Automorphisms for locally compact groups

1. Let G be a locally compact group and Aut(G) the group of all its topological automorphisms with the Birkhoff topology. A neighborhood basis of the identity automorphism consists of sets $N(C, V) = \{ \theta \in Aut(G) : \theta(x) \in Vx \text{ and } \theta^{-1}(x) \in Vx, \text{ all } x \in C \}, \text{ where } C$ is compact and V is a neighborhood of the identity e of G. As is well known, Aut(G) is a Hausdorff topological group but not generally locally compact $[1;p,57]$. In this article we are mainly concerned with the topological properties of Aut(G) and its subgroup Int(G) of inner automorphisms. We prove that for G arbitrary locally compact Aut(G) is a complete topological group. In particular, if G is also separable Aut(G) is a Polish group. As far as we can determine this result is new; and of course, this fact will be useful for the further study of $Aut(G)$. Furthermore, we give two new characterizations of the topology for $Aut(G)$, $(1.1.$ and 1.6.). In Section 2 we turn to the question of when certain -subgroups (among them $Int(G)$) are closed in $Aut(G)$, and several equivalent conditions are given; for instance, Int(G) is closed iff G admits no nontrivial central sequences (2.2). Applications to more special classes of groups are also given, as well as to the question of unimodularity of $Int(G)$, (2.5) . We remark that there is no separability assumption on the groups before 1.11.

1.1. Lemma. The sets
$$
W_{\varphi_1, \ldots, \varphi_n; \epsilon}
$$

= $\{ \tau \in Aut(G) : ||\varphi_j \circ \tau - \varphi_j||_{\infty} < \epsilon \text{ and } ||\varphi_j \circ \tau^{-1} - \varphi_j||_{\infty} < \epsilon \quad 1 \le j \le n \}$ where $\varphi_j \in C_c(G)$ and $\varepsilon > 0$, form a basis for the neighborhoods of the identity in $Aut(G)$.

<u>Proof</u>. Let $\varphi_1, ..., \varphi_n \in C_c(G)$ and $\epsilon > 0$ be given. Set $F = \begin{bmatrix} n \\ v \end{bmatrix}$ support (φ_i) , and let W be a symmetric nbh. of e in G $i = 1$. $i = 1$ such that $|\varphi_i(x) - \varphi_i(wx)| < \epsilon$ for all $x \in G$, $w \in W$, $1 \le i \le n$. We claim $N(F,W) \subseteq W_{\phi_1, \ldots, \phi_n; \varepsilon}$. Let $\tau \in N(F,W)$. Then for $x \in F$, $\tau(x)x^{-1} \in W$ and $\tau^{-1}(x)x^{-1} \in W$, so (*) $|\varphi_i(x) - \varphi_i(\tau(x))| < \epsilon$ and $|\varphi_i(x) - \varphi_i(\tau^{-1}(x))| < \epsilon$, $1 \le i \le n$. If $\tau(x) \in F$, then $\tau^{-1} (\tau(x)) \tau(x)^{-1} \in W$, i.e. $x \tau(x)^{-1} \in W$, so $|\varphi_i(x) - \varphi_i(\tau(x))| < \varepsilon$, $1 \le i \le n$. Similarly if $\tau^{-1}(x) \in F$ then

 $|\varphi_{i}(x)-\varphi_{i}(r^{-1}(x))| < \varepsilon$, $1 \leq i \leq n$. Clearly if $x \notin F$ and $\tau(x) \notin F$, then $|\varphi_i(x) - \varphi_i(\tau(x))| < \varepsilon$, since in this case $\varphi_i(x) = \varphi_i(\tau(x)) = 0$, $1 \leq i \leq n$. Thus, for $x \notin F$, we have the following subcases:

- (a) $\tau(x) \in F$ and $\tau^{-1}(x) \in F$ (b) $\tau(x) \in F$ and $\tau^{-1}(x) \notin F$ (c) $\tau^{-1}(x) \in F$ and $\tau(x) \notin F$
- (d) $\tau(x) \notin F$ and $\tau^{-1}(x) \notin F$.

In each case $(*)$ is satisfied. Thus $\tau \in N(F,W)$ implies $\|\varphi_{i}-\varphi_{i} \cdot \tau\|_{\infty} < \varepsilon$ and $\|\varphi_{i}-\varphi_{i} \cdot \tau^{-1}\|_{\infty} < \varepsilon$, i.e., $\tau \in W_{\varphi_{1}, \dots, \varphi_{n};\varepsilon}$.

Conversely, let $F \subseteq G$ be compact and W a neighborhood of e in G. Let U be a compact neighborhood of e in G such that $U^2 \cdot U^{-1} \subset W$. Let $\psi \in C_c(G)$ be such that $0 \leq \psi \leq 1$, support (ψ) $\subset U^2$, and $\psi(u) \geq \frac{1}{2}$, $\forall u \in U$. (The existence of such a ψ is clear.) Let $\{x_1, \ldots, x_n\}$ be a finite subset of F such that $\{U_{x_i}: 1 \leq i \leq n\}$ covers F. Define $\psi_i \in C_c(G)$ by $\psi_i(x) = \psi(yx_i^{-1})$ We claim $W_{\psi_{\alpha\alpha} \alpha}$, $\psi_{\alpha} \frac{1}{4} \subset N(F,W)$. $1 \leq i \leq n$. Ψ 1, \cdots , $\Psi_{\mathbf{n}}$; $\overline{\mathbf{z}}$ Indeed, suppose $\tau \in W_{\psi_1, \ldots, \psi_n; \frac{1}{2}}$ and let $x \in F$. Then $x \in Ux_j$ for some j, and

$$
|\psi_{j}(x) - \psi_{j}(\tau(x))| \leq \frac{1}{2} \text{ implies } \tau(x) \in U^{2}x_{j}.
$$

But then $\tau(x)x^{-1} \in U^{2}x_{j}x^{-1} \subset U^{2}U^{-1} \subset W.$ Similarly,

$$
|\psi_{j}(x) - \psi_{j}(\tau^{-1}(x))| \leq \frac{1}{2} \text{ implies } \tau^{-1}(x)x^{-1} \in W.
$$
 This proves the claim.

