date]
65 date = np.array(date)
66 Date = np.array(date)
67

68 ## Prepare and clean the data for the later creation of a
69 ## pandas.DataFrame and ease the data handling
70 Sensor = Series(list(range(1, content._num+1)) * len(dates))
71

72 depthPattern = re.compile(r’-?\d+\.?\d{1,2}(?=,)’)
73 depths = depthPattern.findall(text)
74 depths = np.array(depths, dtype=np.float64)
75 depths = np.where(depths<0, np.nan, depths)
76 Depth = Series(depths)
77

78 tempPattern = re.compile(r’(?<=,)(nan|-?\d+\.\d{1,2})’)
79 temps = tempPattern.findall(text)
80 temps = np.array(temps, dtype=np.float64)
81 cond1 = depths > 0
82 cond2 = temps > 0
83 temps = np.where(cond1 & cond2, 0, temps)
84 Temp = Series(temps)

C.2. Python code 107

85

86 ## Creates a pandas.DataFrame with the data
87 data = {’Date’:Date, ’Sensor’:Sensor, ’Depth’:Depth, ’Temp’:Temp,
88 ’Time’:Date}
89 frame = DataFrame(data).dropna()
90 frame = frame.pivot(’Time’,’Sensor’).stack(’Sensor’)
91 frame.columns = pd.Index(frame.columns, name=’Parameters’)
92

93 ## Import the HOBO data (csv file) into another DataFrame
94 frame2 = pd.read_table(filename, sep=’,’,
95 usecols=[1,2,3,4], parse_dates=1, header=1,
96 names=[’Date’,’T1’,’T2’,’V’]).dropna()
97

98 ## Filtered data
99 # array of dates at the datetime format

100 DDTF = list()
101 for i in frame.Date.values:
102 DDTF.append(dt.datetime.strptime(str(pd.to_datetime(i)),
103 ’%Y-%m-%d %H:%M:%S’))
104 DDTF = np.array(DDTF)
105 # create xaxis with dates for the whole period of measurements, for
106 # every hour
107 xaxis = pd.date_range(DDTF.min(), DDTF.max(),freq=’H’)
108

109 # array of dates at the datetime format, for the air temperature time
110 # series
111 DTa = list()
112 for i in frame2.Date.values:
113 DTa.append(dt.datetime.strptime(i,’%m.%d.%y %I:%M:%S %p’))
114 DTa = np.array(DTa)
115

116 # array of the air temperature time series
117 Ta = frame2[’{}’.format(Ta)].values
118

119 # array of Timestamps for interpolations with griddata function
120 TS = list()
121 for i in DDTF:
122 TS.append(i.timestamp())
123 TS = np.array(TS)
124

125

126 ## Plots the figure of the ice temperature and air temperature for the
127 ## same period, with the ice temperature profiles interpolated over
128 ## time
129 numrows = 300
130 numcolors = 15
131 cmap = plt.cm.get_cmap(name=’jet’,lut=numcolors)
132 xi = np.linspace(TS.min(), TS.max(), len(xaxis))
133 yi = np.linspace(frame.Depth.min(), frame.Depth.max(), numrows,
134 endpoint=True)
135 x, y, z = TS, frame.Depth.values, frame.Temp.values
136 zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method=’cubic’)
137 fig = plt.figure(dpi=150)
138 ax2 = fig.add_subplot(2, 1, 2)
139 im = ax2.contourf(xaxis, yi, zi, numcolors, cmap=cmap, extend=’both’)
140 cs = ax2.contour(xaxis, yi, zi, numcolors, linewidths=.5, colors=’k’)
141 ax2.scatter(DDTF, y, 20, z, cmap=cmap)
142 ax2.set_xlabel(’Time’)
143 ax2.set_ylabel(’Depth (m)’)
144 period = ax2.get_xlim()
145 depth_lim = ax2.get_ylim()
146 ax2.set_ylim([0,depth_lim[1]])
147 ax2.invert_yaxis()
148 cbar = plt.colorbar(im,orientation=’horizontal’,ax=ax2, pad=0.25,
149 drawedges=True,shrink=0.8, extendfrac=’auto’)
150 cbar.set_label(’Ice temperature (°C)’)
151 ax1 = fig.add_subplot(2,1,1)
152 cond1 = DTa < (DDTF.min()-dt.timedelta(5))
153 cond2 = DTa > (DDTF.max()+dt.timedelta(5))
154 mask = np.where(cond1 & cond2, False, True)
155 DTa = DTa[mask]
156 Ta = Ta[mask]
157 ax1.plot(DTa,Ta,’r-’,label=’Air temperature (°C)’)
158 ax1.axhline(color=’k’,linewidth=.5,label=’_nolegend_’)
159 ax1.set_xlim(period)
160 ax1.legend(loc=’best’)
161 ax1.set_xlabel(’Time’)
162 ax1.set_ylabel(’Temperature (°C)’)
163 fig.suptitle(’Air and ice temperature at stake {}’.format(ID),
164 fontsize=14)
165 fig.tight_layout()
166 plt.show()
167

168 ## Plot only the ice temperature profiles (not interpolated), with one
169 ## curve for each field measurement
170 fig2 = plt.figure(dpi=150)
171 number = len(dates)
172 cmap = plt.get_cmap(’gist_rainbow’)
173 colors = [cmap(i) for i in np.linspace(0, 1, number)]
174 datesLegend = dates.copy()
175 for indx, date in enumerate(datesLegend):

108 Appendix C. Ice and air temperature at Hellstugubreen

176 datesLegend[indx] = dt.datetime.strptime(date, dateFormat)\
177 .strftime(’%d. %B’)
178

179 for idx in np.arange(number):
180 if idx == 0:
181 plt.plot(frame.ix[dates[idx]].Temp, frame.ix[dates[idx]].Depth,
182 color=colors[idx],
183 label=’{} (set-up)’.format(datesLegend[idx]))
184 else:
185 plt.plot(frame.ix[dates[idx]].Temp, frame.ix[dates[idx]].Depth,
186 color=colors[idx],
187 label=’{}’.format(datesLegend[idx]))
188 ax = fig2.gca()
189 ax.legend(loc=’best’)
190 ax.invert_yaxis()
191 ax.set_xlabel(’Temperature (°C)’)
192 ax.set_ylabel(’Depth (m)’)
193 fig2.suptitle(’Ice temperature at stake {} in 2014’.format(ID),
194 fontsize=14)
195 plt.show()
196

197 ## Plot the ice temperature profiles with one curve for each field
198 ## measurements, with the air temperature time series above
199 fig3 = plt.figure(dpi=150)
200 ax2 = fig3.add_subplot(2, 1, 2)
201 for idx in np.arange(number):
202 if idx == 0:
203 plt.plot(frame.ix[dates[idx]].Temp, frame.ix[dates[idx]].Depth,
204 color=colors[idx],
205 label=’{} (set-up)’.format(datesLegend[idx]))
206 else:
207 plt.plot(frame.ix[dates[idx]].Temp, frame.ix[dates[idx]].Depth,
208 color=colors[idx],
209 label=’{}’.format(datesLegend[idx]))
210 ax2.set_xlabel(’Ice temperature (°C)’)
211 ax2.set_ylabel(’Depth (m)’)
212 ax2.legend(loc=’best’)
213 depth_lim = ax2.get_ylim()
214 ax2.set_ylim([0,depth_lim[1]])
215 ax2.invert_yaxis()
216 ax1 = fig3.add_subplot(2,1,1)
217 ax1.plot(DTa,Ta,’r-’,label=’Air temperature (°C)’)
218 ax1.axhline(color=’k’,linewidth=.5,label=’_nolegend_’)
219 ax1.set_xlim(period)
220 ax1.legend(loc=’best’)
221 ax1.set_xlabel(’Time’)
222 ax1.set_ylabel(’Air temperature (°C)’)
223 fig3.suptitle(’Air and ice temperature at stake {} in 2014’.format(ID),
224 fontsize=14)
225 fig3.tight_layout()
226 plt.show()
227

228 ## Protect the files and directories created from writing by changing
229 ## permissions
230 ft.protect(ID)

C.2. Python code 109

functionstemperature.py

Listing 3: This �le contains the functions required to run the scripts temperature.py and
plottemperature.py.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4

5 import os
6 import csv
7 import re
8 import datetime
9 import time

10

11

12 import numpy as np
13

14

15 ## Function that computes the depth of the sensors.
16 def get_depth(dist, sensor, sensor_depth):
17 """ This function sets the depth of one of the sensors, and
18 updates automatically the depth of the other sensors.
19

20 Positional arguments:
21 dist: dictionary that contains the positions of the sensors on the
22 line.
23 sensor: the sensor that is used for the update.
24 sensor_depth: the depth of the sensor.
25

26 Note:
27

28 A negative value for the parameter sensor_depth indicates how far
29 out the sensor of interest is.
30 """
31 depths = dict()
32 for key in dist.keys():
33 if key != sensor:
34 depths[key] = sensor_depth + (dist[key] - dist[sensor])
35 else:
36 depths[key] = sensor_depth
37 for key,value in depths.items():
38 depths[key] = float(’{0:.2f}’.format(depths[key]))
39 return depths
40

41

42 ## Function that reads the calibration curve.
43 def read_calibrationc(filename, headerlines=3):
44 """ This function reads the calibration curve.
45

46 The calibration curve is used to convert the resistance values of
47 the sensors into temperature values. It returns a list for which
48 each item is a dictionary with a temperature value (key: ’Temp’)
49 matching to a resistance value in kiloOhms (key: ’Resistance’).
50

51 Positional argument:
52 filename: path and filename of the calibration curve.
53

54 Optional argument:
55 headerlines: number of lines not interpreted by the function
56 (default is 3).
57 """
58 data = list()
59 headerlines += 1
60 lines = open(filename).readlines()[headerlines:]
61 csvdictreader = csv.DictReader(lines, delimiter=’\t’)
62 # Convert Ohms units into kiloOhms and rounds to first decimal
63 for line in csvdictreader:
64 line[’Resistance’] = float(line[’Resistance’])
65 line[’Resistance’] = float(’{0:.1f}’.format(line[’Resistance’]/1000))
66 line[’Temp’] = float(line[’Temp’])
67 data.append(line)
68 return data
69

70

71 ## Function that corrects the calibration curve for each sensor, with
72 ## a linear interpolation.
73 def sensor_calib(res, calibration_curve):
74 """ This function corrects the calibration curve for temperature
75 sensors.
76

77 It returns a corrected calibration curve for temperature sensors,
78 according to their resistance values at 0 degree Celsius (in kiloOhms).
79

80 Positional arguments:
81 res: the resistance value at 0 degree Celsius.
82 calibration_curve: the orignal calibration curve for this type of

110 Appendix C. Ice and air temperature at Hellstugubreen

83 sensor.
84 """
85 new_calib = list(calibration_curve)
86 match = [line for line in calibration_curve
87 if line[’Resistance’] == res]
88 if len(match) == 1:
89 for line in new_calib:
90 line[’Temp’] -= match[0][’Temp’]
91 else:
92 average = float()
93 for elt in match:
94 average += elt[’Temp’]
95 average = average/len(match)
96 for line in new_calib:
97 line[’Temp’] -= average
98 # Rounds temperature values to the second decimal.
99 for line in new_calib:

100 line[’Temp’] = float(’{0:.2f}’.format(line[’Temp’]))
101 return new_calib
102

103

104 ## Function that converts the resistance values into temperature
105 ## values using the corrected calibration curves.
106 def res_in_temp(res, calibration_curve):
107 """ This function converts resitance values into temperature
108 values.
109

110 It converts the resistance value of a sensor into a temperature
111 value, using the corrected calibration curve of the sensor.
112

113 Positional arguments:
114 res: resistance value in kiloOhms.
115 calibration_curve: corrected calibration curve.
116 """
117 if str(res) == ’nan’:
118 temperature = np.nan
119 return temperature
120 else:
121 match = [line for line in calibration_curve
122 if line[’Resistance’] == res]
123 while not match:
124 increment = 0.1
125 res1 = res + increment
126 res2 = res - increment
127 increment += 1
128 match = [line for line in calibration_curve
129 if line[’Resistance’] == res1
130 or line[’Resistance’] == res2]
131 if len(match) == 1:
132 temperature = match[0][’Temp’]
133 else:
134 temperature = float()
135 for elt in match:
136 temperature += elt[’Temp’]
137 temperature = temperature/len(match)
138 temperature = float(’{0:.2f}’.format(temperature))
139 return temperature
140

141

142 ## Function that protect the files and directories created from
143 ## writing by changing permissions.
144 def protect(ID):
145 """ This function protects from writing the data of a thermistor
146 string.
147

148 It changes the permissions of the ’data’ directory, the
149 subdirectory and the files of the thermistor string.
150

151 Positional argument:
152 ID: identification of the thermistor string.
153 """
154 os.chmod(’data/{0}/{0}.txt’.format(ID),0o444)
155 os.chmod(’data/{0}/{0}_object’.format(ID),0o444)
156 os.chmod(’data/{}’.format(ID),0o555)
157 os.chmod(’data’,0o555)
158

159

160 ## Function that changes the permissions on the files and directories
161 ## of the temperature string to make them editable.
162 def unprotect(ID):
163 """ This function makes editable the data of a thermistor string.
164

165 It changes the permissions of the ’data’ directory, the
166 subdirectory and the files of the thermistor string.
167

168 Positional argument:
169 ID: identification of the thermistor string.
170 """
171 os.chmod(’data’,0o777)
172 os.chmod(’data/{}’.format(ID),0o777)
173 os.chmod(’data/{0}/{0}_object’.format(ID),0o666)

