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The purpose of thls note is to extend the concept of 

Bohr compactifications to transformation groups (G,Z), where G 

is a topological group acting on a topological space Z. The 

Bohr compactification will be a transformation group (G,~) 

where G is the Bohr compactification of'the group G, and z is 

the Hausdorff completion of Z with respect to a certain uniform 

structure uB on Z. uB is obtained by considerations very 

similar to those given by E. M. Alfsen and P. Holm in [1] for 

topological groups. The almost periodic functions on Z will 

be exactly the U.B-uniformly continuous functions. Further 

(G,Z) will have the following factorization property: Any 

transformation group homomorphism between (G,Z) and (H,X}, where 

X is compact and the action of H on X is uniformly equi-

continuous, can be lifted to (G,Z). 

In the case when Z is a homogenous space, Z = G/H for 

some subgroup H of G, we shall see that as in the group case, 

~ is uniquely determined by the related topology on z, and 

this topology can be characterized exactly as in the group case. 

If further the action of G on G/H is amenable, we are able 

to generalize a result in [6] giving a particular simple 

1) Partially supported by NSF-GP-19693 
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characterization of this topology. In the last section these 

results are applied to give a characterization of the Bohr 

compactification of a semi-direct product. 

1. Bohr compactification of a· transformation groue 

We shall start with some definitions, notation concerning 

uniform spaces will be as in [5]. By a transformation group 

is meant a pair (G,J;Z,Z), abbreviated (G,Z) when no confusion 

arises, where (G,,;I.) is a topological group, {Z, Z) a topological 

space, together with an action G X Z ~ Z (written (g,z) - gz) 

such that ez = z, g(hz) = (gh)z for g,h E G, z E z, and the 

map n : 
z 

G ~ Z given by n (g) = gz is continuous for all z E Z. 
z 

If g E G, let n9 be the map Z -+ Z given by ng (z) = gz, 

if f is a function on Z and g E G, f denotes the function 
g 

9 f(x) = f(gx}. If A is a subset of G and B is a subset of z, 

A ' B = (ab: a E A, b E B) , and 

if U is a subset of Z x Z , let 

GU = [ (gx, gy) : g E G, (x, y) E U} . 

U is called G-invariant if GU = U. If u is a uniform structure 

on z, it is not difficult to see that the family [n9 : g E G) 

is u-uniformly equicontinuous iff u admits a basis m with 
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each U E ~ G-invariant. In this case we shall call (G,Z) 

U.-uniformly equicontinuous. If (Z, 3> is compact, ther·e is 

a unique uniform structure on Z with Z as its topology, and 

unless otherwise specified uniform continuity is with respect 

to this uniform structure. 

The next lemma, which will not be needed, shows that in 

most of the situations later considered the action G x Z - Z 

will be jointly continuous. 

Lemma 1 Suppose Z has a uniform structure lA such that (G,Z) 

is U.-uniformly equicontinuous and n : G - Z is continuous - z 

for each z E Z. Then the action G x Z - Z will be jointly 

continuous. 

Proof: Given z E Z and a neighborhood U[z ] of z for some 
0 0 0 

U E U.. Then there is V E u such that VoV c u, and further a 

WE u with GW c V. Further there is a neighborhood 0 of e 

in G such that Oz c W[z ]. If now z E W[z) and g Eo, we 
0 0 0 

have (z ,z) E w, so (gz ,gz) E V. Further (z ,gz ) E w, so 
0 0 0 0 

(z ,gz) E wav c VoV c u, and gz E U[z ]. This shows jointly 
0 0 

continuity at each point (e,z ), but since each ng will be 
0 

continuous, we will have jointly continuity at each point 

(g , z ) E G X Z. 
0 0 
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ng can be considered as an element of Zz, and if we give 

ZZ the product topology the map from G into ZZ given-by 

g ~ ng will be continuous, since n is continuous for each z 

fixed z E z. If (Z,Z) is compact, the closure E(G,Z} of 

(ng: g E G} in zz is compact. E(G,Z) will be a topological 

group in this topology iff (G,Z) is uniformly aquicontinuous. 

