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1. Introduction. In his studies in ergodic theory Hopf [3] 

introduced an equivalence relation, which in the language of 

von Neumann algebras, is an equivalence relation on the projections 

in an abelian von Neumann algebra acted upon by a group of *-auto

morphisms. He then showed that, with some extra assumptions, 

"finiteness" of the partial ordering defined by the equivalence 

was equivalent to the existence of an invariant normal state. 

Later on the "semi-finite" case was taken care of by Kawada [6] 

in a well ignored paper, and then independently by Halmos [2]. 

In the theory of von Neumann algebras, Murray and von Neumann 

introduced their celebrated equivalence relation on the projections 

in [8] and again showed (at least for factors) the equivalence of 

finiteness (resp. semi-finiteness) and the existence of normal 

finite (resp. semi-finite) traces. It is the purpose of the pre

sent paper to introduce and study an equivalence relation which 

includes in the countably decomposable case the one by Hopf and 

in the general case the one by Murray and von Neumann. It is de

fined as follows. Let ~ be a von Neumann algebra acting on a 
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Hilbert space a-e. Let G be a group and let t ... u t be a 

unitary representation of G on d{ such that u;o.tut = a:<, for 

all t E G. Then we say two projections E and F in cR are 

G-equivalent if there is for each t E G an operator Tt E ~ 

such that E = L TtT;, F = ~Gu;T~TtUt ·) 
tEG t~ 

--------------------
~a in results now state that this relation is indeed an equi-

valence relation (Thm.1), that "semi-finiteness" is equivalent 

to the existence of a faithful normal semi-fintte G-invariant 

trace on !)<.+ (Thm.2), and that "finiteness" together with count

able decomposability of ~ is equivalent to the existence of a 

faithful normal finite G-invariant trace on ~ (Thm.3), In the 

proofs we shall not follow the apparently natural approach of 

developing a comparison theory for the projections in GQ.. and then 

to construct the traces. We shall instead consider the cross pro

duct l'10x G , and then show that the canonical imbedding of 6X, 

into the von Neumann algebra <R.. x G is close to being an iso-

morphism of 6( with the structure of G-equivalence into GQ.. x G 

with the equivalence relation of Murray and von Neumann. In the 

last two sections of the paper we shall study the relation of G-

equivalence to G-finite von Neumann algebras, and to the equiva-

lence relation of Hopf~ 

We refer the reader to the book of Dixmier [1] for the theory 

of von Neumann algebras. 

2. Statements of results. In the present section we state the 

main results and definitions. The proofs will be given in 

section 3. 

Theorem 1. Let 0-2, be a von Neumann algebra acting on a Hilbert 
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space K. Let G be a group and t .... ut a unitary represen-

tation of G on ~ such that u;~ut =6<.. for all t E G • If 

E and F are projections in ~ we write E,..., F if for each 
G 

t E G there is an operator Tt E 6<.. such that 

E = * F 2: u-)<-T->~T U 2: TtTt = . 
tEG tEG t t t t 

G 
is an equivalence relation on the projections in OoG. Then 

Remark 1. If G is the one element group then the equivalence 

relation is the same as the usual equivalence relation 

for projections in a von Neumann algebra. 

Remark 2. If G is the additive group of fR and the represen-

tation t .... Ut is the trivial representation, so Ut = I for 

t E G ~ then the equivalence relation 

Kadison and Pedersen [4, Def.A]. 
G 

is the one defined by 

Remark 3. If <R. is abelian and countably decomposable the equi

valence relation ,..., coincides with the one defined by Hopf [3] 
G 

in ergodic theory. For this see Theorem 5. 

Remark 4. If E and F are equivalent projections in rR.~ 

i.e. there is a partial isometry V E 6( such that E = vv* 

F = v*v ' 
then E ""F • This is clear from the definition of "" G G 

putting Te = v ' Tt = 0 for t I e • 

Definition 1 • With notation as in Theorem 1 we say two pro j e c tians 

E and F in G( are G-equivalent if E ""F 
G • We write E-<' ]' 

G 
if E"" F < F • A projection F is said to be "" -finite if 

G 0 G 
E < F and E"(} F implies E = F . R is said to be ""'-finite - G 
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if the identity operator I is ~-finite. ~ is said to be 
G 

~ -semi-finite if every non-zero projection in if{ majorizes a 
G -

non-zero G -finite projection. 

