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M-ideals in complex function spaces and algebras. 

Introduction. 

The aim of this note is to give a characterization of the 

M-ideals of a complex function space AS ~(C(X) • 

The concept of an M-ideal was defined for real Banach spaces 

by Alfsen and Effros [AE] 9 but it can be easily transferred to 

the complex case [Th. 1.3]. 

The main result is the following: Let J be a closed sub­

space of a complex function space A , then J is an M-ideal in 

A if and only if 

J = [a E A ! a = 0 on E} 9 

where E c X is an A-convex set having the properties: 

(i) l 
~ E M~(oAX) , v E M~(E) ~ ~- v E A ==> Supp(~) ~ E 

(ii) ~ E AJ. n M(oAX) ==> !-tiE E AJ.. 

In case A is a uniform algebra these sets are precisely 

the p-sets (generalized peak sets). 

Following the lines of [AE] we shall study M-ideals in A 

by means of the corresponding L-ideals in A* 9 which in turn are 

studied by geometric and analytic properties of the closed unit 

ball K in A* • 

Although we have an isometric complex-linear representation 

of the given function space as the space of all complex-valued 

linear functions on K , it turns out that the smaller compact, 

convex set Z = conv(SA l' ... iSA) , where SA denotes the state 

space of A , will contain enough structure to determine the L­

ideals. The set Z was first studied by Azimow in [Az]. Note 



- 2 -

also that the problems which always arize in the presence of 

complex orthogonal measures can to a certain extent be given a 

geometric treatment when we consider the compact, convex set Z 

[Prop. 2.4]. 

Another usefull tool in this context is the possibility of 

representing complex linear functionals by complex boundary mea­

sures of same norm, as was recently proved by Hustad in [Hu]. 

Specializing to uniform algebras we characterize the M-sum­

mands (see [AE, §5]), and we conclude by pointing out that the 

structure-topology of Alfsen and Effros [AE, §6] coincides with 

the symmetric facial topology studied by Ellis in [E]. 

This result yields a description of the structure space, 

Prim A (see [AE, §6]), in terms of concepts more familiar to 

function algebraists. Specifically, Prim A is (homeomorphic to) 

the Choquet-boundary of X endowed with the p-set topology. 

The author wants to express his gratitude to E. Effros for 

Theorem 1.2 and to E. Alfsen for helpfull comments. 

1 • Preliminaries and notation. 

Let W denote a real Banach space. Following [AE, §3] we 

define an L-Ero~ction e on W to be a linear map of W into 

itself such that, 

i) 2 e = e 

ii) liP!! = i!e(p)!! + liP- e(p)JJ If p E vY 

and we define the range of an L-projection to be an L-ideal in 

w • 

To every L-ideal N = eW there is associated a comElementary 

L-ideal N' = (I-e)W , cf [AE, §3]. 
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We say that a closed subspace J of a real Banach space V 

is an M-ideal if the polar of J is an L-ideal in W = V* • 

Also, we define a linear map e of V into itself to be an 

M-projectiog if 

i) 2 e = e 

ii) \!v!l = max[ !le(v) \1, llv - e(v) II} Vv E V 

and we define a subspace of V to be an M-summand if it is the 

range of an M-projection. It follows from [AE, Cor.5.16] that 

M-summands are M-ideals. 

Lemma 1.2. Let N be an L-ideal in a real Banach-space W, and 

let e be the corresponding L-projection. If T is an isometry 

of W onto itself, then TN is an L-ideal and the corresponding 

L-projection 

( 1 • 1 ) 

Also 

eT is given by 

-1 
eT = T e T 

(TN) I = T ( N l ) 

Proof~ Straightforward verification. 

