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Let E be an analytic space, i.e. E is a Hausdorff space 

which is the continuous image of the Baire-space NN, where N 

is the set of natural Numbers. Let S be the class of absolutely 

measurable sets in E, i.e. the sets which are IJ-measurable with 

respect to every a-finite, complete and regular Borel measure u 

on E. 

Problem: Give a description of the class S. 
As usual we shall"describe" a set by its definability charact-

eristics, hence the precise version of the problem is: Which 

sets in the Erojective hiearchy over E are absolutely measurabl~ 

It turns out that the answer depends on the underlying set 

theoretic axioms (Godel [7], Soloway C23]). Classically,, i.e. 

on the basis of ordinary Zermelo-Fraenkel set theory, one can 

show that every analytic (Suslin, ~~:) set is absolutely measur­

able. But there are consistent extensions ZF1 and ZF2 ·of 

ordinary ZF set theory such that in ZF1 one can prove the 

existence of a non-absolutely measurable set of class ~1 (i.e. 

the sets which are projections of co-analytic sets), whereas in 

ZF 2 one can prove that every E~-set is absolutely measurable. 

The problem is thus undecidable in ZF. And at present there 

is no universally accepted extension of ZF which allows us to 

decide the problem. 

Our main concern in this paper is to use some recent results 

in set theory to push the classical results a bit further. This 

part is based on the cand.real. Thesis of D. Normann [17]. We 

shall also include a brief section giving a survey of some known 

results relating various set theoretic axioms to questions of 

measurability. 
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1. PRELIMINARIES. 

We shall need various results from set theory, topology and 

measure theory. The backbround required in~pology and measure 

theory will be very standard, and we shall be brief on this point. 

The background needed from set theory may not be so familiar to 

the "ordinary" mathematicians, which is our excuse for being 

somewhat more expansive here. 

1 .1. Background from set theory. 

By "ordinary set theory" we mean the Zermelo-Fraenkel-system. 

(For a brief introduction to ZF, see Cohen [41, chapter II 9 

Jech [10].) It is well known that in ZF one can obtain the 

universe of all sets by starting from the empty set and iterating 

the power-set operation along the ordinals. Let V be the 

universe of all sets. Let V0 = ¢ 
is the powerset operation, and a,B 

and V = (P( u v 13 ), where rJ 
ry R<cr. 

are ordinals. Symbolically, 

one then can write V = uv , where rr runs through the ordinals. a 
(More precisely the following statement is provable in ZF : 

Vx::B:rr,(xEV ).) This seems to give a description of the universe, rr, 

but the 11 description" is only apparent, one of the main defects 

being that the power set operation is left unanalyzed. And it is 

precisely this fact which has ramifications for questions of 

measurability. 

1.1.1. Constructability. A very restricted notion of the power­

set operation was used by Godel (Godel [7l, [8], see also Cohen 

[4l ch. III and Jech r10]) as a technical device for proving the 

consistency of the axiom of choice and the generalized continuum 

hypothesis with ZF. 
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Let (M, R1 , ••• ,Rn) be a first order structure (i.e. M is 

a non-empty set and R1 , ••• ,Rn are relations over M). By 

Def ((M,R1 , ••• ,Rn)) we understand the collection of subsets X 

of M which are first order definable over M, i.e. there is 

some formula ~ and elements y1 , ••• ,ym EM such that 

X = [x E M;M !== iJ? (x,y1 •. ·Ym)J, where M f= ~(x,y 1 ••. ym) means that 

the formula ~ is satisfied by the elements x,y1 ••• ym in the 

structure M. 

The constructible universe, L is now defined by the follow-

ing transfinite induction (a and A are ordinal): 

L = 

= Def ( <L , e ) ) () a 

rr L 
a<\ a 

U L 
a a 

when 

where 

where e is the membership-
a. 

relation restricted to L • 
a 

is a limit ordinal. 

runs through all ordinals. 

If we compare the definitions of V and L, we notice that 

in the latter case we have introduced a spesific meaning to the 

powerset operation, viz. the powerset consists of those subsets 

of the given set which are ordinal definable over the given set, 

with the e-relation as the only relation. 

1.1.2. Forcing. We begin with a brief remark on models for ZF: 

A model for ZF is a non-empty set M and a binary relation E 

on M such that (].VI, E) satisfies the axioms of ZF. M is the 

"universe" of the model, the elements of I'1 are the sets of the 

model, and ""' b is the membership-relation of the model. The 

model r1 is standard if E is the usual ~-relation and M is 

transitive, i.e. x E y EM implies x E M. We know that if 

ZF is consistent. there is an (even countable model for ZF, but 
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not necessarily a standard model. 