(See [2, Prop. 4.4]) 

Some more notations: a subset U of Z X Z is called 

cofinite if there is a finite subset A of Z such that Z = U[A]. 

It is well known that a uniform structure u on Z is totally 

bounded iff each U E u is cofinite. A subset B of Z is called 

relatively dense if there is a finite set A in G such that 

Z ~A · B. The diagonal in Z x Z will be denoted 6. 

Theorem 1. Let uB be the collection of all subsets U of 
ct:! 

Z x Z admitting a sequence (U } 0 of subsets such that 
n n= 

(i) 

(ii) 

(iii) 

each U is a symmetric Z.. X -~-neighborhood of 6. 
n 

in Z X Z, U oU C U for n = 0,1,2, ... , 
n-1-1 n+l n 

u c u, 
0 

each u is cofinite, and 
n 

each u is G-invariant. 
n 

Then uB defines a uniform structure on Z which is the finest 

uniform structure u on Z satisfying 
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(a) u defines a topology on Z coarser than z, 

(b) u is totally bounded, and 

(c) (G, Z) is \A-uniformly equicontinuous. 

P£OOf: To prove that uB is a uniform structure, the only 

non trivial fact to verify is that uB is closed under finite 

intersections. If u,v E uB with corresponding sequences (U } 
n 

and [V }, let W = U n V and W = U n V . {W } will then 
n n n n n 

satisfy (i) and (iii) with respect to w, so we will have to 

show that also (ii) holds. For this it will suffice to prove 

-1 -1 
that if U and V are cofinite, then so is (U ou) n (V 0 V). 

The argument will be quite similar to the one given in 

[ 1, Prop. 3] . If Z = U[ a 1, . . . ' . . . ' b ], take 
m 

an element c .. from U[a.] n V[b.] whenever this intersection 
l.J 1. J 

is non-empty. Any z E Z is then in U[a.] n V[b.] for some i,j. 
1. J 

Thus (a.,z) E U and (a.,c .. ) E u, 
1. 1. l.J . 

similar argument (c .. ,z) E v-1 ov, 
l.J 

-1 
so (c .. , z) E U au. By a 

l.J 

so Z = U (U-l oU) n (V-l oV) [c .. ] . 
. . l.J l.,J 

So ~ is a uniform structure on Z. Now a uniform 

structure u on z satisfies (a) iff each U E u is a Z x z-

neighborhood of ~ in Z x z. (b) holds iff each U E U is 

cofinite, and (c) holds iff u has a basis m with each V E m 

G-invariant. Thus ~ satisfies (a), (b) and (c) . Conversely 
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if U. is a uniform structure on Z satisfying (a), (b) and (c), 

and U E u., then U admi.ts a sequence (un} from U. satisfying 

(i), (ii) and (iii) . Thus U E U.B' so U. is coarser than U.B. 

By reasons we soon shall see, U.B will be called the Bohr-

uniformity on z, and ZB' the related topology on z, is called 

the Bohr topology. Now take Z to be the Hausdorff completion 

, 
of Z with respect to U.B' so Z is compact, ·further let p 

denote the canonical map of Z into Z. We shall next see 

that each homomorphism of (G,Z) into a transformation group 

(H,X) with X compact and (H,X) uniformly equicontinuous can 

be factorized via z, but first we must define what this means. 

Definition. By a homomorphism between two transformation 

groups (G,Z) and (H,X) we shall mean a map f which maps Z 

continuously into x, and such that f is a continuous group 

homomorphism from G into H, and further f shall commute with 

the actions, i.e. 

f(gx) = f(g) f(x) for g E G, x E z. 

