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A subset B of the domain of a recursion theory is said to be 

regular if B n K is "finite 11 (in the theory) whenever the set K 

is "finitei'. Of course, in ordinary recursion theory every set is 

regular, so there the concept is not considered. However, when 

moving up to recursion theory on an admissible ordinal a. , non-

regular a.- r. e. sets exist whenever a.* < a. • In case a. is in-

admissible then there are non-regular a-recursive sets. 

When studying a- r.e. degrees for an admissible ordinal a. 

the obstacle of the existence of non-regular a- r. e. sets is 

circumvented by the following theorem due to Sacks. 

Theorem 1 ([3]). Suppose a is an admissible ordinal. Then 

every a- r.e. set is of the same a-degree as a regular a.- r.e. 

set. 

Maass [1] has recently obtained a uniform version of theorem 1. 

Let ® be an infinite computation theory as defined in [6]. 

In this paper we prove the following analogue of theorem 1. (A 

weaker but for most degree theoretic purposes sufficient version 
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is proved in [7).) 

1rheorem 2o Suppose ® is an adequate infinite computation 

theory. Then every e- s.c. set B is of the same degree as a 

regular. ®- s.c. set D. Furthermore D may be chosen such that 

Vx(Vy~x) (xED => y ED). 

Remark: Suppose ® is the infinite computation theory over 

an adequate resolvable admissible set ~ with urelements. Then the 

theorem asserts that every ..A- r.e. set is of the same ..k -degree 

as a regular .A- r. e. subset of 0(../f) , the ordinal of ._A. • 

Thus we have that adequacy is a sufficient condition on ® for 

the regular set theorem to hold. However, it is shown in [2] that 

the condition is not necessary. On the other hand, assuming AD , 

Simpson [ 4] has shown there is a ® such that every regular Gl - s. c. 

set is ®-computable. 

The proof of theorem 1 was simplified by Simpson [5]. He uti­

lized the '.vellordering of the domain in the form that every a.- r.e. 

non-a.-finite set has a 1 -1 a.-recursive enumeration. The analogous 

property is false for arbitrary adequate computation theories. Thus 

our proof of theorem 2 is modelled after Sacks' original proof of 

theorem 1. 

For definitions and notation the reader is referred to [6]. 

Proof of theorem 2: Let B be a ®- s.c. non-tEl-computable set, 

We are to find a regular ®-s.c. set D such that D = B. Let 

B* = {s: Kgn B ;i 0} where A.SKS is a fixed enumeration of ®-finite 

sets. We have Kg n B* = 0 <=> U {K11 : Tl E Ks) n B = 0 and 

Kg n B = 0 <=> S t_ B * • Thus B * = B • 
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Let n: U ... Ll~\ * be a projection such that n(x) - y1 & 

n(x) - y 2 => y1 ""' y2 o Then 

( 1 ) Ky n B * = 0 <=> U (K11 : 11 E Ky } n B = 0 <=> Hy n B * = 0 

where AYHy is a @-computable mapping whose values are (canonical 

8-indices for) 19-fini te sets such that Vy (HY /: 0) , 

s E Hy ::;:. Ks = U (K11 : 11 E Ky} and 

s1 ,s2 E Hy => s1 ,... s2 & n(s1 ) ,...n(s2 ). Because of (1) it is 

convenient to work with B* instead of B. 

Let AO'Bcr be a d.isjoint (~)-enumeration of B* such that 

vcr (Bcr /:0) and Vcr,x,y (xEBcr & yEB0 => X"'Y & n(x) ..... n(y)). 

Define 

D2 = [cr: (3T > cr)(BT-< B0 & n(B.,-)..t.. n(B0 ))). 

Note that expressions like n(B.,.)-<. n(Bcr) make sense and are ltD­

computable. Clearly D2 is e- s.c. and U - n2 is unbounded. 

n2 is regular. 