Let M be a countable standard model for ZF. The forcing 

method, as introduced by P.J. Cohen [4], (see also Jech [10] is 

a techniq_ue for adding new sets to M. We explain this: 

A partially ordered set F = (F, ~ ) is called a set of 

conditions if every p EIP has a proper extension in JP (i.e. 

there is a q E F such that q_ ~ p, q_ I p) and every p E JP 

has incompatible extensions in JP. · 

Each ~ determines a Boolean algebra in the following way. 

For X ~JP, set 1X = [q_JVr~q; r~X}. Define 

:B = BA (JP) = [X S JP ; ll X = x} . 

E with obvious operations will be a complete Boolean algebra 

(the algebra of "regular open sets"). 

Given a complete Boolean algebra ID, we can extend the notion 

of first order structure to the notion of a ID-valued structure. 

Normally a relation can be viewed as a map from the domain into 

the Boolean algebra (false, true}, ([0, 1)). In the ID-valued 

case the relations are maps from the domain into ID. And given 

any such maps we can define for any sentence ~ in the language 

appropriate to the structure, the truth-value !~1 in a manner 

which completely generalizes the classical case (where I~] is 

either ~ (=false) or 1 (=true)). 

If E = BA(F) we shall define a certain E-valued model of 

ZF, VF, consisting of the heriditary JP-sets. Let x be any set. 

The domain and range of x is defined as follows: y E dom(x) 

iff (y,z) E x for some z, and y Erng(x) iff (z,y) E x for 

some z. Set h(x) = x U dom(x) U dom(dom(x)) u... h(x) is 

called the heriditary domain of x. 

F-set if h(x) is a relation and 

x is called a heriditary 

rng (h(x)) c JP. As a very 
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simple example of a heriditnry F-set we mention 

x = [ <¢, p) ; p E JP}. VJP shall be the class of all heridi tary 

F-sets. 

On ~ one can, by recursion, define lli-valued relations I 

(identity) and E (membership) such that 

is a ID-valued model for ZF (i.e. KQD = 1 for all ZF-axioms eh 

Once more, let r1r be a countable standard mod_el for ZF and 

let F E M be a set of conditions in M. A subset ~ c~ is 

called dense if 'tfp EIP a q_ < p( q, E ~). G c JP is called JP-generic 

over M if the following three conditions are satisfied~ 

i. Vp,q (pEGAp~ q_ .... q_ E G) 

ii. Vp,q E G (p,q are compatible, i.e. have a common 
extension) 

iii. If 1:5. E Tvi and 6 is dense in IP, then G n-6 I¢. 

A simple but basic result is that for every p E l' there 

exists a IP-generic G over M such that p E G. (It is essen-

tial that M is countable.) 

By induction we can now define a map G* vF .... v by 

G*(x) = [G*( y) lap E G ((y,p) E x)J. 

Let N be the G*-image of V~ n Tvl. One may now show that 

N is an "ordinary" (i.e. two-valued) model for ZF, that M ~ N, 

that M and N have the same ordinals, that G E N-M, and that 

N is the constructible closure of M U [G} along the ordinals 

of M; which we write N = M[G]. 

Example. Let M be a countable standard model for ZF. Let JP 

consists of all finite 0-1 sequences, each p E JP is a finite 



- 6 -

bit of a characteristic function of a subset of w. Let G be 

P-generic over M. Then UG · is (the characteristic function of) 

a subset of w, which belong to N = M[G] but not to r1. (If 

GEM, then F- G is dense, hence should meet G by iii above.) 

We need one more notion. If ID = BA(F) and M is a B-

valued structure we define the forcing relation between a condition 

p E ~ and a sentence Q in the language appropriate to the 

structure M by 

P ~ ~ iff P e rr l'i] • 

We have now the following relationship ("completeness theorem 

tor forcing'') between forcing and validity in the model N = M[G]. 

N F ~ iff 3: p E G - ( p if+- Q ) ' 

i.e. a sentence ~ is valid in N iff it is forced by some 

condition in G. (The expert will note that we have been somewhat 

inexact with respect to the various languages involved.) 

1.1.3. The projective hierarchy. The purpose of this section 

is to fix notation. Let Xn = (NN )n and X = llO'(x ) • The pro­
n n 

jective sets is the least subclass of X which contains all 

Borelsets and is closed under the following operations~ 

i. Projection of a set in a space 

xm of lower dimension. 

xn down to a space 

ii. Complementation within a space Xn. 