C.2. Python code 111

174 os.chmod(’data/{0}/{0}.txt’.format(ID),0o666)
175

176

177 ## Function that finds the date of the last field measurements.
178 def last_update(ID):
179 """ This function returns the date of the last measurements of a
180 thermistor string.
181

182 It extracts the date which appears on the last line in the text
183 file of the thermistor string.
184

185 Positional argument:
186 ID: identification of the thermistor string.
187 """
188 with open(’data/{0}/{0}.txt’.format(ID),’r’) as file_txt:
189 last_line = file_txt.readlines()[-1]
190 whole_date = re.findall(r’^\d{4}-\d{2}-\d{2}’,last_line)
191 lyear,lmonth,lday = whole_date[0].split(’-’)
192 lyear, lmonth, lday = int(lyear), int(lmonth), int(lday)
193 timestamp = datetime.datetime.timestamp(datetime.datetime(lyear,lmonth,lday))
194 last_update = time.strftime(’%A %d %B %Y’,time.localtime(timestamp))
195 return last_update
196

197

198 ## Function that sorts the measurements in the text file.
199 def sort_measurements(ID,headerlines=2):
200 """ This function sorts the lines in the text file of a thermistor
201 string.
202

203 It sorts the lines using the date of the field measurements. The
204 most recent measurements are at the end of the file.
205

206 Positional argument:
207 ID: identification of the thermistor string.
208

209 Optional argument:
210 headerlines: number of lines not interpreted by the function
211 (default is 2).
212 """
213 with open(’data/{0}/{0}.txt’.format(ID),’r’) as file_txt:
214 content = file_txt.readlines()
215 first_lines = content[:headerlines]
216 lines = content[headerlines:]
217 lines.sort()
218 content = ’’.join(first_lines+lines)
219

220 with open(’data/{0}/{0}.txt’.format(ID),’w’) as file_txt:
221 file_txt.write(content)
222

223

224 ## Function that finds the depth values of the last field
225 ## measurements.
226 def last_depth(ID):
227 """ This function returns the depth of the sensors of a thermistor
228 string at the time of the last field measurements.
229

230 It extracts the depth values which appear on the last line in the
231 text file of the thermistor string.
232

233 Positional argument:
234 ID: identification of the thermistor string.
235 """
236 pattern = re.compile(r’((\d|-|\.)+)(?=,)’)
237 depth = dict()
238 with open(’data/{0}/{0}.txt’.format(ID),’r’) as file_txt:
239 last_line = file_txt.readlines()[-1]
240 depths = pattern.findall(last_line)
241 for i,value in enumerate(depths):
242 depth[i+1] = value[0]
243 return depth
244

245

246 ## Function that finds the temperature values of the last field
247 ## measurements.
248 def last_temp(ID):
249 """ This function returns the temperature values recorded by the
250 sensors of a thermistor string at the time of the last field
251 measurements.
252

253 It extracts the temperature values which appear on the last line
254 in the text file of the thermistor string.
255

256 Positional argument:
257 ID: identification of the thermistor string.
258 """
259 pattern = re.compile(r’(?<=,)((\d|-|\.)+|nan)’)
260 temp = dict()
261 with open(’data/{0}/{0}.txt’.format(ID),’r’) as file_txt:
262 last_line = file_txt.readlines()[-1]
263 temperatures = pattern.findall(last_line)
264 for i,value in enumerate(temperatures):

112 Appendix C. Ice and air temperature at Hellstugubreen

265 temp[i+1] = value[0]
266 return temp
267

268

269 ## Function that returns the temperature values from field
270 ## measurements at a given date.
271 def temp_at_T(line):
272 """ This function returns the temperature values recorded by the
273 sensors of a thermistor string, for a given date.
274

275 It extracts the temperature values from the text file of the
276 thermistor string.
277

278 Positional arguments:
279 line: line that matches to the date of the field measurements.
280 """
281 pattern = re.compile(r’(?<=,)((\d|-|\.)+|nan)’)
282 temp = dict()
283 temperatures = pattern.findall(line)
284 for i,value in enumerate(temperatures):
285 temp[i+1] = value[0]
286 return temp
287

288

289 ## Function that returns the depth values from field measurements at a
290 ## given date.
291 def depth_at_T(line):
292 """ This function returns the depths of the sensors of a
293 thermistor string, for a given date.
294

295 It extracts the depth values from the text file of the thermistor
296 string.
297

298 Positional arguments:
299 line: line that matches to the date of the field measurements.
300 """
301 pattern = re.compile(r’((\d|-|\.)+)(?=,)’)
302 depth = dict()
303 depths = pattern.findall(line)
304 for i,value in enumerate(depths):
305 depth[i+1] = value[0]
306 return depth

C.3. HOBO Pro V2 Accuracy and resolution 113

C.3 HOBO Pro V2 Accuracy and resolution

Accuracy and resolution of HOBO Pro V2 external temperature data logger (from Onset Computer Cor-
poration, 2014).

Appendix D

Ice and air temperature at Storbreen

D.1 Penetration of the diurnal signal

Penetration of the air temperature diurnal signal in the subsurface of the glacier. The depth of the sensor
was here updated using the corrected DDF. Note that the ice is then assumed to be snow covered by the
model, and that the diurnal signal penetrates down to a depth of ∼1.4 m.

114

D.2. Python code 115

D.2 Python code

icetemperatureprofile.py

Listing 4: This program reads the temperature data obtained from the GeoPrecision M-Log5W data
logger. It enables also to update the temperature pro�le with �eld observations, such as
the depth of the sensors, the presence of a snowpack and its thickness if there is any.

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3

4

5 import re
6 import pickle
7 import datetime as dt
8 import os
9 import fileinput

10 import argparse
11

12 import numpy as np
13 from pandas import DataFrame, Series
14 import pandas as pd
15

16 from functions import *
17

18

19 ## Identification string of the thermistor line
20 ID = ’S2’
21

22 ## Number of sensors on the string
23 num = 10
24

25 ## Defines the position of the sensors on the temperature string
26 ## The position of the sensors are relative to the uppermost one
27 ## Assign ’True’ to equidistant if the sensors are equidistant,
28 ## else assign ’False’
29 equidistant = False
30 ## Value in meters that separates neighbouring sensors if equidistant
31 loc = 2
32

33 if equidistant:
34 dist = dict()
35 key = 1
36 pos = 0
37 count = 0
38 while count < num:
39 dist[key] = pos
40 key += 1
41 pos += loc
42 count += 1
43

44 ## Dictionary containing positions of the sensors if not equidistant
45 ## Key 1 is for the uppermost (closest to surface) sensor, key 2 the
46 ## one below and so on... The position is relative to the sensor 1. If
47 ## the sensor 2 is 3.5 meters away from sensor 1 on the line, the
48 ## value 3.5 should be assigned to key 2 (dist[2])
49 dist = {1:0, 2:3, 3:5, 4:6, 5:7, 6:8, 7:9, 8:10, 9:11, 10:12}
50

51 ## Update the depth of all sensors Choose one sensor that you want to
52 ## update (its number on the line), and indicate its depth in meters
53 ## Note : A negative value can be used to tell how far out of the
54 ## borehole the sensor is
55 sensor = 1
56 sensor_depth = -1.33
57

58 depth = get_depth(dist, sensor, sensor_depth)
59

60 ## Path to the data file exported from a geoprecision data logger
61 path = (’/home/mtac/Documents/Oslo/Years_2013-2015/’
62 ’MSc/MSc_Thesis/temperature/S2_17-09-14_12-20_txt.txt’)
63 ## Check that the path exists
64 if not os.path.exists(path):
65 raise FileNotFoundError(’The path to the data file does not exists!’)
66

67 ## Formatting the data file into a pandas.DataFrame
68 headerlines = 1
69

70 ## Number of columns in the data file.
71 numcols = len(pd.read_table(path, sep=’,’, header=headerlines,
72 nrows=1).columns)
73

74 ## Creates the name of the DataFrame columns

116 Appendix D. Ice and air temperature at Storbreen

75 names = [’T{}’.format(i) for i in range(1,num+1)]
76 names.insert(0,’Date’)
77 names.append(’Ta’)
78

79 ## Columns to use in the data file (only the temperate values and the
80 ## date)
81 cols = list(range(1,num+2))
82 cols.append(numcols-1)
83

84 WholeFrame = pd.read_table(path, sep=’,’, usecols=cols, names=names,
85 header=1, na_values=[’(NO SENSORS)’,
86 ’(ERROR 107)’]).dropna(how=’all’)
87

88 ## Convert the string in the first column into a datetime array
89 dateformat = ’%d.%m.%Y %H:%M:%S’
90 convert2datetime = lambda x: dt.datetime.strptime(x, dateformat)
91 WholeFrame.Date = WholeFrame[’Date’].apply(convert2datetime)
92

93 ## Convert temperature values to float
94 for i in np.arange(1, len(WholeFrame.columns)):
95 WholeFrame[WholeFrame.icol(i).name] = WholeFrame.icol(i).astype(np.float64)
96

97 ## First and last dates valid for calibration
98 first_date_calib = dt.datetime(2014, 1, 10)
99 last_date_calib = dt.datetime(2014, 4, 1)

100 cond1 = WholeFrame[’Date’] > first_date_calib
101 cond2 = WholeFrame[’Date’] < last_date_calib
102 CalibFrame = WholeFrame[cond1 & cond2].dropna()
103 CalibFrame[’Offset’] = CalibFrame.ix[:,1:num+1].mean(axis=1)-CalibFrame[’Ta’]
104 OffsetTa = CalibFrame[’Offset’].mean()
105

106 ## Correct the air temperature offset
107 applyoffset = lambda x: x + OffsetTa
108 WholeFrame.Ta = WholeFrame[’Ta’].apply(applyoffset)
109

110 ## Start of the period of interest
111 start_year = 2014
112 start_month = 5
113 start_day = 21
114 ## End of the period of interest
115 end_year = 2014
116 end_month = 9
117 end_day = 19
118

119 ## Select only the perioid of interest
120 cond1 = WholeFrame.Date >= dt.datetime(start_year, start_month, start_day)
121 cond2 = WholeFrame.Date <= dt.datetime(end_year, end_month, end_day)
122 frame = WholeFrame[cond1 & cond2]
123

124 ## Change the row numbers of the frame
125 frame.index = np.arange(1,len(frame)+1)
126

127

128 ## Main class
129 class Profile:
130 """ This class creates a temperature profile evolving with time.
131

132 It represents the temperature variations with time in ice snow. It
133 requires data obtained from a geoprecision datalogger. A
134 temperature profile is define by its ID (ID), the number of
135 sensors on the thermistor line (num), the distance of the sensors
136 (dist) relative to the uppermost sensor (closest to surface), and
137 their depth (depth) at the set up of the line. To create a new
138 instance of this class, one must pass a pandas.DataFrame (frame)
139 that contains : the date of the measurements in a first column,
140 the temperature values recorded in separate columns for the
141 different sensors, and in a last column, the air temperature if
142 available for the same period. If the air temperature is
143 available, the parameter ’Ta’ must be True (default), else
144 False. If the temperature profile is performed in the snowpack, or
145 that the temperature variations are measured in ice which is snow
146 covered at the date of setup of the line pass True to ’snow’, else
147 False (default). If ’snow’ is True, the keyword argument thickness
148 is the thickness of the snowpack in meters.
149 """
150

151 def __init__(self, ID, num, dist, depth, frame, Ta=True,
152 snow=False, thickness=0):
153 """ Create the attributes of a new instance of the class Profile.
154

155

156 Positional Arguments:
157

158 ID -- identification of the thermistor string
159 num -- num of sensor on the line
160 dist -- distance of the sensors relative to the uppermost one
161 (dict with sensors numbers as keys)
162 depth -- depths of each sensor (dict with sensors numbers as
163 keys)
164 frame -- pandas.DataFrame containing the data (see also class
165 Profile)

D.2. Python code 117

166

167

168 Keyword Arguments:
169

170 Ta -- existing air temperature time series (default:
171 True)
172 snow -- existing snowpack at last field observations
173 (default: False)
174 thickness -- thickness in meters of the snowpack
175 """
176 ## Creates data folder in current directory if it does not exists
177 if not os.path.exists(’data’):
178 os.makedirs(’data’)
179

180 ## Check that there is no thermistor string with the same ID
181 if not os.path.exists(’data/{}’.format(ID)):
182 if not ID.isalnum() or len(ID) < 2:
183 raise TypeError(’ID not valid! It should be ’
184 ’alphanumeric and at least two caracters.’)
185 else:
186 self._ID = ID
187 else:
188 raise TypeError(’A thermistor string has already this’
189 ’ ID, choose another ID.’)
190

191 ## Check that the number of sensors is superior to 0 and is an integer value
192 try:
193 num = int(num)
194 except ValueError:
195 raise ValueError(’The value entered must be an integer!’)
196 else:
197 if num < 1 :
198 raise TypeError(’There must be at least one sensor!’)
199 else:
200 self._num = num
201

202 ## Check that the attribute ’dist’ has the right format
203 if not isinstance(dist,dict):
204 raise TypeError(’The attribute dist must be a ’
205 ’dictionary!’)
206 for value in dist.values():
207 try:
208 value = float(value)
209 except ValueError:
210 raise ValueError(’The distances must either be ’
211 ’integers of floatting numbers!’)
212 count = 1
213 for key in dist.keys():
214 if key != count:
215 raise TypeError(’The keys of the dictionary ’
216 ’"dist" must be integers,\nstarting from 1 (uppermost’
217 ’ sensor), and incremented by 1 every next key.’)
218 count += 1
219 self._dist = dist
220