Theorem 2. With notation as in Theorem 1 there exists a faithful 

normal semi-finite G-invariant trace on [at+ if and only if ~ 

is ~-semi-finite. 
G 

Theorem 3. 
finite; 

With notation as in Theorem 1 there exists a faithful 

G-invariant trace on (f(. if and only if cR._ is ,..., - finite and 
G 

countably decomposable. 

3. Proofs. We first introduce some notation and follow [1,0hi, 

§ 9] closely. Following the notation in Theorem 1 ~ acts on 

a Hilbert space &e 7 G is a group, considered as a discrete 

group 7 and t ~ Ut is a unitary representation of G on a{ 

such that u;a=<.. Ut = rR.. for all t E G • For t E G let J-et 

be a Hilbert space of the same dimension as a{ and Jt an iso-

metry of d{ onto 

rator R E 63( i(.) 
~ = 2: EB "Jf.t . We write an ope-

tEG ,..., 
- the bounded operators on 4t - as a matrix 

(Rs t)s tEG 7 where 
7 9 

Rs t = J;RJt 
9 

let q?(T) denote the element in 

E S(df) . For each 

£ (at) with matrix 

T E ~ 

(Rs t) 9 

' 
where Rs,t = 0 if sIt 9 and Rs,s = T for all s E G • Then 

~ is a *-isomorphism of ~ onto a von Neumann subalgebra ~ 
of ~ (a{) • For y E G let Oy be the opera tor in 63 ( o'{) 

h ( ) R 0 l. f t-1 _L R U wit matrix Rs 
9 
t 9 where s 7 t = s r Y , yt, t = y 

,..... 
for all t E G . Then (see [1,Ch.I, § 9]) y ~ U is a unitary y ,...., 
representation of G on a-t such that 

y E G T E 6<_. 
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If 03 denotes the von Neumann algebra generated by 6(_ and the 

uy,Y E G 
' 

then each operator in ~ is represented by a matrix 

(Rs,t) where Rs t = Tst-1Ust-1 ' Tst-1 E <R, • 
' 

We denote by 0\G the von Neumann subalgebra of~ cons is-

ting of the G-invariant operators in ~. ~ shall denote the 

center of rR.. , and go shall denote ~ n ~G • Whenever we write 

P "' Q for two projections in 63 we shall mean they are equiva

lent as operators in ~ , i.e. there is a partial isometry V E rB 

such that VV* = P , V*V = Q , and we shall not consider P and 

Q as eqiuvalent in a von Neumann subalgebra of a3 . The next 

lemma includes Theorem 1 and shovvs more, namely that 

lence is the same as equivalence in V3 • 
"' -equi va
G 

Lemma 1. Let E and F be projections in ~. Then E "' F if 
G 

and only if ~(E) "' ~(F) Hence 
G 

is an equivalence relation 

on the projections in OZ .• 

Proof~ Suppose 

such that 

E = 

Then we have 

q?(E) = 

= 
and 

!!! (F) = 

= 

E "' F 
G 

Then for each t E G 

F = " * I: Ut"-Tt'T. U+ • 
tEG -c " 

I: ~(TtT~) = 2: \P(Tt)~(Ttr* 

~(~(Tt)fft)(i(Tt)fft)* 9 

2: iP (U;T;TtUt) = L U~§(T~Tt)Ut 
,...., * ,..~ 

2: (~(Tt)Ut) (~(Tt)Ut) • 

there is 

Thus by a result of Kadison and Pedersen [4,Thm.4.1] ~(E) ~~(F). 
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Conversely assume ~(E) "' ~(F) . Then there is a partial 

isometry v E 03 such that vv* = \!i(E) 
~ v*v = 9i (F) Say V = 

(Tst-1ust-1) • Then an easy calculation shows 

E = * F = * * ~ TtTt ~ ~· UtTtTtUt ' tEG tEG 

hence E "' F The proof is complete. 
G 

Lemma 2. Let S - (T 1u ) belong to the center of ~ • - st- st-1 
Then for each s E G we have 

i) TTS = TsUs T u; for all T E 6(.' 

ii) Tsy = u*T u· for all y E G Y ys Y 

In particular Te E .:() • Furthermore~ if R E :1J then 9i (R) 

belongs to the center of ff?;. 