Since Xn and Xm are homeomorphic for all n and m we 

can always assume that projections lower dimension by one. Thus 

a set A in Xn is projective iff for some m and some Borelset 

B c Xn+m" 
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where Q1 , ••• Qm is an alternating string of quantifiers V, 3:. 

A belongs to class ]~ if Q1 = V, and to class f.~ if Q1 = 3: • 

Q~ is defined as n~ n k~· 
A Subset A -- (NN)k v.~ Nn , , is called recursive if we can 

effectively decide if an element belongs to A or not. We shall 

not need a more precise definition in this paper. A set A is 

recursive relative to some f E NN if there is a recursive set B 

such that x E A iff (x,f) E B. 

For every Borelset A there are sets S and R recursive 

relative to some function f such that 

x E A iff Vf3:n((x,f,n) E R) iff 3:gVm((x,g,m)E S). 

This can be used to give more specific form to the defining con-

dition for a set in the projective hierarchy. 

If we build the hierarchy with absolutely recursive sets, we 

get the socalled "analytic" hierarchy of recursion theory. (For 

further information on this topic see Addison [9], or Shoenfield 

[19], chapter 7). 

1.2. Background from topology and measure theo~. As a general 

reference we mention J. Hoffmann J0rgensen 1 The theory of analytic 

spaces [9]. Here we recall a few basic definitions and results. 

A Polish space is a Hausdorff space which admits a complete 

metric and which has a countable, densesubset. 

An analytic space is a Hausdorff space, which is the continuous 

image of a Polish space. Such spaces need not be metrizeable. 

Any Polish space is homeomorphic to a G5 set in IN, where 

I is the unit interval in lli. And any analytic space is the 

continuous image of Baire space NN. Further, any compact sub-

space of an analytic space is Polish. 
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An analytic measure space is a pair (E,!J.), where E is an 

analytic space and ~ is a measure on E satisfying: 

i. ~ is a-finite, i.e. E is a countable union of sets 

with finite ~-measure. 

ii. ~ is a Borelmeasure, i.e. every Borelset in E is 

~-measurable. 

iii. ~ is regular, i.e. ~(A) = sup(jJ (K); K compact A Ks_ A} , 

for all 1-L~easurable A. 

iv. ~ is complete, i.e. every subset of a set with ~-measure 

0 is t-t-measurable. 

We refer the reader to Hoffmann J0rgensen [9] for the im­

portance of analytic measure spaces. Perhaps it suffices to say 

that the class is large enough to include the most important 

examples of topological measure spaces, but small (or "nice") 

enough to exclude various pathologies which may occur in general 

measure spaces. Analytic measure spaces was first introduced by 

P. Cartier generalizing more specialized examples considered in 

the context of probability theory of D. Blackwell and A.Kolmogoroff 

(see [g] for exact references.) 

2. SURVEY. We restrict ourselves to question about Lebesgue­

measurability over the real line m. As will be seen from the 

next section both positive and negative results can be lifted to 

arbitrary analytic measure spaces. The classical result is that 

every ~~ set is measurable. And equally classical is the 

result that there are non-measurable sets. 
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2e1. The possibilitie~. This is a question of consistency. The 

basic results are due to K. Godel and R. Solovay. 

2.1.1. Negative results. Already Godel [7] in 1938 knew that 

if one adds the assumption that every set is constructible 

(which we write symbolically as V = L) to ZF, then there are 

61 
"'2 subsets of JR. which are not Lebesgue-measurable. Go del 

showed that if ZF is consistent, so is ZF + V = L (i.e. ZF 

with the axiom of constructibility added). And in the theory 

ZF + v = L there is a 61 
"'2 

well ordering of the reals. If one 

goes back to section 1 • 1 . 1 one easily sees from the construction 

of La+1 from La that there is a well-ordering of L. A more 

delicate analysis is needed to see that it is 61 when restricted 
"'2 

to the reals. (The details were published by Addison [2].) And 

applying the k~ well-ordering in the usual construction of a 

non-measurable set at once gives a counterexample. 

