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1. _Introduction. In his studies in ergodic theory Hopf [3]

introduced an equivalence relation, which in the language of

von Neumann algebras, is an equivalence relation on the projections
in an abelian von Neumann algebra acted upon by a group of *-auto-
morphisms. He then showed that, with some extra assumptions,
"finiteness" of the partial ordering defined by the equivalence

was equivalent to the existence of an invariant normal state.

Later on the "semi-finite" case was taken care of by Kawada [6]

in a well ignored paper, and then independently by Halmos [2].

In the theory of von Neumann algebras, Murray and von Neumann
introduced their celebrated equivalence relation on the projections
in [8] and again showed (at least for factors) the equivalence of
finiteness (resp. semi-finiteness) and the existence of normal
finite (resp. semi-finite) traces. It is the purpose of the pre-
sent paper to introduce and study an equivalence relation which
includes in the countably decomposable case the one by Hopf and

in the general case the one by Murray and von Neumann. It is de-

fined as follows, Let Oz, be a von Neumann algebra acting on a



Hilbert space 3€. Let G be a group and let t = U, be a
unitary representation of G on € such that UzéaUt = K for
all t € G. Thenwe say two projections B and F in (R are

G-equivalent if there is for each t € G an operator Tt € @2

_ * _ *m*
such that E = tgGTtTt s I = tgGUtTtTtUt .

C Our main results now state that this relation is indeed an equi-

valence relation (Thm.1), that "semi-finiteness" is equivalent
to the existence of a faithful normal semi-finite G-invariant
trace on 6l+ (Thm.2), and that "finiteness" together with count-
able decomposability of 6& is equivalent to the existence of a
faithful normal finite G-invariant trace on & (Thm.3), In the
proofs we shall not follow the apparently natural approach of
developing a comparison theory for the projections in R and then
to construct the traces. We shall instead consider the cross pro-
duct Rx G , and then show that the canonical imbedding of o,
into the von Neumann algebra & x ¢ 1is close to being an iso-
morphism of (X with the structure of G-equivalence into R x G
with the equivalence relation of Murray and von Neumann. In the
last two sections of the paper we shall study the relation of G-
equivalence to G-finite von Neumann algebras, and to the equiva-
lence relation of Hopf.

We refer the reader to the book of Dixmier [1] for the theory

of von Neumann algebras.

2. Statements of results. In the present section we state the

main results and definitions. The proofs will be given in

section 3.

Theorem 1. Let (¢ be a von Neumann algebra acting on a Hilbert



sSpace 6{,. Let G be a group and t - Ut a unitary represen-
tation of G on aC such that Ui@ZUt =® for all te@Gg ., If
E and F are projections in @l we write E E-F if for each

t € G there is an operator TJG € ® such that

S
w

_ * _ *
E = tgGTtTt s I o= tgGUtTtTtUt .

Then 'é is an equivalence relation on the projections in 6%.

Remark 1, If G dis the one element group then the equivalence
relation ?} is the same as the usual equivalence relation ~

for projections in a von Neumann algebra,

Remark 2, If G is the additive group of (N and the represen-
tation t - Ut is the trivial representation, so Ut =1 for
t € G, then the equivalence relation ’é is the one defined by

Kadison and Pedersen [4, Def.A].

Remark 3., If (R is abelian and countably decomposable the equi-
valence relation % coincides with the one defined by Hopf [3]

in ergodic theory. TFor this see Theorem 5,

Remark 4., If E and F are edquivalent projections in 6{,
i.e. there is a partial isometry V € & such that E = VV* ,

F = V¥V , then E'EF . This is clear from the definition of %

putting T, =V , T, =0 for t £Ze .

Definition 1. With notation as in Theorem 1 we say two projectims

E and P in (R are G-equivalent if E:éF . We write E-ﬁéF

if Efa FO <F . A projection F is said to be Wéefinite if

E<F and E~ P implies E =P . (¢ is said to be % -finite
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if the identity operator I is -~ -finite, . is said to be

né-semi-finite if every non-zerc projection in Jz,nmjorizes a

non-zero 7;-finite projection.