Proof. Let T E 6Q., • Then 

(TTst-1ust-1) = ~(T)S = S9i(T) = (Tst-1ust-1 TUts-1 ust-1) 

and i) follows. Let y E G • Then an easy computation shows 

Replacing by -1 and letting t ii) follows. By i) y y = e 9 

TeT = TTe Te E ~ By ii) if -1 we find Te so s = y = 

u~<-T u 
y e y ' 

so Te E o:zG 
' 

hence Te E ~. 

Finally let RE~ ' 
and let 8' = (S u ) 

st-1 st-1 E <2. 
Then we have 

1!(R)S' = (RS U ) 
st-1 st-1 

- ( S U R) = S 1 9i (R) - st-1 st-1 

hence \!i(R) belongs to the center of ~. The proof is complete. 
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Lemma 3~ Let E be a projection in Qc(. Let DE be the smallest 

operator in ~ majorizing E . Then DE is a projection, and 

~(DE) is the central carrier of ~(E) in 03 . 

Proof. Since ~ is an abelian von Neumann algebra its positive 

operators form a complete lattice under infs and sups. Thus 

DE = g .1. b. [A E ~ : E _s A _::: I} 9 and DE is 

E ~ DE and both operators commute we have 
2 

DE~ I so DE _s DE . Hence by minimality 

well defined. 

E2 2 
E = < DE • 

of DE DE = 

Since 

But 

D2 
E 

so it is a projection. By Lemma 2 gj(D~) is a central projection 
"""' 

in 66 9 hence if C~(E) denotes the central carrier of ~(E) in 

£ then ~(DE) 2: c~(E) . Now let cgj(E) = (T U ) 
st-1 st-1 • By 

Lem..rna 2 T E ~ 9 and since c 
9i (E) > ~(E) 9 T > E • By defini-e - e -

tion of DE Te 2: DE • But ~(DE) > c~(E) ' 
so DE > T 9 hence - - e 

T = DE The operator Q (DE) - c~(E) is positive and has zeros 
e 

on the main diagonal. Therefore it is 0 , and ~(DE) = C~(E) 

as asserted. 

Lemma 4. Let E be a projection in ~. Let CE be its central 

carrier in rR , and let be as in Lemma 4. Then 

Proof. Since 

hence DE 2: CE . Therefore by definition of DeE , DE ~DeE , 

and they are equal. 

Lemma 5. Let E be a countably decomposable projection in ~. 

Then ~(E) is countably decomposable in 63 . 

Proof. Let x be a vector in E a-e. • Then x considered as a 

vector in ~ ~ Jet belongs to d(e • Let F be the support 
tEG 
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Then F is countably decomposable, and w 
X 

is a faithful normal state of Fo:( F • Let [F } be an ortho-a. a.EJ 
gonal family of projections in 03 such that ~ F = ~(F) a Let 

a.EJ a. 
(Ta. U ) • Then 

st-1 st-1 
Furthermore, since 

Fa. < ~(F) j so T~ ~ F , hence T~ E 

x E Xe ~ c:Jx(Ta.)=c;x(T~). Thus we have 

1 = w ( F ) = cJ ( ~ ( F ) ) = L: w ( F ) = ~ wx ( T a.e ) • 
X X X a 

Therefore wx(T~) = 0 except for a countable number of a. E J • 

But then Ta. = 0 and hence F = 0 eYcept for a countable number e a. 
of a. E J Thus ~(F) is oountably decomposable in 6.3. Now 

E is a countable sum of orthogonal cyclic projections, hence 

~(E) is a countable sum of orthogonal countably decomposable 

projections. Hence ~(E) is countably decomposable. 

The proof is complete. 

Definition 2. We say a projection E in ~ is ""'-abelian if 
G 

EIRE = E ;o . 
Clcarly a ~G-abelian projection is abelian. 

Lemma 6. There is a projection P E ~ such that there exists 
.;;:;,;;.~--

a G-abelian projection E < P with DE = P 9 and I- P has no 

non-zero G-abelian subprojection. 

Proof. Partially order the G-abelian projections in OG by 

E << F if E < F and DF-E _::: I - DE Then in particular DEF = 

E • Let 

and let 

[Ea.} be a totally ordered set of 

E = supE a. so E ~ E strongly. a. 

hence if A E tR_ then 

~-abelian projections, 
G 

Then 
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= A E a a 

A E~])E. 
a a 

where Now it is well known that if Q is an ina 
creasing net of projections, and Q ~ Q 

a strongly, then CQa ~ CQ 

strongly. Thus 

by Lemma 3, hence ])E ~ DE strongly. The same argument also 
a 

show·s 

Thus E = E( I-~ ) 
a. 