221 ## Check that the attribute ’depth’ has the right format
222 if not isinstance(depth,dict):
223 raise AttributeError(’The attribute depth must be a ’
224 ’dictionary!’)
225 for value in depth.values():
226 try:
227 value = float(value)
228 except ValueError:
229 raise ValueError(’The depth values must either be ’
230 ’integers of floatting numbers!’)
231 count = 1
232 for key in depth.keys():
233 if key != count:
234 raise AttributeError(’The keys of the dictionary ’
235 ’"depth" must be integers,\nstarting from 1 (uppermost’
236 ’ sensor), and incremented by 1 every next key.’)
237 count += 1
238 self._depth = depth
239

240 ## Check that Ta is a boolean
241 if not isinstance(Ta,bool):
242 raise TypeError(’The attribute Ta must be an instance’
243 ’ of the bool class!’)
244 self._Ta = Ta
245

246 ## Check that the frame has the right format
247 if not isinstance(frame,DataFrame):
248 raise TypeError(’The attribute frame must be an ’
249 ’instance of the class ’
250 ’pandas.DataFrame!’)
251 if not Ta:
252 if not len(frame.columns) == num + 1:
253 raise TypeError(’The frame must contains only dates ’
254 ’and ice/snow temperature values!’)
255 else:
256 if not len(frame.columns) == num + 2:

118 Appendix D. Ice and air temperature at Storbreen

257 raise TypeError(’The frame must contains only dates ’
258 ’and temperature values!’)
259 try:
260 frame.icol(np.arange(1,len(frame.columns))
261).values.astype(np.float64)
262 frame.icol(0).astype(’datetime64[ns]’)
263 except TypeError:
264 raise TypeError("""The Dates of the measurements must be
265 of the dtype datetime64[ns], and the
266 temperature values must be intergers
267 or float numbers!""")
268 self._frame = frame
269

270 ## Registers the date of the start and of the time series, and
271 ## the date matching the latest updates.
272 self._start = self._frame.icol(0).irow(0).to_datetime()
273 self._end = self._frame.icol(0).irow(-1).to_datetime()
274 self._last_update = self._start
275

276 ## Check the format and set the snowpack attributes
277 if not isinstance(snow,bool):
278 raise TypeError(’The snow attribute must be a boolean!’)
279 self._snow = snow
280 try:
281 float(thickness)
282 except ValueError:
283 raise ValueError(’The thickness attribute must be an ’
284 ’integer or a floatting point number!’)
285 self._thickness = thickness
286

287 ## Creates a specific folder for the data of the temperature string
288 if not os.path.exists(’data/{}’.format(ID)):
289 os.chmod(’data’,0o777)
290 os.makedirs(’data/{}’.format(ID))
291

292 ## Save the object in a file
293 with open(’data/{0}/{0}_object’.format(ID),’wb’) as file_object:
294 my_pickler = pickle.Pickler(file_object)
295 my_pickler.dump(self)
296

297 ## Write the formatted frame in a csv file
298 self._frame.to_csv(’data/{0}/{0}.csv’.format(ID), sep=’,’)
299

300 ## Write updates in a text file
301 self._headers = (’Profile: {} (depth (D*) and thickness in meters)’
302 ’\nDate’.format(ID))
303 count = 0
304 while count < self._num:
305 self._headers += ’,D{}’.format(count+1)
306 count += 1
307 self._headers += ’,Snow,Thickness’
308 first_row = ’\n{}’.format(self._start)
309 for i in self._depth:
310 first_row += ’,{}’.format(self._depth[i])
311

312 with open(’data/{0}/updates.txt’.format(ID),’w’) as file_txt:
313 file_txt.write(self._headers)
314 file_txt.write(first_row)
315 file_txt.write(’,{0},{1}\n’.format(snow,thickness))
316 ## Protect the files and directories created from writing by
317 ## changing permissions
318 protect(ID)
319

320 ## Definition of properties for the attributes
321 def ID():
322 doc=""" Property : Identification of the thermistor string."""
323 def fget(self):
324 print(’The identification of this thermistor string is : {}.’\
325 .format(self._ID))
326 return self._ID
327 def fset(self, value):
328 print(’The Identification of a thermistor string cannot’
329 ’ be changed!’)
330 def fdel(self):
331 print(’You cannot delete the ID of a thermistor string!’)
332 return locals()
333

334 ID = property(**ID())
335

336 def num():
337 doc=""" Property : Number of sensors on the thermistor string."""
338 def fget(self):
339 print(’The number of sensors on the thermistor string {}’
340 ’ is {}.’.format(self._ID,self._num))
341 return self._num
342 def fset(self, value):
343 print(’You cannot changed the number of sensors of the’
344 ’ thermistor string!’)
345 def fdel(self):
346 print(’You cannot delete the number of sensors of the’
347 ’ thermistor string!’)

D.2. Python code 119

348 return locals()
349

350 num = property(**num())
351

352 def dist():
353 doc=""" Property : Distance (meters) between sensors on the line."""
354 def fget(self):
355 distances = dict(self._dist)
356 for key,value in distances.items():
357 distances[key] = str(distances[key]) + ’ m’
358 print("""The distance between sensors on the thermistor
359 string is given in meters by the dictionary :
360 {}
361

362 Sensor 1 is the uppermost sensor on the line (closest to
363 surface), the distance given to the other sensors is
364 relative to sensor 1.""".format(distances))
365 return self._dist
366 def fset(self, value):
367 print(’You cannot change the distance between sensors on’
368 ’ the line!’)
369 def fdel(self):
370 print(’You cannot delete this attribute!’)
371 return locals()
372

373 dist = property(**dist())
374

375 def depth():
376 doc=""" Property : Depth (meters) of the sensors on the line."""
377 def fget(self):
378 depths = dict(self._depth)
379 for key,value in depths.items():
380 depths[key] = str(depths[key]) + ’ m’
381 print("""The depth of the sensors on the thermistor string
382 is given in meters by the dictionary :
383 {}
384

385 Sensor 1 is the uppermost sensor on the line (closest to
386 surface).""".format(depths))
387 return self._depth
388 def fset(self, value):
389 print(’The "depth" attribute cannot be modified by ’
390 ’re-assignment!\nUse the class method’
391 ’ update() instead.’)
392 def fdel(self):
393 print(’You cannot delete this attribute!’)
394 return locals()
395

396 depth = property(**depth())
397

398 def frame():
399 doc=""" Property : DataFrame containing the main data of the Profile."""
400 def fget(self):
401 print("""DataFrame containing the dates of the measurements
402 and the temperature values recorded by the sensors :
403 """)
404 return self._frame
405 def fset(self, value):
406 print(’You cannot change this attribute by assignment!’)
407 def fdel(self):
408 print(’You cannot delete this attribute!’)
409 return locals()
410

411 frame = property(**frame())
412

413 def Ta():
414 doc=""" Property : Boolean value. True if the air temperature
415 is in the DataFrame ’frame’, False if not."""
416 def fget(self):
417 if self._Ta:
418 print(’The DataFrame contains the air temperature time’
419 ’series.’)
420 else:
421 print(’The DataFrame does not contain the air ’
422 ’temperature time series.’)
423 return self._Ta
424 def fset(self, value):
425 print(’You cannot change this attribute by assignment!’)
426 def fdel(self):
427 print(’You cannot delete this attribute!’)
428 return locals()
429

430 Ta = property(**Ta())
431

432 def start():
433 doc=""" Property : Date of the start of the time series."""
434 def fget(self):
435 print(’The time series obtained from the thermistor line’
436 ’ start in:\n{}’\
437 .format(self._start.strftime(’%Y-%m-%d %H:%M:%S’)))
438 return self._start

120 Appendix D. Ice and air temperature at Storbreen

439 def fset(self, value):
440 print(’This attribute cannot be changed by assignment!’)
441 def fdel(self):
442 print(’You cannot delete this attribute!’)
443 return locals()
444

445 start = property(**start())
446

447 def end():
448 doc=""" Property : Date of the end of the time series."""
449 def fget(self):
450 print(’The time series obtained from the thermistor line’
451 ’ end in:\n{}’\
452 .format(self._end.strftime(’%Y-%m-%d %H:%M:%S’)))
453 return self._end
454 def fset(self, value):
455 print(’This attribute cannot be changed by assignment!’)
456 def fdel(self):
457 print(’You cannot delete this attribute!’)
458 return locals()
459

460 end = property(**end())
461

462 def date_last_update():
463 doc=""" Property : Date matching to the updates."""
464 def fget(self):
465 print(’The date matching to the latest update is:\n{}’\
466 .format(self._last_update.strftime(’%Y-%m-%d %H:%M:%S’)))
467 return self._last_update
468 def fset(self, value):
469 print(’You cannot change this attribute by assignment!’)
470 def fdel(self):
471 print(’You cannot delete this attribbute!’)
472 return locals()
473

474 date_last_update = property(**date_last_update())
475

476 def snow():
477 doc=""" Property : Bool value that tells if there is a snowpack."""
478 def fget(self):
479 if self._snow:
480 print(’There was snow at the last field measurements.’)
481 else:
482 print(’There was no snow at the last field measurements.’)
483 return self._snow
484 def fset(self, value):
485 print(’You cannot change this attribute by assignment!’)
486 def fdel(self):
487 print(’You cannot delete this attrribute!’)
488 return locals()
489

490 snow = property(**snow())
491

492 def thickness():
493 doc=""" Property : thickness (m) of the snowpack if any."""
494 def fget(self):
495 if not self._snow:
496 print(’There was no snowpack at the last field ’
497 ’measurements.x’)
498 else:
499 print(’The thickness of the snowpack during the last ’
500 ’field measurements was {} m’\
501 .format(self._thickness))
502 return self._thickness
503 def fset(self, value):
504 print(’You cannot change this attribute by assignment!’)
505 def fdel(self):
506 print(’You cannot delete this attribute!’)
507 return locals()
508

509 thickness = property(**thickness())
510

511 def __repr__(self):
512 """ Function called when entering the class object directly in
513 the interpreter.
514

515 It is meant to ease the debug. It lists the most important
516 attributes of the object.
517 """
518 line = str()
519 for i in range(1,60):
520 line += ’-’
521 with open(’data/{0}/{0}_object’.format(self._ID),
522 ’rb’) as file_object:
523 my_unpickler = pickle.Unpickler(file_object)
524 content = my_unpickler.load()
525 self._depth = content._depth
526 self._snow = content._snow
527 self._last_update = content._last_update
528 depths = str()
529 for i in range(1,self._num+1):

D.2. Python code 121

530 depths += ’Sensor {0}: {1} m\n’.format(i, self._depth[i])
531 return (’Temperature string, instance of the class "Profile"’
532 ’\n{0}\n\n’
533 ’ID:\n{1}\n\n’
534 ’Start of the time series:\n{2}\n\n’
535 ’End of the time series:\n{3}\n\n’
536 ’Number of sensors:\n{4}\n\n’
537 ’Latest update:\n{5}\n\n’
538 ’Depths of the sensors at the lastest field ’
539 ’observations:\n{6}\n’
540 ’Existing snowpack at the latest field observations:\n’
541 ’{7}\n\n’
542 ’Existing air temperature time series:\n{8}\n’\
543 .format(line, self._ID, self._start, self._end,
544 self._num, self._last_update, depths,
545 self._snow, self._Ta))
546

547 def delete(self):
548 """ Function called to delete the data of the object.
549

550 This funtions deletes the object and all data files and
551 directories related to the object.
552 """
553 condition = str()
554 while condition.lower() != ’y’ and condition.lower() != ’n’:
555 condition = input(’Are you sure to delete all the data ’
556 ’files related to this object ? (y/n)\n’)
557 if condition.lower() == ’y’:
558 unprotect(self._ID)
559 os.remove(’data/{0}/{0}.csv’.format(self._ID))
560 os.remove(’data/{0}/updates.txt’.format(self._ID))
561 os.remove(’data/{0}/{0}_object’.format(self._ID))
562 os.removedirs(’data/{}’.format(self._ID))
563 if os.path.exists(’data’):
564 os.chmod(’data’,0o555)
565

566 @classmethod
567 def strings_list(cls):
568 """ This method lists the existing thermistor strings.
569 """
570 if not os.path.exists(’data’):
571 print(’No thermistor string has been created yet.’)
572 else:
573 existing_strings = [d for d in os.listdir(’data/’)
574 if os.path.isdir(’data/{}’.format(d))]
575 existing_strings.sort()
576 if len(existing_strings) > 0:
577 print(’There is/are {} existing thermistor string(s) :’\
578 .format(len(existing_strings)))
579 for string in existing_strings:
580 print(string)
581 else:
582 print(’No thermistor string has been created yet.’)
583

584 @classmethod
585 def update(cls, ID=None):
586 """Updates the field observations (depth of sensors, snowpack...).
587

588 This method enables to update the depth of the sensors in the
589 ice. The depth must be given in meters (floatting point number
590 or integer value). The sensor 1 is the upppermost sensor
591 (closest to the surface or the furthest out of the ice). It
592 also updates the field observations required for the use of
593 the temperature.plot module.
594

595

596 Keyword Argument:
597

598 ID: identification of the thermistor string to update.
599 """
600 ## Update the depth
601 if not os.path.exists(’data’):
602 raise NameError(’No thermistor string has been created’
603 ’ yet.\nThere is no possible update.’)
604 existing_strings = [d for d in os.listdir(’data/’)
605 if os.path.isdir(’data/{}’.format(d))]
606 if not ID:
607 cls.strings_list()
608 ID = input(’Which thermistor string do you want to update ?\n’)
609 else:
610 ID = str(ID)
611 if not ID in existing_strings:
612 raise NameError(’{} is not a valid name for any existing’
613 ’ thermistor string!’.format(ID))
614 ## Make editable the files of the thermistor string
615 unprotect(ID)
616