Proof: Given 
cr 

a vre show D2 n L 0 
0 

is 8-finite. Having 

defined cr 0 , ••• ,crn we choose, if possible, crn+1 such that 
a 1 cr· cr 1 cr· 

crn+1 ).. crn and (V j in) (B n+ ..( B J v n(B n+ ) --< n(B J)) • By the 

well-foundedness of ...!... the defined sequence is finite. Let cr be n 

the last. Then 

cr 
One inclusion is obvious. So suppose cr E D2 n L 0 • Choose .,- >-cr 

If T ~ cr then all is well. n 

If T > crn then by the choice of crn there is j.:S.n such that 
0'· 0'· 

B J~ BT & n(B J)~ n(BT) • But then 
0'· cr cr. 

B J ..<. B & n(B J)-< n(Bcr) and 

cr-< cr ~ a. • Thus the inclusion from left to right holds. 1\"A 
0 J IL.\1 
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Claim 2: D2 ~ B*. 

Proof: First we show 

cr cr 
(2) cr ¢ n2 <=> rr-1 &-rCLB ) n (LTT(B ) - u rr(B,.))] n B* = ({1. 

-r..(.cr 

Suppose the right hand side is false for a given cr. Then there 

are x and T such that 

X E rr-1 [ rr(LBcr) n (LTT(Bcr) - u n(Bcr I ) ) J n B T • In particular 
cr'-( cr 

rr(x) n rr(LBcr) I= 0 so X E LBcr (since TT is a projection) and hence 

B T-< Bcr • Furthermore n(x) n (L n(Bcr) - U rr(Bcr')) /: 0 so 
cr'~ cr 

n(B 1 )-< rr(Bcr) 1 and T >-cr. Thus cr E n2 • 

The converse of (2) follows by a similar argument. Using (2) 

we have 

cr cr 
KnD2 =0 <=> u rr-1 [rr(LB)n(Lrr(B)_ u rr(B,.))JnB*=0, 

crEK T~cr 

so n2 ~B*. 

We now make an assumption and show that if the assumption holds 

then B* ~ n2 • On the other hand if the assumption is false, we 

find cr cr 
such that B * = B * 11 L • It is then easy to find a regular 

@- s.c. set D such that B* 11 Lcr "" D. 

Define 

k1 is 8-computable and total (by adequacy). Let 

k(y) = ~cr[k1 (y);:SBcr & min n((y: y ...... k1 (y)})~n(Bcr) & cr ¢D2]. 

Note that 

Claim 3: If k is total then B* ~ n2 • 
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Proof: - Note that Hy n B* /:. ¢ <=> H c B* • We show y-

H c B* <=> y-
HY _s U {B T : T-<. k( y)) • It then follows from ( 1) that 

B* ~ n2 • So let s E HY S B* , say s E B,.. We want to show 

'I"-<,. k(y) • BT~ k1 (y);:6 Bk(y) so T f k(y). Suppose T 7 k(y) • 

Then since k(y) ~ n2 it must be that n(Bk(y1~ n(BT) • But then 

n(BT) ..... n(Hy)-( min n(£y: Y'""'k1 (y)}) ;6 n(Bk(y)) ~ n(BT), 

a contradiction. Thus T-<. k( y) • 

Now we assume k is not total. Choose y such that 

\icr(Bcr..( k1 (y) v n(Bcr)-< minn(£y: y-k1 (y)}) v crED2]. 

k (y) 
B* = B* n L 1 • y We will show B~ = B* • Clearly Let 

By adequacy we can choose cr0 such that 

T >· cr 0 => n(B T) >- min n( {y: y ...... k1 ( y)}) • Thus 

( 3) \i T >- cr 0 (B T-<._ k 1 ( y) V T E D2 ) • 

B* < B* y- • 

k (y) 
Let B' = B*- (L 1 U U{BT: T ~ cr0 }). Since clearly B*- B' _:: B~, 

it suffices to show B' < B* in order to show B* = BY*. 
- y 

Claim 4: 

Proof: 

B' < B* - y• 

We first show 

(4) SEB' <=> 3cr,T(cr0 -< cr--<.T & sEBct & BT-<..k1 (y)~Bcr 
& n(B'~")<n(Bcr)]. 