1.2. By Braconnier [1] there is a continuous (modular) homomorphism Δ : Aut(G) - \mathbb{R}^+ with the property

$$
\Delta(\alpha)^{-1}\int_G f \cdot \alpha^{-1}(x) dx = \int_G f(x) dx, \text{ for } f \in C_c(G),
$$

where dx is a fixed Haar measure. Defining

$$
\widetilde{\theta}(f) = \Delta(\theta)^{-1} f \cdot \theta^{-1}, \quad f \in L^{1}(G), \quad \theta \in Aut(G),
$$

it is easy to see that $\widetilde{\theta}$ becomes an automorphism of the group algebra $L^1(G)$. Denote by λ the left regular representation of G as well as the left regular representation of $L^1(G)$ on $L^2(G)$. Viewing $\tilde{\theta}$, $\theta \in Aut(G)$, as an automorphism of $\lambda(L^1(G))$, we show that $\tilde{\theta}$ can be extended to an automorphism of the von Neumann algebra of the left regular representation, $\mathcal{R}(G) = \lambda(L^1(G))^n = \lambda(G)^n$. θ We define a unitary operator σ , $\theta \in Aut(G)$, by

$$
\mathbf{U}^{\theta} \mathbf{g} = \Delta(\theta)^{-\frac{1}{2}} \mathbf{g} \cdot \theta^{-1} , \quad \mathbf{g} \in \mathbf{L}^{2}(\mathbf{G}).
$$

A straight forward calculation shows

$$
\lambda(\widetilde{\theta}(f)) = U^{\theta} \lambda(f) U^{\theta^{-1}}.
$$

The unitary implementation $\theta \mapsto U^{\theta}$ allows us to define $\tilde{\theta}(T)$ for $T \in \mathcal{R}(G)$ by

$$
\widetilde{\theta}(T) = U^{\theta} T U^{\theta^{-1}}.
$$

1.3. Lemma. The map $\alpha \in Aut(G) \mapsto U^{\alpha} g \in L^{2}(G)$ is continuous $(g \in L^2(G))$.

<u>Proof</u>. Let $G \in C_c(G)$ and $\varepsilon > 0$ be given. Fix a compact neighborhood U_1 of e in G and set $K = U_1$ support (g) . By Lemma 1.1. there is a neighborhood $N(C, U)$ in $Aut(G)$ so that $\alpha \in N(C, U)$ implies

$$
\|\mathbf{g} \cdot \mathbf{\alpha}^{-1} - \mathbf{g}\|_{\infty} < \frac{\varepsilon}{2\mu(\mathbf{K})^{\frac{1}{2}}},
$$

where μ is a left Haar measure on G. We can assume support (g) $\subset C$ and $U = U^{-1} \subset U_1$. If $\alpha \in N(C, U)$ and $x \in support (g \circ \alpha^{-1}),$ then $x \in U$ •support $(g) \subset K$. By continuity of Δ there is a neighborhood N_1 of the identity $\mathfrak{t} \in Aut(G)$ so that for $\alpha \in N_1$,

$$
|\Delta(\alpha)^{-\frac{1}{2}}-1| < \varepsilon/2||g||_{\infty}\mu(K)^{\frac{1}{2}}.
$$

Set $N = N_1 \cap N(C, U)$. Then if $\alpha \in N$,

$$
\|\mathbf{U}^{\alpha}\mathbf{g}-\mathbf{g}\|_{\infty}=\|\Delta(\alpha)^{-\frac{1}{2}}\mathbf{g}\cdot\alpha^{-1}-\mathbf{g}\|_{\infty}<\epsilon/\mu(K))^{\frac{1}{2}}.
$$

Since support ($U^{\alpha} g - g$) $\subset K$ we have

$$
\|\mathbf{U}^{\alpha}\mathbf{g}-\mathbf{g}\|_{2}^{2} \leq \int_{K} \|\mathbf{U}^{\alpha}\mathbf{g}-\mathbf{g}\|_{\infty}^{2} d\mu(\mathbf{x}) \leq \|\mathbf{U}^{\alpha}\mathbf{g}-\mathbf{g}\|_{\infty} \mu(K) < \epsilon^{2}.
$$

If $h \in L^2(G)$ is arbitrary, $\varepsilon > 0$, let $g \in C_c(G)$ with $||g-h||_2 < \varepsilon$. If $\|U^{\alpha}g - g\|_2 < \epsilon$, $\alpha \in \mathbb{N}$, then

$$
\|\mathbf{U}^{\alpha}\mathbf{h} - \mathbf{h}\|_{2} \leq \|\mathbf{U}^{\alpha}\mathbf{h} - \mathbf{U}^{\alpha}\mathbf{g}\|_{2} + \|\mathbf{U}^{\alpha}\mathbf{g} - \mathbf{g}\|_{2} + \|\mathbf{g} - \mathbf{h}\|_{2} < 3\epsilon \cdot \Box
$$

1.4. Our next aim is to study $Aut(G)$ by embedding it in $Aut(\mathcal{R}(G)),$ and we shall prove that the embedding is topological if $Aut(Q(G))$ is provided with the appropriate topology, namely the uniform-weak topology, and a neighborhood base at the identity $\iota \in \text{Aut}(\mathcal{R}(\mathbb{G}))$ is given by

 $\{\alpha \in \text{Aut}(\mathcal{R}(G)) : |\langle (\alpha_{-1})\mathcal{R}_1, \varphi_i \rangle | \leq \varepsilon, \varphi_i \in \mathcal{R}(G)_*, \ 1 \leq i \leq n\}, \ \varepsilon > 0,$ where \mathcal{R}_1 denotes the unit ball in $\mathcal{R}(G)$. Recall that the predual, $\mathcal{R}(G)_{*}$, is the Fourier algebra A(G), [3]. Let

 $-4-$

 $W_{\varphi_1,\ldots,\varphi_n;\varepsilon} = \{ \alpha \in \text{Aut}(\mathbb{G}) : ||\varphi_i - \varphi_i \circ \alpha|| < \varepsilon, 1 \leq i \leq n \}, \varphi_i \in \mathcal{A}(\mathbb{G})$, where $\|\cdot\|$ denotes the norm in $A(G)$.