Let (G,p) be the Bohr-compactification of Gas defined 

in [1]. Each ng is uB-uniformly continuous, so ng can be 

extended to z, and it is not difficult to see that the 

family (ng: g E G} also will be uniformly equicontinuous on 

" 
Z. By a previous remark E(G,Z), the closure of fng1 in z2 
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is a compact topological group, and the map n: G -+ E(G,Z) 

given by g ..... TTg is a continuous homomorphism, so n can be 

lifted to G. 
n 

This will define an action of G on Z such that 

p: (G,Z} _, (G,Z) is a homomorphism of transformation groups. 

Proposition 1. Given any homomorphism f: (G,Z) ...... (H,X) 

between (G,Z) and a transformation group (H,X) with X compact 

and (H,X) uniformly equicontinuous, there is a unique homo-

morphism f: (G,Z) _, (H,X) such that f = fop. 

Proof: We have earlier seen that the map H _, E (H,, X) given 

by g -+ ng is a continuous homomorphism of H into a compact 

topological group. This means that f can be factorized via 

,. 
G, i.e. there is a uniquely determined continuous function 

t: G _, E(H,X) such that 

f(g)x 
,. 

= f(p(g))x tor g E G, x EX. 

If U. is the uniquely determined uniform structure on X, 

the sets (f x f)- 1 (u) with U E U. defines a uniform structure 

~ on Z satisfying (a), (b) and (c) in Theorem 1. Thus U.f 

is coarser than U.B' and f is U.B-uniformly continuous. There-

fore f has a unique extension f to Z with f = fop. " f will 

be a homomorphism of transformation groups, because if x E G 

and z E z 
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!(p(x) p(z)) = fop(xz) = f(xz) = f{x)f(z) = f(p(x) )f(p(z)), 

hence f(xz) = f(x)!(z) for all x E G, z E z, since p(G) is 

dense in G and p(Z) is dense in Z. 

We shall conclude this section by examining the relation 

between ~B and the almost periodic functions on z. Denote 

by CB(Z) the continuous, bounded, complex valued functions 

on z. f E CB(Z) is called almost peTiodic if ( f: g E G} 
g 

is relatively compact in CB(Z), CB(Z) has the sup-norm topology. 

Let AP(Z) denote the almost periodic functions on Z. If Z 

is compact. it is not difficult to prove by using Ascoli 1 s 

Theorem that AP(Z) = CB(Z} iff (G,Z) is uniformly equicontinuous. 

(cf. [2, Prop. 4.15]) 

Proposition 2. The following are equivalent: 

(i) f is almost periodic. 

(ii) f is ~-uniformly continuous 

(iii) There is t E CB(Z) with f = fop 

Proof: (ii) ~ (iii) is obvious, and by the remark just made 

AP(~) = CB(~), so (iii) = (i)~ To prove (i) = (ii), define 

a pseudo-metric df on Z by df(x,y) = supgEG lf(gx) - f(gy) I, 

we shall prove that df defines a uniform structure on Z 
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satisfying (a}, (b) and (c) in 'fheorem 1. Since df (gx, gy) = 

df(x,y) for g E G, x,y E z, (c) holds. To prove (a), let 

x E Z and e) 0 be given. Let g1, ... , gn E G be such that 

n 
II t - fl\ < G = u [ g: e/4}, and let 

i=l 
g g, 

1. 

w = (y E Z: I f (x) - g. f <Y> I < e/4 for i = 1, ... 
' n}, g, 

1. 1. 

this is a Z -neighborhood of x in z. If y E W and g E G, 

choose g i such that \\ f - f \1 < e/4, then 
g g. 

J. 

If <gx> - f (gy) I < l f ( gx) - f ( g . x) I + I f ( g . x - f ( g . y) I 
1. 1. 1. 

+ lt<g.y) - f(gy) I 
1. 

< e/4 + e/4 + t/4 3E/4. 

;So df(x,y) < 3£/4 < e, thus W c (yldf(x,y) < e}, this proves 

(a) • 

We now have to prove that df .is a totally bounded metric. 