2.1.2. Positive results. Using Cohen forcing technique R.Solovay 

in f23] (for an exposit1on, see also Jech [10]) proved the follow-

ing result: Assume that there is a standard model for ZF pluss 

the assumption that there exists a strongly inaccessible cardinal 

number. Then there is a standard model for ZF (with the axiom 

of choice weakened to the axiom of dependent choice) in which 

every subset of JR. is Lebesgue-measurable. Notice that whereas 

the (uncountable) axiom of choice is needed for getting a non-

measurable set of IR in ZF alone, the axiom of dependent choice, 

DC , which says that if R is a binary relation on a set A 

such that yx :H:y(x,y) E R, then there is a map f : N ~ .l;. such 

that vn<f(n),f(n+1)) E R) is sufficient to obtain the usual 

"positive" results of measure theory. 
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2.2. Axiomatic extensions. This is a question of truth. The 

assumption is that there is a real universe of sets, and in this 

universe which exists independent of our attempts at describing 

it through some particular axioms, every individual set of reals 

is Lebesgue-measurable or not. What we so far can conclude from 

2.1 is that the current attempts to describe this universe (e.g. 

through the ZF axioms) has only been partially successful. 

This need not be a scandal if our insight into the "true" 

universe of set theory leads us to evident principles extending 

ZF and which allows us to decide e.g. the problem of which sets 

of reals are Lebesgue-measurable. 

So let us briefly review some attempts at pinning down the 

fine structure of the continuum by axiomatic extensions. 

2.2.1. Constructibility. This was already discussed in section 

1 • 1 • 1 and 2. 1 • 1 • In the theory ZF + V = L there exists a 

well-ordering of the reals which enables us to answer almost all 

questions about the projective hierarchy (see Addison [1], [2]). 

2.2.2. Measurable cardinals. Axioms asserting the existence of 

certain very large cardinals are natural candidates for extending 

ZF set theory. There is one such axiom which has remarkable 

consequences for the projective hierarchy. 

A cardinal K is called measurable if there exists a less 

than K-additive 0-1 valued measure on the powerset of K which 

takes the value 0 on singletons and value 1 on K. It is not 

perhaps immediate that a measurable cardinal is a large cardinal. 

However, it is known that if K is an uncountable measurable 

cardinal, then there are K strongly inaccessible cardinals less 

than K. (For an introduction to this topic, see Shoenfield [20]a) 
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Let MC mean that there is an uncountable measurable cardinaL 

In the theory ZF + MC one can show that every 2:: 1 set is ,...2 

Lebesgue-measurable. This result is due to Solovay (unpublished, 

a proof can be extracted from r23], see also section 3.1 below). 

This seems to be the optimal result in ZF + MC. The axioms 

V = L and MC contradicts each other. But the ideas of measur-

ability and constructibility can be joined in the following way. 

Let L be the sets relatively constructible from a measure ~ 
IJ. 

on K. Then if ZF + MC is consistent, then ZF + V = L 
ll 

is 

consistent (where V = L~ says that every set belongs to L11 ). 

And in ZF + V = L one can prove that there is a 61 well-
~ ,...3 

ordering of the reals, which at once gives a non-Lebesgue-

measurable set of reals. These results are due to Silver (21]. 

REMARK. We should perhaps add a technical comment: In the theory 

ZF + I1C one can prove that v a c to (w1L[a] < to1 ), i.e. for all 

subsets a c to the first uncountable cardinal in the partial 

universe L[a] (the sets relatively constructible from a) is 

countable in the "true" universe. This assumption suffices to 

obtain all consequences for the projective hierarchy which follows 

MC (see Solovay [22] for added information). And this is a 

consistent extension of ZF. 

2.2.3. Determinateness. Associated with every subset A c NN 

we have the following game. There are two players who alterna­

tively chooses elements from the set N. In the end thElfproduce 

an element x E NN. If x E A player I has won, if x E NN-A 

player II is the winner. 

The axiom of determinateness, AD, asserts that for each 

A c NN there is a winning strategy for one of the players. 
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PD, the axiom of projective determinateness, makes the similar 

statement for all projective subsets of NN. 

It may not be obvious why AD should have any ramifications 

for problems of measurability. On a very general level we can 

make the following remark. Let A be a subset of NN, and let 

players I and II follow strategies rr and ,., respectively. Let 

rr *,. · denote the element of NN produced by the play. 

The game associated with A is determinate if either I or II 

has a winning strategy. This can be written as 

:3:0'\:f'T" ( rr*T E A) v :!ITVO'( O'*T ~ A). An equivalent form is the following 

ifT:!IO'(O'*T E A) .... :3:0'\:fT(rr*T E A) , 

i.e. the existence of "local" counterstrategies gives the exist­

ence of a "global", i.e. winning, strategy. Usually implications 

of the type ~ ~ :!IV require some assumptions of finiteness, 

compactness, uniformly boundedness, or the like. AD gives it for 

free. (For an introduction to this topic see Mycielski r15], 

Fenstad [6].) 

AD contradicts the axiom of choice, but is hopefully con­

sistent with the axiom of dependent choice, DC. (see section 2.1.~. 