+ E , and since a. 

E A E TL = A E E E g() • Since -J:!.Ia a ~ a 
limE AE ])E E E ~ • Therefore 

a. ·a 
E 

A = A ])E a a a 
we have 

it follows that E AE = 

is "'-abelian. Now let E 
G 

be a maximal ~-abelian projection in 
G 

~. Let P = ])E • Suppose 

F is a "'-abelian subpro j ection of I - P • 
G 

Then E + F is 

abelian. Indeed, if A E 6( then there are 

DF~ such that 

( E + F) A ( E + F) = E A E + F A F = E AE + F AF 

Thus E + F lS "'G- abelian. Since E << E + F , the maximali ty 

of E implies F = 0 The proof is complete. 

Thus in order to prove theorems 2 and 3 we may consider two 

cases separately, namely the case when ~ has a ""-abelian pro
G 

j ection E with DE = I , and the case when ~- has no non-zero 

"'-abelian projection. We first treat the case with a ...:.-abelian 
G G 

projection. 

Lemma 7. Let E be a G.-abelian projection in r.R_. Then CE 

is not G-equivalent to .a proper central projection. Furthermore 
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if Q is a central projection such that Q < CE then Q = DQCE • 

Proof. Let Q be as in the statement of the lemma. Since E 

is G.-abelian there is an operator D E ~ such that QE = DE 

hence, since E ~ "' CE ~ , Q = QCE = DCE , and D > Q By defi-

nition of DQ , D ~ DQ • 

= Q , so that Q = DQCE 

But DQ ~ Q , so Q = QCE ~ DQCE ~ DCE 

Now suppose P is a projection in /g 

such that P < CE and P G CE Then in particular by Lemma 1 

~(P) "' ~ (CE) , so they have the same central carrier in ~ 9 

hence By the preceding, 

CE • The proof is complete. 

Lemma 8. Let E be a G.-abelian projection in QQ. Let s E G 

and let Q be a central projection orthogonal to CE • Then if 

CE and CE+Q are G-equivalent relative to ~,i.e. the operators 

Tt defining the equivalence belong to ~ 9 then Q = 0 . 

Proof. Let P = CE and assume P G P + Q relative to 10 • ;.rhen 

since ~ is abelian, for each t E G there is A E ~+ t such 

that P = ~ At ' 
P+Q = t~GU~AtUt tEG • Since E~ = E.f> and p~ 

!:::' E g , we have p' = P&5 • Since At~ p there is Dt E~/ 

such that At = PDt • Thus we have 

2: PD t = P = P ( P + Q ) = 2:: PU~At U t 

= 2:PU~PDtUt = 2:PDtU~PUt 

* Now PDtUtPUt ~ PDt * for all t 9 hence we have PDtUtPUt = PDt 

Then for all t • Let Et denote the range projection of Dt • 

Et E ~. 
PEt , and 

* UtPEtUt • 
is PEt • 

Since * UtPUtPDt 

thus * UtPEtUt = 

By Lemma 7 CE 

= P:Ot ' u;PUtPEt = PEt • Thus u*pu t t 
* UtPUtEt ~PEt Consequently PEt~ 

is '""-finite G 
relative to ~ ' 

hence 

> -

so 
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Therefore Therefore we 

have 

and P = P + Q , so that Q = 0 • The proof is complete. 

Lemma 9. Suppose E is a G-abelian projection in ~ with 

DE = I Then ~ is of type I , and there exists a faithful 

normal semi-finite G-invariant trace on 0\ + • 

Proof. Since E is abelian CEOX is of type I . Since every 

*-automorphism of ~ preserves the type I portion of a.( , and 

D~ = I 9 ~ is of type I • 
.w 

E is a sum of orthogonal cyclic projections Ea. If we 

can show the lemma for each E a. then it holds for E . Therefore 

we may assume E is cyclic, say E = [~'x] Then w 
X 

is faith-

ful on E ~E , hence faithful on E b . If A > 0 belongs to 

CEb and wx(A) = 0 , then 0 = wx(EA) , so EA = 0 . Hence 

A = ACE = 0 . Thus wx is faithful on CE'(O , so CE is a count

ably decomposable projection in ~ • 

We shall now apply the previous theory to 0t = -c; x G instead 

of 63 = 6<-. x G . We use the same notation as before. By Lemma 7 

CE is G-fini te. If CE = DE = I then by Lemma 7 ~ = f{) , and 

it is trivial that there exists a faithful normal semi-finite G

invariant trace on ~+ • Assume CE I I • Then there is s E G 

Since by Lemma 7 CE is ,_.-finite, and 
G 

u;cEus G CE , u;cEus is not a subprojection of CE • Thus Q = 
u;cEus(I- CE) I 0 . Since CE is countably decomposable, so is 