So let e > 0 be given, take g 1, ..• , g E G such that for 
n 

any g E G 1\gf - g. fl\ < e/4 for some i. Let 
1. 

iU, == [(x,y): x,y E z, l f(x)- f{y)j < e/8}, since f is 
1. g, g, 

1 1. 

:bounded, u. is cofinite, and an argument similar to the one 
1. 

rgiven in Theorem 1 shows that U = 
n 
n 

i=l 

-1 
U. oU. also is 

l. 1. 

~cof.in.ite. U c ((x,y): x,y E z, lf(g.x) - f(g.y) I< E/4 for 
1. ], 

i = 1, ... , n}, so there .is a finite set (y1 , ... , ym} 

in Z such that any x E Z satisfies lf{g.x) - f(g.y.} I < e/4 
1. 1. J 

fori= 1, •.. , n for some yj. Further, .if g .is any element 



in G, take g. such that \\ E 
- ~ g f\1 < c/4. Then 

g. 
~ 

< I f ( gx) - f ( g . x) I + I f ( g . x) - f { g . y . ) I + 
~ l ~ J 

m 
so df(x,yj) ~ 3E/4 < E, and z = U (x: df(x,yj) < ~1. 

j=l 
Thus df is a totally bounded metric, and (b) holds. 

By Theorem 1 we now have that df defines a uniform 
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structure coarser than uB, and since f obviously is df-uniforrnly 

continuous .. f is also U.B-uniformly continuous. So (i} :=:> (ii}, 

and the proof is complete. 

2. T~omogenous case 

We shall now study more closely the case when Z is a 

homogenous space G/H, where H is a subgroup of G, Z has the 

quotient topology z, with the usual action of G on Z. It 

turns out that hB then can be described by subsets of z, 

as in the case with Z = G. 

n will denote the canonical map G ~ G/H, and 0 = n (e) . 

If Vis a neighborhood of 0 in Z, let V = f(gx,go): g E G, 

X E V} . V is then a Z. X z-neighborhood of the diagonal 1\ in 

Z x z .. and GV = V. If U and V are subsets of z, we define 

U 0 V = n-l(U)·V = (gy: yEV, n(g) E U} and 
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We will use the notation u2 for uou. 

~ ~ ·~ -1 ~ ~ -1 
(uov) = vou and (U ) = (U) • 

Proof: Trivial verifications. 

Theorem 2. If Z = G/H, uB has a basis consisting of all sets 

....... 
V, where V is a subset of z admitting a sequence {V ) of 

n 

neighborhoods of 0 in z such that (i) Vn+lovn+l c Vn 

-1 V = V , V c v, and {ii) each V is relatively dense. 
n n o n 

Proof: If V and (V } is as above, we will find that V is 
n . n 

·- "" symmetrJ.' c v ov - (V ov >""' 
' n+l n+l - n+l n+l 

,..... 
cv 

n 
and V 

0 
c. v. v is 

a ~ x 6:-neighborhood of b., because gVn+l X gVn+l is a 
,..., ,..... 

neighborhood of ( rr(g),. rr(g)) contained in V . V is G-n n 

invariant, and if A is a finite set with Z = A V , 
n n n 

A V c V [ n (A ) ] , 
n n n n 

V E 'UB. 

..... 
so V is cofinite. 

n 
We conclude that 

n 

Conversely, suppose U E uB is given with corresponding 

sequence {U } satisfying (i), (ii) and (iii) in Theorem 1. 
n 

Take V = u [0], then V is a _z_-neighborhood of 0 in z, and 
n n n 

"' (x, y} E V gx E v , u =V . ~ ~ g E G, gy = 0 ¢::' . 
0 0 0 0 

3: g, gy = 0 (O,gx} E u 00 3: g (gx, gy) E u ~ (x, y) E u 
0 0 0 

. 
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So it remains to prove that (V ) satisfies (i) and (ii) above. p . 

