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M-ideals in complex function spaces and algebras.

Introduction.

The aim of this note is to give a characterizétion of the
M-ideals of a complex function space Aggﬁ%(X) .

The concept of an M-ideal was defined for real Banach spaces
by Alfsen and Effros [AE], but it can be easily transferred to
the complex case [Th. 1.3].

The main result is the following: Let J be a closed sub-
space of a complex function space A , then J is an M-ideal in

A if and only if

J={a€eAl a=0 on E},

where E € X 1is an A-convex set having the properties:
. + + L
(1) W€ M(3,X) , v e M{(E) , u-=v € A" => Supp(n) c E

L L
(i1) u € A" nM(3,X) =>puly € A

In case A is a uniform algebra these sets are precisely
the p-sets (generalized peak sets).

Following the lines of [AE] we shall study M-ideals in A
by means of the corresponding L-ideals in A* , which in turn are
studied by geometric and analytic properties of the closed unit
ball K in A* ,

Although we have an isometric complex-linear representation
of the given function space as the space of all complex-valued
linear functions on K , it turns out that the smaller compact,
convex set Z = conv(SALJ- iSA) , Where SA denotes the state
space of A , will contain enough structure to determine the L-

ideals. The set Z was first studied by Azimow in [Az], Note
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also that the problems which always arize in the presence of
complex orthogonal measures can to a certain extent be given a
geometric treatment when we consider the compact, convex set Z
[Prop. 2.47.

Another usefull tool in this context is the possibility of
representing complex linear functionals by complex boundary mea-
sures of same norm, as was recently proved by Hustad in [Hu].

Specializing to uniform algebras we characterize the M-sum-
mands (see [AE, §53), and we conclude by pointing out that the
structure-topology of Alfsen and Effros [AE, §6] coincides with
the symmetric facial topology studied by Ellis in [E].

This result yields a description of the structure space,
Prim A (see [AE, §61), in terms of concepts more familiar to
function algebraists. Specifically, Prim A is (homeomorphic to)
the Choquet-boundary of X endowed with the p-set topology.

The author wants to express his gratitude to E, Effros for

Theorem 1,2 and to E. Alfsen for helpfull comments.

1., Preliminaries and notation,

Let W denote a real Banach space, Following [AE, §3] we

define an L-projection e on W +to be a linear map of W into

itself such that,

i) e = e

ii) lpll = fle(p)l} + llp - e(p)]] Vp € W

and we define the range of an L-projection to be an L-ideal in
wo.

To every L-ideal N = eW there is associated a complementary

T-ideal N' = (I-e)W , cf [AE, §37.
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We say that a closed subspace J of a real Banach space V
is an M-ideal if the polar of J is an L-ideal in W = V¥ ,
Also, we define a linear map e of V into itself to be an

M-projection if

i) e2=e
ii) vl = max{lle(v)|l, |lv = e(v)||]} Vv eV

and we define a subspace of V +to be an M-summand if it is the
range of an M-projection., It follows from [AE, Cor.5.16] that

M-summands are M-ideals.

Lemma 1,2, Let N be an L-ideal in a real Banach~-space W , and
let e Dbe the corresponding L-projection, If T dis an isometry
of W onto itself, then TN is an L-ideal and the corresponding

L-projection en is given by

(1.1) ep = Tel

Also

Proof: Straightforward verification.
If V dis a complex Banach space, then we shall denote by

Vr the subordinate real space, having the same vectors but equip-

ped with real scalars only. By an elementary theorem [P, §67] it
follows that there is a natural isometry ¢ of (V*)r onto

(V)" , defined by

(1.2) o(p)(v) = Re p(v) veEV.

Theorem 1.2, (Effros) ILet W be a complex Banach space with

subordinate real space Wr . If N is an L-ideal in Wr then



N is a complex linear subspace of W .

Proof: It suffices to prove that ip € N for all p € N . Let
p € N and consider

q=P-eTP

where T is the isometry T(p) = ip Vp € W and ep 1is defined
as in (1.1).
Then

a4 = e(p) - epe(p) = e(p-eq(p)) € X

since L-projections commute [AE, §3].

Also we shall have

ig = i(I-egp)(p) € i(2(W")) = N

Thus

[2 Mgl = Il +iq]

. lall + liall = 2al

such that q = 0O and hence 1ip € N .