617 with open(’data/{0}/{0}_object’.format(ID),’rb’) as file_object:
618 my_unpickler = pickle.Unpickler(file_object)
619 content = my_unpickler.load()
620

122 Appendix D. Ice and air temperature at Storbreen

621 count = 1
622 list_sensor = list()
623 while count <= content._num:
624 if count == 1:
625 print(’Sensor 1 (uppermost sensor)’)
626 elif count == content._num:
627 print(’Sensor {} (lowermost sensor)’.format(content._num))
628 else:
629 print(’Sensor {}’.format(count))
630 list_sensor.append(count)
631 count += 1
632 sensor = input(’Which sensor do you to update ? (number)\n’)
633 try:
634 sensor = int(sensor)
635 except ValueError:
636 raise ValueError(’The sensor number is not an integer!’)
637 if not sensor in list_sensor:
638 raise NameError(’There is no sensor {}!’.format(sensor))
639 sensor_depth = input(’The sensor {0} had lastly a depth of {1}’
640 ’ m.’
641 ’\nWhat depth do you want to give to the’
642 ’ sensor {0} now?\nNote : A negative ’
643 ’value indicates how far out of the ice ’
644 ’the sensor is.\n’.format(sensor,
645 content._depth[sensor]))
646

647 if re.match(r’\d+,\d+’,sensor_depth):
648 raise ValueError(’The value entered must be an integer ’
649 ’or a floatting number!\nFloatting ’
650 ’numbers must be written with a dot for ’
651 ’the decimal separator.’)
652 try:
653 sensor_depth = float(sensor_depth)
654 except ValueError:
655 raise ValueError(’The value entered must be an integer or a ’
656 ’floatting number!’)
657

658 content._depth = get_depth(content._dist,sensor,sensor_depth)
659

660 ## Update the date of the field measurements
661 year = input(’Last measurements date back to: {}\n’
662 ’What is the date matching to the update?\n’
663 ’Year : ’.format(content._last_update))
664 try:
665 year = int(year)
666 except ValueError:
667 raise ValueError(’The year must be an integer value!’)
668 if not re.match(r’\d{4}’,str(year)):
669 raise ValueError(’The year is not valid (4 digits)!\n’
670 ’Example of valid year : 2014’)
671 month = input(’Month (1 - 12): ’)
672 try:
673 month = int(month)
674 except ValueError:
675 raise ValueError(’The month must be an integer value!’)
676 if month < 1 or month > 12:
677 raise ValueError(’The month must be a value between 1 and’
678 ’ 12 included.’)
679 dom = input(’Day of month (1 - 31) : ’)
680 try:
681 dom = int(dom)
682 except ValueError:
683 raise ValueError(’The day of month must be an integer value (1-31)!’)
684 if dom < 1 or dom > 31:
685 raise ValueError(’The day of month must be a value between’
686 ’ 1 and 31 included.’)
687 HM = str()
688 while HM.lower() != ’y’ and HM.lower() != ’n’:
689 HM = input(’Do you also want to update the time (hours and’
690 ’ minutes)? (y/n)\n’)
691 HM = HM.lower()
692 if HM == ’y’:
693 hours = input(’Hours (0-23) : ’)
694 try:
695 hours = int(hours)
696 except ValueError:
697 raise ValueError(’The number of hours must be an integer value!’)
698 if hours < 0 or hours > 23:
699 raise ValueError(’The number of hours must be a value’
700 ’ between 0 and 23 included.’)
701 minutes = input(’Minutes (0-59) : ’)
702 try:
703 minutes = int(minutes)
704 except ValueError:
705 raise ValueError(’The number of minutes must be an integer value!’)
706 if minutes < 0 or minutes > 59:
707 raise ValueError(’The number of minutes must be a ’
708 ’value between 0 and 59 included.’)
709 content._last_update = dt.datetime(year,month,dom,
710 hours,minutes)
711 else:

D.2. Python code 123

712 content._last_update = dt.datetime(year,month,dom)
713

714 ## Update field observation about the snow pack
715 snow = str()
716 while snow.lower() != ’y’ and snow.lower() != ’n’:
717 snow = input(’Was there a snowpack at the location of the’
718 ’ thermistor line at that time ? (y/n)\n’)
719 if snow.lower() == ’y’:
720 content._snow = True
721 else:
722 content._snow = False
723 content._thickness = 0
724 print(’The profile {} has been updated!’.format(ID))
725 if content._snow:
726 thickness = str()
727 while not isinstance(thickness,float):
728 thickness = input(’What was the thickness of the ’
729 ’snowpack in meters ?\n’)
730 try:
731 thickness = float(thickness)
732 except ValueError:
733 print(’The thickness must be an integer or a ’
734 ’floatting point number!’)
735 if isinstance(thickness,float):
736 if not thickness > 0:
737 print(’The thickness must be a value greater’
738 ’ than 0!’)
739 thickness = str(thickness)
740 content._thickness = thickness
741 print(’The profile {} has been updated!’.format(ID))
742

743 ## Write both in the text file and the object file
744

745 ## Text file
746 replacement = False
747 pattern = str(content._last_update)
748 matched = re.compile(pattern).search
749 with fileinput.input(’data/{0}/updates.txt’.format(ID),inplace=1) as file_txt:
750 for line in file_txt:
751 if not matched(line):
752 print(line, end=’’)
753 elif matched(line):
754 count = 0
755 line = ’{}’.format(pattern)
756 while count < content._num:
757 index = count + 1
758 line += ’,{}’.format(content._depth[index])
759 count += 1
760 line += ’,{0},{1}’.format(content._snow,
761 content._thickness)
762 print(line)
763 replacement = True
764

765 if not replacement:
766 with open(’data/{0}/updates.txt’.format(ID),’a’) as file_txt:
767 line = ’{}’.format(pattern)
768 count = 1
769 while count <= content._num:
770 line += ’,{}’.format(content._depth[count])
771 count += 1
772 line += ’,{0},{1}’.format(content._snow,
773 content._thickness)
774 line += ’\n’
775 file_txt.write(line)
776

777 ## Sorts field observations in the text file
778 sort_observations(ID)
779

780 ## Write in the file object with the new attribute values.
781 with open(’data/{0}/{0}_object’.format(ID),’wb’) as file_object:
782 content._snow, content._thickness = last_snowpack(ID)
783 content._last_update = last_update(ID)
784 content._depth = last_depth(ID)
785 my_pickler = pickle.Pickler(file_object)
786 my_pickler.dump(content)
787

788 ## Protect files and directory of the thermistor string from
789 ## editing
790 protect(ID)
791

792 ## Function that loads instances of the class Profile created in
793 ## previous sessions. Usefull to load Profile objects into the current
794 ## name space.
795 def get_strings(*IDs):
796 """ Loads former instances of the class Profile.
797

798 This function loads instances of the class Profile created in
799 previous sessions. The IDs of the thermistor lines will be the new
800 reference to the objects in the current session.
801

802 Note: it will override the variables in the current namespace with

124 Appendix D. Ice and air temperature at Storbreen

803 the same name as an ID of a former ’Profile’ instance.
804

805

806 Optional Arguments:
807

808 IDs: list of identifications of thermistor strings.
809 """
810 existing_strings = [d for d in os.listdir(’data/’)
811 if os.path.isdir(’data/{}’.format(d))]
812 for i in IDs:
813 if i not in existing_strings:
814 raise FileNotFoundError(’{} is not a valid ID!’.format(i))
815 with open(’data/{0}/{0}_object’.format(i),’rb’) as file_object:
816 my_unpickler = pickle.Unpickler(file_object)
817 globals()[i] = my_unpickler.load()
818

819 ## Function that loads all instances of the class Profile created in
820 ## previous sessions. Usefull to load Profile objects into the current
821 ## namespace.
822 def get_all():
823 """ Loads all instances of the class Profile into the current session.
824

825 This function loads all instances of the class Profile created in
826 previous session. The IDs of these instances will be the
827 references to the objects in the current session.
828

829 Note: it will override the variables in the current namespace with
830 the same name as an ID of a former ’Profile’ instance.
831 """
832 existing_strings = [d for d in os.listdir(’data/’)
833 if os.path.isdir(’data/{}’.format(d))]
834 for i in existing_strings:
835 with open(’data/{0}/{0}_object’.format(i),’rb’) as file_object:
836 my_unpickler = pickle.Unpickler(file_object)
837 globals()[i] = my_unpickler.load()
838

839 ## Define optional arguments when running the script from the terminal
840 parser = argparse.ArgumentParser()
841 group = parser.add_mutually_exclusive_group()
842 group.add_argument(’-u’, ’--update’, action=’store_true’,
843 help=(’update an existing thermistor string with ’
844 ’new field observations’))
845 group.add_argument(’-U’, ’--updateString’, metavar=’ID’, nargs=1,
846 help=(’update the thermistor string matching to ’
847 ’the ID with new field observations’))
848 group.add_argument(’-l’, ’--list’, action=’store_true’,
849 help=(’list the existing thermistor strings’))
850 group.add_argument(’-g’, ’--getall’, action=’store_true’,
851 help=(’loads all instances of the class Profile ’
852 ’created during previous sessions into the ’
853 ’current session (the IDs will be the ’
854 ’references to the objects in the current ’
855 ’namespace)’))
856 group.add_argument(’-G’, ’--get’, metavar=’IDs’, nargs=’+’,
857 help=(’loads instances of the class Profile ’
858 ’ created during previous sessions into the ’
859 ’current session (the IDs will be the ’
860 ’references to the objects in the current ’
861 ’namespace)’))
862

863 args = parser.parse_args()
864 if args.update:
865 Profile.update()
866 if args.updateString:
867 Profile.update(ID=args.updateString[0])
868 if args.list:
869 Profile.strings_list()
870 if args.get:
871 get_strings(*args.get)
872 if args.getall:
873 get_all()

D.2. Python code 125

tempplot.py

Listing 5: This program loads the temperature data formatted by the script
icetemperatureprofile.py. It also updates the depth of the sensors using a
positive degree day model and plots the temperature data recorded by the GeoPrecision
M-Log5W data logger. Finally, it plots the ice deformation in the subsurface to analyse
the e�ect of temperature changes on the ice dynamics.

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3

4

5 import pickle
6 import datetime as dt
7 from itertools import repeat
8

9

10 import pandas as pd
11 from pandas import DataFrame, Series
12 import matplotlib.pyplot as plt
13 import matplotlib as mpl
14 import numpy as np
15 import h5py
16 from scipy.integrate import cumtrapz
17

18

19 from icetemperatureprofile import Profile
20 from functions import *
21

22

23 ## Identification string of the thermistor line
24 ID = ’S2’
25

26 with open(’data/{0}/{0}_object’.format(ID),’rb’) as file_object:
27 my_unpickler = pickle.Unpickler(file_object)
28 data = my_unpickler.load()
29

30 ## Loads the data as DataFrame instance
31 DFrame = data.frame
32

33 ## Reads the updates text file : field observations which tells if the
34 ## ice was snow covered and what is the depth of the sensors with
35 ## accuracy of field measurements.
36 UFrame = pd.read_table(’data/{0}/updates.txt’.format(ID), sep=’,’, header=1)
37

38 ## Convert the string in the first column into a datetime array.
39 dateformat = ’%Y-%m-%d %H:%M:%S’
40 convert2datetime = lambda x: dt.datetime.strptime(x, dateformat)
41 UFrame.Date = UFrame[’Date’].apply(convert2datetime)
42

43

44 TaFrame = DFrame[[’Date’,’Ta’]].dropna()
45

46 ## Extracts the "control periods" from the dataset. A control period
47 ## is a period between two consecutive field observations where the
48 ## ice was not snow covered. The variable "control_periods" is a list
49 ## of tuples which group the start date, the end date and the amount
50 ## of ice melt for each "control period". The amount of melt is
51 ## computed using the depth differences of the uppermost sensor of the
52 ## thermistor string.
53 control_periods = sorted([(UFrame.irow(-i-1)[’Date’],
54 UFrame.irow(-i)[’Date’],
55 UFrame.irow(-i)[’D1’]-UFrame.irow(-i-1)[’D1’])
56 for i in range(1,len(UFrame))
57 if -(UFrame.irow(-i)[’Snow’])
58 and -(UFrame.irow(-i-1)[’Snow’])])
59 sec2day = 24 * 60 * 60
60 convert2meltrate = lambda x: x[2]/((x[1]-x[0]).total_seconds()/sec2day)
61 CP = list(control_periods)
62

63 ## Computes melt rate [m/d] for the control periods
64 melt_rate_perDay = [(i[0],i[1],convert2meltrate(i)) for i in CP] # [m/d]
65

66 datetime2date = lambda x: dt.datetime(x.year, x.month, x.day)
67

68 ## Creates a DataFrame with temperature data only of the whole
69 ## dataset. The mean temperature is computed for each day of the whole
70 ## period of measurements.
71 PDDFrame = TaFrame.copy()
72 PDDFrame.Date = PDDFrame[’Date’].apply(datetime2date)
73 mean_PD_perDay = PDDFrame[’Ta’].groupby(PDDFrame[’Date’]).mean()
74

75 ## Sets to NaN the mean daily temperature values that are negatives,
76 ## to leave only the "positive degree day" values.