Using that U is G-invariant it is not difficult to prove 
n 

that V 1 ov, 1 c V and V -l = V . To show that V is 
n+ n+ n n n n 

relatively dense, take g 1, ... , gm E G such that 

z = Un[n(g1), . . . ~ 
n(g )]. Then, if z E u [ n (g. ) ] 

m n ~ 

-1 -1 
m 

(n (g.), z) E u so (0, g. z) E U => gi z E v ' so z = U g.V . 
~ n ~ n n . 1 ~ n 

~= 

Thus given u E uB there is a sequence (V ) of subsets 
n 
"' of Z satisfying (i) and (ii) above with V cu. This proves 

0 

the theorem. 

When Z = G/H, the relation between, z, G, G and H is as 

,.. ~ --
follows: z = G/ p (H) , p is the map from G ~ G and p(H) is 

the closure in G. It is also easy to see that f E AP(Z) iff 

fon E AP(G). If ZB is the topology uB defined on Z, it 

should be clear that the sets V satisfying the conditions in 

Theorem 2 are exactly the --~B-neighborhoods of 0 in Z. 

3. Amenable actions 

If f is a bounded real valued function on z, we define 

its upper mean value M(f) by 

n n 
M(f) = inf(supxEZ E a.f(a.x): a. E G, a.)O, Z ~- = 1} 

. 1 ~ ~ ~ ~ . 1 ~ 
~= ~= 

The lower mean value off is defined as M{f) = -M(-f). It is 

then not difficult to show the following, cf. [6]: 



< M(f) < 

M(Af} = A M(f) for A ~ 0 

M( f) = M(f) 
g 

M(f f) ~ 0 
q 

for g E G 

If the action of G on Z is abelian, i.e. (gh)z = (hg)z for 

g,h E G, z E z, we have 

M(f + g) ~ M(f) + M(g) 

13 

If A is a subset of Z with characteristic function xA it is 

easy to see that A is relatively dense iff M(xA) ) 0. 

Let E be a linear space of complex valued bounded 

functions on z which contains the constants and is closed 

under complex conjugation and translations (i.e. f E E, 

g E G = fEE). A linear functional m onE is called an g 

invariant mean if m(f) = m(f), infxEZf(x) ~ m(f) ~ supxEZf(x) 

if f E E is real-valued, and m( f) = m(f) for f E E, g E G. 
g 

It is easy to see, cf. [6], that we will then have 

M{f) < m(f) < M(f} for a real valued f E E. 

A function f E CB(Z} is called uniformly continuous if 

the map g ~ f from G into CB(Z) (with sup-nonn} is continuous. 
g 

The space of all uniformly continuous functions on Z is 

denoted UCB(Z). The transformation group (G,Z) will be called 



14 

amenable if there is an invariant mean on UCB(Z). (cf. [4] 

for equivalent definitions when G and Z are locally compact.) 

If z = G/H is a homogenous space with (G,Z) amenable, 

we shall now prove that the characterization of Z in Theorem -B 

2 can be improved, the proof will follow the same pattern 

as that of Theorem 2 in [6]. 

Theorem 3. Let Z = G/H where H is a subgroup of G, and 

suppose (G,Z) is amenable. Then a subset W of Z is a Za­
neighborhood of 0 iff there is a relatively dense subset E of 

Z and a J-neighborhood V of e in G such that ((VE)o(VE)-1) 2 c W. 

Proof: If W is a ZB-neighborhood of 0, 

as in Theorem 2 with V0 c w, let E = v3 

-1 2 8 VE = v3 ov3 , so ((VE) o(VE) ) = v3 c V0 

take a sequence (V } 
n 

and V = n-l (V3 }. 

c w. 