1.5. Lemma.
$$
W_{\phi_1, \ldots, \phi_n; \epsilon} = \{ \alpha \in \text{Aut}(G) : |\langle (\tilde{\alpha}_{-1}) \mathcal{R}_1, \phi_i \rangle| < \epsilon, 1 \leq i \leq n \}
$$
.

Proof. First note $\langle \tilde{\alpha}(T), \varphi \rangle = \langle T, \varphi \cdot \alpha \rangle$, $T \in \mathcal{R}(G)$, $\varphi \in A(G)$, $\alpha \in \text{Aut}(G)$; i.e., $\tilde{\alpha}^t(\varphi) = \varphi \circ \alpha$: If $T = \lambda(f)$, $f \in L^1(G)$, we have

$$
\langle \widetilde{\alpha}(\lambda(f)), \varphi \rangle = \Delta(\alpha)^{-1} \int_G f \cdot \alpha^{-1}(x) \varphi(x) dx = \langle \lambda(f), \varphi \cdot \alpha \rangle.
$$

Since $\{\lambda(f) : f \in L^1(G)\}$ is dense in $\mathcal{O}(G)$, the claim follows. Now $\langle (\tilde{\alpha}_{-1}) \mathbb{T}, \varphi \rangle = \langle \mathbb{T}, \varphi \cdot \alpha_{-} \varphi \rangle$, $\mathbb{T} \in \mathcal{R}_1$. Taking the supremum over all $T \in \mathcal{R}_1$ we get

$$
\langle (\widetilde{\alpha}_{-1}) \mathcal{R}_{\gamma}, \varphi \rangle = \|\varphi \circ \alpha - \alpha\| , \quad \varphi \in A(G) ,
$$

and the lemma follows. \bigcap

1.6. Proposition. The sets $W_{\phi_1,\ldots,\phi_n;\epsilon}$, $\phi_i \in A(G)$ and $\epsilon > 0$, form a base at the identity $\iota \in Aut(G)$ for the Birkhoff topology. Hence the embedding $Aut(G) \longrightarrow Aut(\mathfrak{H}(G)$ is topological.

Proof. We show first that the topology generated by the sets is weaker than that of $Aut(G)$. By Lemma 1.5 , for $W_{\varphi_1, \ldots, \varphi_n; \varepsilon}$ $\varphi \in A(G)$, $\alpha \in Aut(G)$,

$$
\|\varphi - \varphi \circ \alpha\| = \sup_{T \in \mathbb{R}^n} |\langle T - \widetilde{\alpha}(T), \varphi \rangle|.
$$

Writing $\varphi = (f * g^{\sim})^V$, $f, g \in L^2(G)$, we have

$$
\|\varphi - \varphi \circ \alpha\| = \sup_{T \in \mathbb{R}^n} |\langle (T - \widetilde{\alpha}(T))f, g \rangle|
$$

$$
= \sup_{T \in \mathbb{R}^n} |\langle (T - U^{\alpha} T U^{\alpha^{-1}})f, g \rangle|
$$

$$
= \sup_{T \in \mathcal{R}_1} |\langle (\mathbf{U}^{\alpha^{-1}} \mathbf{T} - \mathbf{T} \mathbf{U}^{\alpha^{-1}}) \mathbf{f}, \mathbf{U}^{\alpha^{-1}} \mathbf{g} \rangle|
$$

$$
\leq \sup_{T \in \mathcal{R}_1} |\langle (\mathbf{U}^{\alpha^{-1}} \mathbf{T} - \mathbf{T}) \mathbf{f}, \mathbf{U}^{\alpha^{-1}} \mathbf{g} \rangle| + \sup_{T \in \mathcal{R}_1} |\langle (\mathbf{T} - \mathbf{U}^{\alpha^{-1}} \mathbf{T}) \mathbf{f}, \mathbf{U}^{\alpha^{-1}} \mathbf{g} \rangle|
$$

Now

$$
|\langle (\mathbf{T} - \mathbf{T}\mathbf{U}^{\alpha^{-1}}) \mathbf{f}, \mathbf{U}^{\alpha^{-1}} \mathbf{g} \rangle| \leq ||\mathbf{T}(\mathbf{f} - \mathbf{U}^{\alpha^{-1}} \mathbf{f})||_2 ||\mathbf{U}^{\alpha^{-1}} \mathbf{g}||_2
$$

$$
\leq ||\mathbf{f} - \mathbf{U}^{\alpha^{-1}} \mathbf{f}||_2 ||\mathbf{g}||_2 , \text{ all } \mathbf{T} \in \mathcal{R}_1.
$$

By continuity of the map $\alpha \mapsto \alpha^{-1} \mapsto u^{\alpha^{-1}}f$ (Lemma 1.3) given $\varepsilon > 0$, there is a neighborhood N_1 of $t \in Aut(G)$ so that $\|f - u^{\alpha^{-1}}f\|_2 \|g\|_2 < \frac{\varepsilon}{2}$, all $\alpha \in N_1$. Furthermore, -1 a^{-1} $\langle (\mathbb{U}^{\alpha} \mathbb{I} - \mathbb{I}) \mathbf{f}, \mathbb{U}^{\alpha} \mathbb{I} \mathbf{g} \rangle$ $=|\langle u^{a^{-1}} \text{Tr}, u^{a^{-1}} \text{g}\rangle - \langle \text{Tr}, u^{a^{-1}} \text{g}\rangle|$ -1 a^{-1} = $|\langle \text{If } f, g \rangle - \langle \text{If } f, u^{\alpha} \mid g \rangle| = |\langle \text{If } f, g - u^{\alpha} \mid g \rangle|$ -1 α -1 \leq $||\text{If }||_2||g-U^*$ $||g||_2 \leq ||f||_2||g-U^*$ $||g||_2$, all $T \in \mathcal{R}_{\Lambda}$.