Theorem 2, With notation as in Theorem 1 there exists a faithful
normal semi-finite G-invariant trace on (R* if and only if ﬁl
is 4 -semi-finite,

‘ . ) _ finite/
Theorem 3, With notation as in Theorem there exists a faithful
G-invariant trace on (R if and only if R is 'a-finite and

countably decomposable.

3. Proofs. We first introduce some notation and follow [1,ChI,

§ 9] closely. TFollowing the notation in Theorem 1 (R acts on
a Hilbert space ol , G 1s a group, considered as a discrete
group, and t - Ut is a unitary representation of G on 4t
such that UJRU, = R for all t€G . For t€G let X,
be a Hilbert space of the same dimension as o and Jt an iso-
metry of X onto &et . Iet €= tgG ® ¥, . We write an ope-
rator R € 63(é¥) - the bounded operators on 5% - as a matrix
*
(RS,JG)S’JGEG , Wwhere Rs,t = J RJ, € B(3) . TFor each T € G,
let &(T) denote the element in 05(3f) with matrix (Rg t) ,
b
where R =0 if s £+t , and R =T for all s € G . Then
s,t S,8

& 1is a *-isomorphism of (K onto a von Neumann subalgebra @&
of ®»(3f) . FPor y €G let E& be the operator in (3 (FC)

. . . -1 a
with matrix (Rs,t) , where ]RSQJU =0 if st™ £y, Ryt,t = Uy
for all t € G . Then (see [1,Ch.I, §9]) v - Uy is a unitary

~

representation of G on &€ such that

T*s (1)U, = 3(U¥ ¢ T eR.
UXa (1)U, = $(USTU) yea, TeR
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If IB denotes the von Neumann algebra generated by 65_ and the

ﬁ&,y € G , then each operator in 63 is represented by a matrix
(Rs,t) where RS,JC = Pgy=1Ugp1 Tst‘1 c .

We denote by GQG the von Neumann subalgebra of R consis-
ting of the G-invariant operators in 62J %? shall denote the
center of (& , and 83 shall denote & N®RE . Whenever we write
P ~Q for two projections in (03 we shall mean they are equiva-
lent as operators in 03, i.e. there is a partial isometry V c®
such that VV¥ =P , V¥V = Q@ , and we shall not consider P and
Q a= eqiuvalent in a von Neumann subalgebra of QB. The next

lemma includes Theorem 1 and shows more, namely that E_-equiva-

lence is the same as equivalence in 13 .

Lemma 1, Let E and F be projections in ®.. Then E ?}F if
and only if &(E) ~ &(PFP) . Hence % is an equivalence relation

on the projections in é{.

Proof: Suppose E E—F . Then for each t € G there is Tt € 62

such that

_ * oo o r¥m
E = tgGTtTt , F = téGUtTtTtUt .

Then we have

3(E)

i
]

Z@(TtT%)

= T(a(r)T,)(e(r )T,

z&(mt)e@(Tt)*

and

¥t K2 (m¥ e
3(F) Z@(UET T.U,) = Z'UtQ(TtTt)Ut

tTtt
= = (a(7) T *(a(T)T,)

Thus by a result of Kadison and Pedersen [4,Thm.4.1] &(E) ~&(F).



Conversely assume &(E) ~ &(F) . Then there is a partial
isometry V € 03 such that VV¥ = &(E) , V¥’V = &(F) . Say V =

(Tst-1Ust-1) . Then an easy calculation shows

_ * _ ¥ m¥
E = tgGTtTt , P = JGEGUJCQLGTtUJC ,

hence E ?;F . The proof is complete.

Lemma 2. Let 8§ = (Tst‘1Ust-1) belong to the center of 73 .

Then for each s € G we have

i) 1T, = 7,0 TU} for all T e R®.,
‘s 7 - U* ~ .
ii) - yTysz for all y € G

In particular T, ¢ &) . Purthermore, if R € 59 then &(R)
belongs to the center of (3.