126 Appendix D. Ice and air temperature at Storbreen

77 mean_PD_perDay[mean_PD_perDay <= 0] = np.nan
78 mean_PD_perDay = mean_PD_perDay.dropna()
79

80 ## Computes the melt rate coefficients for each "control periods"
81 ## (mean amount of melt per positive degree).
82 melt_rate_PDD = list()
83 for i,value in enumerate(control_periods):
84 cond1 = mean_PD_perDay.index > control_periods[i][0]
85 cond2 = mean_PD_perDay.index <= control_periods[i][1]
86 tot_PD = mean_PD_perDay[cond1 & cond2].sum()
87 melt_rate_PDD.append((control_periods[i][0], control_periods[i][1],
88 control_periods[i][2]/tot_PD))
89 ## Total number of days for all the "control periods".
90 num_tot_days = np.sum([i[1] - i[0] for i in melt_rate_PDD])
91 ## Computes a mean melt rate (amount of melt in meters, per positive
92 ## degree), considering all "control periods".
93 mean_melt_rate_PDD = np.sum([((i[1] - i[0]) / num_tot_days) * i[2]
94 for i in melt_rate_PDD])
95 mean_PD_perDay = DataFrame(mean_PD_perDay, columns=[’PDD’])
96 mean_PD_perDay.reset_index(inplace=True)
97 UFrame.Date = UFrame[’Date’].apply(datetime2date)
98

99 ## Creates a DataFrame (WorkFrame) with field observations and a
100 ## positive degree day columns matching the dates of continuous
101 ## measurements.
102 WorkFrame = pd.merge(UFrame, mean_PD_perDay, on=’Date’, how=’outer’)
103 WorkFrame = WorkFrame.sort(columns=’Date’)
104

105 ## Sorted list of tuples which are made up with the start date, end
106 ## date and the amount of melt for each period (Interp_periods)
107 ## between two consecutive field observations.
108 Interp_periods = sorted([(UFrame.irow(-i-1)[’Date’],
109 UFrame.irow(-i)[’Date’],
110 UFrame.irow(-i)[’D1’]-UFrame.irow(-i-1)[’D1’])
111 for i in range(1,len(UFrame))])
112

113 ## Makes a list which elements tell the method of interpolation to be
114 ## used, depending on if the ice was snow covered for the field
115 ## observations at the beginning or at the end of each
116 ## "Interp_period", and if there was an ice accumulation or ice
117 ## ablation for the same "Interp_periods".
118 Interp_method = list()
119

120 for i,value in enumerate(Interp_periods):
121 cond_snow_start = UFrame[’Snow’][UFrame[’Date’]==Interp_periods[i][0]].values
122 cond_snow_end = UFrame[’Snow’][UFrame[’Date’]==Interp_periods[i][1]].values
123 cond_melt = Interp_periods[i][2] < 0
124 cond_acc = Interp_periods[i][2] > 0
125 if cond_melt:
126 if not cond_snow_start and not cond_snow_end:
127 Interp_method.append(’IIM’)
128 elif not cond_snow_start and cond_snow_end:
129 Interp_method.append(’ISM’)
130 elif cond_snow_start and not cond_snow_end:
131 Interp_method.append(’SIM’)
132 else:
133 Interp_method.append(’SSM’)
134 else:
135 if not cond_snow_start and not cond_snow_end:
136 Interp_method.append(’IIA’)
137 elif not cond_snow_start and cond_snow_end:
138 Interp_method.append(’ISA’)
139 elif cond_snow_start and not cond_snow_end:
140 Interp_method.append(’SIA’)
141 else:
142 Interp_method.append(’SSA’)
143

144 starts = [Interp_periods[i][0] for i,val in enumerate(Interp_periods)]
145 Interp_data = {’Date’:starts, ’Interpolation’:Interp_method}
146 InterpFrame = DataFrame(Interp_data)
147

148 ## Adds to the WorkFrame a column with the interpolation method to be
149 ## used.
150 WorkFrame = pd.merge(InterpFrame, WorkFrame, on=’Date’, how=’outer’)
151 WorkFrame = WorkFrame.sort(columns=’Date’)
152 WorkFrame.Interpolation = WorkFrame[’Interpolation’].fillna(method=’ffill’)
153

154 temporal_res = (WorkFrame.irow(-1).Date -
155 WorkFrame.irow(1).Date)/len(WorkFrame)
156

157 ## For each period to interpolate (Interp_period), if it matches to a
158 ## control_period, the melt coefficient of this control period will be
159 ## used to estimate the ice melt over the period. If the Interp_period
160 ## is not a control period, the mean melt rate will be used. If the
161 ## ice melt is calculated over a control period, the melt rate is used
162 ## from the beginning to the end of the period, weighed by the
163 ## positive degree day values. For this dataset, the only type of
164 ## period else than a control period matches to the interpolation type
165 ## "SIM". This means that there was ice ablation, and that the ice was
166 ## snow covered at the start date, but that there was no snowpack at
167 ## the end date. For this case, the mean melt rate was applied from

D.2. Python code 127

168 ## the end of the period, weighed by the positive degree day values,
169 ## until the total amount of melt for the period was reached. After
170 ## that this total amount of is reached, it is assumed that no ice
171 ## melt is happening, as the ice is snow covered and that the snow
172 ## should melt first.
173 melt_rate_PDD = np.array(melt_rate_PDD)
174 snow_covered = list()
175 for val in Interp_periods:
176 start = val[0]
177 end = val[1]
178 WorkFrame = WorkFrame.sort(columns=’Date’,ascending=True)
179 WorkFrame.index = np.arange(0,len(WorkFrame))
180 if val in CP: ## if the interpolation method is of type IIM or
181 ## that there was ice accumulation between the
182 ## consecutive field measurements
183 cond_start = WorkFrame[’Date’] >= start
184 cond_end = WorkFrame[’Date’] < end
185 slice_period = WorkFrame[cond_start & cond_end].copy()
186 index_array = np.array(slice_period.index)[[0,-1]]
187 for i in melt_rate_PDD:
188 if start == i[0]:
189 melt_rate = i[2]
190 slice_period.index = np.arange(0,len(slice_period))
191 values = slice_period.values[1:,2:-3]
192 known_depths = slice_period.values[0,2:-3]
193 PDD_cum = slice_period.values[1:,-1:].cumsum(axis=0)
194 values[:] = known_depths + (melt_rate * PDD_cum)
195 slice_period.ix[1:,2:-3] = values
196 WorkFrame.ix[index_array[0]:index_array[1]] = slice_period
197 WorkFrame = WorkFrame.sort(columns=’Date’,ascending=True)
198 WorkFrame.index = np.arange(0,len(WorkFrame))
199 else:
200 for i,value in enumerate(Interp_data[’Date’]):
201 if val[0] == value:
202 interpolation = Interp_data[’Interpolation’][i]
203 tot_melt = val[2]
204 if interpolation == ’SIM’:
205 cond_start = WorkFrame[’Date’] > start
206 cond_end = WorkFrame[’Date’] <= end
207 depths_start = WorkFrame[WorkFrame.Date == start].values[0,2:-3]
208 slice_period = WorkFrame[cond_start & cond_end].copy()
209 index_array = np.array(slice_period.index)[[0,-1]]
210 slice_period = slice_period.sort(columns=’Date’,
211 ascending=False)
212 slice_period.index = np.arange(0,len(slice_period))
213 values = slice_period.values[1:,2:-3]
214 known_depths = slice_period.values[0,2:-3]
215 PDD_cum = slice_period.values[1:,-1:].cumsum(axis=0)
216 values[:] = known_depths - (mean_melt_rate_PDD * PDD_cum)
217 values = values.astype(np.float64)
218 depths_start = depths_start.astype(np.float64)
219 snow_cover = slice_period.values[1:,-3]
220 snow_cover = snow_cover.astype(np.bool)
221 for v,dst in np.nditer([values, depths_start],
222 flags=[’external_loop’],
223 op_flags=[[’readwrite’],[’readonly’]],
224 order=’C’):
225 if v[0] > dst[0]:
226 v[...] = dst
227 for ds,d,sc in np.nditer([depths_start[0],values[:,0],snow_cover],
228 flags=[’external_loop’],
229 op_flags=[[’readonly’],[’readonly’],
230 [’readwrite’]],
231 order=’F’):
232 sc[...] = (ds == d)
233 slice_period.ix[1:,2:-3] = values
234 slice_period.ix[1:,-3] = snow_cover
235 slice_period = slice_period.sort(columns=’Date’,
236 ascending=True)
237 WorkFrame.ix[index_array[0]:index_array[1]] = slice_period
238 WorkFrame = WorkFrame.sort(columns=’Date’,ascending=True)
239 WorkFrame.index = np.arange(0,len(WorkFrame))
240 sc_start = WorkFrame[[’Date’]][WorkFrame.Snow == True].values[0]
241 sc_end = WorkFrame[[’Date’]][WorkFrame.Snow == True].values[-1]
242 snow_covered.append((sc_start,sc_end))
243 elif interpolation == ’ISM’:
244 # algorithm to define here for this type of interpolation
245 continue
246 elif interpolation == ’SSM’:
247 # algorithm to define here for this type of interpolation
248 continue
249

250 ## Merge the DataFrame of the depth of the sensors, with the one of
251 ## the temperature measured by the sensors in one single DataFrame.
252 FinalFrame = pd.merge(WorkFrame, DFrame, on=’Date’, how=’outer’)
253 FinalFrame = FinalFrame.sort(columns=’Date’)
254

255 ## Change the row numbers of the frame
256 FinalFrame.index = np.arange(0,len(FinalFrame))
257

258 ## Fill the missing values in the FinalFrame, assuming that the depth

128 Appendix D. Ice and air temperature at Storbreen

259 ## difference for each sensor within a single day is neglectable.
260 FinalFrame.ix[:,1:3+data.num] = FinalFrame.ix[:,1:3+data.num]\
261 .fillna(method=’ffill’)
262 FinalFrame.ix[:,-(data.num+2):-1] = FinalFrame.ix[:,-(data.num+2):-1]\
263 .fillna(method=’ffill’)
264 FinalFrame.ix[:,-(data.num+2):-1] = FinalFrame.ix[:,-(data.num+2):-1]\
265 .fillna(method=’bfill’)
266 list_cols = list(np.arange(0,data.num+2))
267 list_cols.pop(1)
268

269 ## Depth values of the sensors for the whole period of measurments.
270 DepthFrame = FinalFrame[list_cols]
271 list_cols = list(np.arange(data.num+5,len(FinalFrame.columns)))
272 list_cols.insert(0,0)
273 list_cols.pop()
274

275 ## Temperature values of the sensors for the whole period of
276 ## measurements.
277 TempFrame = FinalFrame[list_cols]
278

279 ## Merge the temperature and depth values into one single DataFrame,
280 ## and set to 0 all the temperature values that are positive (sensors
281 ## out of the ice measuring air temperature, or slightly positive
282 ## values due to sensor accuracy).
283 PlotFrame = pd.merge(TempFrame, DepthFrame, on=’Date’, how=’outer’)
284 Temp = PlotFrame.ix[:,1:1+data.num].values
285 Temp[Temp > 0] = 0
286 Depth = PlotFrame.ix[:,1+data.num:].values
287

288 ## Estimate the temperature of the ice at the surface. For each time
289 ## the temperature is measured by the sensors, a second degree
290 ## polynomial is fitted to the data (temperature against depth), and
291 ## the temperture at the surface is extrapolated from the data, by
292 ## reading the temperature value at a depth of 0 for the polynomial
293 ## function. A second degree polynomial was chosen to be able to
294 ## represent temperature diurnal variations to a certain point. No
295 ## higher degree was chosen to avoid to much divergence of the
296 ## polynomial fit.
297 T0 = np.empty((len(PlotFrame)))
298

299 for dep,temp,t0 in np.nditer([Depth,Temp,T0[:,None]], flags=[’external_loop’,
300 ’reduce_ok’],
301 op_flags=[[’readonly’],[’readonly’],
302 [’readwrite’]], order=’C’):
303 z=np.polyfit(dep[dep>0],temp[dep>0],2)
304 p = np.poly1d(z)
305 t0[...] = p(0)
306 ## The temperature values slightly positive are set to zero.
307 T0[T0>0] = 0
308 Temp = np.concatenate([T0[:,None],Temp],axis=1)
309 Depth = np.concatenate([np.zeros((len(Depth),1)),Depth],axis=1)
310

311 ## Plot filled contours of the temperature in the ice, with the depth
312 ## of the sensors updated with field observations and melt
313 ## estimates. An upper subplot shows the mean daily air temperature
314 ## for the whole period. The shaded areas are the periods when the ice
315 ## is snow covered according to the melt model.
316 depthvalues = Depth
317 tempvalues = Temp
318 tempvalues[tempvalues>0] = 0
319 dateaxis = FinalFrame.Date.values
320 dt64todatetime = np.vectorize(lambda x: pd.to_datetime(x).to_datetime())
321 dateaxis = dt64todatetime(dateaxis)
322 datematrix = [x for item in dateaxis for x in repeat(item, data.num+1)]
323 datematrix = np.array(datematrix)
324 date2num = np.vectorize(lambda x: mpl.dates.date2num(x))
325 datematrix = date2num(datematrix)
326 datematrix = datematrix.reshape(datematrix.shape[0]/(data.num+1),data.num+1)
327 DTa = TaFrame.Date.values
328 DTa = dt64todatetime(DTa)
329 snow_covered = dt64todatetime(snow_covered)
330 numcolors = 30
331 cmap = plt.cm.get_cmap(name=’jet’,lut=numcolors)
332 fig = plt.figure(dpi=150)
333 ax1 = fig.add_subplot(2,1,1)
334 ax1.xaxis_date()
335 ax1.plot(DTa,TaFrame.Ta.values,’r-’,
336 label=’Air temperature (°C)’)
337 for i,val in enumerate(snow_covered):
338 if i == 0:
339 ax1.axvspan(val[0],val[1],facecolor=’0.5’, alpha=0.5,label=’Snow Cover’)
340 else:
341 ax1.axvspan(val[0],val[1],facecolor=’0.5’, alpha=0.5)
342 ax1.axhline(color=’b’,linewidth=.5,label=’_nolegend_’)
343 ax1.legend(loc=’best’)
344 ax1.set_ylabel(’Temperature (°C)’)
345 ax2 = fig.add_subplot(2, 1, 2, sharex=ax1)
346 plt.gcf().autofmt_xdate()
347 im = ax2.contourf(datematrix, depthvalues, tempvalues,
348 numcolors,cmap=cmap,extend=’both’)
349 contour_levels = 0.5,1