Corollarg 1.3, Let V Dbe a complex Banach space with subordinate

real space Vr . If J 1is an M-ideal in Vr , then J 1is a com-

plex linear subspace of V ,

Proof: By the bipolar theorem it suffices to show that the polar
J° of J in W = V¥ is a complex subspace of W . To this end,

we first consider J as a real linear subspace of V and we

T 9

denote by Jg the polar of J in (Vr)* . Jg is an L-ideal in
* . . . . . - * .
(Vr) since J 1is an M-ideal in V, . If ¢:W, (Vr) is the

isometry defined in (1.2), then @'1(J;) is an L-ideal in W, .
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Moreover J° = m'1(J;) since m'1(Jg) is a complex linear sub-

space of W according to theorem 1.2,

The above results justify the use of the terms L- and M-idedls

for complex Banach spaces to denote L- and M-idealé in the subor-

dinate real spaces,

Let V ©be a complex Banach space, W = V*, and K the closed
unit ball of W . If N is a w¥*-colsed L-ideal in W with cor-
responding L-projection e , then it follows from [AE, Cor.4.2]
that for a given v € V considered as a complex linear function

in W one has:

(1.3) (vee)(p) = [(voe)dn ¥p €K, Vu € Mi(K)
K

and

(1.4) (vee)(p) = | v du ¥p € K, Vu € Mi(3,K)
NnK

where M;(K) denotes the set of all probability measures on K
with barycenter p , and M;(aeK) the set of all measures in

M;(K) which are maximal in Choquets ordering (boundary measures).

2, M-ideals in complex function spaces,

In this section X shall denote a compact Hausdorff space
and A a closed, linear subspace of gb(X) , Which separates
the points of X and contains the constant functions. The state-
space of A 1i.e.

S, = {p € A% | p(M) = llpl| = 13



is a w¥-closed face of the closed unit ball K of A* , We
shall assume that K is endowed with w¥-topology.
Since A separates the points of X , we have a homeomor-

phic embedding & of X into SA , defined by

(2.1) ¢(x)(a) = a(x) Ya ¢ A .

We use 0a to denote the function on A* defined by

(2.2) 8a(p) = Re p(a) ¥p € A" .,

For convenience we shall use the same symbol 6a to denote

the restriction of this function to various compact, convex sub-

sets of A% ,
An enlargement of SA ; which was introduced by Azimow, is

the following set

(2.3) Z = conv(8,U-18,)

Appealing to [Az, Prop 1] the embedding a - fa is a bicon-
tinuous real linear isomorphism of A onto the space A(Z) of
all real-valued w*-continuous affine functions on 2 .

We shall denote by MT(SA) resp. MT(Z) the w¥-compact convex
set of probability measures on SA resp. 4 . The set of extreme
points of SA resp. Z , K will be denoted by aesA resp. an s
0K and the Choquet boundary of X with respect to A is de-

fined as the set

3, X = {x eX | e(x) € 3.8,}

It follows from [P, p.38] that 3.8, ¢ &(X). Moreover,

3 Kk = {ae(x) | |a] =1, x € 3,X}

cf [DS, p.441 1.
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Also we agree to write M;(SA) resp. M;(Z) for the w¥-com-
pact convex set of probability measures on SA resp. Z which

s barycenter p € S, resp. z € Z . By Mg(aeSA) resp. M;(aez)

A
we denote the maximal representing measures for p resp. 2

(boundary measures).

A real measure 4 on SA resp., 42 4, K 1is said to be a

boundary measure on SA resp., Z , K if the total variation lu |

is a maximal element in the Choquet ordering, and we denote them
by M(aesA) resp. M(3,2) , M(3 .K) .

Finally we denote by M(BAX) those complex measures u on
X for which the direct image measure &({u|) on S, 1is an ele-
ment of M(3_S,) .

It is well-known (see e.g,[A, Prop.I.4.6]) that boundary mea-
sures are supported by the closure of the extreme boundary.

As mentioned we shall study M-ideals in A by considering

the corresponding L-ideals in A* , Let N be a w*¥-closed L-

ideal in A* with corresponding L-projection e .

Lemma 2.1, Let p € S, . Then

e(p) € conv({0} U SA)

Proof: ILet p € 5, and decompose
p=49q+7T
where q = e(p) and r = (I-e)(p) . If @ =0 or r =0 there

is nothing to prove.

Otherwise

p = lali(pdm + el ()




is a convex combination of points in K . Since SA is a face

: a
of K we obtain WEW € SA . Hence

e(p) = a4 € conv({0} U SA) .

Lemma 2.3. Let p € NN Z Dbve of the form
P = Apq + (1“'>L)("iP2) 5

where pq, pp € Sy, and O <) <1.
Then Pqs Py € NNnZ.