Proof. Let T € (X . Then
= 3(7)S = S8(T) = (T U TU Y
% o1 (T) (1) = st=1 st=17 "t~ st-1)

and i) follows, Let y € G . Then an easy computation shows

(TT _4U
S

U =SU. = 0.8 = (U7 v*u .
1) =5Uy = TS = (Uy y-Tst-1"y o1

Replacing y by y  and letting t = e , ii) follows. 3By i)

T 0 =10 , 80 T € B . Byii) if s =y ' we find T_ =

e
% G
UgT U, » so Ty € ®R* , hence T € D .
Finally let R and let S' = (S .U c 03,
inally 1le € &5 , and le ( -1 st'1)
Then we have
& St o= = (S R
(R) (Rsst-1Ust-1) ( st~ ‘Ust-1>
= (S U R) = S*"3&(R
( =105 41 ) (R) ,

hence &(R) belongs to the center of B . The proof is complete.
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Lemma 3. Let E be a projection in @2,. Let DE be the smallest
operator in 3) majorizing E ., Then DE is a projection, and

@(DE) is the central carrier of &(E) in 03 .

Proof. Since gb is an abelian von Neumann algebra its positive
operators form a complete lattice under infs and sups. Thus

Dy = g.1.b.{A €0 : E<A<TI}, and Dy is well defined. Since
2

E < Dp and both operators commute we have £ = E~ < Dp . But
D, <1, so D% < Dy . Hence by minimality of Dy , Dp = D2 ,

so it is a projection. By Lemma 2 @(DE) is a central projection
in @ , hence if Cé(E) denotes the central carrier of &(E) in

0> , then &(Dp) > Cg(g) » Now let Cgrgy = (Tst_1Ust_1) . By

Lemma 2 T € & , and since Cs(g) = 2(E) , T 2B . By defini-

e

tion of D Te > D

E E

T, = Dp . The operator @(DE) - CQ(E) is positive and has zeros

But é(DE) > C@(E) , so Dp > T, , hence

on the main diagonal. Therefore it is O , and é(DE) = C@(E)

as asserted,

Lemma 4. Let E be a projection in & . Let Cp be its central

carrier in 62, and let D be as in Lemma 4. Then Dy = DCE .

Proof. Since E <Cp, Dy < Do, . But Dy € & and Dy > E,
hence DE > CE . Therefore by definition of DCE s DE > DCE ,

and they are equal.

Lemma 5. Let E be a countably decomposable projection in <ﬁ3.

Then &(E) is countably decomposable in (3.

Proof, ILet x be a vector in Eo€ ., Then x considered as a

vector in tZG ® &et belongs to afe . Let TF be the support
€ .




of w, in ERE . Then T is countably decomposable, and Wy

is a faithful normal state of FRF ., Let {F l4eg be an ortho-
gonal family of projections in @ such that EJFa = §(F) . Let
o

Po= (7% .U .
Q ( St—1 s-t—1)

P(RF . TFurthermore, since x € Bﬂe ) wX(Ta)=wX(Tg). Thus we have

Then F_ < #(F) , so 1% <P, hence 1% €

1= 0 (F) = 0,(8(F)) =Tuy (F) = T (13) .
Therefore wx(Tg) = 0 except for a countable number of o € J .
But then Tg = 0 and hence Fa = 0 except for a countable number
of o €J . Thus &(F) is countably decomposable in {3 . Now
E 1is a countable sum of orthogonal cyclic projections, hence
3(E) is a countable sum of orthogonal countably decomposable
projections. Hence &(E) is countably decomposable.

The proof is complete.

Definition 2. We say a projection E in é{ is »é—abeligg if
ERE - EX .

Clcarly a né-abelian projection is abelian.

Lemma_é. There is a projection P 623 such that there exists
a fé-abelian projection E < P with DE =P , and I-P has no

non-zero ré-abelian subprojection.