Q , and hence CE + Q • By Lemma 5 § ( CE + Q) is countably decom

posable in 01. Since I = DE~ DcE+Q , the central carriers of 
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<.!?(CE) and ~(CE+Q) are by Lemma 3 equal to I. If <.!?(CE) is 

properly infinite then by [1?Ch.III~§S,Cor.5] <.!?(CE),.... <.!?(CE+Q) 9 

so by Lemma 1 CE G CE + Q , contradicting Lemma 8. Thus <.!?(CE) 

is not properly infinite, and there is a non-zero central projec

tion P in ~ such that P<.!?(CE) is non-zero and finite. Since 

the central carrier of ~(CE) is I , PO( is semi-finite. Let 

Q be a normal semi-finite trace on ~+ with support P • For 

A E ~+ define r(A) =~(~(A)) • Then T w a normal G-invariant 

trace because Since 

T is semi-finite, hence T is a normal 

semi-finite G-invariant trace on ~+ • Let D be the support 

of T • Then 0 I D E ~ • Now apply the preceding to (I- D) 10 

and E(I-D) , and use Zorn's lemma to obtain a family D a. of 

orthogonal projections in ~ with sum I , and a normal semi-

finite G-invariant trace Ta. of ~+ with support 

T = ~T Then r is a faithful normal semi-finite a. 
trace on ('8 + • 

Da. Let 

G-invariant 

Now since ~ is of type I there is a faithful normal 

center valued trace ¢ on oz+ such that u;¢(UsAu;)us = ¢(A) 

for each s E G, A E a<+~ see [11,p.3]. Then ro ¢ is a faith

ful normal semi-finite G-invariant trace on ~+ , see [1,Ch.III, 

§4,Prop.2]. The proof is complete. 

Lemma 10. Suppose 0( is 

G- abelian projections in 

"'-semi-finite and there are no non-zero 
G 
f<.. Then there is a faithful normal 

semi-finite G-invarian t trace on ([{_+ • 

Proof. Let E be a non-zero countably decomposable G-finite 

projection in ~ • Since E is not a.-abelian there is a pro

jection H E E d<_E such that H I EDH • Let F = H + (I- DH)E • 

Th 
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Then F < E , F I E , and DF = DH + ( I • DH) DE = DE ~ (F) is 

not properly infinite in 63. Indeed, if it were, then since 

9(E) is countably decomposable by Lemma 5, [1,Ch.III,§8,Cor.5] 

would imply ~(F) ~~(E) , hence by Lemma 1 , FG E , ccntradic

ting the ~-finiteness of E . Therefore there is a non-zero 
G 

central projection P in 63 such that Pil! (F) is finite and 

non-zero. Thus P~(DE)OB = PQ(DF)~ is semi-finite and non-zero. 

Let ~ be a normal semi-finite trace on 6.3 with support P~(DE). 

For A E 6{+ define r(A) = ~(2(A)) • As in the proof of Lemma9 

r is a normal G-invariant trace on ~+ Since r(F) < oo 

there is a non-zero central projection Q in 6( such that r 

is faithful and semi-finite on Q<R., [1,Ch.I,§6,Cor.2]. Since r 

is G-invariant Q E ~ • Now a Zorn's.Lemma argument completes 

the proof just as in Lemma 9. 

Proof of Th~m 2. By Lemma 6 there is a projection P E 825 

such that there exists a G-abelian projection E E P6( with 

DE = P , and I- P has no non-zero G.-abelian subprojection. 

By Lemma 9 there is a faithful normal semi-fin±te G-invariant 

trace r 1 on P R+ . If fR.. is G-semi-fini te then by Lemma 10 

there is a faithful normal semi-finite G-invariant trace r 2 on 

(I- P)a:t + • Thus r = r 1 + r 2 is a faithful normal semi-finite 

G-invariant trace on 6(+ . 

Conversely assume there exists a faithful normal semi-finite 

G-invariant trace r on ~+ • Suppose E is a projection in 

fR such that r(E) < oo • Since 

it is clear that E is ,..,-finite. 
G 

The proof is complete. 