D.2. Python code 129

350 cs = ax2.contour(datematrix, depthvalues, tempvalues,
351 contour_levels, linewidths=2, colors=’k’,hold=’on’)
352 ax2.set_ylabel(’Depth (m)’)
353 depth_lim = ax2.get_ylim()
354 ax2.set_ylim([0,depth_lim[1]])
355 ax2.invert_yaxis()
356 cbar = plt.colorbar(im,orientation=’horizontal’,ax=ax2, pad=0.25,
357 drawedges=True,shrink=0.8, extendfrac=’auto’)
358 cbar.set_label(’Ice temperature (°C)’)
359 fig.suptitle(’Air and ice temperature at stake {}’.format(ID),
360 fontsize=14)
361 fig.tight_layout()
362 plt.show()
363

364

365 ## Computes ice deformation in the subsurface using the ice
366 ## temperature data.
367

368 ## Glacier and stake ID for velocity measurements stored in the
369 ## data.hdf5 generated by the surfacevelocity.py and
370 ## computevelocity.py scripts.
371 glacier = ’Storbreen’
372 stake = ’S2yr11’
373

374 ## Activation energy for creep.
375 Qpos = 115000 # J/mol (if the ice is warmer than -10 degree C)
376 Qneg = 60000 # J/mol (if the ice is colder than -10 degree C)
377

378 ## Universal gas constant.
379 R = 8.314 # J/mol/K
380

381 ## Ice thickness at the stake.
382 H = 85 # m
383

384 ## Surface slope in degrees.
385 surf_slope = 9
386 alpha = np.pi/180*surf_slope # rad
387

388 ## Ice density.
389 rho = 917 # kg/m3
390

391 ## Factor for conversion (number of seconds in a year).
392 sec2year = 365*24*60*60
393

394 ## Pre-factor to compute the value of the creep parameter A (A at
395 ## -10°C).
396 A0 = 3.5*10**-25 # 1/Pa3/s
397

398 ## Gravitational acceleration constant.
399 g = 9.81 # m/s2
400

401 ## zero Celsius degree in Kelvin.
402 zero = 273.15 # K
403

404 ## Constant parameter of the relationship between stress and strain.
405 n = 3
406

407 ## Approximation of the shear stress at the bed.
408 Tb = rho*g*H*alpha # Pa
409

410 ## Number of points where the velocity will be estimated for each
411 ## profile.
412 nb_points = 100
413

414 it = np.nditer([depthvalues,tempvalues], flags=[’external_loop’],
415 op_flags=[[’readonly’],[’readonly’]],
416 order=’C’)
417 num = tempvalues.shape[1] # Number of sensors
418 first_loop = True
419 for dep,temp in it:
420 temperature = temp[dep>=0]
421 depth = dep[dep>=0].astype(np.float128)
422 step = np.max(depth)/nb_points
423 for i in np.arange(len(depth)-1):
424 ## Temperature gradient between neighbouring sensors on the
425 ## thermistor string.
426 a = (temperature[i+1]-temperature[i])/(depth[i+1]-depth[i])
427 ## Temperature (in Kelvin) of the upper sensor of the
428 ## interval, or surface temperature estimated if iterator ’i’
429 ## is equal to zero.
430 b = temperature[i] + zero
431 ## Depth values for velocity estimation.
432 if i==0:
433 z = np.arange(depth[i], depth[i+1], step)
434 else:
435 z = np.arange(last+step, depth[i+1], step)
436 z = np.insert(z, 0 , depth[i])
437 last = z[-1] # last value of that depth interval
438 z = np.append(z,depth[i+1])
439 P = rho * g * z
440 T_h = a*z + b + 7 * 10**-8 * P

130 Appendix D. Ice and air temperature at Storbreen

441 T_star = 263 + 7 * 10**-8 * P
442 condition = T_h > T_star
443 Q = np.where(condition, Qpos, Qneg)
444 A = A0*np.exp((-Q/R)*((1/(T_h))-1/(T_star)))
445 dvdz = 2*A*(Tb**n)*((z/H)**n)
446 ## Deformation velocity between 2 sensors on the profile,
447 ## approximated by the trapezoidale rule.
448 Vz = cumtrapz(dvdz, z, initial=0)
449 ## Convert from meters per second into meters per year.
450 Vz *= sec2year
451 if i==0:
452 profile = Vz
453 depth_velocity = z
454 else:
455 Vz += profile[-1]
456 profile = np.delete(profile, -1)
457 Vz = np.delete(Vz,0)
458 profile = np.concatenate([profile,Vz])
459 depth_velocity = np.delete(depth_velocity, -1)
460 z = np.delete(z, 0)
461 depth_velocity = np.concatenate([depth_velocity, z])
462 if first_loop:
463 ProfilesMatrix = profile
464 DepthsMatrix = depth_velocity
465 first_loop = False
466 else:
467 ProfilesMatrix = np.vstack((ProfilesMatrix, profile))
468 DepthsMatrix = np.vstack((DepthsMatrix, depth_velocity))
469

470 ## Creates a new datematrix for the velocity estimation points
471 dateaxis = FinalFrame.Date.values
472 dt64todatetime = np.vectorize(lambda x: pd.to_datetime(x).to_datetime())
473 dateaxis = dt64todatetime(dateaxis)
474 datematrix2 = [x for item in dateaxis for x in repeat(item, nb_points+1)]
475 datematrix2 = np.array(datematrix2)
476 date2num = np.vectorize(lambda x: mpl.dates.date2num(x))
477 datematrix2 = date2num(datematrix2)
478 datematrix2 = datematrix2.reshape(datematrix2.shape[0]/(nb_points+1),
479 nb_points+1)
480

481 ## Plot temperature and subsurface ice deformation in one figure
482 fig = plt.figure(dpi=150)
483 ax1 = fig.add_subplot(2,1,1)
484 ax1.xaxis_date()
485 im1 = ax1.contourf(datematrix, depthvalues, tempvalues,
486 numcolors,cmap=cmap,extend=’both’)
487 contour_levels = 0.5,1
488 cs = ax1.contour(datematrix, depthvalues, tempvalues,
489 contour_levels, linewidths=2, colors=’k’,hold=’on’)
490 ax1.set_ylabel(’Depth (m)’)
491 ax2 = fig.add_subplot(2, 1, 2, sharex=ax1, sharey=ax1)
492 plt.gcf().autofmt_xdate()
493 cbar = plt.colorbar(im1, orientation=’horizontal’, ax=ax1, pad=0.25,
494 drawedges=True,shrink=0.8, extendfrac=’auto’)
495 cbar.set_label(’Ice temperature (°C)’)
496 im2 = ax2.contourf(datematrix2, DepthsMatrix, ProfilesMatrix, numcolors,
497 cmap=cmap, extend=’both’)
498 ax2.set_ylabel(’Depth (m)’)
499 depth_lim = ax2.get_ylim()
500 ax2.set_ylim([0,depth_lim[1]])
501 ax2.invert_yaxis()
502 cbar2 = plt.colorbar(im2, orientation=’horizontal’,ax=ax2, pad=0.25,
503 drawedges=True,shrink=0.8, extendfrac=’auto’)
504 cbar2.set_label(’Ice deformation (m/year)’)
505 fig.suptitle(’Ice temperature and ice deformation at stake {}’.format(ID),
506 fontsize=14)
507 fig.tight_layout()
508 plt.show()

D.2. Python code 131

functions.py

Listing 6: This �le contains the functions required to run the scripts
icetemperatureprofile.py and tempplot.py.

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3

4 import os
5 import datetime as dt
6 import re
7 import pickle
8

9

10 ## Function that computes the depth of the sensors.
11 def get_depth(dist, sensor, sensor_depth):
12 """ Updates the depth of the sensor on the thermistor line.
13

14 The function sets the depth of one of the sensors, and updates
15 automatically the depth of the other sensors using the distances
16 between them. It returns a dict object with the sensor numbers as
17 keys, and the depths as values.
18

19

20 Positional arguments:
21

22 dist: dictionary that contains the positions of the sensors on the
23 line.
24 sensor: the sensor that is used for the update.
25 sensor_depth: the depth of the sensor.
26

27

28 Note:
29

30 A negative value for the parameter sensor_depth indicates how far
31 out the sensor of interest is.
32 """
33 depths = dict()
34 for key in dist.keys():
35 if key != sensor:
36 depths[key] = sensor_depth + (dist[key] - dist[sensor])
37 else:
38 depths[key] = sensor_depth
39 for key,value in depths.items():
40 depths[key] = float(’{0:.2f}’.format(depths[key]))
41 return depths
42

43

44 ## Function that protect the files and directories created from
45 ## writing by changing permissions.
46 def protect(ID):
47 """ Protects from writing the data of a thermistor string.
48

49 It changes the permissions of the ’data’ directory, the
50 subdirectory and the files of the thermistor string.
51

52

53 Positional argument:
54

55 ID: identification of the thermistor string.
56 """
57 os.chmod(’data/{0}/{0}.csv’.format(ID),0o444)
58 os.chmod(’data/{0}/updates.txt’.format(ID),0o444)
59 os.chmod(’data/{0}/{0}_object’.format(ID),0o444)
60 os.chmod(’data/{}’.format(ID),0o555)
61 os.chmod(’data’,0o555)
62

63

64 ## Function that changes the permissions on the files and directories
65 ## of the temperature string to make them editable.
66 def unprotect(ID):
67 """ This function makes editable the data of a thermistor string.
68

69 It changes the permissions of the ’data’ directory, the
70 subdirectory and the files of the thermistor string.
71

72

73 Positional argument:
74

75 ID: identification of the thermistor string.
76 """
77 os.chmod(’data’,0o777)
78 os.chmod(’data/{}’.format(ID),0o777)
79 os.chmod(’data/{0}/{0}_object’.format(ID),0o666)
80 os.chmod(’data/{0}/updates.txt’.format(ID),0o666)
81 os.chmod(’data/{0}/{0}.csv’.format(ID),0o666)
82

132 Appendix D. Ice and air temperature at Storbreen

83

84 ## Function that finds the date of the last field measurements.
85 def last_update(ID):
86 """ Returns the date of the last field observations.
87

88 It extracts the date which appears on the last line in the text
89 file of the thermistor string.
90

91

92 Positional argument:
93

94 ID: identification of the thermistor string.
95 """
96 with open(’data/{0}/updates.txt’.format(ID),’r’) as file_txt:
97 last_line = file_txt.readlines()[-1]
98 whole_date = re.findall(r’^\d{4}-\d{2}-\d{2}’,last_line)
99 lyear,lmonth,lday = whole_date[0].split(’-’)

100 lyear, lmonth, lday = int(lyear), int(lmonth), int(lday)
101 last_update = dt.datetime(lyear,lmonth,lday).strftime(’%A %d %B %Y’)
102 return last_update
103

104

105 ## Function that sorts the field observations in the text file.
106 def sort_observations(ID,headerlines=2):
107 """ Sorts the lines in the updates.txt file of a thermistor string.
108

109 It sorts the lines using the date of the field observations. The
110 most recent observations are at the end of the file.
111

112

113 Positional argument:
114

115 ID: identification of the thermistor string.
116

117

118 Keyword argument:
119

120 headerlines: number of lines not interpreted by the function
121 (default is 2).
122 """
123 with open(’data/{0}/updates.txt’.format(ID),’r’) as file_txt:
124 content = file_txt.readlines()
125 first_lines = content[:headerlines]
126 lines = content[headerlines:]
127 lines.sort()
128 content = ’’.join(first_lines+lines)
129

130 with open(’data/{0}/updates.txt’.format(ID),’w’) as file_txt:
131 file_txt.write(content)
132

133

134 ## Function that returns the values of the keyword arguments snow and
135 ## thickness for the latest field observations.
136 def last_snowpack(ID):
137 """ This function returns the values of ’snow’ and ’thickness’.
138

139 It returns the values of the keyword aguments ’snow’ and
140 ’thickness’ of an instance of the class Profile, for the latest
141 field observation. It extracts these values from the last line of
142 the text file (updates.txt), for the corresponding thermistor
143 string.
144

145

146 Positional argument:
147

148 ID: identification of the thermistor string.
149 """
150 pattern = re.compile(r’(?P<snow>\w{4,5}),(?P<thickness>(\d|\.)+)$’)
151 with open(’data/{0}/updates.txt’.format(ID),’r’) as file_txt:
152 last_line = file_txt.readlines()[-1]
153 match = pattern.search(last_line)
154 return match.group(’snow’),match.group(’thickness’)
155

156

157 ## Function that returns the depth values of the sensors for the
158 ## latest field observations.
159 def last_depth(ID):
160 """ This function returns the depth values of the sensors.
161

162 It returns the values of the depth values of the sensors of an
163 instance of the class Profile, for the latest field observation.
164 It extracts these values from the last line of the text file
165 (updates.txt), for the corresponding thermistor string.
166

167

168 Positional arguments:
169

170 ID: identification of the thermistor string.
171 """
172 pattern=re.compile(r’(?<=\d,)((\d|-|\.)+)’)
173 depth = dict()

D.2. Python code 133

174 with open(’data/{0}/updates.txt’.format(ID),’r’) as file_txt:
175 last_line = file_txt.readlines()[-1]
176 depths = pattern.findall(last_line)
177 for i,value in enumerate(depths):
178 depth[i+1] = float(value[0])
179 return depth

134

E.1. Hellstugubreen 135

Appendix E

Mapping of the Cold-temperate Transition

Surface

E.1 Hellstugubreen

CTS mapping on pro�le H167. The CTS was digitized on radargrams from 2014 (50 MHz), the glacier
surface is derived from LiDAR data (data : NVE, 2009), and the ice/bedrock interface is derived from RES
measurements (10 MHz) from 2011 (data : NVE). The CTS was not digitized near the glacier front, as
this could not be done accurately owing to subsurface structures and frequent signal scattering patterns.