Proof: Let p € NN Z be of the form

P = Apq + (1-x)(—ip2) » Py € SA i= 1,2 and 0<x<1
Decompose p; @as
pi = qi + ri H

where e(pi) =q; and r, = (I-e)(pi) for i =1,2 ,

1

Since e(p) = p it follows that

(2.4) 0 = Aary + (1-2)(-ir,)

Hence q A0 for i=1,2,

Now assume T, #Z 0 3 then

2q ‘ T
pq = lla, i )+ |lrg |1 )
1= Ml + =l
r
. . . 1 .
is a convex combination, and we conclude that € S which
’ Hr1H A

contradicts (2.4). Thus r; =0 and p, €N for i=1,2.

If Q is a closed face of a compact, convex set H , then

the complementary face Q' is the union of all faces disjoint




from Q . Q dis said to be a split face of H if Q' is convex

and each point in K\N(Q U Q') can be expressed uniquely as con-
vex combination of a point in Q and a point in Q' , cof [A,p.33].
We denote by AS(H)'~ the smallest uniformly closed subspace
of the space of all real valued bounded functions on H contain-
ing the bounded wu.s.c, affine functions. According to [A, Th.II
6.12] and [An, Prop 3] we have that for a closed face Q of H

the following statements are equivalent:

(i) Q is a split face

(i1) If wu € M(aeH) annihilates all continuous affine functions,
then u[Q has the same property.

(iii) If a € A(Q) then a has an extension & € A_(H) such

that 2 =0 on Q' .

]l

We remark that the functions in AS(H) satisfy the barycen-

tric calculus,

Theorem 2.3. ILet N Dbe a w*¥-closed L-ideal of A* and let

F=NNZ . Then F is a split face of Z , and F' = N' N Z .

Proof: Applying lemma 2.2 twice it follows that F 1is a face
of Z . Let z € F' and u € M. (3,2) , then u(F) =0 [H,Len,
2.117.

Moreover, the Milman theorem implies that 3_Z g(SAII-j_SA)
and hence Supp(u) E(SAU'iSA)°

Since these two sets are faces of K we may consider u as
a boundary measure on K .,

According to (1.4) we also have

(Race)(z) = IFeadu =0 Va € A,



- 10 -

where e 1s the L-projection corresponding to N .
Thus e(z) = O , which in turn implies z € N' 0 Z .

Conversely, assume 2z € N' N Z ., Decompose
Zz = )\p1 + (1—/\)P2
where pq € F, b, € F' and O <X <1.
Hence
z - (1-\)p, = \py € N n N' = {0},
and so 2 = p, € F' . Thus we have proved that F' =N'n 7z .
In particular, F' 1is convex.
From the above results we may establish the splitting proper-

ty by proving
i L
u € A(Z)7 n M(3,2) =>uly € A(2) .

L
To this end we consider u € A(Z) n M(an) . As before
u € M(aeK) , and also
[ eaau = [ paau =0 Va € A ,
i 7
ice. u €A (K)" nM(3,K) , where A_(K) is the space of all

real-valued w*-continuous linear functions on KX . By virtue of

L i
[AE, T™.4.5] ulp € A(K)” , or equivalently ulyp € A(2)” . q.e.d.

Remark: Under the hypothesis of Theorem 2.3 we have:

F = conv((P n SA)U-i(F N SA))
Following Ellis [E] we shall say that a subset of Z of the form

conv(CU=-1iC) , C c Sy

is symmetric.
Let TF ©be a closed face of SA , and put



- 11 -

(2.5) E=¢ (Fn a(x)),

Then F = conv(3(E)) and F n 3(X) = &(E) .

Proposition 2.4. TIet F be a closed face of SA _for which

Sp = conv(FU-1iPF) dis a split face of Z . Then E satisfies

the condition:

1 L
woe AT N M(3,X) =>ul, €A .

Proof: Let u € AL n M(aAX) and put o = éu . Then o is a

complex maximal measure on SA . Decompose o as
0 = Xq0q = Ap0p + iXBGB —j.h4c4

+
where o, € M1(aeSA) 2
L
Define p; = barycenter of o4 for i =1,2,3,4. Since

i
u € A it follows that

Rewrite (2,6) as

il

(2.7) APy + Ay(=dip,) = Aopp + Az(-ip3) € 2

i

if we assumre h1 + X4 = h2 + KB 1.

Define 1 SA - - iSA by
v(p) = -1ip Vp € 5,
Let a € A and put ea[SF = b € A(Sp)
Since SF is assumed to be a split face of Z we can find

a function b € AS(Z) which extends b and such that b = O

on SF' . Moreover,
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MB(p) + 2,B(= i) = 3B(p,) + A5B(- 1p5)

~

and since b satisfies the barycentric calculus we may rewrite

this as

(2.8) A j;ﬁ‘d% + x4j;€d(¢o4) - xzjzﬁdoz - xB.LSd(\yoB): 0.