Assuming AD r1ycielski and Swierczkowski [ 161 showed that every 

subset of the real line is Lebesgue-measurable. A closer look at 

their proof shows that in the theory ZF + PD every projective 

set is measurable. (This is pointed out e.g. in [6].) 

In general one may say that the axiom PD enables one to 

lift various regularity properties which classically was known 

for only the first few levels of the projective hierarchy to all 

levels of the projective hierarchy (In addition to measurability 

one noteworthy result is the extension of the uniformization 

principle due toY. Moschovakis, see his forthcoming monograph [14] 
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for full information.) 

R~1ARK. We add a comment on the relationship between MC and 

AD. It was proved by D. Martin [111 that in ZF + MC it follows 

that every Q~ game is determinate. Conversely, it has been 

proved by R. Solovay (unpublished) that if we add the assv~ption 

that every ~~ game is determinate, then there exists inner 

models with (many!) measurable cardinals. 

2.3. Do any of the axioms discussed in section 2.2 represent a 

"true'' insight into the universe of all sets? Constructibility 

is a consistent extension of ZF, but consistency need not imply 

truth. Many people tend to believe that the notion of power set 

build into the idea of constructibility is too restrictive. And 

besides, the existence of a ~~ well ordering in ZF + V = L 

blocks the extension to higher levels of the projective hierarchy 

of various "true" properties which are true at the first few levels. 

Judged from its consequences the axiom MC and even to a 

larger degree the axiom PD is desirable. But no one has so 

far claimed any insight into the "true" universe of set theory 

compelling us to accept either MC or PD as a true extension 

of ZF. 

3. EXTENSIONS. This section is divided into three parts. First, 

we shall introduce the notions of absolute and provable ~~ sets 

of reals and show that every such set is absolutely measurable. 

Second, we shall lift various results about measurability to 

arbitrary analytic measure spaces. Finally, we shall add some 

remarks on how complex an absolutely measurable set of reals can b~. 
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3. 1 • Absolute sets. We introduce the basic definitions. 

Definition. A set Nl\T a c - is provably if there are 

and n~ formulas ~ and ~, respectively, and a parameter 

y E NN such that 

i) x E A iff ~(x,y) iff ~(x,y) 

ii) ZF 1- VxVy(~(x,y) t-t ~(x,y) ). 

(Here ZF l- ~ means that ~ is provable in ZF.) 

A set A c NN is absolute ~ 1 
""2 

if there are !:1 
2 and n1 

2 

formulas ~ and ~ Jl respectively, and a parameter y E NN such 

that 

iii) X E A iff ~(x,y) iff l(x,y), 

and such that for all (countable) standard models M of ZF 

such t:'J.at x,y EM 

iv) ~(x,y) iff M f= 9(x,y) and ~(x,y) iff M I= ~(x,y). 

( I= is the satisfaction relation, see section 1. 1 • 1 • ) 

REr'IARK. 

if A 

LEMMA. 

!!· 

b. 

By an absoluteness 

is provably k~ then 

The class of absolute 

There are absolute ~1 
-2 

a-algebra generated by 

A 

argument one immediately sees that 
1 is absolute k2 • 

~1 
...,2 sets is a a-algebra. 

sets which are not in the 

the 1 
f1 sets. 

The proof of !! follows immediately from the fact that arbi-

trary countable unions can be coded by a single parameter from 

NN. For the proof of b let 1 
cr(Q1) denote the a-algebra gene-

rated by the n1 sets. The elements of 1 
""1 a (Q1 ) can be coded in 
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the following way. First observe that there is a set 

A c N rN NN X \1 X - such that every B E n1 
"'1 

can be written in the 

form 

B = {x ; (n,y,x) E A} , 

for some n E N and y E N N • We now set 

i) For all X E N 
N ' n E N y = (1,(n,x)) is a code and 

By = {z . (n,x,z) E A}. 
' 

ii) If X 

iii) Let 

all 

is a code, 

X = (x.). EN l l ... 

i, then y = 

then y = ( 2 ,x) is 

By = NN' Bx. 

and assume that x. 

< 3 ,x) 

l 

is a code, and 

By = U Bx • 
iEN i 

ZF that the relations "y 

a code and 

is a code for 

is a code for We can now prove in 
1 a cr(J!1 )-set" and 1 "x E By" both are tJ. 2 , hence the set 

{X ; X f. BX} gives the required counterexample for b. (We omit 

the somewhat messy details of the proof.) 