Proof, Partially order the ¢a-abe1ian projections in R by
E<<F if E<TF and Dp 5 <TI-D; . Then in particular DyF =
E . Let {Ea} be a totally ordered set of E-abelian projections,

and let E = supEa , SO Ea - E strongly. Then

E =D lim E, = 1lim Dp E_, = E
PE, By 850 B 650 Eq B o’

hence if A € ﬁQ then
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EAED

B oo

LT E,AE = AE_,
where A € @DEOL . Now it is well known that if Qa is an in-
creasing net of projections, and ro - Q strongly, then CQOL - CQ
strongly. Thus

@(DEOL) = %(Ea) - CQ(E) = @(DE)

by Lemma 3, hence D = DE strongly. The same argument also
a
shows

D = 1im D <I-D .
E—Ea 8> EB-EOL - Ea

Thus E = E(I"DEG) + E, , end since A = AOLDEa we have
EAE = AE €E . Since Dy -~ it follows that EAE =
Dy = AF € B 5 - g

1imEAED GE% . Therefore E 1is Aé-abelian. Now let E
a

E
a
be a maximal E-abelian projection in (. Let P = D . Suppose
F is a Aé-abelia.n subprojection of I-P . Then E+F is B
abelian. Indeed, if A ¢ & then there are AE € DE@ and AF €

DFSJ such that

(E+F)A(E+F) = EAE+FATF = EAE +FAF

(E+F)(hg+4g) € (E+F)D .

Thus E+F 1s . abelian, Since E << E+F , the maximality
of E dimplies F = 0 . The proof is complete,

Thus} in order to prove theorems 2 and 3 we may consider two
cases separately, namely the case when OQ has a fa-abelian pro-
jection E with DE = I , and the case when (R has no non-zero

%" abelian projection. We first treat the case with a »é-abelian

projection.

Lemma 7. Let E be a ré-abelian projection in OQ Then CE

is not G-equivalent to a proper central projection. Furthermore
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if Q is a central projection such that Q < Cp then Q = DQCE .
Proof. Let Q be as in the statement of the lemma., Since E

is Aé-abelian there is an operator D €&) such that QE = DE ,

hence, since E §

h

cEg , Q = QCE = DC;p , and D > Q . By defi-
nition of Dy , D> Dy . But Dy >Q, 50 Q = QCp < DoCr = DCq
=Q , so that Q = DyCg . Now suppose P 1is a projection in &

such that P < C and P % C Then in particular by Lemma 1

E E
¢(P) ~ & (CE) , So they have the same central carrier in (8B,

hence DP = DCE = DE

CE . The proof is complete.,

by Lemma 4., By the preceding, P = DPCE =

Lemma 8. Let E be a r-sbelian projection in K. Iet s €@
and let Q be a central projection orthogonal to CE . Then if
CE and CE+Q are G-equivalent relative to & ,i.e. the operators

T, defining the equivalence belong to @ , then Q = 0 .

t
Proof, ILet P = Cp and assume P % P+Q relative to §§ . Then
since & is abelian, for each t € G there is At € E" such
that P = § A P+Q = T UfA, U, ., Since EL = EXL and P
et 0 B9 T ZUeh T © &
E ¥, we have P¥ = P& . Since AL <P there is D, eQ"

such that A, = PD Thus we have

.b L

— — *_
YPD, = P = P(P+Q) = SPUA U,
#* _ 5 *
= LPULPD. U, = ZPD,ULPU, .
* *
Now PD,U,PU, < PD, for all % , hence we have PD,ULPU, = PD,

for all t ., Let Et denote the range projection of Dt . Then
- * _ * N *
E, € 9. Since UJPUPD, = PD, , UfPU,PE, = PE, . Thus UyPU, >
. * _ * ,
PE, , and thus U PE.U, = U ,PUB, > PE, . Consequently PE; >

UtPEthE . By Lemma 7 Cp is -finite relative to € , hence so

is PE"J .



Therefore PE, = U,PE, U¥ and UXPE,U, = IE’E_t . Therefore we

t Tttt ° Tttt
have

D, =PD, = A

* * *
UtAtUt = U‘tPD‘tUt = UtPE'bU Dt = PE t % £ s

t t

and P =P+Q , so that Q = O ., The proof is complete.