Since every maximal measure on Z 1is carried by SF and

SF' end since Sy N S, = F , we may rewrite (2.8) as
[ _
(2.9) Aq Leadlo1 + X4 %ea ] dcr4- Ao Jea d02 - >\3 ~[Gaa ¢d03 = 0
F F

The measure y can be decomposed as
(2.10) M= Mg = Al + 1hglg = dd,uy,

where u; = @ oy for i =1,2,3,4 . DNow,

.
[eau = (r,[Reaau, - 1, [Readn, - Ay |Tma dus + 1, [Imadu, )
E E B B E
+ i()\1J‘Ima dug =2y JrIma du, + >\3 J‘Reaé{u3 - x4 Jl-'{ead;.xdr )
E B B E

Transforming the above integrals by the embedding map ¢&
and using the identity 6a(-ip) = Ima(p) , we rewrite this as

follows:

J
E F

+1 (h1j6(- ia)do =1, Je(-ia)dog-xBJe(-ia)owdoB +
P F F

(2.11) radu = (MJ‘ea do, - XZ.Lea do, - ABLeaow do3+ )\4.Leaa¢ dc4)

F
Combining (2.11) with (2.9) we get

fadu:O Ya € A .
E
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for which S, =

Theorem 2,5. ILet F Dbe a closed face of SA 7

conv(FU-1iF) is a split face of Z . Then

N = 1ian

is a w*-closed IL-ideal in A% .

Proof: Since SF is a split face, N may be considered as a
w¥~closed real linear subspace of A(Z)* and from the connection
between A and A(Z) cf, §1 it follows that N is w¥-closed
in A%* ,

According to proposition 2.4 the following definition is
legitimate,

e(p)(a) =jadu Va € A,
E

where E dis as in (2.5) and u is a maximal complex measure

representing the point p € A* .
Clearly e(A*) c N . Let p €N i.e,

P = MPq + Ap(=Dy) + Az(ipg) + 2, (-ip,)

where p; € P and xi >0 for i = 1,2,3,4 .
+ .

Choose measures o, € Mpi(aeSA) for i =1,2,3,4 . Then

-1

Supp(oi) c (E) since F is a face of S, . Define p, = & ‘o,

for i =1,2,3,4 and
Now u 1is a complex representing measure for p and

Supp(n) € E , 1i.e.
e(p) =p .

To prove that e is an L-projection, we shall need the fact

that we may represent p € A™ by a measure u € M(3,X) such
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that |lp!l| = llull . This follows by a slight modification of a
theorem of Hustad [Hul.

Having chosen u € M(aAX) representing p € A% with
lpll = llull , we shall have

Ipll < el + o= el < lullg + lulgg = Ml = Il ,
which implies

Ipll = lle(@)]| + llp - e()] Vp € A®

i.e, e 1in an L-projection with range N .

A compact subset E € X is said to be A-convex 1if it satisfies:

E={xeX| |a(x)]| 2 lallg Va € a}

If F 1is a closed face of S, such that Sj = conv(FU-1iF) is
a split face of Z +then the set E = §'1(F n ¢(X)) is A-convex

and has the following properties:
. + + L
(i) un € M1(BAX) , Vv € M1(E) , W=V € AT => Supp(p) € E .

oy d . L
(ii) » € A" n M(BAX) => HIE € A,

If an A-convex subset E of X satisfies (i) and (ii) then

we say that E 4is an M-set .

If EcX 1is a compact subset then we denote by SE the

following subset of SA 5

(2.12) Sy = conv(&(E)) .

Clearly, if E is an M-set SE is a closed face of SA

and S, N (X) = &(E) .

E
Moreover,

Corollary 2.6, ILet E be an M-set of X . Then
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N = Ting #(E) w¥

is a w¥-closed L-ideal of A¥ .

Proof: Observe that conv(SELJ-j_SE) is a split face of Z and

define

e(p)(a) = [aay Va € A ,
E
where | 1is a maximal representing measure for p € A%,
Proceed as in the proof of Th., 2.5.

Corollarx 2.7. Let E Dbe an A-convex subset of X . Then the

following statements are equivalent:
(i) E is an M-set.
(ii) conv(SElJ -:iSE) is a split face of 7Z .

(iii) N = ling 8y is a w*-closed L-ideal,

Proof: Combine Th, 2.3 and Cor. 2.6.
Remark., Cf. [Az, Th.2,3] and [E] for similar results.