RET1ARK. The notion of an absolute set may be too "meta-

mathematical" for the taste of an "ordinary" mathematician. It 

would be interesting to get some alternative description of this 

class. The notion of absolute is certainly not original 

with the present authors, but we are unable to find a suitable 

reference in the literature. 

We now come to the main result of this section. 

THEOREM. If for all x E NN there is a countable standard model 

M of ZF such that x E M, then every absolute set is 

absolutely measurable. 
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Proof. Let ~ be an atomless, finite, positive Borel-measure 

(note that this represents no essential restriction) and M a 

countable standard model of ZF in which u can be defined 

(- note that a measure is determined by its values on the base 

elements and thus may be represented by a sequence of reals). 

We call x random over M if x belongs to no Borel-set of 

1,.1-measure 0 which is codeable over N (-note that similar to 

the coding of the cr-algebra cr(g~) introduced above, one can 

introduce a coding for the Borel-sets; a Borel-set is then code­

able over N if the code for the set belongs to N). 

We now observe, since M is countable, that the set of non-

random elements has ~-measure 0, and that no element of M is 

random, since [x) is codable over M whenever x E M. 

We shall now make use of the forcing technique (see section 

1.1.2). First we introduce a set of conditions. Let B1 and 

B2 be Borel-sets codeable over M and define B1 ~ B2 if 

f.l (B 1 1::. B2 ) = 0. ""' is an equivalence relation and let rB be the 

set of eq_ui valence classes [B]. Set F = (3' [ [¢] J • Define an 

ordering < by [B 1J ~ (B2] if ~(B 2 , B2 ) = o. It is easily 

verified that QP,~) is a set of conditions. 

J.JEMMA. Let x be random over Jv1. Then the set 

Gx = f(B] ; x E B, B is codable over M, ~(B) > OJ 

is F-generic over M. 

We content overselves by verifying condition iii in the 

definition of a F-generic set. So let 1::. EM be a dense subset 

of F, we first verify that in M 

(*) N 
tl( U B) = tL(N ). 

[B]Et::. 
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For the proof of (*) assume that in M we have 11*( U B) = r 
(B]E~ 

and that ~(NN) > r (here ~* is the inner measure associated 

with ~). Let C be a Borel-set in M such that C c u B 
[B]E~ 

N and such that ~(C) = r. Consider D = N \ C. By density [D] 

must have an extensi0n [E] E b.. Then J.L(CU E) > r, but 

C U E c U B - a contradiction. 
- [B]E6 

From ( *) it now follows that if x ¢ U B, then x would 
[B]Eb. .. 

belong to some Borel-set c which is codable over M and which 

has ~-measure 0. But this contradicts the fact that x is 

random over M. Hence x E u B, which shows that 6 nGx I¢. 
[B]E~ 

This end the proof of the lemma. 

REMARK. Since [x1 = n B, we see that x E M[Gx], for every 
[B]EGx 

x which is random over M. 

Let now ~ be a formula which is absolute with respect to 

all forcing extensions of M. Define 

'!' ( G ) = VY ( y E n B ... 1'\ ( y) ) 
[B]EG 

We then see that '!'(Gx) ~ -~Cx), for all x. Define 

E = U[B ; [B] f+- Y(G)J, 

and let x be random over M. Using the completeness theorem 

for forcing we obtain 

X E E iff :RB([B] ~ 'I'(G) A xEB) 

iff :![.[B] E Gx([B] ~'!'(G)) 

iff M[Gx] I= 'I'(Gx) 

iff M[Gx] f= ~ (x). 
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(In this part we again beg the expert to overlook some looseness 

with respect to the languages involved.) 

The proof is now finished: Let A be absolute in the 

parameter y and let M be a countable standardmodel containing 

y. Let ~ be the defining formula for A, we then see that for 

x random over M, x E A iff x E E, where E is the set above. 

Since the non-random elements over M has measure 0, it follows 

that A 6 E is a subset of a set with measure 0. And since E 

obviously is a Borel-set, we conclude that A is ~-measurable. 

REMARKS. l· The argument above is an analysis of the appropriate 

part of Solovay [23]. His purpose, as explained in section 2.1.2, 

was to obtain a consistency result, but our result is quite easy 

to read off from his proof. Thus we at most claim some novelty 

in the way we have presented the theorem (e.g. in the use of 

absolute 61 sets). 
-2 

2. Adding the Shoenfield absoluteness theorem [18] to the above 

argument gives the result about ~~ sets mentioned in section 

2.2.2. This is due to Solovay (unpublished). 

3. Restricting ourselves to provable 61 sets we do not need 
"'2 

the assumption about inner models, hence the result is a pure ZF 

result. The reason is that since the proof, only uses a finite 

part of the axioms, we can use a Skolem-Lowenheim argument to 

obtain an "inner model". 