Lemma 9. Suppose E is a r-abelian projection in R with

D, =1I . Then OQ is of type I , and there exists a faithful

B
normal semi-~-finite G-invariant trace on .

Proof., ®Since E 1is abelian CE(R is of type I . Since every
*—~automorphism of (& preserves the type I portion of ﬂ , and
DE=I,@ is of type I .

E 1is a sum of orthogonal cyclic projections Ea . If we
can show the lemma for each Eor, then it holds for E . Therefore
we may assume E is cyclic, say E = [R'x] . Then w, is faith-
ful on ERE , hence faithful on ES . If A > 0 belongs to
Cg& and w,(A) =0, then 0 = @ (EA) , so EA = O . Hence
A = ACE = 0 , Thus Wy is faithful on CEE , SO CE is a count-
ably decomposable projection in B .

We shall now apply the previous theory to (Of= S x ¢ instead
of 3=Rx G . We use the same notation as before. By Lemma 7

Cp 1is -finite. If Op = Dy = I then by Lemma 7 G =%, and

B
it is trivial that there exists a faithful normal semi-finite G-
invariant trace on &' . Assume Cp #Z I . Then there is s € G
such that UJCpU, # Op . Since by Lemma 7 Cp is w-finite, and
UkCaUg % Cg o ULCgU, 1is not a subprojection of Cp . Thus Q =
UZCEUS(I'CE) # 0 . Since CE is countably decomposable, so is
Q , and hence Cp+Q . By Lemma 5 §(0E+Q) is countably decom-

posable in (. Since I = Dp = DCE+Q , the central carriers of
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é(CE) and @(CE-+Q) are by Lemma 3 equal to I . If Q(CE) is
properly infinite then by [1,Ch.III,$§8,Cor.5] é(CE) ~ Q(CE-FQ) ,
so by Lemma 1 CE'E CE-FQ , contradicting Lemmea 8. Thus Q(CE)
is not properly infinite, and there is a non-zero central projec-
tion P in O such that P@(CE) is non-zero and finite, Since
the central carrier of §(CE) is I , PC{ is semi-finite. Let
® be a normal semi-finite trace on O(+ with support P . For
A € €+ define T(A) = (8(A)) . Then T is a normal G-invariant
trace because T(U;AUS) = m(ﬁé@(A)ﬁ;) = (8(A)) = 7(A) . Since
T(CE) <o and Dg_ =1, T is semi-finite, hence T is a normal
semi-finite G-invariant trace on '6'F. Let D ©be the suppoft
of T . Then O #D €% . Now apply the preceding to (I-D)B
and E(I ~D) , and use Zorn's lemma to obtain a family Da of
orthogonal projections in QD with sum I , and a normal semi-
finite G-invariant trace To, of '8+' with support Da . Let

T = ZTa . Then T 1is a faithful normal semi-finite G-invariant
trace on &1 .

Now since & is of type I there is a faithful normal
center valued trace ¢ on ®RT such that Uzw(USAU;)US = y(A)
for each s € G , A € RY , see [11,p.3]. Then Te{ is a faith-
ful normal semi-finite G-invariant trace on 6?*, see [1,Ch.III,

§4,Prop.2]. The proof is complete.

Lemma 10. Suppose & is fa-semi-finite and there are no non-zero
~é-abelian projections in (R. Then there is a faithful normal

seni-finite G-invariant trace on 0{% .

Proof. ILet E be a non-zero countably decomposable fé-finite
projection in & . Since E is not g-8belian there is a pro-
jection H € ERE such that H # EDy » Let F =H+ (I-DH)E .