Again there is a neighborhood N_2 of $t \in Aut(G)$ so that $\|f\|_2 \|g - u^{\alpha-1}g\|_2 < \frac{\varepsilon}{2}$. Letting $N = N_1 \cap N_2$, we get $\|\varphi - \varphi \circ \alpha\| < \varepsilon$. Conversely, let $F \subset G$ be compact and W a neighborhood of e

in G. Let U be a compact neighborhood of e such that u^{2} \cdot u^{-1} c W.

Since $A(G)$ is a regular algebra, there exists $~\psi ~\in ~A(G)~$ with $0 \leq \psi \leq 1$, $\psi(u) = 1$ for $u \in U$, and support $(\psi) \subset U^2$ [3; Lemma 3.2]. Let $\{x_1, \ldots, x_n\} \subset F$ be so that $\{Ux_i : 1 \le i \le n\}$ covers F .
Define $\psi_i(y) = \psi(yx_i^{-1})$, $1 \le i \le n$. We claim $W_{\omega_{i+1}, \ldots, \omega_{i+1}} \subset N(F, W)$. \mathbf{L} $\mathbf{$ Indeed, suppose $\tau \in W_{\varphi_1, \ldots, \varphi_n; 1}$ and let $x \in F$. Then $x \in Ux_j$.

for some j. Now $\|\psi_{\cdot j} \cdot \tau - \psi_{\cdot j}\| < 1$ implies $\|\psi_{\cdot j} \cdot \tau - \psi_{\cdot j}\|_{\infty} < 1$, so that $|\psi_j(\tau(x) - \psi_j(x)| < 1$. But for $x \in Ux_j$, $\psi_j(x) = \psi_j(ux_j) = \psi(u) = 1$, where $x = ux_i$, $u \in U$. Hence $\tau(x) \in support(\psi_i)$, or $\tau(x) \in U^2 x_{j}$. But then

$$
\tau(x)x^{-1} \in U^{2}x_{j}x^{-1} \in U^{2}U^{-1} \subset W
$$
.

In addition

$$
\|\psi_j \circ \tau^{-1} - \psi_j\| = \|\psi_j \circ \tau - \psi_j\| < 1,
$$
\nso the same argument as above yields

\n
$$
\tau^{-1}(x) \in Wx. \qquad \Box
$$

1.7. Corollary. Suppose G has small neighborhoods of the identity, invariant under inner automorphisms (i.e., $G \in [SIN]$). Then viewing the group Int(G) as a subgroup of $Aut(\mathcal{R}(G))$, the pointwise-weak and uniform-weak topologies coincide on Int(G).

Proof. As is well known, $G \in [SIN]$ if and only if $\mathcal{R}(G)$ is a finite von Neumann algebra. The conclusion follows from [7; Proposition 3.7]. \Box

Note that the above can just as well be stated for $[SIN]_B$ groups where $B \subseteq Aut(G)$ is a subgroup. Also, the corollary is not too surprising in view of the fact that for [SIN]-groups the point-open and Birkhoff topologies of Aut(G) agree on Int(G) $[6;$ Satz $1.6]$.

1.8. We say that G is an $[FA]_B^-$ -group if B is a relatively compact subgroup of Aut(G) (see [5]). It is now a trivial consequence of 1.6 that $G \in [FIA]_B^-$ if and only if B, viewed as a subgroup of $Aut(\mathcal{R}(G))$ endowed with the uniform-weak topology, is

 $-7 -$

relatively compact. Cf. (4; Theorem 2.4]. By [4; Corollary 1.6], the pointwise-weak topology may be substituted for the uniform-weak topology.

1.9. Next we show in an elementary way that for an arbitrary locally compact group G, Aut(G) is a complete topological group (in its two-sided uniformity).

Theorem. Let G be a locally compact group, then $Aut(G)$ is complete with respect to its two-sided uniformity.

<u>Proof</u>. Let $(\alpha_{\mathbf{v}})$ be a Cauchy net in Aut(G). Since $\alpha \mapsto U^{\alpha}$, Aut(G) \rightarrow $\mathcal{L}(L^2(G))$ is continuous in the strong operator topology, it is also weakly continuous. Now $U^{\alpha} \in \mathcal{L}(L^2(G))$ (= unit ball of $\mathcal{L}(L^2(G))$; also the weak and ultraweak topology coincide on $\mathcal{L}(L^2(G))_1$ and $\phi(\mathfrak{L}^2(G))$ is compact in this topology. Thus (\mathfrak{U}^{α}) has a point of accumulation $U \in \mathcal{L}(L^2(G))_{\gamma}$; let (α_{μ}) be a subnet such that $U^{\alpha\mu}$ \vec{v} U weakly. Then for $f,g \in L^2(G)$

$$
\langle (\mathbf{U}^{\alpha} \mathbf{V} - \mathbf{U}) \mathbf{f}, \mathbf{g} \rangle = \langle (\mathbf{U}^{\alpha} \mathbf{V} - \mathbf{U}^{\alpha} \mathbf{H}) \mathbf{f}, \mathbf{g} \rangle + \langle (\mathbf{U}^{\alpha} \mathbf{H} - \mathbf{U}) \mathbf{f}, \mathbf{g} \rangle
$$

\n
$$
= \langle \mathbf{f} - \mathbf{U}^{\alpha} \mathbf{V}^{\alpha} \mathbf{H} \mathbf{f}, \mathbf{U}^{\alpha} \mathbf{V} \mathbf{g} \rangle + \langle (\mathbf{U}^{\alpha} \mathbf{H} - \mathbf{U}) \mathbf{f}, \mathbf{g} \rangle
$$

\n
$$
\leq ||\mathbf{f} - \mathbf{U}^{\alpha} \mathbf{V}^{\alpha} \mathbf{H} \mathbf{f}||_{2} ||\mathbf{g}||_{2} + \langle (\mathbf{U}^{\alpha} \mathbf{H} - \mathbf{U}) \mathbf{f}, \mathbf{g} \rangle \frac{\langle \mathbf{U} \mathbf{V} \mathbf{G} \rangle}{\langle \mathbf{H} \mathbf{V} \mathbf{V} \rangle} \quad \text{or}
$$

since $\alpha_{\nu}^{-1} \alpha_{\mu} \xrightarrow{\tau \alpha_{\nu}} i$ in Aut(G). Thus $U^{\alpha} \psi$ j U in the weak -1 operator topology. Similarly $U^{x,y}$ converges weakly to some $V \in \mathcal{L}(L^2(G))_1$. We claim $V = U^{-1}$. Let $f,g \in L^2(G)$, $\varepsilon > 0$. Let v_0 be such that for $v > v_0$ $|\langle U^{^{\alpha}}\nu_{\text{Yf--UVf}}, g \rangle| < \varepsilon$, and