4. Our assumption about inner models is stronger than ZF + con( ZF ). 

Is this assumption a reasonable adition to ZF (i.e, can it be 

accepted as a true statement)? At least one of the authors are 

inclined to believe so. 
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3.2. Analytic measure S£aces. Let E be an analytic space 

(see section 1.2 for definitions and a list of basic properties). 

There are two ways of defining the projective hierarchy on E: 

i. Starting with the Borel-sets in k = 1,2, ••• , we 

generate the projective hierarchy by the method of section 

1.1.3. 

ii. Let N n be a continuous and surjective map rr : N ~ E, we 

let A s Ef belong to the class Tin iff n 1 (A) E I!~. 

As we shall later see the two possibilities are equivalent for 

Polish spaces, but in general ii. defines a larger class than i. 

Since we will use condition ii in lifting results from lli to 

arbitrary analytic measure spaces, we make the following d.efini tion. 

Defini+.ion. Let E be an analytic space, a con-

tinuous and surjective mapping, n ~ 1, and AcE 

A belongs to class TI (~ ,h ) 1'ff ~- 1 (A) E II.n1 (~n1 '~-n1 ). n L..n L.ln " ~ ;:::. /2 

LEMMA. 

a. Every Borel-set in E is of class 61 • 

b. Tin is closed under countable intersection and unions, and 

6n is a a-algebra. 

c. Let A c Ek+1 be of class rrn and let B be the projection 

of A on Ek. Then B is of class 2:n+1" 

Let n-1,n2 . NN ~ E be two Borel-continuous maps (n . F ~ E . . 
is called Borel continuous if y Borel in E implies 

,.,.-1 (Y) B ) ,, orel in F , and let A ~ E. Then 
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We omit the proofs. (For the proof of d. note that the set 

{<x,y) ; TI 1 (x) = rr 2(y)J is Borel.) The lemma shows that method 

ii includes method i, and it shows that the definition is inde­

pendent of the particular mapping rr = NN ~ E. 

Definition. A set .A c E is called absolute /:,2 if rr-1 (A) is 

absolute 1 
k2. (Part d.. of the lemma above holds equally well for 

absolute !:, 1 
-2 set, hence the definition of absolute /:,2 is in-

dependent of the map rr.) 

We now come to the main result of this section. This was 

proved by D. Normann in I17]. Let r(E) denote any of the 

classes nn,~n,r:,n' absolute ~2 in the analytic space E. 

THEOREM. The following three conditions are equivalent: 

i. EYery set in r(NN) is absolutely measurable. 

ii. Let {P,~) be a Polish measure space: Every r(P) set is 

1J. -measurable. 

iii. Let {E,~) be an analytic measure space: Every r(E) set 

is ~-measurable. 

Proof. It suffices to prove ii ~ iii and i ~ ii. 

ii ~iii. Recall from section 1.2 that every compact subset of 

an analytic space is Polish. Further recall that the measures 

involved are regular and a-finite, i.e. there exists a in-

creasing sequence of compacts (Kn)nEN such that 

Let A E r(E), it suffices to show that An Kn is ~-measurable 

for all n. If rr 1 = NN ~ E is surjective and continuous, it 
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follows that rr-1 (Kn) is closed in NN, hence n11 (AnKn) is of 

class r(NN). Since Kn is Polish, there is a continuous sur-

jection N As in d. of the lemma it follows that n2 N ... Kn. 

1121 (An Kn) is of class r(NN), which means that A n Kn is of 

class r(Kn) in Kn. By ii, this means that A n Kn is 

~-measurable. 

i ... ii. Recall from section 1.2 that a Polish space is homomor­

phic to a G5 set in IN. From this it follows that if (P,~) 

is a Polish measure space there is a Borel-set Q ~ NN and a 

Borel isomorphism n : Q ... P. Let A E r(P); in order to show 

that A is ' ~-measurable, we define a measure ~ 

~'(Y) = j.lrt(YnQ), 

on by 

whenever the latter is defined. It is a matter of routine to 

verify that u' is a complete and a-finite,Borel-measure on NNo 

Since n-1 (A) is of class r(NN), it follows by i that ~'(n-1 (A)) 

is defined, which means that ~(A)= ~n(n- 1 (A)n Q) is defined, 

i.e. A is u-measurable. 