Th
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Then F <E , F#E, and DF = DH-i-(I--DH)DE = DE . &(F) is
not properly infinite in d3 . Indeed, if it were, then since
¢(E) 1is countably decomposable by Lemma 5, [1,Ch.III,§8,Cor.5]
would imply &(F) ~ &(E) , hence by Lemma 1 , Fra E , centradic-
ting the 'a—finiteness of E . Therefore there is a non-zero
central projection P in @3 such that P&(F) is finite and
non-zero, Thus PQ(DE)G3 = P@(DF)OB is semi-finite and non-zero.
Let © be a normal semi-finite trace on (3 with support P@(DE).
For 4 ¢ (RY define T(4) = 9(3(A)) . As in the proof of Lemma 9
T 1is a normal G-invariant trace on 62+ . Since T1(F) <o
there is a non-zero central projection Q in 68 such that T

is faithful and semi-finite on Q& [1,Ch.I,§6,Cor.2]. Since T
is G-invariant Q € gb . Now a Zorn's Lemma argument completes

the proof just as in Lemma 9.

Proof of Theorem 2. By Lemma 6 there is a projection P € &

such that there exists a ré-—abelian projection E € PR with

D, =P, and I-P has no non-zero 'é—abelian subprojection.

E
By Lemma 9 there is a faithful normal semi-finite G-invariant
trace T, on PRY . It R is w-semi-finite then by Lemma 10
there is a faithful normal semi-~-finite G-invariant trace T, on
(I-P)RY . Thus 7 = T,+ T, 1is a faithful normal semi-finite
G-invariant trace on 6i+ .

Conversely assume there exists a faithful normal semi-finite
G-invariant trace Tt on R’ ., Suppose E 1is a projection in
(R such that t(E) <co, Since E % T implies 7(E) = 7(F)

it is clear that E is fa-finite. Thus (R is .E-semi-finite.

The proof is complete,
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Lemma 11. Suppose & is countably decomposable and O is %=
finite. Then there is a faithful normal finite G-invariant trace

on ®.

Proof. Since R is ~-finite ® is in particular finite. By
[1,Ch.III,§4,Thm.3] there is a unique center valued trace ¢ on
(R which is the identity on é’ By uniqueness ¢ 1is G-invari-
ent, so if T is a faithful normal finite G-invariant trace on
& , then Toy is one on OQ. Therefore we may assume R=F,
Now there exists a projection P E% such that PG = P@ , and
G is freely acting on (I -P)E ,i.e. for each projection E £ O
in (I-P)¥% there is a non-zero subprojection F of E and

s € @ such that UJFU, <I-F , see e.g. [5]. Since I is
countably decomposable, so is P , and there is a faithful normal
state on P & , hence a faithful normal finite G-invariant trace
on P% . We may thus assume G 1is freely acting. ILet F be
a non-zero projection in ® and s an element in G such that
UFU, < I-F ., Let E=1I-F, Then Dy =1, and F<E . A4s
in the proof of Lemma 10 &(E) is not properly infinite, so we
can choose a central projection P # 0 in (3 such that PE(E)
is finite, Since F -<G E, 3(F) < 8(E) , by Lemma 1, hence

Pi(F) < P&(E) , so P&(F) is finite. Thus P = P&(E)+ P&(F) is
finite in d3, and P(¢3 is finite. Since I is countably de-
composable in % (=®R) &(I) is countably decomposable in 03 by
Lemma 5, hence so is P ., Therefore by [1,Ch.I,§6,Prop.9] there
is a faithful normal finite trace ¢ on P J3d. Then 1t defined
by 7T(A) = @(3(A)) is a normal finite G-invariant trace on @&
with support D # 0 in % . A Zorn's Lemma argument now gives
a family T of normal finite G-invariant traces on & with ortho-

gonal supports Doc in &) . Since I is countably decomposable
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the family {Ta} is countable, and by multiplying each T, Y
a convenient positive scalar we may assume ZTa(Da) = 1 ., Thus

if 7 =2% then T is a faithful normal finite G-invariant

Ty 9
trace on ¥Z . The proof is oomplete.

Proof of Theorem 3. Suppose there is a faithful normal finite

G-invariant trace T on ] . Then I is %-finite, for if E
is a projection in (K. which is G-equivalent to I then 7(E) =
T(I) , hence T(I-E) =0, hence I-E =0, since 1 is faith-
ful. Thus R is w-finite. Again since T is faithful, its
support I is countably decomposable, i.e. Ga is countably de-

composable, The converse follows from Lemma 11.