E ,.., F 
G 

implies r(E) = r(F) 

Thus rR.. is G-semi-fini te. 
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Lemma.J..l. Suppose 0 is countably decomposable and 6( is ,..___ 
G 

finite. Then there is a faithful normal finite G-invariant trace 

on lR_. 

Proof. Since R is G-fini te £R. is in particular finite, By 

[1,Ch.III,§4,Thm.3] there is a unique center valued trace w on 

~ which is the identity on ~. By uniqueness ¢ is G-invari-

ent, so if T is a faithful normal finite G-invariant trace on 

~ , then T o w is one on ~ • Therefore we may assume R =b. 

Now there exists a projection P E~ such that P (0 = P ~ , and 

G is freely acting on (I- P) ~ , i.e. for each projection E I 0 

in (I-P)b there is a non-zero subprojection F of E and 

s E G such that U*FU < I-F s s see e.g. [5]. Since I is 

countably decomposable, so is P , and there is a faithful normal 

state on P ~ , hence a faithful normal finite G-invariant trace 

on P~. We may thus assume G is ~reely acting. Let· F be 

a non-zero projection in ~ and s an element in G such that 

U7~FU < I - F • Let E = I - F • Then DE = I , and F -<G E • As s s-

in the proof of Lemma 10 ~(E) is not properly infinite, so we 

can choose a central projection P I 0 in 63 such that P~ (E) 

is finite. Since F -<G E , ~(F)-< ~(E) , by Lemma 1, hence 

P!P(F) ...<_ P2(E) , so P~(F) is finite. Thus P = P~(E) + P~(F) is 

finite in d3 , and P 63 is finite. Since I is countably de

composable in ~ ( = 0.0 § (I) is countably decomposable in t8 by 

Lemma 5, hence so is P Therefore by [1,Ch.I,§6,Prop.9] there 

is a faithful normal finite trace ~ on P 63. Then T defined 

by 1 (A) = cp( ;2 (A)) is a normal finite G-invarian t trace on ~ 

with support D I 0 in ~ • A Zorn' s Lemma argument now gives 

a family 1 of normal finite a. 
gonal supports D a in JV. 

G-invariant traces on b with ortho-

Since I is countably decomposable 
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the family is countable, and by multiplying each 

a convenient positive scalar we may assume I:r (D ) = 1 • 
ex. ex. 

1" by 
ex. 

Thus 

if r =Ira. ~ then r is a faithful normal finite G-invariant 

trace on ~ • The proof is complete. 

Proof of Th~m 3. Suppose there is a faithful normal finite 

G-invariant trace r on ~. Then I is G-finite 9 for if E 

is a projection in R which is G-equivalent to I then r(E) = 

r(I), hence r(I-E) = 0, hence I-E= 0 9 since T is faith

ful. Thus ~ is G -finite. Again since T is faithful, its 

support I is countably decomposable, i.e. 0( is countably de-

composable. The converse follows from Lemma 11. 

Corollary. If rR is G-semi-fini te then (J3 is semi-finite. 

If ~· is G-finite and there is an orthogonal family of counta

bly decomposable projections in ~ with sum I , then 0?> is 

finite. 

Proof. If R is · G-semi-fini te 9 then by Theorem 2 there is a 

faithful normal semi-finite G-invariant trace on <R • Thus 

there is a faithful normal semi-finite trace on 6?> by [ 1 9 Ch. I, 

§9 9 Prop.1], hence c8 is semi-finite. If P is a projection in 

:0 then by Lemma 2 ~(P) is a central projection in (8. Thus 

in order to show the last part of the corollary we may assume I 

is countably decomposable. Then by Theorem 3 there is a faithful 

normal finite G-invariant trace on 6( 9 hence by [1,Ch.I,§9, 

Prop.1] there is a normal finite trace on 6S , so CB is 

finite. The proof is complete. 
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4. G-finite von Neumann algebras. Let notation be as in 

Theorem 1. Following [7] we say 0-l is G-finite if there is a 

r::J" 
states 

family of normal G-invariantlwhich separate tR..+ 
' i.e. if 

A E G<_+ 
' 

and l'J(A) = 0 for all OJ E g:-
' 

then A = 0 . For semi-

finite von Neumann algebras it would be natural to compare this 

concept with those of ""-finite and "'-semi-finite. 
G G 

Since a ,...,_ 
G 

finite von Neumann algebra is necessarily finite we cannot expect 

a 

say 

G-finite semi-finite von Neumann algebra to be G-finite. We 

G acts ergodic ally on ~ if ~ ( = ('g n (f<G) is the scalars. 

