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A subset B of the domain of a recursion theory is said to be
regular if B N K 1is "finite" (in the theory) whenever the set K
is "finite"., Of course, in ordinary recursion theory every set is
regular, so there the concept is not considered. However, when
moving up to recursion theory on an admissible ordinal «, non-
regular o -r.e. sets exist whenever oa* <a. In case a is in-

admissible then there are non-regular a-recursive sets.

When studying a -r.e. degrees for an admissible ordinal «
the obstacle of the existence of non-regular a-r.e. sets is

circumvented by the following theorem due to Sacks.

Theorem 1 ([3]). Suppose o« is an admissible ordinal., Then

every a-r.e. set is of the same o-degree as a regular o -r.e.

set.

Maass [1] has recently obtained a uniform version of theorem 1.
Let © be an infinite computation theory as defined in [6].
In this paper we prove the following analogue of theorem 4. (4

weaker but for most degree theoretic purposes sufficient version



is proved in [7].)

Theorem 2. Suppcse 6 is an adequate infinite computation
theory. Then every @-s.c. set B 1is of the same degree as a
regular. @-s.c, set D, Furthermore D may be chosen such that

Vx(vy~x) (x€D => y€D).

Remark: ©Suppose @ is the infinite computation theory over
an adequate resolvable admissible set 4 with urelements. Then the
theorem asserts that every 4 -r.e. set is of the same ﬂ'—degree

as a regular 4 -r.e. subset of o(JQ’) , the ordinal of 4 .

Thus we have that adequacy is a sufficient condition on ® for
the regular set theorem to hold. However, it is shown in [2] that
the condition is not necessary. On the other hand, assuming AD,
Simpson [4] has shown there is a © such that every regular ©-s.c,

set is B-couputable.

The proof of theorem 1 was simplified by Simpson [5]. He uti-
lized the wellordering of the domain in the form that every a-r.e.
non-a-finite set has a 1 -1 a-recursive enumeration. The analogous
property is false for arbitrary adequate computation theories. Thus
our proof of theorem 2 is modelled after Sacks' original proof of

theorem 1.

For definitions and notation the reader is referred to [6].

Proof of theorem 2: Let B be a @~ s.c. non-8-computable set.

We are to find a regular ®-s.c. set D such that D= B. Let
B* = {g€: KgﬂB Z @} where X%Kg is a fixed enumeration of @-finite
sets. We have Kgﬂ B*

g <=> U[Kn:nEKg}ﬂB=¢ and
g <=> & ¢ B*, Thus B* = B,
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Let m:U - L!“" be a projection such that m(x) -y, &
m(x) - Jo => Jq ~ Tpe Then
&D) KYnB*=¢ <=> U{Kn:nEKY}OB=¢ <=> HYHB*=¢
where MHY is a O-computable mapping whose values are (canonical
@-indices for) @-finite sets such that Vy (HY;éQf) ,
%EHY=> K§=U{Kn:nEKY} and
E118o € HY => &, ~8& & n(gq) ~ rr(gg). Because of (1) it is

convenient to work with B* instead of B.

Let AoB% be a disjoint (X )-enumeration of B* such that
vo (B°£¢) and VO,X,y (x€B® & yEBcy = x~y & mx)~n(y)).
Define

D2 = {0 (Ir>)B< BY & n(BT) < n (@)} .

Note that expressions like n(BT) < m(B°) make sense and are O-

2 2

computable, Clearly D~ is @w=s.c, and U - D° is unbounded.

Claim 1: D2 is regular.

o}
Proof: Given o, we show D2 AL° is @-finite. Having

defined 0 _,...,0, we choose, if possible, o0, 4 such that

c O3 o 04
0,4 >0, and (vi<n) (B271«B I v (@ 2+1y 4 (B 9)) . By the
well-foundedness of < the defined sequence is finite. Let S be

the last. Then

o
D°NT © = {o< o, ¢ (BTéO‘n)(BT< B° & n(BNH<n@°) & r>0)}.

g
One inclusion is obvious. So suppose 0 € D2n L °. Choose T »0
such that B'<B° & m(B« m(B’). If 7tzo_  then all is well.
It T>Gn then by the choice of o, there is j<n such that
Oj T (o) T (o o (6 ) o
B BT & n(B J)<n(B")., But them B I<B & w(B 9)<n(B”) and

o< 005, cj o Thus the inclusion from left to right holds. IE



Claim 2: D2 < B*,

Proof: First we show
2 1. B m(8%) T
(2) ¢ 2D <=> n~ W@" )N (L - U m(B'))INB*=4g.
T4LC
Suppose the right hand side is false for a given ¢ . Then there
are x and T such that

o o .
x € @ Hn @@ . u ms®))INBT. In particular
g'<co

o
B (since m is a projection) and hence

n(x)n'n(LBG) A7 so x €L

o} ]
B"< B° . Furthermore 7(x) N CLn(B ) _ U n(Bc )) £ ¢ so
g'<o

\
n(BT)<m(B°) and T>0. Thus o € D2.

The converse of (2) follows by a similar argument. Using (2)

we have

g (e}
KND°= @ <=» U o ' m(z®Hn @B . u n@™)I1ne* = ¢,
o€k T40
> -

so D <B*, X

We now make an assumption and show that if the assumption holds
then B*:§D2. On the other hand if the assumption is false, we
find o such that B* = B*N1L°. It is then easy to find a regular
®-s.c. set D such that B*nI’ = D,

Define

kq(v) = polH <0 & (L )< min n({y:y~o])].
k, is @-computable and total (by adequacy). Let

k(v) = uolky (V)% 3% & min m({y: 7~k (VD4 TE) & o €071 .