Remark., A closed face F of SA is a split face of Z if and

only if the following condition is satisfied:
L
L (g = 1o) € A
uoE AT N H(3,X) —{ T e b
(u3-u4)]E € A
where W = (g - W, + i(“3'_“4) and E as in (2.5).
Thus we see that not all split faces of 7 are symmetric.
cf., [E].

Turning to the M-ideals in A we now have the following
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Theorem 2,8, Let J ©be a closed subspace of A ., Then the

following statements are equivalent:
(1) J is an M-ideal.
(ii) d ={a €A | a=0 onkE},

where E is an M-set of X .

Proof: Assume J is an M-ideal of A , then J°n 2z is a split

face of Z since J° is an I-ideal. Moerover, we claim that
O _ - o
J° = 11n®(J t)SA)

Trivially, ling(s°ns;) 3° . If p €3, (J°NK) then

p € 3,(3°nK) = 3°na K
Hence

p=2x, [A =1, ae€3S8,
Thus

q=X_1p€JOﬂSA
such that

. )
p € llnw(J rwSA)

It follows from theorem 2.5 that lin@(JO N§,) is w*-closed and

hence
— o o)
conv(ae(J NK)) ¢ 1in®(J rﬁSA) .

This in turn implies

JO

. (0]
11n®(J nsA)

Equivalently

JO

Ting(3(2))"

where E = §—1(J0r1§(X)) .
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Thus we see that

J={a€eAia=z0 on E},

m

and clearly E is an M-set.

Conversely, if J 1s of the form

J={a€eA]|a=s0 on E},

I
where E is an M-set, then J° = lin(E é(E)W is an L-ideal accor-

ding to Corollary 2.6.

3, The uniform algebra case,

In this section we make the further assumption that A is
a uniform algebra [G].
A peak set E for A idis a subset of X for which there

exists a function a € A such that

a(x) =1 Vx eE, la(x)] <1 Vx € X\E

A p-set (generalized peak set) for A is an intersection of
peak-sets for A, If X is metrizable then every p-set is a

peak set [G, §12],
It follows from [G, Th.12,7] that the following is equiva-

lent for a compact subset E of X :
(i) E 1is a p-set.
(ii) wu -eAi => “IE e At

Clearly, p-sets are lM-sets.

Moreover, since M-sets are A-convex it follows by a slight modi-

fication of [AH, Th.7.4] that M-sets are p-sets i.e. we may state

Theorem 3.1. Let A %be a uniform algebra and J a closed sub-
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space of A . Then the following statements are equivalent:

(1) J is an M-ideal,

(ii) d=f{aear | a=z0 on B},

where E 1is a p-set for A .

Turning to the M-summands of A we shall have,

Theorem 3.2, Let J ©be a closed subspace of A . Then the

following statements are equivalent:
(1) J is an M-summand

(ii) d={a€eA| a=0 on E} where E is an open-closed

p-set for A .

Proof: Trivially ii) => i) by virtue of theorem 3.1,
Conversely, assume dJ is an M-summand. Then
J=f{a€eA]|] a=0 on E},
where E 1is a p-set for A . To prove that E is open it suf-
fices to prove that
{x e X ] e(M)(x) =1} = X\E
where e 1is the M-projection corresponding to J . Clearly

{x e X | e(M)(x) =1} cX\E .

Iet x £E, and U4 a maximal measure on X representing x .
L
Then (u-—ex) € A~ and hence u(E) = 0 ,
Moreover, if e* denotes the adjoint of e then (ea)® = (I-e¥)a*

and hence

Teo (I-e*)(3(x)) = j Tdu= 0
E
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Thus
0= (I-e¥)(8(x))(M) =1 - e(n)(x)

and we are done, cf [AE, Cor.5.16],

Finally we point out that since every point x € aAX is a

p-set for A and j

Jy=1lach | a(x) = 0}

is the largest M-ideal contained in the kernel of &(x) then

the Structure-topology [AE, §67] on aeK restricted to aesA
coincides with the symmetric facial topology studied by Ellis in

(E], This follows from theorems 2.3 - 2,5,

Moreover, this topology coincides with the well known p-set
topology.

Specifically, if p € aeK then there exists a unique point

x, €3,X and A, € {z eC]|]|z] =1} such that p = Apé(xp) and

A

hence the largest M-ideal contained in the kernel of p is JX~A
Y

i.e. the above can be summed up in the following diagram:

& i
BAX <— aesA —_— aeK
(p~set topology) (symmetric facial topology) (structure topo-~
logy)
S q
Prim A

(structure topology)

where all the maps are continuous, q open, ¢ and s homeomor-

phisms.
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