If V is a complex Banach space, th~n we shall denote by 

Vr the subordinate real space, having the same vectors but equip­

ped with real scalars only. By an elementary theorem [P, §6] it 

follows that there is a natural isometry ~ of 

(Vr)* , defined by 

( 1 • 2) ~(p)(v) = Re p(v) v E V • 

(V*) onto r 

~orem 1.2. (Effros) Let W be a complex Banach space with 

subordinate real space Wr If N is an L-ideal in Wr then 
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N is a complex linear subspace of W • 

Proof: It suffices to prove that ip E N for all p E N • Let 

p E N and consider 

where T is the isometry T(p) = ip 

as in (1.1). 

Vp E W and eT is defined 

Then 

since L-projections commute [AE~ §3]. 

Also we shall have 

iq = i(I- eT) (p) E i(T(N')) = N' 

Thus 

such that q = 0 and hence ip E N • 

Corollary 1.3. Let V be a complex Banach space with subordinate 

real space Vr If J is an M-ideal in Vr , then J is a com-

plex linear subspace of V • 

Proof: By the bipolar theorem it suffices to show that the polar 

J 0 of J in W = v* is a complex subspace of W To this end~ 

we first consider J as a real linear subspace of Vr , and we 

denote by Jo 
r the polar of J in cv r* r • Jo 

r is an L-ideal in 

(V )* r since J is an M-ideal in vr . If cp·W .... . r (V )* r is the 

isometry defined in (1.2), then Q-1(J~) is an L-ideal in w r 
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Moreover 0 -1 ( 0) J = cp J r since is a complex linear sub-

space of W according to theorem 1.2. 

The above results justify the use of the terms L- and M-idalis 

for complex Banach spaces to denote L- and M-ideals in the subor­

dinate real spaces. 

Let V be a complex Banach space, W = v*, and K the closed 

unit ball of W If N is a w*-colsed L-ideal in W with cor-

responding L-projection e ~ then it follows from [AE, Oor.4.2] 

that for a given v E V considered as a complex linear function 

in W one has: 

( 1 • 3) (voe)(p) = J ( v o e) d!J. Vp E K , V~ E M;(K) 
K 

and 

( 1 . 4) (v o e)(p) = l v 
J 

d~ Vp E K , V~ E M;(oeK) 
NnK 

where M;(K) denotes the set of all probability measures on K 

with barycenter p , and M;(oeK) the set of all measures in 

M+(K) which are maximal in Ohoquets ordering (boundary measures). 
p 

2. M-ideals in complex function spaces. 

In this section X shall denote a compact Hausdorff space 

and A a closed, linear subspace of ~W(X) , which separates 

the points of X and contains the constant functions. The state­

space of A i.e. 

p(11) = l!P!I = 1} 
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is a w*-closed face of the closed unit ball K of A* 
' 

We 

shall assume that K is endowed with w*-topology. 

Since A separates the points of X , we have a homeomor­

phic embedding ~ of X into SA ~ defined by 

(2.1) ~(x)(a) = a(x) Va E A 

We use ea to denote the function on A* defined by 

(2.2) ea(p) = Re p(a) Vp E A~~ • 

For convenience we shall use the same symbol 8a to denote 

the restriction of this function to various compact, convex sub­

sets of A* • 

An enlargement of SA , which was introduced by Azimow, is 

the following set 

(2.3) 

Appealing to [Az, Prop 1] the embedding a~ 8a is a bicon­

tinuous real linear isomorphism of A onto the space A(Z) of 

all real-valued w*-continuous affine functions on Z • 

We shall denote by M~(SA) resp. M~(Z) the w*-compact convex 

set of probabllity measures on SA resp. Z • The set of extreme 

points of SA resp. Z , K will be denoted by oeSA resp. oeZ , 

oeK and the Choquet boundary of X with respect to A is de­

fined as the set 

It follows from [P, p.38] that oeSA ~~(X). 

oeK = (A.~(x) ! lt..l = 1 , x E oAXl 

cf [DS, p.441 ]. 

Moreover, 
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Also we agree to write M;(sA) resp. M~(Z) for the w*-com­

pact convex set of probability measures on SA resp. Z which 

bas barycenter p E SA resp. z E Z • By M;(oeSA) resp. M~(oeZ) 

we denote the maximal representing measures for p resp. z 

(boundary measures). 