2
Note that k S D-.

Claim 3: If k is total them B* < D°.



Proof: Note that HYnB* £ <=> HY € B*. We show
H, S B* <=> H ¢ U{BT s r<Xk(y)}. It then follows from (1) that
B*f_D2. So let EEHYE_B*, say £ € B'. We want to show
T<k(y). B'< k,(Y)% B}l‘:(Y> so T #k(y). Suppose Tyk(y).
Then since k(y) & D° it must be that n(Bk(Y5,,~’: n(BT) . But then

n(BT) ~n(E) < min n({y : 7~k (VD) 2 w@) 2 73T,

X

a contradiction. Thus T<k(y).

Now we assume Xk is not total. Choose y such that

volB%< k,(y) v n(8%) < minn({y: y~ky(v)}) vV 0 €D].

k,Cy)
Let B} = B*NL T, We will show B: = B*. Clearly B} <B*.
By adequacy we can choose O o such that

T>0, => n(B") > min n({y:y~k,(y)}). Thus
(3) vt > o, BTk (v) v TE€D7) .

k,(Y)

Let B' = B*- (L S U{BT:‘T:&OO}). Since clearly B*-B' < B!

Y 9
it suffices to show B' < B; in order to show B* = B; .

Claim 4: B' < B; .

Proof: We first show

(4) BeB' <=> BO,T[00-< o<1 & £cB’ & BT<k,l(Y).$B°
& nEH<n(B)].

The if direction is obvious. ©So suppose & € B'. Then there is

o >0 such that § € B and, by (3) and the definition of B',

.
G € D°. Thus there is 7,>0 such that B '< B’ and

T T
n@ 1)<n@°). If B '<k,(y) then we are done. If not, then

2

T
B 131«:,1('{) so T, €D" by (3). Thus there is T5 > T, such that
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' Ts, Ty Ts T4
B “< B & (B =)< n(B '), The sequence T1:>Toeees mUSt be
Pr
finite so eventually we obtain T such that B m< kq(y) . This
proves (4).

Now suppose we have chosen the enumeration of ©-finite sets
X%Kg to be repetitive in the following sense: Given any x then
every O-finite set has an index in U-I*. Then we can find a

®-computable mapping mGn whose values are 0-finite sets such

that

k,(v)
(5) KTIHB’:Q‘ <=> (Kn- (L N

<=> Gnﬂ.B' =7.

vU{BT : 1< o INB* = ¢

Furthermore )\.1'1(.},n can be chosen to have the following properties:

vn(G, A9, G NB' # ¢ <=> G S B', G SB* <=> G CB', and

Let F, = {xéLk"(Y> tm(x)< (6, )}, and let
1(n) = wrl(F, -U{B° : 0 THNB} = §1. Then 1 is total by ade-
quacy and 1 </ B:{‘ . Clearly 1(n) is a strict least upper bound
for {1 :BTan} . We show G NB' =@ <=> G n UBT: t<1(m)} = g,
Combining this with (5) we then have B' < B; . So suppose § EGT\ cB',
By (4) there is o and T such that 0,4 04T, §€ BY, B7< k,(Y)
and n(BT)<nw(®%). If oxl(n) then 7T>1(n) so (G )% m(BT) .

But TT(BT)'<TT(BU) ~ rr(Gn) so we have a contradiction. This shows

0<1(n), which was all that remained to prove the claim. )

Let C = U{m(x) :XEB$} . It is easily seen that C = B;"(

since B; is bounded. Let o€’ be a disjoint (%) ~enumeration

of C such that vo(C®Z£¢) and x,yGC(3 => X~y. Let
D= {o:(3r>0)(c"<Cc%)}, the deficiency set of C. D is clearly
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regular and U-D is unbounded. We show D = B; thus completing

the proof of the theorem.

o)
We have 0 £ D <=> (LC —U{CT:T<C})HC=¢ So

[+]
KAD =9 <=> U (1° -ufeT:1<0))NC =¢g. Thus D <C = B:.
g €K Y

For the converse reducibility note that
(6) K_NB* UK K nqu(Y)}n N_N B

n Y=¢<=>{§'€eﬂ B=Q’<=>,q =g
where MNT] is a @-computable mapping having properties similar
to those of AnG.. Let £(m) = u’r[CTzn(Nn) & TED]. f is total
by adequacy and f S D. Let
g(n) = prln U s o< e(M)}) -UB% 1 0< 1} = @]. Then g is total

and g <, D. We show N CB' <=>N cU{BT:7<g(n)}. This

n n

together with (6) shows B; <D. ©So suppose § € N_< B', By

1

(4) there are o0, T such that § € B° , 0L T, BT« k,l(\()ﬁ,B(J and

m(BT)< n(87) ~ n(N,). Thus B' £ BY since B'<kq(y). Further-
1

more B [ n‘”(u{cT :7'< £(M)}) since wBT)< n(Nn) and D is

a deficiency set for C. But then 7<g(n) so o<g(n).

As a final remark we note that the regular set produced is

2

either D~ or D. Both of these satisfy the last statement of

the theoren.
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