
On a class of complex function spaces. 

Bent Hirsberg 

In [3] and [4] E. Effros proposed and investigated the com-

plex analogue of the preduals of real 1 L -spaces, also termed 

Lindenstrauss spaces. 

The aim of the present note is to characterize those complex 

function spaces which are complex Lindenstrauss spaces, in terms 

of orthogonal measures on the ChoQuet-boundary. The main result 

is the following: 

Theorem. Let X be a compact Hausdorff space and A ~ C~(X) a 

closed linear subspace, separating the points of X and contain­

ing the constant functions. Let S denote the state space of A • 

Then the following statements are eQuivalent: 

(i) A is a complex Lindenstrauss space. 

(iii) Z = conv( S U -iS) is a ChoQuet-Simplex. 

(iv) A is self-adjoint and ReA is a real Lindenstrauss space. 

As a consequence we shall see that no uniform algebra is a 

complex Lindenstrauss space unless it is C~(X) • 
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Preliminaries and notation. 

Let X be a compact Hausdorff space and let A c C~(X) be 

a closed linear subspace, separating the points of X and con­

taining the constant functions. 

The state space of A i.e. 

S = [p EA* P ( 11 ) = II P II = 1 J 

is a w*-closed face of the closed unit ball K of A* • 

Define 

Z = conv(S U-iS) 

and let 9: A ~ A(Z) be defined as 

ea(z) = Re z(a) , Vz E Z • 

Then 9 is a bicontinuous real-linear isomorphism of A onto 

the space A(Z) of continuous affine functions on Z , cf. [2]. 

We note that S is a closed face of Z with complementary 

face S' =-iS . Moreover, the barycentric coefficient in the 

decomposition after S and S' is uniquely determined i.e. S 

is a parallel face of Z • For details we refer to [1]. 

Let Q denote the canonical embedding of X into S i.e. 

r:p(x) (a) = a(x) Va E A • 

Also let T denote the unit circle and define 2: T x X ~ K 

by 

~(:>.,x) = :>.cp(x) 

· and 1: C<V(X) ~ Cq;(T x X) by 

Lf(:>.,x) = :>.f(x) V(:>.,x) E TxX 

It follows from [5] and [6] that y -1 L"- o g? maps maximal pro-

bability measures on K into complex boundary measures on X " 
' 
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i.e. ll E M~(oeK) implies 1*(12-11.1) E M(oAX) • 

Following Effros [4] we define for f E C~(K) the function 

invTf(p) = Jf(ap)da 
T 

Vp E K ~ 

where da is the normalized Haar measure on T • It is easily 

verified that invT is a norm-decreasing projection in C~(K) • 

Similarly, we write 

hom~f(p) = Ja- 1f(ap)da 
T 

lfp E K 

and observe that homT is a norm-decreasing projection in C~(K). 

Taking adjoints of these projections we obtain the following norm­

decreasing w*-continuous projections in M(K) 

In [4] Effros proved that complex Banach spaces V with V* 

isometrically isomorphic to L 1 (Y,~,I.l) for some measure space 

(Y,O:),I.l) can be characterized by the following condition on the 

closed unit ball K in V 1' 

Here r: M~(K) - K denotes the barycentric map. 

Such Banach spaces are called complex Lindenstrauss spaces. 

Lemma 1. Let ll E M~(oeK) • Then the measures homTI.l and 

invTI.l are boundary measures on K • 

Proof: [4, Lemma 4.2]. 

If v E M(X) , then we denote by ~(v) the direct image of 

v under ~ • 
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Then the measure v = L*(~- 1 ~) is 

a complex boundary measure on X such that 

Proof: By [5] v is a complex boundary measure on X . 

Let f E C~(K) • Then 

L(homTfo~)(A,x) = homTf(A~(x)) 
and hence~ 

homT(~v)(f) = jhomTfo~ dv 
X 

= jhomTfa~ d L~(-( 1?- 1 ~) 
X 

= J L(homTfo~) d~- 1 ~ = 
T>rX 

r 1 
j (L(homTfo~))o§- d~ 

= JhomTf d~ = homT~(f) 
K 

and the lemma is proved. 

~(TxX) 

We shall need the following fact on the embedding of S in Z. 

Lemma 3. S is a split face of Z if and only if A is closed 

under complex conjugation. 

Proof: Assume S is a split face of Z • Let a E A and decom-

pose a = a 1 + ia2 . 