A real measure ~ on SA resp. Z , K is said to be a 

boundary measure on SA resp. Z , K if the total variation 1~1 

is a maximal element in the Choquet ordering, and we denote them 

by M(oeSA) resp. M(oeZ) , M(oeK) • 

Finally we denote by M(oAX) those complex measures ~ on 

X for which the direct image measure ~(l~l) on SA is an ele­

ment of M(oeSA) • 

It is well-known (see e.g. [A~ Prop.I.4.6]) that boundary mea-

sures are supported by the closure of the extreme boundary. 

As mentioned we shall study M-ideals in A by considering 

the corresponding L-ideals in -)(­

A • Let N be a w*-closed L-

ideal in A* with corresponding L-projection e • 

Lemma 2.1, Let p E SA. Then 

e(p) E conv([O} USA) 

Proof: Let p E SA and decompose 

where q = e ( p) and r = (I - e) ( p) • If q = 0 or r = 0 there 

is nothing to prove. 

Otherwise 
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is a convex combination of points in K • Since SA is a face 

of K we obtain q E 
fin" SA • Hence 

e(p) = q E conv( (0} u SA) • 

Lemma 2 .£. Let p E N n z be of the form 

p = A.p1 + (1-A.)(-ip2) 

where p1 ' p2 E SA and 0 < A. < 1 . 
Then p1 ' p2 E N n z • 

Proof: Let p E N n z be of the form 

p = A.p1 + (1-A.)(-ip2) 9 pi E SA 

where 

(2.4) 

Decompose p. 
1 

pi 

e (p.) 
1 

= q. 
1 

Since e(p) = 

0 = 

Hence q. f. 0 
1 

= 

as 

q. + r. 9 1 1 

and r. = ( I-e) (p.) for 
1 l 

p it follows that 

A.r1 + (1-A.)(-ir2 ) 

for i = 1,2 • 

Now assume r 1 f. 0 ; then 

q1 r1 
P1 = llq1 II ( \\q1 !1) + llr1l! (1l'r,lr) 

is a convex combination, and we conclude that 

contradicts (2.4). Thus r. = 0 
1 

and p. E N 
l 

i 

i = 1 9 2 and 0 <A. <1 

= 1 '2 • 

r1 1l'r,lf E SA which 

fori= 1 9 2 • 

If Q is a closed face of a compact, convex set H , then 

the complementary face Q1 is the union of all faces disjoint 
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from Q • Q is said to be a SJ2lit face of H if Q' is convex 

and each point in K \, (Q U Q I) can be expressed uniquely as con-

vex combination of a point in Q and a point in Qt 
' 

of [A,p.33]. 

We denote by As (H) .- the smallest uniformly closed subspace 

of the space of all real valued bounded functions on H contain­

ing the bounded u.s.a. affine functions. According to [A, Th.II 

6.12] and [An, Prop 3] we have that for a closed face Q of H 

the following statements are equivalent: 

(i) Q is a split face 

(ii) If ~ E M(oeH) annihilates all continuous affine functions, 

then ~~Q has the same property. 

(iii) If a E As(Q) then a has an extension a E As(H) such 

that a= 0 on Q1 • 

We remark that the functions in As(H) satisfy the barycen­

tric calculus. 

Theorem 2.3o Let N be a w*-closed L-ideal of A* and let 

F = N n Z • Then F is a split face of Z , and F' = N' n Z o 

Proof: Applying lemma 2o2 twice it follows that F is a face 

of Z o Let z E F' and ~ E M~(oeZ) , then ~(F) = 0 [H,Lemo 

2 0 1 1 J • 

Moreover, the Milman theorem implies that oeZ :;:(SAU-iSA) 

and hence Supp(u) ~(SA U- i SA) o 

Since these two sets are faces of K we may consider ~ as 

a boundary measure on K • 

According to (1.4) we also have 

(eao e)(z) = J 9ad~ = 0 
F 

V a E A , 
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where e is the 1-projection corresponding to N • 

Thus e(z) = 0 9 which in turn implies z E N' n Z • 

Conversely, assume z E N' n Z • Decompose 

where p1 E F 9 p 2 E F' and 0 < A. < 1 • 

Hence 

z - (1-A.)p2 = A.p 1 E N n N' = (0} 9 

and so z = p 2 E F' • Thus we have proved that F' = N' n Z • 

In particular 9 F' is convex. 