Corollary., If R is w-semi-finite then (3 is semi-finite.
If R is fa-finite and there is an orthogonal family of counta-
bly decomposable projections in & with sum I , then 03 is

finite,

Proof., If & is ?é-semi-finite, then by Theorem 2 there is a
faithful normal semi-finite G-invariant trace on (R . Thus
there is a faithful normal semi-finite trace on (3 by [1,Ch.I,
§9,Prop.1], hence (3 is semi-finite. If P is a projection in
& then by Lemma 2 &(P) is a centfal projection in % . Thus
in order to show the last part of the corollary we may assume I
is countably decomposable. Then by Theorem 3 there is a faithful
normal finite G-invariant trace on 62, hence by [1,Ch.I,$9,
Prop.1] there is a normal finite trace on &R , so (B is

finite, The proof is complete.
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4, G-finite von Neumann algebras., Let notation be as in

Theorem 1. Following [7] we say 0< is G-finite if there is a
states +

family St of normal G-invarian‘r/which separate R, i.e., if

Ae® , and w(A) =0 for all w € F , then A =0 . PFor semi-

finite von Neumann algebras it would be natural to compare this

concept with those of E—finite and né—semi—finite. Since a o

finite von Neumann algebra is necessarily finite we cannot expect

a G-finite semi-finite von Neumann algebra to be 'ﬁ-finite. We

say G acts ergodically on & if & (= @n OQG) is the scalars,

Theorem 4. Let (K be a semi-finite von Neumann algebra acting
on a Hilbert space . TLet G be a group and t = Ut a uni-
tary representation of G on 9€ such that UiofiUt = (R for all
t € G ., Assume either that G acts ergodically on the center of
(R or the center is elementwise fixed und’er G « Then (Q is
G-finite if and only if R is -semi-finite and there is an
orthogonal family of finite G-invariant projections in CR with

sum I .

Proof, Assume K is G-finite. Suppose first that G acts er-
godically on the center ¥ of K, and suppose w is a faithful
normal G-invariant state on 0% . Then by [11] there is a faith-
ful normal semi-finite G-invariant trace on (R+ 5 hehce by
Theorem 2 (R is ré—semi-finite. In geﬁeral, by Zorn's Lemma
there is a family {wa} of normal G-invariant states with ortho-
gonal supports Ecx such that ZEoc = I . Then each Ecx is G-
invariant, and by the first part of the proof Ea(R Ecc is fé-semi—
finite. In particular, Eon is the sup of an increasing net of

G finite projections. Let. F be a projection in (R . We show

F has a non-zero »éfinite subprojection., By the above consider-
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ations there is Ea and a «a-finite subprojection Fa of EOL

such that Cp F # 0 . Let F, = Cp F . Then there is a non-zero
a a

subprojection F_ of P, such that Foé F, . Say F, ~G <F_.

Since F is ~~finite, so is G_ . Indeed, if G_~ H < G
a G a ag = «a

then by Lemma 1 @(Ga) ~ 3(H) , hence §(Fa) = Q(Ga) + @(Fa-Ga)
~ &(H) + @(Fa-Ga) , So again by Lemma 1, Fa'f;H +F, -G, , s0
that H = Ga by finiteness of Fa . Thus GOL is fa—finite.

Since GOL is in particular finite there is by [1,Ch.III,§2,Prop.6]

a unitary operator U € R such that UFOU-1 = Ga . But then
. o . -1
FO is .a—flnlte, for if Fo‘ﬁ F2 < FO then UF2U ~ F2ré Ga 5
s -1 . -1
so by transitivity UF2U % Ga . Since UF2U < Ga , they are

equal by finiteness of Ga ; SO F2 = Fo , and Fo is E—finite.
Therefore the projection F has a non-zero :a-finite subprojec-
tion FO , and R is fé—semi—finite.

Next assume © = éa‘. Then every normal semi-finite trace
on R* is G-invariant [10,Cor.2.2], so there exists a faithful
normal semi-finte G-invariant trace on K7 , hence by Theorem 2,
R is -semi-finite.