Now suppose the subsets E and V are given, and let 

h: G ~ [O,l] be a right uniformly continuous function on G 

(as defined in [5, p. 210]) with h(e) = 1 and h{x) = 0 for 

x f V. Then define a function j: Z -• [ 0, 1] by 

j (x) = sup(h(g): g E G, x E gE}. •rh.en j (x) = 1 for x E E, 

j(x) = 0 for x ~ VE, and j E UCB(Z} since his right 

uniformly continuous. 

Let m be an invariant mean on UCB(Z), and define 

cp: G-> [0,1] by 
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~(x) = m(x?•j} = mtEZ[j(xt) j(t}]. 

Then ~ is a positive definite function, and the uniform 

continuity of j implies that cp is continuous. cp(e) = 

) 0, since E is relatively dense. 

cp(x) I= 0 :::> (xVE) fl {VE) 
-1 -1 -1 

~ x E n (VE) · n (VE) = F 1 

so cp(x) = 0 for x f F. 

Let M be the unique invariant mean on the space of linear 

combinations of continuous, positive definite functions on G, 

and exactly as in [6) we find that 

M(cp) ~ m(j) 2 > 0 . 

-1 
Define a function~: G ~ [0,1) by ~(x) = MtEG[cp(t)cp(t x)]. 

As in [6]. $will be a positive definite and almost periodic 

2 
jM(cp) I > O, and w (x) = 0 

for x $ F2 . So w1 = (x E G: l·w(x) -¢(e) I < w(e}} is a 

JB-neighborhood of e in G contained 
. 2 

Thus W n(w ) ~n F .. = 
0 1 

is a ZB-neighborhood of 0 in z, and n(F) = VEo (VE) -1, so 

2 
F · n (F) TI (F) o TI (F) (VE o (VE) -l) 2 w c TT(F ) = c c c w. 

0 

Thus W is a ZB-neighborhood of 0 in z, and the theorem is 

proved. 

Remark. This theorem is an analogue of Theorem 2B in [6]. 
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Relatively accumulating subsets E of Z can be defined- exactly 

as in [6], they can be characterized by M(x ) > 0, so it is 
.E 

easy to state and prove an analogue of Theorem 2A too. 

Corollary. W is a Z -neighborhood of 0 in Z iff there is a -B 

symmetric, relatively dense Z-neighborhood U of 0 such that 

c w. 

Proof: In Theorem 3 take E = U and V a s~netric neighborhood 

of e in G with v2 c -1 
n (U}. 

Example. The following example shows that the finite chain 

characterization of ZB may also hold when (G_, Z) is not 

amenable. Take G = SL(2,R), the group of 2 X 2 real matrices 

with determinant 1, H = t(~ ~-1) . t > 0}, and Z = G/H. Then . 
z is compact, in fact z is homeomorphic to the unit circle 

T in C by the map n: G _, T 

(~ ~) a - ic n - ji;T :;=;;2 

G will be the trivial group, so z is a one-point space, 

thus the only ZB-neighborhood in Z is Z itself. H is amenable 

as a solvable Lie group, so if (G,Z} was amenable, G also 

would be. (cf. [ 3, Theorem 2. 3. 3], the proof is the same as 



when His normal.} Hence (G,Z) is not amenable. 

{ i8 
The sets V = e : 

E 
lei < r.}, £ E < 0, n] is a basis 

for the topology ofT at 1 =- n(e). Want to prove 

-1 
VTI v = 

E 

=( cose sine) 
a {t) =(: :t) (: Write m(O) n{x} = 

\-sine cose 

Then n-1 (v) = {m(8} a(t) n(x): 
€ 

leI < £, t > o, x e R} 

So ve:-l = {n(n(x) a(t) m(8)): lei< c, t > o, x E R} 

n(n(x) m(8)) ::;: where r (x, 8) 
i8 = e - x sin8. 

So if (x,e) varies over Rx <-E, E) it is easy to see that 

c:: v -1. 
vn e: Further it is not too difficult to see that 

17 

:) 

-1 j. v -l' 
€ 

-1 
so V = V . So the only symmetric neighborhoods 

€ TI 

of 0 in z are Vn and z itself. 