From the above results we may establish the splitting proper­

-ty by proving 

To this end we consider As before 

!.l E M( oeK) 9 and also 

s ea dl.l = s ea dl.l = 0 
K Z 

Va E A , 

i.e. is the space of all 

real-valued w*-continuous linear functions on 

I J. . 
[AE, Th.4.5] l.l F E A0 (K) , or equ1valently 

K • By virtue of 

l.l!F E A(Z)~ • q.e.d. 

Remark: Under the hypothesis of Theorem 2.3 we have: 

Following Ellis [E] we shall say that a subset of Z of the form 

conv( C U - i C) , C ;:: SA 

is symmetric. 

Let F be a closed face of SA , and put 
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(2.5) E = ~- 1 (F n <P(X)) , 

Then F = conv·(~(E)) and F n ~(X)= ~(E) • 

Proposition 2.4. Let F be a closed face of SA. for which 

SF = conv(F U- iF) is a split face of Z . Then E satisfies 

the condition: 

Proof: Let and put a = PIJ. • Then a is a 

complex maximal measure on SA o Decompose a as 

where a. 
1 

E Mt(oeSA) and A.. > 0 for i = 1,2,3,4 • 1 -
Since 

11 E AJ. 
' A.1 = A.2 and A.3 = A.4 0 

Define p. = barycenter of a. for i = 1,2,3,4. 
1 1 

Since 

!1 E A.l it follows that 

Rewrite (2o6) as 

(2o7) 

if we assur.e A.1 + A.4 = A.2 + A.3 = 1 . 
Define 1!r : SA ... -is 

A by 

~(p) = - ip Vp E SA 

Let a E A and put eals = b E As(SF) • F 
Since SF is assumed to be a split face of z we can find 

"' "' a function b c As(Z) which extends b and such that b 0 "- -

on SF 
I . Moreover, 
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,... 
and since b satisfies the barycentric calculus we may rewrite 

this as 

(2.8) 

s I 

F 

Since every maximal measure on Z is carried by SF and 

and since SF n SA= F 1 we may rewrite (2.8) as 

(2.9) ft. 1 J 9a dcr 1 + ft. 4 s 9 a o ~ dcr 4 - ft. 2 s 9a dcr2 - ft. 3 s 9a o ~ dcr3 = 0 
F F F F 

The measure ~ can be decomposed as 

(2.10) ~ = )..1~1 - A2f.l2 + i )..3~3 - i A.4~4 

h .;.-1 w ere ~- = ~ cr. 
1 J. 

+ i(ft. 1Jrma d~J. 1 - ft.2 Jrma d~J, 2 + )..3 JRead~3 - A4 JRead~J. 4 ) 
E E E E 

Transforming the above integrals by the embedding map ~ 

and using the identity Sa(- i p) = Ima( p) ~ we rewrite this as 

follows: 

(2.11) radu J . 
E 

= ( A 1 s 9 a dcr1 - A 2 s 9 a d cr2 - A. 3 J 9 a o ~ d cr 3 + A 4 s 9 a a $ d cr 4) 
F F F F 