Let T ©be a faithful normal semi-finite G-invariant trace
on RY . TLet {wa} be as before with orthogonal supports {Ea}’
Then there is a positive self-adjoint operator HOL € L1(62,T)
affiliated with R¥ such that o (1) = r(H D) for T € R,
see e.g. [1,Ch.I,§6,n0.10]. Let E Dbe a finite spectral projec-
tion of Ha . Then E is G-invariant. A Zorn's Lemma argument
now gives an orthogonal family of finite G-invariant projections
in (R with sum I .

Conversely assume (K is -a-simi-finite and having an ortho-
gonal family {Ea} of finite non-zero G-invariant projections

with sum I . Let by Theorem 2 T be a faithful normal semi-

finite G-invariant trace on ®Y . TLet e, = T(Ea)-1 , and let
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wa(T) = CaT(EaT) . Then {wa} is a separating family of normal
G-invariant states on R , hence (KR is G-finite. The proof is

complete.

The above theorem is probably true without the assumptions
of the action of G on 5. A direct proof of this would be

quite interesting.

5. Abelian von Neumann algebras. Assume (& is an abelian von

Neumann algebra acting on a Hilbert space H., Iet G bve a
group and suppose t - Ut is a unitary representation of G on
€ such that UZ@QUt =0R  for all +t € G . We say two projec-

tions E and E‘ﬁ1miare equivalent in the sense of Hopf and

write E'ﬁ F if there is an orthogonal family of projections

= TE, ,
(B lye; in B and t,€G, for o €J , such that/ P = zui;aEaUta.
*

Since each U_t EaUt is a projection, and their sum is a projec-
a

a
tion, they are all mutually orthogonal. ©Since we can collect the

E&s for which tOL coincide the definition of equivalence in the
sense of Hopf is equivalent to the existence of an orthogonal
family of projections {Et}tEG in (R such that E = téGEt ,
F = tg UXE,U This ordering was introduced by Hopf 73]. Just

cotUtt

as for we define ~-finite, o-semi-finite, and <H . Note

G
that if B~ F as above, if we let T, = B, , then E = ST, 175 ,
F= EUiTITtUt , S0 E'é F ., It is plausible that the converse is
true too. If we assume @R is countably decomposable, we can
prove this via a proof which makes use of the known results on
invariant measures if & is fﬁ-finite and ’ﬁ—semi-finite. A

direct proof would be much more desirable.
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Theorem 5, Assume (R is countably decomposable, and let nota-
tion be as above. Then two projections E and F in &2 are
G-equivalent if and only if they are equivalent in the sense of

Hopf.

Outline of proof. It remains to be shown that if Efa F  then

E % F . Assume E ?}F . By Lemma 1 8(E) ~ &(F) , so they have
the same central carrier C ., By Lemma 3 @(DE) = C = @(DF) , SO
DE = DF .
are 'ﬁ-infinite for all non-zero projections P € §5. In a von

Suppose first E and F are such that EP and FP

Neumann algebra two properly infinite countably decomposable pro-
jections with the same central carriers are equivalent [1,Ch,III,
§8,Cor.5]. Using the comparison theory for & with the Hopf
ordering <, as developed in [6], see also [9], we can modify
the proof of the quoted result for von Neumann algebras, to show
E'ﬁ F. If E is -ﬁ-finite then since DE = DF , We may assume
R is fﬁ-semi-finite, so by [6] there is a faithful normal semi-
finite G-invariant trace T on R . From the comparison
theorem on (R (6, Lem.16], or [9,Lem.2.7], there exist two ortho-
gonal projections P and Q in g@ with sum I such that

PE *% PF and QF <% QE . Since PEté PF we have T(PE) = 7(PF).
But if a proper subprojection FO of PF is such that PEfﬁ FO
then 7T(PE) = T(FO) < 7(PF) = 7(PE) , a contradiction. Thus

PE ~ PF , and similary QE'ﬁ QF . Thus E’ﬁ F , and the proof

H
is complete,




10.

11.
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