- 8 -

Choose
$$
v_1
$$
 such that $v > v_1$ implies
\n
$$
\alpha v_1 = 1
$$
\n
$$
|\langle U^{\mu} + \langle U^{\nu} \rangle \rangle| < \epsilon.
$$
\nThen for $v, \mu > v_0$ and v_1 , we have
\n
$$
\alpha \alpha \alpha^{-1}
$$
\n
$$
|\langle U^{\mu} U^{\nu} f - U V f, g \rangle|
$$
\n
$$
\leq |\langle U^{\mu} U^{\nu} f - U^{\mu} V f, g \rangle| + |\langle U^{\mu} V f - U V f, g \rangle|,
$$
\nwhere $|\langle U^{\mu} V f, g \rangle| < \epsilon$. Also
\n
$$
\alpha \alpha \alpha^{-1}
$$
\n
$$
|\langle U^{\nu} f - U^{\mu} V f, g \rangle| = |\langle U^{\nu} f - V f, U^{\mu} g \rangle|
$$
\n
$$
\leq |\langle U^{\nu} f - V f, U^{\nu} g \rangle| + |\langle U^{\nu} f - V f, U^{\mu} g \rangle|
$$
\n
$$
\leq |\langle U^{\nu} f - V f, U^{\nu} g \rangle| + |\langle U^{\nu} f - V f, U^{\mu} g - U^{\nu} g \rangle|
$$
\n
$$
< \epsilon + ||U^{\nu} f - V f||_2 ||U^{\mu} g - U^{\nu} g||_2
$$
\n
$$
< \epsilon + 2||f||_2 ||U^{\mu} g - U^{\nu} g||_2 < 2\epsilon,
$$

so that $\frac{1}{\alpha}$ a. 1

$$
|\langle U^{\mu} \mu U^{\mu} V f - UVf, g \rangle| < 3\varepsilon.
$$

But

$$
\langle U^{\alpha} \mu U^{\alpha} \phi \rangle_{f,g} = \langle U^{\alpha} \mu \alpha \phi \rangle_{f,g} \rangle \xrightarrow{\alpha} \langle f,g \rangle,
$$

hence

$$
\langle \text{UVf}, \mathbf{g} \rangle = \langle \mathbf{f}, \mathbf{g} \rangle
$$
, all $\mathbf{f}, \mathbf{g} \in \mathbf{L}^2(\mathbf{G})$;

thus $V = U^{-1}$. In addition,

$$
\langle \text{Uf}, \text{g} \rangle = \lim_{V} \langle \text{U}^{\alpha} V_{f,g} \rangle = \lim_{V} \langle \text{f}, \text{U}^{\alpha} V_{g} \rangle = \langle \text{f}, \text{Vg} \rangle,
$$

so $V = U^*$, and we have $U^{-1} = U^*$, so U is unitary. A standard argument now shows U^{α} ^v converges strongly to U:

$$
\|U^{\alpha}V_{f} - Uf\|_{2}^{2} = \langle U^{\alpha}V_{f}, U^{\alpha}V_{f}\rangle - \langle Uf, U^{\alpha}V_{f}\rangle
$$

$$
-\langle U^{\alpha}V_{f}, Uf\rangle + \langle Uf, Uf\rangle = 2\langle f, f\rangle - \langle Uf, U^{\alpha}V_{f}\rangle - \langle U^{\alpha}V_{f}, Uf\rangle \Rightarrow 0.
$$

 $-9 -$

It remains to show that $\lambda(x) \mapsto U \lambda(x)U^{-1}$ defines an automorphism of $\lambda(G)$ (and thus of G). Fix $x \in G$, clearly $(\alpha_{\mathsf{v}}(x))$ is a Cauchy net in G and (since G is complete) converges to an element, say $\alpha(x) \in G$. Then

$$
U^{\alpha}V_{\lambda}(x)U^{\alpha}V^{\alpha} = \lambda(\alpha_{V}(x)) \Rightarrow \lambda(\alpha(x)) \quad \text{weakly,}
$$

and

$$
u^{\alpha}v_{\lambda(x)U}^{\alpha} \overline{v}^1 \rightarrow U\lambda(x)U^{-1}
$$
 weakly.

I.e. $\lambda(\alpha(x)) = U \lambda(x)U^{-1}$. To prove α is a homomorphism, $\lambda(\alpha(xy)) = U \lambda(xy)U^{-1} = (U \lambda(x)U^{-1})(U \lambda(y)U^{-1}) = \lambda(\alpha(x))\lambda(\alpha(y)) =$ $\lambda(\alpha(x)\alpha(y));$ so $\alpha(xy) = \alpha(x)\alpha(y).$ Also $\lambda(\alpha(x^{-1})) = U \lambda(x^{-1})U^{-1} = U \lambda(x)^{-1}U^{-1} = (U \lambda(x)U^{-1})^{-1} = \lambda(\alpha(x))^{-1} =$ $\lambda(\alpha(x)^{-1})$, i.e. $\alpha(x^{-1}) = \alpha(x)^{-1}$. To prove continuity of α , let $(x_{\mu}) - x_{o}$ in G. Then

$$
\lambda(\alpha(\mathbf{x}_{\mu})) = \mathbf{U}\lambda(\mathbf{x}_{\mu})\mathbf{U}^{-1} \underset{\mu}{\longrightarrow} \mathbf{U}\lambda(\mathbf{x}_{0})\mathbf{U}^{-1} = \lambda(\alpha(\mathbf{x}_{0}))
$$

in the weak operator topology. But $x \mapsto \lambda(x)$ is a homeomorphism of G into $\lambda(G)$, where $\lambda(G) \subset \int_{G} (L^2(G))$ carries the weak topology ([4; Lemma 2.2]). Thus $\alpha(x_u) - \alpha(x_o)$. Similarly, α^{-1} is continuous, and we have $\alpha \in Aut(G)$, so that $Aut(G)$ is complete. \Box