-1 
Next we will show that V oV = z, and then it suffices 

E £ 

to show -1 E V oV -l 

( 
cos8 

n -sine 

E: E 

E V -l 
E 

Take any 8 E <0, e:), then 

cose + i sine E v , and 
E 

by what we just proved. So 
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cose (_: :) -
-1 is in v o·v .-l 

E: E: 
-sine 

The compactness of z, means that any neighborhood 

of 0 in Z is relatively dense, so we therefore can draw the 

conclusion that w is a ZB-neighborhood in z iff there is a 

symmetric neighborhood V of 0 in Z such that VoV c W. 

This example answers for transformation groups a question 

asked in [6] for topological groups, the finite chain char-

acterization of ZB is not equivalent to amenability of (G,Z). 

The example also suggests that for topological groups the 

answer to the question is negative. One would also be 

interested in examples of transformation groups where the 

finite chain characterication of ZB does not hold, but none 

is known to the author. 

4. The Bohr compactification of a semi-direct product. 

In this section we shall see that Theorem 2 can be 

used to characterize the Bohr compactification of a semi-

direct product G = H G) Z. The result is 
.... 

that G is a semi-

direct 
.... " " product of two groups, H and z, where H is the 

Bohr compactification " of H and z is a certain compacti-

fication of Z, depending on 1. This problem has been 
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studied by other methods (and in greater generality) -in [7]. 

First recall the definition of a semi-direct product: 

Let H and Z be topological groups with H acting on Z 

as a group of automorphisms, that is, there is a jointly 

continuous map T: H X Z -> Z satisfying 

(*) T(hk,X) = T(h,T(k,x)) and T(h,xy) = T(h,X)T(h,y) 

for h, k E H and x, y E z. Let G = H x z with product 

topology and group structure given by (h,x)(k,y) = (hk,xT(h,y)). 

G is then a topological group, called a semi-direct product 

of H and z, written G = :H (0z. 

Define an action of G on z by (h,x)y = XT(h,y), 

for h E H, x, y E z. This is really an action, and the 

,.. 
action is jointly continuous. Let z be the Bohr compacti-

,.. 
fication of Z as G-space (as defined in Section 1), and H 

the Bohr compactification of H (as a topological group). 

,.. 
We shall see that Z is a topological group, that T can be 

lifted to a map 
,., ,... ,.., " 
T: H x z -> z also satisfying(*), and 

that the corresponding semi-direct product H @) Z is the 

Bohr compactification of G. 

Observe that the action of G on z is transitive 

(i.e. Gx = z for each x E Z), and the stability subgroup 

of e E Z is H (considered as a closed subgroup of G in 
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the obvious way), so as a G-space Z ~ G/H, and the isomer-

phism is also a homeomorphism. 

Now let us find out what the topology of Theorem 2 

looks like in this case. The projection n: G -> G/H ~ Z 

is simply n(h,x) = x, so if U is a subset of z, the 

subset 
-1 u defined in the beginning of Section 2 is the 

-1 -1 -1 -1 -1 -1 
same as n((H,U) ) = -r(H,U ), since (h,u) = (h ,T(h ,u )), 

So a subset U of Z is symmetric in the sense of Section 2 

iff u isH-invariant (i.e. T(H,U) = U) and 
-1 

u = u in 

the group z. Further, the set U o V defined in Section 2 

is the set 
-1 

n (U)V = (H,U}V = U'T(H,V). So if V is H-

invariant, U o V = U · V (multiplication in Z}. Applying 

these observations on Theorem 2, we have proved the first 

half of 

Proposition 3. A subset V of Z is a ZB-neighborhood of 

e in Z iff there is a sequence {V } 
n 

of Z-neighborhoods 

of e such that 

(i) v c v, 2 c v v -l = v 
o vn+l n' n n 

( ii} each V is H-invariant and Z-relatively dense. 
n 

Further ZB is a group topology on z, and the group-

operations are uniformly continuous with respect to zB. 