Define b 1 E A(S) and b 2 E A(-iS) by 

b 2 (-ip) = -ea(-ip) Vp E S 

Since S is a split face of Z and S' = iS is closed, it fol­

lows from [1, Prop II.6.19] that there exists hE A such that 
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Thus for x E X we shall have 

a1 (x) - ia2(x) = ea(x) - i ea(-ix) = 9h(x) + i 9h(-ix) = h(x) 

Hence a E A , 

Conversely, we assume that A is closed under complex con-

jugation. Consider convex combinations 

where p.,q. E S and 0 <A.< 1 for i = 1,2 • 
l l 

If p1 I p2 , then it follows from the Hahn-Banach theorem 

and the assumption on A that we can find a = a E A such that 

e(a)(p1) I e(a)(p2) • Moreover, 

A.9a(p1 ) + (1-A.)9a(-iq1 ) = A.9a(p2 ) +(1-A.)ea(-iq2 ) • 

Since ea!s, = 0 , we shall have 

which is a contradiction, and the lemma is proved. 

Proof of theorem. 

i) => ii) • Let l.l E A.J.. n M(oAX) and decompose !.l as 

!.l = A1!.l1- A.2!.!2 +iA.3!.l3 -i A4!.l4 

where A.i > 0 and \l· E M~(oAX) for i = 1,2,3,4 - 1 

or equivalently 
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Let z be the common value of the left and right hand sides 

of this equation. 

Since ~ E A we conclude that A1 = A2 and A3 = A4 . 

Hence we may assume that A1 + A4 = A2 + A3 = 1 • Specifically, 

z E Z • 

If t: K • K is defined by t(p) = -ip 

measures 

v1 = A1 (cp(!-11)) + A4 w (cp(\l4)) 

v2 = A2(cp(\-l2)) +A3 ~(cp(!-13)) 

Vp E K , then the 

are maximal probability measures representing z • 

Since A is a complex Lindenstrauss space, it satisfies the 

condition(*). Hence: 

Let f E CCV (X) , define f on 2 ( T x X) by 

f(Acp(x)) = Af(x) , 

-and extend f to f E Ccv(K) (Tietze). Then 

Vx E X • 

Moreover, 

homTv1 (f) = A1 JhomTf o cp d\11 + A 4 JhomTfo $ ocp d 1-1 4 
X X 

= A1Jfdu1 -iA4Jfdu4 
X X 

Similarly, 

and hence 

0 = A1!-l 1(f)- A2!-l 2 (f) +iA3\-l 3 (f) -iA4~-t 4 (f) = !-l(f) 

i.e. 1-1 = 0 and (ii) follows. 
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ii) ==> i). The condition (*) is seen to be an immediate conse-

quence of Lemma 2. 

ii) ==>iii). First we observe that S is a Ohoquet-Simplex 

since (ii) asserts that there is no real annihilating boundary 

measures. Hence it suffices to prove that S is a split face 

of Z or equivalently that A is selfadjoint. 

To see this we assume that a E A and a ~ A • Then there 

exsits a measure ~ E AL such that ~(a) I 0 • Decompose ~ 

into real and imaginary parts i.e. IJ. = \..1 1 +i\..12 and choose real 

boundary measures vi E M(oAX) such that 

for i = 1,2. 

Define v = v1 +iv2 , then v E AJ... n M(oAX) and from (ii) 

we conclude that v = 0 and hence v1 = 0 = v2 • In particular 

1-l· E AL for i = 1,2 and hence !-l(a) = 0 
~ 

and we have obtained 

a contradiction. 

iii) ==> ii). Let ~ E A.L n M(oAX) and decompose 1-l as 1-l = 

\..11 +i\..12 • Since A is selfadjoint, we shall have that 1-li E A..L 

for i = 1 ~ 2 
' 

and since s is a Ohoquet-Simplex, we conclude 

that 1-li = 0 for i = 1 '2 and hence IJ. = 0 . 
iii) <==> iv). Trivial. 

This completes the proof of the theorem. 

Remark. In order to prove that (ii) implies (i) we could have 

used the fact that the space of complex boundary measures M(oAX) 

is an 1 L -space [4], and since every p E A* can be represented 

by a complex boundary measure 1-lp E M(oAX) with I!Pi! = !!1-lpll, con­

dition (ii) asserts that A* is isometrically isomorphic to 
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M(oAX) ~ and (i) follows. 

Specializing to uniform algebras, we obtain the following: 

Corollary. Let A be a uniform algebra. Then A is a complex -
Lindenstrauss space if and only if A = C~(X) • 

Proof: If A is a complex Lindenstrauss space, then A is a 

selfadjoint, and now the Stone-Weirstrass theorem yields 
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