1.10. Remark. Since by 1.6 Aut(G) is topologically embedded in the complete group $Aut(P(G))$, [7; Proposition 3.5], it would be natural to prove completeness of Aut(G) by showing it is closed in $Aut(R(G))$. Actually, such a proof can be given, utilizing the profound duality theory in [9]. We sketch the argument. Consider a net $(\alpha_{\mathcal{N}})$ in Aut(G) such that $\tilde{\alpha}_{\mathcal{N}} \rightarrow \gamma \in$ Aut($\mathcal{R}(G)$) in uniform weak topology. By duality theory $\mathcal{R}(G)$ is a Hopf-von Neumann algebra with comultiplication $\delta: \mathcal{R}(G) \rightarrow \mathcal{R}(G) \otimes \mathcal{R}(G)$ which is a

 $-11 -$

 σ - weakly continuous isomorphism given by $\delta(T) = W^{-1}(T \otimes 1)W$, $T \in \mathcal{R}(G)$, where $Wk(s,t) = k(s,st)$, $k \in L^2(G\times G)$, $s,t \in G$, [9; Section 4]. Furthermore, one has

 ${T \in \mathcal{R}(G): \delta(T) = T \otimes T} - {0}$ = ${T \in \mathcal{R}(G): T = \lambda(s), \text{ for some } s \in G}$. Notice that Aut(G) corresponds to the subgroup $\{\alpha \in \text{Aut}(\mathcal{R}(G))\colon \delta(\alpha\lambda(s)) = \alpha\lambda(s)\otimes\alpha\lambda(s), \text{ all } s \in G\}.$ Since $\tilde{\alpha}_{v} \rightarrow \gamma \in \text{Aut}(\mathcal{R}(G))$ and $\delta(\tilde{\alpha}_{v} \lambda(s)) = \tilde{\alpha}_{v} \lambda(s) \otimes \tilde{\alpha}_{v} \lambda(s)$, all $s \in G$; continuity of δ gives

$$
\delta(\gamma(\lambda(s))) = \gamma(\lambda(s)) \otimes \gamma(\lambda(s)), \quad \text{all} \quad s \in G.
$$

Thus $\gamma = \tilde{\alpha}$ for some $\alpha \in Aut(G)$.

1.11. Corollary. If G is a separable locally compact group, then Aut(G) is a Polish topological group.

Proof. Indeed, if $G = \frac{\infty}{n^{\frac{U}{2}}} F_n$, F_n compact, and if ${U_m}_{m \in \mathbb{N}}$ is a neighborhood base at $e \in G$, then ${N(F_n, U_m)}_{n,m}$ is a neighborhood base at $i \in Aut(G)$, so that $Aut(G)$ is metrizable [8], and by 1.9. it is complete. \Box

2. We proceed now to applications of the Theorem in 1.9. First we turn to the question of when certain subgroups of $Aut(G)$ are closed. The following result contains a group theoretical analog. to [2; Theorem 3.1].

2.1. Proposition. Let G be a separable locally compact group, and B a subgroup of Aut(G) • Suppose there is a Polish group H and a continuous surjective homomorphism $\omega : H \rightarrow B$. Then the following are equivalent.

- a) B is closed in $Aut(G)$.
- b) $w : H \rightarrow B$ is open onto its range B.
- c) For any neighborhood V of the identity in H there exist $\varphi_1, \ldots, \varphi_n \in C_c(G)$ and $\varepsilon > 0$ such that, for all $h \in H$, $\|\varphi_i \cdot \omega(h) - \varphi_i\|_{\infty} < \varepsilon$ and $\|\varphi_i \cdot \omega(h^{-1}) - \varphi_i\|_{\infty} < \varepsilon$, $1 \le i \le n$, \Rightarrow h $\in V \cdot (\ker \omega)$
- d) Same statement as c) with $C_c(G)$ replaced by the Fourier algebra $A(G)$ (and its norm $\|\cdot\|$).

Proof. a) => b): If B is closed in $Aut(G)$ then H and B are both Polish. Observe then that a continuous homomorphism between two Polish groups is open [2; Lemma 3.4] b) \Rightarrow c): Put $K = \ker \omega$. Since ω is open it follows from Lemma 1.1 that given a neighborhood V of the identity in H there are functions $\varphi_1, \ldots, \varphi_n \in C_c(G)$ and $\epsilon > 0$ so that W_{∞} n B c w(V). $\scriptscriptstyle\varphi_{1},\dots,\scriptscriptstyle\varphi_{n};\,\varepsilon}$ Now ω can be lifted to a map $\widetilde{\omega}$ of $H/K - B$, so that the diagram commutes and $\widetilde{\omega}$ is a homeomorphism.

 H/K Thus $\omega(h) \in W_{\varphi_1, \dots, \varphi_n}; \varepsilon$ implies $\omega(h) \in \omega(V) = \widetilde{\omega}(VK)$, hence $\widetilde{\omega}(hK) \in \widetilde{\omega}(VK)$, so that $H \longrightarrow B$ h $\in hK \subset VK$.

c) \leftarrow d) is clear in view of Proposition 1.6. d) => a): By 1.6 there is a sequence (φ_n) from A(G) such that the sets $W_n = W_{\varphi_1, \dots, \varphi_n}$; $1/n$ form a base for the identity in Aut(G). Let $\{V_n\}$ be a countable base for the identity in H. By d), given n there is an $m(n)$ so that $\omega(h) \in W_{m(n)}$ implies $h \in V_nK$. Let $\theta \in B^-$ and choose a sequence (α_n) from B so

- a) B is closed in $Aut(G)$.
- b) $w : H \rightarrow B$ is open onto its range B.
- c) For any neighborhood V of the identity in H there exist $\varphi_1, \ldots, \varphi_n \in C_c(G)$ and $\varepsilon > 0$ such that, for all $h \in H$, $\|\varphi_i \cdot \omega(h) - \varphi_i\|_{\infty} < \varepsilon \quad \text{and}$ $\|\varphi_i \cdot \omega(h^{-1}) - \varphi_i\|_{\infty} < \varepsilon$, $1 \le i \le n$, \Rightarrow h $\in V \cdot (\ker \omega)$
- d) Same statement as c) with $C_c(G)$ replaced by the Fourier algebra $A(G)$ (and its norm $\|\cdot\|$).