Theorem 4. Let 0<_ be a semi-finite von Neumann algebra acting 

on a Hilbert space ~. 

tary representation of G 

Let G 

on of 

be a group and t ~ ut 

such that u; Rut = rR 

a uni-

for all 

t E G • Assume either that G acts ergodically on the center of 

~ or the center is elementwise fixed under G • Then ~ is 

G-fini te if and only if 6<. is G-semi-fini te and there is an 

orthogonal family of finite G-invariant projections in 1'< with 

sum I . 

Proof. Assume ~ is G-finite. Suppose first that G acts er

godically on the center ~ of 6<, and suppose w is a faithful 

normal G-invariant state on fZ . Then by [ 11] there is a faith

ful normal semi-finite G-invariant trace on 6(+ , hence by 

Theorem 2 a:< is G-semi-finite. In general, by Zorn's Lemma 

there is a family [w } of normal G-invariant states with ortho-a. 
gonal supports E a. such that i:E = I • a. Then each Ea. 

invariant, and by the first part of the proof 

is G-

is rv-semi
G 

finite. In particular, E is the sup of an increasing net of a. 
G-finiteprojections. Let F beaprojectionin 6<... Weshow 

F has a non-zero "'finite subprojection. By the above consider
G 
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ations there is E and a ""'-finite subprojection F of E a. G a. a. 
such that CF F I 0 . Let F1 = CF F . Then there is a non-zero 

a. a. 
subprojection F 

0 
of F1 such that 

Since Fa. is G-finite, so is Ga. 

then by Lemma 1 ~(Ga.) ,..., Q(H) , hence 

F ...( F • Say F ""'G <F 
0 ,..., a. 0 a.-

Indeed, if G "" H < G 
a. G a. 

2(Fa.) = '(Ga.) + ~(Fa.- Ga.) 

,..., <ii(H) + ~(Fa.- Ga.) , so again by Lemma 1, Fa. ""G H + Fa. - Ga. , so 

that H = Ga. by finiteness of Fa. Thus Ga. is G-finite. 

a• 

Since G is in particular finite there is by [1,Ch.III,§2,Prop.6] a. 
a unitary operator u E rR such that UF u- 1 = G But then 

0 a. 
F is G-fini te, for if F G F2 < F then UF2u- 1 

"' F2 G G 
' 0 0 0 a. 

so by transitivity UF2u-1 Q. G Since UF u- 1 < G 
' 

they are a. 2 - a. 
equal by finiteness of G 9 so F2 = F 9 and F is "'-finite. a. 0 0 G 
Therefore the projection F has a non-zero ,..,._finite subprojec

G 
tion F , and cR. is ,...,-semi-finite. 

o G 
Next assume \0 = ~ • Then every normal semi-finite trace 

on (J(+ is G-invariant [10,Cor.2.2], so there exists a faithful 

normal semi-finte G-invariant trace on ~+ , hence by Theorem 2, 

rf< is "' -semi-finite. 
G 

Let r be a faithful normal semi-finite G-invariant trace 

on <R.+ • Let [wa.J be as before with orthogonal supports [E }. 
a. 

1 Then there is a positive self-adjoint operator H E L(R,r) a. 
affiliated with (f<.G such that w ( T) = r(H T) for T E 6<., 

a. a. 
see e.g. [1,Ch.I,§6,no.10]. Let E be a finite spectral projec-

tion of H a. Then E is G- invariant. A Zorn's Lemma argument 

now gives an orthogonal family of finite G-invariant projections 

in R with sum I • 

Conversely assume ~ is "'-simi-finite and having an ortho
G 

gonal family [E } 
a. of finite non-zero G-invariant projections 

with sum I • Let by Theorem 2 

finite G-invariant trace on dR+ 

r be a faithful normal semi-

Let c = r(E )- 1 , and let a. a. 
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w (T) = c T(E T) • Then {w } is a separating family of normal 
Ct Ct Ct a. 

G-invariant states on 6< , hence J< is G-finite. The proof is 

complete. 

The above theorem is probably true without the assumptions 

of the action of G on G. 
quite interesting. 