Proof: Just note that a H-invariant subset of Z is 
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G-relatively dense iff it is Z-relatively dense. The uniform 

continuity of the group operations then follows from 

I 6 , Lemma 1 ] . 

Let 
h 

T Z -> Z be the map defined by 
h 

T {x) = T(h,x). 

The family (Th:h t: H} is then Z -uniformly equicontinuous, 
B 

so can be extended to a continuous map 
,. " ,.. 
'f: H X Z-> Z. 

A 

Let p denote the natural map of both H and Z into H, 

A A 

respectively Z. Since p(H) is dense in H and p(Z) is 

" dense in Z, the equations in (*} also hold for f. So we 

can form the semi-direct product H {f) Z. 

Theorem 4. With notation as above, G ~ H G) z. 

Proof: We shall prove that (H (D z, p) has the unique 

factorization property defined in [1] with respect to 

G = H G) N. So let ~ be a continuous homomorphism from 

G into a compact group K. Define an action of G on K 

by 
-1 

(h,x)k = cp(e,x)cp(h,e)k~(h ,e). This is an action, and 

since K hds a basis of neighborhoods invariant under inner 

automorphisms, it is easy to see that the action is uniformly 

equicontinuous. 

Define ~: Z -> K by w(x) = cp(e,x), then 

W((h,x)y) = (h,x) .(y), so by Proposition 1 w can be uniquely 
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extended to a map ~: H -> K. 
,.. * is a homomorphism on p(Z), 

" so by density also on Z. Define ¢•: H -> K by 

··(h) = ~(h,e), then w' can be uniquely extended to a 

homomorphism *': H -> K. Then define ~: H (0 Z --> K 

by ~(h,x) = ~(x)~'(h). If p also denotes the canonical 

(£J z --> H {i! " "" map from H z, we have ~ = cp 0 p' cp is unique, 

G) Z) 
,.. 
~) 

,.. 
and by using the density of p(H in H z it is 

" not difficult to prove that cp is a homomorphism. 

Finally, let us also look at ZB in the amenable 

situation. Let UCB (Z) 
G 

denote the space of uniformly 

continuous functions defined in Section 3, i.e. f E UCBG(Z) 

iff to each e > 0 there is a neighborhood U of e in G 

such that lf((h,x)y} - f(y) l = !f(xT(h,y)) - f(y) I < e for 

(h,x) E U and all y E z. So UCB (Z) 
G 

is a subspace of 

UCB (Z} 
r the ordinary right uniformly continuous functions 

on Z as defined in [5, p. 210]. Corresponding to the 

definition in Section 3 we shall say that Z is G-amenable 

if there is a G-invariant mean on UCBG(Z). 

Lemma 3. G is amenable ~ H is amenable and Z is G-

amenable. If G is locally compact, then z G-amenable ~ 

Z amenable. 
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Proof: The first ~ is trivial, for the other way let m' 

be a left invariant mean on UCB (H) 
r 

and m" a G:...invariant 

on Then define m on UCB (G) 
r 

by 

m(f) = m'hEH(m"xEZ(f(h,x))). Rather straightforward, although 

note quite trivial calculations show that m is well defined 

and that m will be a left invariant mean on UCB (G). 
r 

That Z G-amenable ~ Z amenable when G is locally 

compact follows from [4, Theorem 3.1]. The converse of the 

last implication seems unlikely to be true. 

Going back to the characterization of ZB, the corollary 

of Theorem 3 gives: 

Corollary (to Proposition 3). If the action of G on Z 

is amenable, a subset V of Z is a ZB-neighborhood of e 

iff there is a symmetric, H-invariant, relatively dense 

Z-neighborhood U of e with 
7 u c: v. 
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