136 Appendix E. Mapping of the Cold-temperate Transition Surface

(a) H167 pro�le (�rst half)

(b) H167 pro�le (second half)

(a) and (b) are intensity-modulated plots of internal re�ections of the 50 MHz GPR antenna (2014) along
the pro�le H167. The distance along the pro�le shown in (a) and (b) increases from left to right.

E.2. Storbreen 137

E.2 Storbreen

CTS mapping on pro�le S180. The CTS was digitized on radargrams from 2014 (50 MHz), the glacier
surface is derived from LiDAR data (data : NVE, 2009), and the ice/bedrock interface is derived from
RES measurements from 2005-2006 (10 MHz, data : NVE) and from 2014 (50 MHz).

138 Appendix E. Mapping of the Cold-temperate Transition Surface

(a) S180 pro�le (�rst half)

(b) S180 pro�le (second half)

(a) and (b) are intensity-modulated plots of internal re�ections of the 50 MHz GPR antenna (2014) along
the pro�le S180. The distance along the pro�le shown in (a) and (b) increases from left to right.

E.2. Storbreen 139

CTS mapping on pro�le S181. The CTS was digitized on radargrams from 2014 (50 MHz), the glacier
surface is derived from LiDAR data (data : NVE, 2009), and the ice/bedrock interface is derived from
RES measurements from 2005-2006 (10 MHz, data : NVE) and from 2014 (50 MHz). The CTS was not
digitized in proximity of stake S2yr11, as this could not be done accurately owing to subsurface structures
and frequent signal scattering patterns.

140 Appendix E. Mapping of the Cold-temperate Transition Surface

(a) S181 pro�le (�rst half)

(b) S181 pro�le (second half)

(a) and (b) are intensity-modulated plots of internal re�ections of the 50 MHz GPR antenna (2014) along
the pro�le S181. The distance along the pro�le shown in (a) and (b) increases from left to right.

141

142 Appendix F. Ice surface velocity

Appendix F

Ice surface velocity

F.1 Surface velocities on Storbreen in the 1960s

Surface velocity map of Storbreen, resulting from triangulation measurements
conducted in the 1960s (Liestøl, 1967).

F.2. Python code 143

F.2 Python code

surfacevelocity.py

Listing 7: This program enables to save the positions of the stakes, for a given glacier, and from
di�erent �eld measurements. The positions of the stakes are saved in a data.hdf5 �le.

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3

4

5 import datetime as dt
6 import os
7 import re
8 import argparse
9

10

11 import numpy as np
12 import h5py
13

14

15 ## Identification of the stake location
16 ID = ’H60yr2009’
17

18 ## Glacier name
19 glacier = ’Hellstugubreen’
20

21 ## Start date of the velocity measurements
22 date_start = dt.datetime(2010,5,7)
23

24 ## Northing and Easting coordinates of the stake at start date. UTM
25 ## coordinates system, in meters.
26 northing = 6825519.2056
27 easting = 470624.9577
28

29 ## Main class
30 class StakeVelocity:
31

32 dtype = [(’timestamp’, np.float64), (’northing’, np.float64),
33 (’easting’, np.float64), (’loc’, np.int8),
34 (’distance’, np.float32)]
35 def __init__(self, glacier, ID, northing, easting, date_start):
36

37 """ Create the attributes of an instance of the class StakeVelocity.
38

39 Positional Arguments:
40 glacier -- name of the glacier
41 ID -- identification of the stake location
42 northing -- northing coordinate at the start date
43 easting -- easting coordinate at the start date
44 date_start -- start date
45 """
46 ## Check is there is already a data.hdf5 file created in the
47 ## same folder
48 if not os.path.exists(’data.hdf5’):
49 if not isinstance(glacier,str):
50 raise TypeError(’The name of the glacier should be ’
51 ’an instance of the class str!’)
52 if not ID.isalnum() or len(ID) < 2:
53 raise TypeError(’ID not valid! It should be alphanumeric’
54 ’ and at least two caracters.’)
55 else:
56 self._glacier = glacier
57 self._ID = ID
58 else:
59 f = h5py.File(’data.hdf5’,’r’)
60 if f.get(’StakePositions/{0}/{1}’.format(glacier,ID)):
61 f.close()
62 raise TypeError(’A stake location has already this ID, ’
63 ’choose another ID.’)
64 else:
65 f.close()
66 if not isinstance(glacier,str):
67 raise TypeError(’The name of the glacier should be ’
68 ’an instance of the class str!’)
69 if not ID.isalnum() or len(ID) < 2:
70 raise TypeError(’ID not valid! It should be alphanumeric’
71 ’ and at least two caracters.’)
72 else:
73 self._glacier = glacier
74 self._ID = ID
75

76 ## Check that ’northing’ and ’easting’ have the right format

144 Appendix F. Ice surface velocity

77 if not isinstance(northing,int) and not isinstance(northing,float):
78 raise TypeError(’The attribute northing must either be an’
79 ’ integer or a floatting point number!’)
80 if not isinstance(easting,int) and not isinstance(easting,float):
81 raise TypeError(’The attribute easting must either be an’
82 ’ integer or a floatting point number!’)
83 self._northing = northing
84 self._easting = easting
85

86 ## Check that ’date_start’ has the right format
87 if not isinstance(date_start,dt.datetime):
88 raise TypeError(’The attribute date_start must be an ’
89 ’instance of the class datetime.datetime!’)
90 self._date_start = date_start
91

92 ## Correct the position of the dGNSS antenna if needed
93 ## (downstream or upstream offset corrections available).
94 correction = str()
95 while correction != ’y’ and correction != ’n’:
96 correction = input(’Is there any correction to apply to ’
97 ’the position coordinates of the stake’
98 ’ ? (y/n)\n’)
99 correction = correction.lower()

100 loc = str()
101 dist = str()
102 if correction == ’y’:
103 while loc != ’downstream’ and loc != ’upstream’:
104 loc = input(’Was the GNSS antenna "upstream" or ’
105 ’"downstream" the stake during the field ’
106 ’measurement ?\n’)
107 loc = loc.lower()
108 while not isinstance(dist,np.float32):
109 dist = input(’What was the distance (in meters) ’
110 ’between the antenna and the stake ?\n’)
111 try:
112 dist = np.float32(dist)
113 except ValueError:
114 print(’The distance must be an integer or a ’
115 ’floatting point number!’)
116 if isinstance(dist,np.float32):
117 if not dist > 0:
118 dist= str()
119 print(’The distance must be a positive value!’)
120 if loc == ’downstream’:
121 loc = -1
122 else:
123 loc = 1
124 else:
125 loc,dist = 0,0
126

127 ## Save object and updates in a .hdf5 file
128 with h5py.File(’data.hdf5’,’a’) as f:
129 if not f.get(’/StakePositions/{0}/{1}’.format(glacier,ID)):
130 dset = f.create_dataset(’/StakePositions/{0}/{1}/data’\
131 .format(glacier,ID), (1,),
132 dtype=StakeVelocity.dtype,
133 maxshape=(None,), compression=9,
134 shuffle=True, fletcher32=True)
135 data = np.array([(date_start.timestamp(), northing, easting,
136 loc, dist)], dtype=StakeVelocity.dtype)
137 dset[...] = data
138 dset.attrs[’Description’] = ("’timestamp’ : Unix time. "
139 "’northing’ and ’easting’ : "
140 "UTM coordinate system, "
141 "zone 32V. ’loc’ : location"
142 " of the GNSS antenna "
143 "relatively to the stake,"
144 " during the field "
145 "measurements (0: no offset,"
146 " -1: downstream, 1: "
147 "upstream). ’distance’ : "
148 "distance GNSS antenna to"
149 " stake (meters).")
150

151 ## If a stake is already saved in the .hdf5 file, this class
152 ## method updates the position of stake at a different date.
153 @classmethod
154 def update(cls, glacier=None, ID=None):
155 """ Updates the new position of a stake.
156 """
157 f = h5py.File(’data.hdf5’,’r+’)
158 glaciers_list = list()
159 for g in f[’StakePositions’].keys():
160 glaciers_list.append(g)
161 glaciers_list.sort()
162 string = ’\n’.join(glaciers_list)
163 if not glacier:
164 print(’There is/are {0} existing glacier(s) on this data ’
165 ’file :\n{1}\n’.format(len(glaciers_list),string))
166 glacier = input(’Which glacier do you want to update data’
167 ’ from ?\n’)

F.2. Python code 145

168 if not glacier in glaciers_list:
169 raise NameError(’{} is not a valid name for any existing ’
170 ’glacier on this data file!’.format(glacier))
171 if not ID:
172 ID = input(’Which stake do you want to update the position’
173 ’ ?\n’)
174 if not ID in f[’StakePositions/{}’.format(glacier)]:
175 raise NameError(’{} is not a valid name for any existing ’
176 ’stake!’.format(ID))
177 f.close()
178 northing = str()
179 while not isinstance(northing,np.float64):
180 northing = input(’What is the UTM northing values ?\n’)
181 try:
182 northing = np.float64(northing)
183 except ValueError:
184 print(’You must enter an integer or a floatting point’
185 ’ number!’)
186 easting = str()
187 while not isinstance(easting,np.float64):
188 easting = input(’What is the UTM easting values ?\n’)
189 try:
190 easting = np.float64(easting)
191 except ValueError:
192 print(’You must enter an integer or a floatting point’
193 ’ number!’)
194

195 ## Correct the position of the dGNSS antenna if needed
196 correction = str()
197 while correction != ’y’ and correction != ’n’:
198 correction = input(’Is there any correction to apply to ’
199 ’the position coordinates of the stake’
200 ’ ? (y/n)\n’)
201 correction = correction.lower()
202 loc = str()
203 dist = str()
204 if correction == ’y’:
205 while loc != ’downstream’ and loc != ’upstream’:
206 loc = input(’Was the GNSS antenna "upstream" or ’
207 ’"downstream" the stake during the field ’
208 ’measurement ?\n’)
209 loc = loc.lower()
210 while not isinstance(dist,np.float64):
211 dist = input(’What was the distance (in meters) ’
212 ’between the antenna and the stake ?\n’)
213 try:
214 dist = np.float64(dist)
215 except ValueError:
216 print(’The distance must be an integer or a ’
217 ’floatting point number!’)
218 if isinstance(dist,np.float64):
219 if not dist > 0:
220 dist= str()
221 print(’The distance must be a positive value!’)
222 if loc == ’downstream’:
223 loc = -1
224 else:
225 loc = 1
226 else:
227 loc,dist = 0,0
228

229 ## Update the date of the field measurements
230 year = input(’What is the date matching to the update?\n’
231 ’Year : ’)
232 try:
233 year = int(year)
234 except ValueError:
235 raise ValueError(’The year must be an integer value!’)
236 if not re.match(r’\d{4}’,str(year)):
237 raise ValueError(’The year is not valid (4 digits)!\n’
238 ’Example of valid year : 2014’)
239 month = input(’Month (1 - 12): ’)
240 try:
241 month = int(month)
242 except ValueError:
243 raise ValueError(’The month must be an integer value!’)
244 if month < 1 or month > 12:
245 raise ValueError(’The month must be a value between 1 and’
246 ’ 12 included.’)
247 dom = input(’Day of month (1 - 31) : ’)
248 try:
249 dom = int(dom)
250 except ValueError:
251 raise ValueError(’The day of month must be an integer value (1-31)!’)
252 if dom < 1 or dom > 31:
253 raise ValueError(’The day of month must be a value between’
254 ’ 1 and 31 included.’)
255 HM = str()
256 while HM.lower() != ’y’ and HM.lower() != ’n’:
257 HM = input(’Do you also want to update the time (hours and’
258 ’ minutes)? (y/n)\n’)

146 Appendix F. Ice surface velocity

259 HM = HM.lower()
260 if HM == ’y’:
261 hours = input(’Hours (0-23) : ’)
262 try:
263 hours = int(hours)
264 except ValueError:
265 raise ValueError(’The number of hours must be an integer value!’)
266 if hours < 0 or hours > 23:
267 raise ValueError(’The number of hours must be a value’
268 ’ between 0 and 23 included.’)
269 minutes = input(’Minutes (0-59) : ’)
270 try:
271 minutes = int(minutes)
272 except ValueError:
273 raise ValueError(’The number of minutes must be an integer value!’)
274 if minutes < 0 or minutes > 59:
275 raise ValueError(’The number of minutes must be a ’
276 ’value between 0 and 59 included.’)
277 timestamp_update = dt.datetime(year,month,dom,
278 hours, minutes).timestamp()
279 else:
280 timestamp_update = dt.datetime(year, month, dom).timestamp()
281

282 ## Write the updates in the data.hdf5 file
283 with h5py.File(’data.hdf5’,’r+’) as f:
284 dset = f[’StakePositions/{0}/{1}/data’.format(glacier,ID)]
285 if timestamp_update in dset[’timestamp’]:
286 for i in dset[...]:
287 if timestamp_update == i[’timestamp’]:
288 dset[i] = np.array([(timestamp_update, northing,
289 easting, loc, dist)],
290 dtype=StakeVelocity.dtype)
291 else:
292 dset.resize((dset.shape[0]+1,))
293 dset[-1] = np.array([(timestamp_update,northing,easting,
294 loc, dist)],
295 dtype=StakeVelocity.dtype)
296 arr = dset[...]
297 arr = arr[arr[’timestamp’].argsort()] # sort by date
298 dset[...] = arr
299

300 ## Define optional arguments when running the file from the terminal
301 parser = argparse.ArgumentParser()
302 group = parser.add_mutually_exclusive_group()
303 group.add_argument(’-u’, ’--update’, action=’store_true’,
304 help=(’update a stake location with new field ’
305 ’observations’))
306 group.add_argument(’-U’, ’--updateStake’, metavar=(’glacier’,’ID’),
307 nargs=2, help=(’update the stake location matching ’
308 ’to the glacier and the ID with new ’
309 ’field observations’))
310 args = parser.parse_args()
311 if args.update:
312 StakeVelocity.update()
313 if args.updateStake:
314 StakeVelocity.update(glacier=args.updateStake[0],
315 ID=args.updateStake[1])

F.2. Python code 147

computevelocity.py

Listing 8: This script computes the velocities from the �eld observations written in the data.hdf5
�le.