REMARKS. 1. The Borel isomorphism TI between P and a Borel­

set Q s NN is precisely what is needed to verify that the two 

methods mentioned in the beginning of this section leads to the 

same hierarchies over P. 

2. We have a strong negative result. All uncountable analytic 

spaces E includes a Cantorlike subspace [9, p.118]; hence E 

includes a Borel-set homeomorphic to NN. Then, if there is a 

set in r(NN) which is not absolutely measurable, there will be 

a set in r(E) which is not absolutely measurable. On the other 
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hand: If there is a non ~-measurable set A E r(E) we must, by 

our theorem have a set B E r(NN) such that B is not absolutely 

measurable. Thus, given r as above, the following two state-

ments are equivalent: 

a. There is an 1mcountable analytic space E in which some r(E)­

set is not absolutely measurable. 

b. In all uncountable analytic spaces E, some r(E)-set is not 

absolutely measurable. 

3. In Normann [17] several other results are generalized from 

NN to arbitrary Polish and analytic spaces. E.g. one may show 

that every analytic space E is the continuous injective image 

of some rr1 
""'1 

set in NN 
' 

which suffices to show the following 

result: Let n1 
""'1 

~ r(NN) and assume that every uncountable r(NN) 

set includes a perfect subset. Then the same is true for sets 

of class r(E), where E is an arbitrary analytic space. 

3.3. On the complexity of absolutely measurable sets. Our results 

so far go in one direction: every "nice" set is absolutely measur-

able. Is there a converse, i.e. are absolutely measurable sets 

necessarily nice? We give a lemma due to D. Normann [171 which 

suffices to answer the question in the negative in most cases. 

LEMMA. There is a set of reals A of cardinality w1 such that 

~(A) = 0 for all atomless Borel-measures ~· 

Proof. Let A consist of one code for each countable ordinal. 

Let M be a countable standard model for ZF such that ~ is 

definable over M. Then the set A0 = {x E A; the ordinal coded 

by x belongs to M} is countable, since M is countable, 
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hence A 
0 

is ~-measurable and ~(A 0 ) = 0. 

From section 3.1 we know that ~([x ; x is non-random over 

M}) = 0. The proof will be concluded if we can show that if 

x c A and the ordinal coded by x does not belong to M, then 

x is non-random over M. Suppose not, then x E M[Gx] (see the 

remark following the lemma of section 3.1). But from the general 

theory of forcing (see section 1.1.2) we know that M and M[Gx] 

have the same ordinals. Now if x E M(Gx], then the ordinal 

coded by x also belongs to M[Gxl, hence to M, contradicting 

our assumption. 

R~~RK. 1. Here too, we only need a finite part of ZF, so the 

assumption about inner models can be eliminated. 

2. A cannot contain a perfect subset. (This is well-known, see 

e.g. [22].) 

1 " 

2. 

Some consequences of the lemma and the remark are: 

If 
U1l1 (!) 0 

2 > 2 , then there are absolutely measurable sets 

which are not in the projective hierarchy. 

Let A be the set of the lemma. 

ZF + vacw (w 1L[a] < w1 ) that A 

We can prove in the theory 

is no 1 
~2· 

3. Let A be the set of the lemma. We can prove in the theory 

ZF + PD that A is not projective. 

To prove 1 notice that all subsets of A are absolutely 

measurable, then use a cardinality argument. To prove 2 and 3 

notice that in ZF + Va c w(w 1 L[a] < Ltl 1) every uncountable ~~ set 

contains a perfect subset, Solovay [22], and in ZF + PD every 

projective set contains a perfect set, see e.g. [15]. 
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REMARK. The lemma does not answer the Question about the com-

plexity of absolutely measurable sets in every case. It has 

been proved consistent by Martin and Solovay [12] that every 

set is absolutely measura~le and that every set of cardinality 
1 w1 is g1 • 

4. A CONCLUDING REJYIARK. A "main problem" in set theory is to 

analyse the notion of powerset operator. This is not only an 

"internal" problem for set theory, but is a problem which inter­

acts with other parts of mathematics. In this paper we have 

tried to show its ramifications for the problem of measurability. 

In one direction we tried to push the classical results a bit 

further without introducing an analysis going beyond ZF. In 

another we commented on various axiomatic extensions of this 

analysis. But the main problem of "grasping" the power set 

operation, - if it ever can be grasped - is still there. 

REMARK. It has been claimed that the idea of an absolute power-

set, which underlies the set theoretic approach, is not a clear 

and consistent notion and must be abandoned. For various pre­

dicative or constructive approaches see e.g. Bishop (9], 

Feferman [5], and Martin-L0f [13]. 
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