+ i (ft. 1Je(-ia)dcr1 - ft. 2 Je(-ia)dcr2 -A3Je(-ia)ai!Jd'3+ 
F F F 

+ A4 Je(- ia)o$ dcr1 ) 
F 

Combining (2.11) with (2.9) we get 

J a d\J = 0 
E 

Va E A • 
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Theorem 2.5. Let F be a closed face of SA for which SF = 

conv(F U- iF) is a split face of Z • Then 

is a w*-closed L-ideal in A* • 

Proof: Since SF is a split face, N may be considered as a 

w*-closed real linear subspace of A(Z)i~ and from the connection 

between A and A(Z) of. §1 it follows that N is w*-closed 

in A* • 

According to proposition 2.4 the following definition is 

legitimate, 

e ( p ) ( a) = r a d~ 
cJ 

Va E A , 
E 

where E is as in (2.5) and ~ is a maximal complex measure 

representing the point p E A* • 

Clearly e (A*) eN Let p E N i.e. 

p = A.1p1 + A.2(-p2) + A.3(ip3) + A.4(- ip4) 

where p. E F and A. > 0 for i = 1,2,3,4 
l l -

Choose measures cri E M;i(oeSA) 

Supp(cr.) c ~(E) since F is a face of 
l -

for i = 1,2,3,4 and 

for 

s A 

i = 1,2,3,4 • Then 
-1 Define ~· = ~ cr. 

l l 

Now ~ is a complex representing measure for p and 

Supp(~) ~ E i.e. 

e(p) = p • 

To prove that e is an L-projection, we shall need the fact 

that we may represent p E A~'" by a measure ~ E M( o AX) such 
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that !IPI! = !!1-1!! • This follows by a slight modification of a 

theorem of Hustad [Hu]. 

Having chosen 1-1 E M(oAX) representing p E A* with 

!1PII = !l1-11l , we shall have 

1\P\1 ~ \Je(p)l! + J\p-e(p)IJ < \!1-1\\E + 111-li\x----E = 111-l\1 = !1PII' 

which implies 

!!P\1 = 1\e(p) 1\ + liP- e(p) ll Vp E A* 

i.e. e in an L-projection with range N • 

A compact subset E c X is said to be A-convex if it satisfies: 

E = [x E X I I a(x) I ~ \!ailE Va E A} 

If F is a closed face of SA such that SF = conv(F U- iF) is 

a split face of Z then the set E = ~- 1 (F n ~(X)) is A-convex 

and has the following properties: 

(i) 1-l E Mt(oAX) , v E Mt(E) , f.l-V E A~ ==> Supp(\-1) c E • 

(ii) \-1 E A~ n M(oAX) ==> 1-liE E AL • 

If an A-convex subset E of X satisfies (i) and (ii) then 

we say that E is an M-set 

If E c X is a compact subset then we denote by SE the 

following subset of SA , 

(2.12) s~ = conv c ~ (E) ) • 
J.:J 

Clearly, if E is an M-set SE is a closed face of SA 

and SE n ~(X) = ~(E) • 

Moreover, 

Corolla~~· Let E be an M-set of X • Then 
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----w* 
N = lin0 <P (E) 

is a w*-closed L-ideal of A* . 

Proof: Observe that conv(SEU-iSE) is a split face of Z and 

define 

e ( p) ( a) = J a d~ 
E 

Va E A , 

where ~ is a maximal representing measure for 
Proceed as in the proof of Th. 2,5. 

* p E A • 

Corollary 2.7. Let E be an A-convex subset of X . Then the 

following statements are equivalent: 

(i) E is an M-set, 

(ii) conv(SE U - i SE) is a split face of Z • 

(iii) N = lino:J SE is a w*-closed L-ideal, 

Proof: Combine Th. 2.3 and Cor. 2.6. 

Remark, Of. [Az~ Th.2~3J and [E] for similar results. 

Remark. A closed face F of SA is a split face of Z if and 

only if the following condition is satisfied: 

Vfhere !J. = ~ 1 - 11 2 + i (!J. 3 - !J.4 ) and E as in (2.5). 

Thus we see that not all split faces of Z are symmetric. 

Of. [E]. 

Turning to the M-ideals in A we now have the following 
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Theorem_g.J?_. Let J be a closed subspace of A . Then the 

following statements are equivalent: 

(i) J is an M-ideal. 