A direct proof of this would be 

5. Abelian von Neumann a.J,gebras. Assume 1<. is an abelian von 

Neumann algebra acting on a Hilbert space ~. Let G be a 

group and suppose t .... ut is a unitary representation of G on 

d-R. such that u;Rut = ~ for all t E G We say two projec-

tions E and Fin~ are equivalent in the sense .£! Hopf and --
write E I'V F if there is an orthogonal 

H 
family of projections 

E = L:Ea. 'I 
[E0_} a.EJ in (Q_ and t a. E G for a. E J 9 such that F = L: Ut E Ut • 

a. Ct a. 

Since each ut* E Ut is a projection, and their sum is a projec-
a. Ct Ct 

tion, they are all mutually orthogonal. Since we can collect the 

E~s for which ta. coincide the definition of equivalence in the 

sense of Hopf is equivalent to the existence of an orthogonal 

family of projections {Et}tEG in Q< such that E = t~GEt 

F = t€Gu;EtUt • This ordering was introduced by Hopf f3]. Just 

as for G we define H-fini te, H-semi-fini te, and ...(H • Note 

* that if E H F as above, if we let Tt = Et 9 then E = L:TtTt , 

* * F= L:UtTtTtUt , so EI'VF. 
G 

It is plausible that the converse is 

true too. If we assume tR. is countably decomposable, we can 

prove this via a proof which makes use of the known results on 

invariant measures if R is ""-finite and 
H 

direct proof would be much more desirable. 

I'V -semi-finite. 
H 

A 
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Theorem 5. Assume <R. is countably decomposable, and let nota-

tion be as above. Then two projections E and F in 6( are 

G-equivalent if and only if they are equivalent in the sense of 

Hopf. 

Outline o.f_J2roof. It remains to be shown that if E "' F 
G 

then 

E "' F . Assume E "' F • By Lemma 1 iii (E) "' ~(F) ' 
so they have 

H G 
the same central carrier c . By Lemma 3 ~(DE) = c = !P ( DF) ' 
DE = DF . Suppose first E and F are such that EP and FP 

are "'-infinite for all non-zero projections P E ~. In a von 
H 

so 

Neumann algebra two properly infinite countably decomposable pro-

jections with the same central carriers are equivalent [1,Ch.III, 

§8,Cor.5). Using the comparison theory for R_ with the Hopf 

ordering ~ , as developed in [6], see also [9], we can modify 

the proof of the quoted result for von Neumann algebras, to show 

E H F . If E is H-finite then since DE = DF , we may assume 

0< is H-semi-finite, so by [6] there is a faithful normal semi

finite G-invariant trace T on oz+ . From the comparison 

theorem on rf<-. [6, Lem.16], or [9,Lem.2.7], there exist two ortho

gonal projections P and Q in ~ with sum I such that 

PE ~ PF and QF ~ QE • Since PE G PF 

But if a proper subprojection F0 of PF 

we have T(PE) = T(PF). 

is such that PE "' F H o 
then T(PE) = T(F ) < T(PF) = T(PE) , a contradiction. Thus 

0 

PE H PF , and similary QE H QF . Thus E H F , and the proof 

is complete. 



- 20 -

References 

1. J. Dixmier, Les alg~bres d'operateurs dans l'espace hilbe~, 
Gauthier-Villars, Paris 1957. 

2. P.R. Halmos, Invariant measures, Ann.Math., 48 (1947), 
735-754. 

3. E. Hopf, Theory of measures and invariant integrals, Trans, 
Amer.Math.Soc., 34 (1932), 373~393. 

4. R.V. Kadison and G.K. Pedersen, Equivalence in operator 
algebras, Math.Scand., 27 (1970), 205-222. 

5. R.R. Kallman, A generalization of free action, Duke Math.J., 

36 (1969), 781-789. 

6. Y. Kawada, tiber die Existenz der invarianten Integrale, 
Jap.J.Math., 19 (1944), 81-95. 

7. I. Kovacs and J. SzUcs, Ergodtc type theorems in von Neumann 
algebras, Acta Sci. Math., 27 (1966), 233-246. 

8. F.J. Murray and J von Neumann, On rings of operators, Ann. 
Math., 37 ( 1937), 116-229. 

9. E. St0rroer, Large groups of automorphisms of 0*-algebras, 
Commun.math.Phys., 5 (1967), 1-22. 

10. ---, States and invariant maps of operator algebras, 
J. Fnal.Anal., 5 (1970), 44-65. 

11. , Automorphisms and invariant states of operator 
algebras, Acta math., 127 (1971), 1-9. 