The if direction is obvious. So suppose s E B' • Then there is 

cr >- cr 0 such that s E Bcr and, by ( 3) and the definition of B' , 

cr E n2 • Thus there is T 1 ~ cr such that B T 1-< Bcr and 

n(BT1)-< n(Bcr). If BT1 -< k1 (y) then we are done. If not, then 

T1 2 B ~ k1 ( y) so T 1 E D by ( 3). Thus there is T 2 >- T 1 such that 
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T2 T1 T2 T1 
B -<.. B & n(B )-<. n(B ) • The sequence r 1 ,r2 ,... must be 

T 
finite so eventually we obtain Tm such that B m-< k1 (y). This 

proves (4). 

Now suppose we have chosen the enumeration of 8-finite sets 

A.SKg to be repetitive in the following sense: Given an:y x then 

every 8-finite set has an index in U- Lx o Then we can .find a 

8-computable mapping A.~G~ whose values are 8-finite sets such 

that 

k (y) 
(5) K,nB•c¢<=> (K~- (L 1 uU(BT ~ r;t cr0 }))nB* = 0 

<=> G~ n.B I = 0 • 

Furthermore A.~G~ can be chosen to have the following properties: 

V~(G~;/.0), G~nB' ~0<=>G~~B', G~:;:B* <=>G~~B 1 , and 

s1 ,s2 E G~ => s1 rv s2 & n(s1 ) ...... n(s2 ) o 

k1(y) 
Let F~ = (x E L : n(x)-<. n(G~)} , and let 

1(~) = 1J.T[(F~-U(B0 : cr-<.r})nB~ = 0]. Then 1 is total by ade­

quacy and 1 .::W B~. Clearly 1(~) is a strict least upper bound 

for (r: BT SF~}. We show G~n B 1 = 0 <=> G~n U{BT: r< 1(11)} = 0. 

Combining this with (5) we then have B 1 ~By. So suppose s E G~ s_B 1" 

By ( 4) there is cr and r such that cr 0 -< cr .t.. r, s E B0 , B r-< k1 ( y) 

and n(BT)-< n(B0 ). If cr ~1(~) then r .>1(~) so n(G~)~ n(BT). 

But n(Br)~n(B0 ) ~ n(G~) so we have a contradiction. This shows 

cr-< 1(~) , which was all that remained to prove the claim. ~ 

Let C = U (n(x) : x E B~} • It is easily seen that C = B~ 
since B* is bounded. Let X.crC 0 be a disjoint (;S) -enumeration y 

of C such that Vcr(C 0 /: 0) and x,y E C0 => x'""' y. Let 

D = (cr: (3r_>.cr)(Cr""C 0 )}, the deficiency set of C .. D is clearly 
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regular and U-D is unbounded 0 

the proof of the theoremo 

We show D - B* y thus completing 

() 

We have a ¢ D <=> (LC - U {C'T' : 'T'-< cr}) n C = 0 so 

o" 'T' K n D = 0 <=> U (L - U {C : 'T'-< a}) n C = 0. Thus D < C - B~ • 
crEK 

For the converse reducibility note that 

(6) 
k1(y) 

K11 n B~ = 0 <=> U (Ks : S E K11 n L } n B = 0 <=> N n B' = 0 
'11 

where A.T)N11 is a 8-computable mapping having :properties similar 

to those of A.11G11 • Let f('ll) = \l""[C'T' ~ n(N11 ) & 'T' ¢ D] • f is total 

by adequacy and f ~ D • Let 

g('ll) = !-l'T'[rr-1 (U[C 0 : cr-<. f('ll)})- U{B0 : cr-< T} = 0]. Then g is total 

and g < D • -w We show N'll ~ B' <=> N11 ~ U [B 'T' : 'T'-< g( 11)} o This 

together with (6) shows B~ _::D. So suppose s E N11 ~ B' o By 

(L~) there are cr, 'T' such that s E Bcr, cr-<. 'T', B'T' <. k1 (y)~B0 and 

rr(B r)--< n(Bcr) ~ n(N11 ) • Thus B r c B~ since B r < k1 ( y) • Further-

more B'T' ~ n-1 (U{c'T'': T'-<.f(TJ)}) since n(B'T')-<n(N11 ) and D is 

a deficiency set for C • But then 'T'-<. g( '11) so cr-( g( 11) • 

As a final remark we note that the regular set produced is 

either D2 or D • Both of these satisfy the last statement of 

the theorem. 
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