Proof. a) => b): If B is closed in $Aut(G)$ then H and B are both Polish. Observe then that a continuous homomorphism between two Polish groups is open [2; Lemma 3.4] b) \Rightarrow c): Put $K = \ker \omega$. Since ω is open it follows from Lemma 1.1 that given a neighborhood V of the identity in H there are functions $\varphi_1, \ldots, \varphi_n \in C_c(G)$ and $\epsilon > 0$ so that W_{∞} n B c w(V). φ_1 ,..., φ_n ; ϵ Now $\texttt{\textbf{w}}$ can be lifted to a map $\widetilde{\texttt{\textbf{w}}}$ of $H/K \rightarrow B$, so that the diagram commutes and $\widetilde{\omega}$ is a homeomorphism. H/K i~ Thus $\mathfrak{w}(h) \in W_{\varphi_1, \dots, \varphi_n; \varepsilon}$ implies $\omega(h) \in \omega(V) = \widetilde{\omega}(VK)$, hence $\widetilde{\omega}(hK) \in \widetilde{\omega}(VK)$, so that

 $H \longrightarrow B$ h $\in hK \subset VK$.

c) \iff d) is clear in view of Proposition 1.6. d) => a): By 1.6 there is a sequence (φ_n) from A(G) such that the sets $W_n = W_{0,1} \cos \theta$: $1/n$ form a base for the identity in $\mathfrak{s}_1, \ldots, \mathfrak{s}_n;$ Aut(G). Let $\{V_n\}$ be a countable base for the identity in H. By d), given n there is an $m(n)$ so that $w(h) \in W_{m(n)}$ implies $h \in V_nK$. Let $\theta \in B^-$ and choose a sequence (α_n) from B so

that $\alpha_n \to 0$ and $\alpha_{n+j}^{-1} \alpha_n \in W_{m(n)}$ for $j \geq 0$. Setting $\widetilde{\omega}^{-1}(\alpha_n)$ = h_nK , we have $h_{n+j}^{-1}h_n \cdot K \subset V_nK$, j ≥ 0 . This is to say that (h_nK) is Cauchy in the left uniformity of H/K. Since H/K is locally compact, it is complete, and $h_nK \rightarrow hK \in H/K$, hence $\omega(h) = \widetilde{\omega}(hK) = \theta$ by continuity of $\widetilde{\omega}$, and thus $\theta \in B$.

2.2. A sequence (x_n) from G is said to be central if $ad(x_n) \rightarrow i$ in $Aut(G)$. (x_n) is <u>trivial</u> if there is a sequence (z_n) from the center $Z(G)$ of G such that $x_n z_n^{-1} \longrightarrow e$.

 $Corollary.$ Suppose G is separable, then $Int(G)$ is closed <= > all central sequences in G are trivial.

<u>Proof</u>. If $Int(G)$ is closed, let (x_n) be a central sequence, and let $\{V_n\}$ be a base for the identity in G. By d) of 2.1. we can find, for each $n \in \mathbb{N}$, $\varphi_n \in A(G)$ and $\varepsilon_n > 0$ so that

 $\|\varphi_n \circ \omega(x) - \varphi_n\| < \varepsilon_n \quad (x \in G) \implies x \in V_n \cdot Z(G)$.

Choosing a sequence (k_j) from $\mathbb N$ such that

 $k \ge k_{j} \implies ||\varphi_{j} \cdot \text{Ad}(x_{k_{j}}) - \varphi_{j}|| < \epsilon_{j}$, we have $x_k \in V$. $Z(G)$, hence $x_k c_k^{-1} \in V$, for some j J j κ_j j κ_j J Let $c_n = c_k^{\sigma}$ for $k_j \le n \le k_{j+1}$; j = 1,2,3,.... J $x_n c_n^{-1} \Rightarrow e$, and (x_n) is trivial. c_k \in Z(G). J Then The converse is shown in the same way as d) => a) in 2.1. \bigcap

2.3. We remark that the class of groups for which Aut(G) is locally compact includes the compactly generated Lie groups [6; Sats 2.2]. For Int(G) we have the following

Corollary. Let G be separable and locally compact. Then Int(G) is locally compact \leq Int(G) is closed.

Proof. If $Int(G)$ is locally compact, it is necessarily closed [8; Theorem 5.11]. On the other hand if Int(G) is closed, take $G = H$ and $w = Ad$, where $Ad(g)x = gxg^{-1}$, $x,g \in G$, in 2.1. Then by continuity of Ad , $Int(G)$ is homeomorphic with $G/Z(G)$. $Z(G)$ = center of G. \cap

2.4. Let G_F be the closed normal subgroup of elements x in G having relatively compact conjugacy classes $\{gx g^{-1} : g \in G\}$. If $G \in [SIN]$, G_F is open since any compact Int(G)-invariant neighborhood of e is contained in G_F . Let $\omega : G \rightarrow Aut(G_F)$ be the continuous homomorphism $\omega(g) = Ad(g)|_{G_{\overline{F}}}$, [8], and let B be the subgroup $\omega(G) \subset Aut(G_F)$. Clearly G_F is an [SIN]_B group, and we have

Corollary. Let G be separable. Then, with notation as above, B is closed <=> B is compact <=> G/kerw is compact.

Proof. The first equivalence is proved in [5]. If B is closed, B is homeomorphic with $G/\ker w$ (The Proposition in 2.1, a) \Rightarrow b)) so by compactness of B, G/ker w must be compact. Conversely, if $G/\text{ker } \omega$ is compact then so is $B = \widetilde{\omega}(G/\text{ker } \omega)$ by continuity of the lifted map $\widetilde{\omega}$.