(ii) J = [a E A I a = 0 on E} 

where E is an M-set of X . 

Proof: Assume J is an M-ideal of A , then J 0 n Z is a split 

face of Z since J 0 is an L-ideal. Moerover, we claim that 

Hence 

Thus 

such that 

It follows from theorem 2.5 that lin(D(J 0 n SA) is w*-closed and 

hence 

This in turn implies 

Equivalently 

o . w* J = lln~(~(E)) ~ 

where E = ~- 1 (J0 n ~(X)) • 
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Thus we see that 

J = [a E A ! a _ 0 on E} 9 

and clearly E is an M-set. 

Conversely, if J is of the form 

J = [a E A I a _ 0 on E} , 

* where E is an M-set, then J 0 = linw ~ (E)w is an L-ideal accor-

ding to Corollary 2.6. 

3. The uniform algebra case. 

In this section we make the further assumption that A is 

a uniform algebra [G]. 

A peak set E for A is a subset of X for which there 

exists a function a E A such that 

a(x) = 1 Vx E E , ! a(x) I < 1 

A p-set (generalized peak set) for A is an intersection of 

peak-sets for A • If X is metrizable then every p-set is a 

peak set [G, §12]. 

It follows from [G, Th.12.7] that the following is equiva­

lent for a compact subset E of X : 

(i) E is a p-set. 

(ii) ~ E A1 ==> ~~E E A~ 

Clearly, p-sets are M-sets. 

Moreover, since M-sets are A-convex it follows by a slight modi­

fication of [AH, Th.7.4] that M-sets are p-sets i.e. we may state 

Theorem 3.1. Let A be a uniform algebra and J a closed sub-
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space of A . Then the following statements are equivalent: 

(i) J is an M-ideal. 

(ii) J = [a E A ! a = 0 on E} ~ 

where E is a p-set for A • 

Turning to the M-summands of A we shall have~ 

Theorem 3.2. Let J be a closed subspace of A • Then the 

following statements are equivalent: 

(i) J is an M-summand 

(ii) J = [a E A I a = 0 on E} where E is an open-closed 

p-set for A • 

Proof: Trivially ii) ==> i) by virtue of theorem 3.1. 

Conversely~ assume J is an ],~-summand. Then 

J = [a E A a = 0 on E} 9 

where E is a p-set for A 

fices to prove that 

To prove that E is open it suf-

[x EX I e(11)(x) = 1} = X'\.E 

where e is the M-projection corresponding to J • Clearly 

(x EX I e(11)(x) = 1} :=;X\.E. 

Let x I E , and ~ a maximal measure on X representing x • 

Then (~-ex) E AJ. and hence ~(E) = 0 • 

Moreover 9 if e* denotes the adjoint of e then (eA) 0 = (I-e-l(-)A* 

and hence 

11 a (I - e *) ( iE ( x) ) = J 11 d~ = 0 

E 
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Thus 

0 = (I-e~~)(~(x))(11) = 1- e(11)(x) 

and we are done, cf [AE, Cor.5.16]. 

Finally we point out that since every point x E oAX is a 

p-set for A and 

Jx = [a E A I a(x) = 0} 

is the largest M-ideal contained in the kernel of i(x) then 

the Structure-topology [AE, §6] on oeK restricted to oeSA 

coincides with the symmetrlc facial topology studied by Ellis in 

[E]. This follows from theorems 2.3 - 2.5. 

Moreover, this topology coincides with the well known p-set 

topology. 

Specifically, if p E oeK then there exists a unique point 

xp E oAX and A.P E [z E C liz! = 1} such that p = A.Pi(xp) and 
' hence the largest M-ideal contained in the kernel of p is Jx 

p 
i.e. the above can be summed up in the following diagram: 

i 
oAX <----.> oe SA > 

(p-set topology) (symmetric facial topology) 
oeK 

(structure topo­
logy) 

Prim A 
(structure topology) 

where all the maps are continuous, q open, ~ and s homeomor-

phisms. 
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