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3

4

5 import datetime as dt
6

7

8 import numpy as np
9 import h5py

10

11

12 ## List of glaciers name to compute the velocity for. Data from these
13 ## glaciers (stake positions) need to be saved in the data.hdf5 file
14 ## for the velocities to be computed. If the list is empty, the
15 ## velocities will be computed for each glacier found in the data.hdf5
16 ## file.
17 glaciers =list() # string elements (e.g. ’Hellstugubreen’)
18

19 ## Creates a compound dtype for the velocity datasets
20 dtype = [(’velocity’, np.float64), (’start’, np.float64),
21 (’end’, np.float64), (’northing’, np.float64),
22 (’easting’, np.float64)]
23

24 ## Open the data.hdf5 file, compute and save the velocity values
25 with h5py.File(’data.hdf5’,’r+’, driver=’core’) as f:
26 if glaciers:
27 for glacier in glaciers:
28 folder = f[’StakePositions/{}’.format(glacier)]
29 for stake in folder.keys():
30 data = f[’StakePositions/{0}/{1}/data’.format(glacier,
31 stake)][...]
32 if f.get(’Velocity/{0}/{1}/data’.format(glacier, stake)):
33 del f[’Velocity/{0}/{1}/data’.format(glacier, stake)]
34 vel_dset = f.create_dataset(’Velocity/{0}/{1}/data’\
35 .format(glacier, stake), (0,),
36 dtype=dtype, maxshape=(None,),
37 compression=9, shuffle=True,
38 fletcher32=True)
39 for i,v in enumerate(data[1:]):
40 dt = v[’timestamp’] - data[i][’timestamp’]
41 dn = v[’northing’] - data[i][’northing’]
42 de = v[’easting’] - data[i][’easting’]
43 tot_offset = (v[’loc’] * v[’distance’]) + \
44 (data[i][’loc’] * data[i][’distance’])
45 velocity = ((np.sqrt(dn**2 + de**2) +
46 tot_offset) / dt) #m/s
47 start = data[i][’timestamp’] #timestamp
48 end = v[’timestamp’] #timestamp
49 arr = np.array([(velocity, start, end, v[’northing’],
50 v[’easting’])], dtype=dtype)
51 vel_dset.resize((vel_dset.shape[0]+1,))
52 vel_dset[-1] = arr
53 else:
54 for glacier in f[’StakePositions’].keys():
55 for stake in f[’StakePositions/{}’.format(glacier)].keys():
56 data = f[’StakePositions/{0}/{1}/data’\
57 .format(glacier, stake)][...]
58 if f.get(’Velocity/{0}/{1}/data’.format(glacier, stake)):
59 del f[’Velocity/{0}/{1}/data’.format(glacier, stake)]
60 vel_dset = f.create_dataset(’Velocity/{0}/{1}/data’\
61 .format(glacier, stake), (0,),
62 dtype=dtype, maxshape=(None,),
63 compression=9, shuffle=True,
64 fletcher32=True)
65 for i,v in enumerate(data[1:]):
66 dt = v[’timestamp’] - data[i][’timestamp’]
67 dn = v[’northing’] - data[i][’northing’]
68 de = v[’easting’] - data[i][’easting’]
69 tot_offset = (v[’loc’] * v[’distance’]) + \
70 (data[i][’loc’] * data[i][’distance’])
71 velocity = ((np.sqrt(dn**2 + de**2) +
72 tot_offset) / dt) #m/s
73 start = data[i][’timestamp’] #timestamp
74 end = v[’timestamp’] #timestamp
75 arr = np.array([(velocity, start, end, v[’northing’],
76 v[’easting’])], dtype=dtype)
77 vel_dset.resize((vel_dset.shape[0]+1,))
78 vel_dset[-1] = arr

148 Appendix F. Ice surface velocity

plotsurfacevelocity.py

Listing 9: This script writes a csv �le with the averaged velocities of the stakes, for a given glacier,
and for a time period de�ned between a 'start date' and an 'end date'. It also plots (2D) all
the averaged velocities for all stakes of the given glacier that are written in the data.hdf5
�le.

1 #!/usr/bin/python3.4
2 # -*- coding: utf-8 -*-
3

4

5 import datetime as dt
6 import calendar
7 import re
8 from itertools import repeat
9

10

11 import numpy as np
12 import pandas as pd
13 from pandas import DataFrame, Series
14 import h5py
15 import matplotlib.pyplot as plt
16 from matplotlib.ticker import ScalarFormatter
17

18

19 ## Name of the glacier in the data.hdf5 file.
20 Glacier = ’Storbreen’
21

22 ## Factor to use to convert m/s into m/year.
23 sec2year = 365*24*60*60
24

25 ## Find all the velocity measurements for this glacier in the
26 ## data.hdf5 file.
27 with h5py.File(’data.hdf5’,’r+’, driver=’core’) as f:
28 folder = f[’Velocity/{}’.format(Glacier)]
29 velocities = dict()
30 for stake in folder.keys():
31 velocities[’{}’.format(stake)] = folder[’{}/data’\
32 .format(stake)][...]
33 velocities_formatted = dict()
34 for stake,data in velocities.items():
35 velocities_formatted[’{}’.format(stake)] = [(i[0]*sec2year,
36 dt.datetime.fromtimestamp(i[1]),
37 dt.datetime.fromtimestamp(i[2]),
38 i[3],
39 i[4])
40 for i in data]
41

42 ## Creates a pandas.Dataframe where to store temporarily tha data read
43 ## from the hdf5 file.
44 names = [’Velocity’, ’Start’, ’End’, ’Northing’, ’Easting’]
45 WorkFrame = DataFrame(columns=names)
46 for stake,data in velocities_formatted.items():
47 for i in data:
48 WorkFrame = WorkFrame.append(DataFrame([i], index=[stake],
49 columns=names))
50 WorkFrame.reset_index(inplace=True)
51 WorkFrame = WorkFrame.rename(columns={’index’:’Stake’})
52 dt64todatetime = lambda x: pd.to_datetime(x).to_datetime()
53

54 ## Calculate the number of days over which each velocity value was
55 ## averaged.
56 numberDays = [(dt64todatetime(WorkFrame.ix[i, ’End’]) -
57 dt64todatetime(WorkFrame.ix[i, ’Start’])).days
58 for i in np.arange(len(WorkFrame))]
59 WorkFrame[’numberDays’] = numberDays
60

61 ## Choose a start and end date for the computed velocity values.
62 start_year = 2012
63 end_year = 2014
64 start_month = 8
65 end_month = 10
66 start_date = dt.datetime(start_year, start_month, 1)
67 end_day = calendar.monthrange(end_year, end_month)[1]
68 end_date = dt.datetime(end_year, end_month, end_day)
69

70 cond_start = WorkFrame.Start >= start_date
71 cond_end = WorkFrame.End <= end_date
72 WorkFrame = WorkFrame[cond_start & cond_end]
73

74 ## Computes the total number of days used for each stake, between the
75 ## first field measurements after the start_date, and the last field
76 ## measurements before the end_date.
77 tot_days = WorkFrame[’numberDays’].groupby(WorkFrame.Stake).sum()
78 tot_days = DataFrame(tot_days,columns=[’totDays’])

F.2. Python code 149

79 tot_days.reset_index(inplace=True)
80 WorkFrame = pd.merge(WorkFrame, tot_days, on=’Stake’, how=’outer’)
81

82 ## Computes the weighted velocities for each stake and for each period
83 ## between two consecutive field measurements. The weight used is the
84 ## ratio of the number of days between two consecutive measurements,
85 ## and the total number of days for the stake between start and end
86 ## dates. The weight is then multiplied to each displacement distance
87 ## observed between consecutive measurements.
88 WorkFrame[’weightedVelocity’] = WorkFrame.Velocity * \
89 (WorkFrame.numberDays.values/WorkFrame.totDays.values)
90

91 ## The weighted velocities are summed for the period between start and
92 ## end dates, to obtain the mean velocity for this period, and for
93 ## each stake.
94 tot_vel = WorkFrame[’weightedVelocity’].groupby(WorkFrame.Stake).sum()
95 tot_vel = DataFrame(tot_vel, columns=[’totVelocity’])
96 tot_vel.reset_index(inplace=True)
97 WorkFrame = pd.merge(WorkFrame, tot_vel, on=’Stake’, how=’outer’)
98 stakes = np.unique(WorkFrame.Stake.values)
99

100 ## Creates a new pandas.DataFrame with updated velocity values for
101 ## each stake.
102 names = [’Stake’, ’totVelocity’, ’Start’, ’End’, ’Northing’, ’Easting’]
103 FinalFrame = DataFrame(columns=names)
104 for stake in stakes:
105 stakeFrame = WorkFrame[WorkFrame.Stake == stake]
106 start = stakeFrame.Start.argmin()
107 end = stakeFrame.End.argmax()
108 stakeSeries = stakeFrame.ix[start,[’Stake’,’Start’,’totVelocity’]]\
109 .append(stakeFrame.ix[end,[’End’,’Northing’,’Easting’]])
110 FinalFrame = FinalFrame.append(stakeSeries, ignore_index=True)
111

112 ## Save the DataFrame including velocity values in a csv file.
113 dateformat = ’%Y-%m-%d’
114 start_date = dt.datetime.strftime(start_date, dateformat)
115 end_date = dt.datetime.strftime(end_date, dateformat)
116 FinalFrame.to_csv(’{}Velocity{}to{}.csv’.format(Glacier, start_date, end_date),
117 sep=’,’)
118

119 ## Change the order of the elements in the dictionary of velocities,
120 ## so that they are sorted according to an alphanumerically.
121 def sorted_nicely(it):
122 """ Sorts the given iterable in the way that is expected.
123

124

125 Positional argument:
126 it: the iterable (stake) to be sorted.
127 """
128 convert = lambda text: int(text) if text.isdigit() else text
129 alphanum_key = lambda key: [convert(c) for c in re.split(’([0-9]+)’, key)]
130 return sorted(it, key = alphanum_key)
131 velocities = dict()
132 for k,v in velocities_formatted.items():
133 if v:
134 velocities[’{}’.format(k)] = v
135 keys = list(velocities.keys())
136 keys = sorted_nicely(keys)
137

138 ## Creates a customized color map to ease the differentiation of the
139 ## stakes curves on the figure.
140 number = len(keys)
141 cmap = plt.get_cmap(’gist_rainbow’)
142 colors = [cmap(i) for i in np.linspace(0, 1, number)]
143 markerTypes = [’s’, ’p’, ’D’,’h’, ’*’]
144 markers = list()
145 iterator = 0
146 while len(markers) < number:
147 markers.append(markerTypes[iterator])
148 if iterator == (len(markerTypes) - 1):
149 iterator = 0
150 else:
151 iterator += 1
152 style = {stake: (color,marker) for stake,color,marker in \
153 zip(keys, colors, markers)}
154

155 ## Plots the averaged velocity values for each stake, which have field
156 ## observations saved in the data.hdf5 file.
157 fig = plt.figure(dpi=150)
158 for k in keys:
159 xaxis = list()
160 yaxis = list()
161 for date in velocities[’{}’.format(k)]:
162 xaxis.append(date[1])
163 xaxis.append(date[2])
164 yaxis.append(date[0])
165 yaxis = [x for item in yaxis for x in repeat(item, 2)]
166 plt.plot(xaxis, yaxis, label=’{}’.format(k), ls=’solid’,
167 alpha=0.5, color=style[’{}’.format(k)][0], lw=2,
168 marker=style[’{}’.format(k)][1], markersize=5)
169 ax = fig.gca()

150 Appendix F. Ice surface velocity

170 plt.yscale(’log’)
171 ax.yaxis.set_major_formatter(ScalarFormatter())
172 plt.gcf().autofmt_xdate()
173 plt.legend(loc=’best’, prop={’size’:8})
174 plt.xlabel(’Time’)
175 plt.ylabel(’Surface velocity ($\mathregular{m.yr^{-1}}$)’)
176 fig.tight_layout()
177 plt.show()

Appendix G

Surface slope at Hellstugubreen and

Storbreen

(a) (b)

Surface slope at Hellstugubreen (a) and Storbreen (b). The surface
slope and the elevation contour lines are generated from the 2009 laser
scanning data, and the glacier outlines are derived from orthophotos
(data : NVE).

151