Specializing the preceeding corollary even further we obtain

2.5. Corollary. Let G be a locally compact group and suppose Int(G)⁻ is compact. Then Int(G) is closed <=> G/Z(G) is compact $(Z(G) =$ the center of G).

Proof. This follows immediately from the Corollary in 2.4. if G is separable. From $[6]$ Int(G) is closed \leq Int(G) is compact. But Int(G) compact implies Ad: G \rightarrow Int(G) is open [8; Theorem 5.29], hence $Int(G) \cong G/Z(G)$, and so $G/Z(G)$ is compact. Conversely if G/Z(G) is compact, lifting Ad to a continuous map $G/Z(G)$ \rightarrow Int(G) we see that Int(G) is compact, hence closed.

2.6. Corollary. Let G be a separable locally compact group. Then Int(G) is unimodular \leq > G is unimodular and Int(G) is closed.

Proof. If Int(G) is unimodular, in particular it is closed, so by the Proposition in 2.1 it is topologically isomorphic with $G/Z(G)$, so that the latter is unimodular. It is then easy to see G is unimodular, we give a proof for completeness. Let dz and dx be Haar measures on $Z(G)$ and $G/Z(G)$ respectively, and G \rightarrow G/Z(G) the canonical map. Let

$$
\mu(\varphi) = \int_{G/Z(G)} \int_{Z(G)} \varphi(xz) dz dx , \quad \varphi \in C_c(G).
$$

By the Weil integration formula μ is a left Haar measure on G. Using right invariance of dx^2 and the fact that $Z(G)$ is the center, one verifies easily that μ is even right invariant. Thus G is unimodular. Conversely, if G is unimodular and Int(G) is closed we show that $G/Z(G)$ is unimodular. It will then follow that $Int(G)$ is unimodular. since $Int(G) \approx G/Z(G)$.

Define μ as above. By assumption μ is right-invariant. Since the mapping $C_c(G) - C_c(G/Z(G))$, $\varphi \mapsto \widetilde{\varphi}$, $\widetilde{\varphi}(\mathbf{x}) = \int_{Z(G)} \varphi(xz) dz$ is surjective [8, Theorem 15.21]; $\mu(\varphi) = \mu(\varphi_v)$ for all $\varphi \in C_c(G)$, $y \in G$, then implies dx is right-invariant:

$$
\int_{G/Z(G)} \widetilde{\phi}_{\mathbf{y}}(\mathring{x}) \mathrm{d}\mathring{x} \;=\; \mu(\phi_{\mathbf{y}}) \;=\; \mu(\phi) \;=\; \int_{G/Z(G)} \widetilde{\phi}(\mathring{x}) \mathrm{d}\mathring{x} \;,
$$

(here $\varphi_y(x) = \varphi(yx)$). Thus Int(G) is unimodular.

2.7. Corollary. Let G be separable and locally compact and suppose Int(G) is closed. Each of the following properties for G implies the same property for $Int(G)$.

- a) There is a compact neighborhood of the identity element invariant under inner automorphisms ([IN]- property).
- b) There is a neighborhood basis of the identity consisting of compact sets which are invariant under inner automorphisms $($ [SIN] - property).
- c) All the conjugacy classes of G are precompact $(\lfloor FC \rfloor$ -property).

Proof. We need only notice that in each case $G/Z(G)$ has the required property. The easy details will be omitted. \bigcap

Next we give an example of a group G for which $Int(G) \neq Int(G)$, using Corollary 2.5.

2.8. Example. Fix an irrational number λ , and let $\omega_{\lambda}: \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{P}$; $w_{\lambda}((m_1, m_2), n_1, n_2)) = e^{\pi i \lambda m_1 n_2},$ where $\mathbb T$ is the circle group. Let G = $\mathbb{Z}^2 \times \mathbb{P}$ with the product topology and group composition

$$
(m_1, m_2, s) \cdot (n_1, n_2, t) = (m_1 + n_1, m_2 + n_2, e^{\pi i \lambda m_1 n_2} st).
$$

G is a topological group with center $((0,0))\times\mathbb{T}$, and since $((0,0)) \times \mathbb{F}$ is open, G has small Int(G)-invariant neighborhoods of the identity. Moreover, all the conjugacy classes of G are precompact, so by the Ascoli theorem for groups $[6, \text{ Satz } 1.7], \text{ Int}(G)^T$ is compact. However G/Z(G) is non-compact, being infinite discrete; and hence Int(G) is not closed (Corollary 2.5). To see this directly, choose a sequence (k_n) from \mathbb{Z} such that $e^{\pi i \lambda k_n} \rightarrow e^{\pi i/2}$, and put $\alpha_{\lambda}(\mathbf{m}_1, \mathbf{m}_2, e^{\pi i t}) = (\mathbf{m}_1, \mathbf{m}_2, e^{\pi i t \mathbf{m}_2 t/2})$. Then $\alpha_{\lambda} \in \text{Aut}(G)$ and is not inner. A routine calculation shows that $Ad(O,k_n,1)$ $\frac{1}{n}$ a_{λ} (by [6; Satz 1.6] it suffices to check $Ad(O,k_n,1) \frac{1}{n} > \alpha_{\lambda}$ pointwise).

 $- 16 -$

- 1) J. Braconnier, Sur les groupes topologiques localement compact, J. Math. Pur Appl. 27 (1948),1-85.
- 2) A. Connes, Almost periodic states and factors of type \mathbb{II}_4 , J. Funct. Anal. 16 (1974), 415-445.
- 3) P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- 4) W. Green, Compact groups of automorphisms of von Neumann algebras, Math. Scand. 37 (1975), 284-295.
- 5) s. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40.
- 6) S. Grosser, 0. Loos, and M. Moskowitz, tiber Automorphismengruppen lokal-kompakter Gruppen und Derivationen von Lie-Gruppen, Math. z. 114 (1970), 321-339.
- 7) U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.
- 8) E. Hewitt and K. Ross, Abstract Harmonic Analysis, I, Springer-Verlag.
- 9) M. Takesaki and N. Tatsuuma, Duality and subgroups, Annals of Math. 93 (1971), 344-364.