Automorphisms for locally compact groups

1. Let G be a locally compact group and Aut(G) the group of
all its topological automorphisms with the Birkhoff topology. A
ﬁeighborhood basis of the identity automorphism consists of sets
N(C,V) = {0 €Aut(G): 6(x) €Vx and 6~ (x) €Vx, all x €C}, where C
is compact and V is a neighborhood of the identity e of G. As
is well known, Aut(G) is a Hausdorff topological group but not gen-
erally locally compact [1;p.57]. In this article we are mainly
concerned with the topological properties of Aut(G) and its sub-
group Int(G) of inner automorphisms. We prove that for G arbitra-
ry locally compact Aut(G) is a complete topological group. In
particular, if G is also separable Aut(G) is a Polish group. As

far as we can determine this result is new; and of course, this fact
will be useful for the further study of Aut(G). Furthermore, we
give two new characterizations of the topology for Aut(G), (1.7.
and 1.6.,). In Section 2 we turn to the question of when certain

. subgroups (among them Int(G) ) are closed in Aut(G), and several
equivalent conditions are given; for instance, Int(G) is closed iff
G admits no nontrivial central sequences (2.2). Applications to
more special classes of groups are also given, as well as to the
question of unimodularity of Int(G), (2.5). We remark that there

is no separability assumption on the groups before 1.11.

1.1, Lemma., The sets W
- cpqs°°°’c9n;€

= {1 € Aut(@) : ncpj°'r-cple30< e and ||CPj°T-q-¢Pj“oo< e 1<j=n]

where 5 € C(G) and € >0, form a basis for the neighborhoods

of the identity in Aut(G).



Proof. ILet o,5...,%, € CC(G) and € > 0 be given. Set
n

F = U support (cpi) , and let W be a symmetric nbh. of e in G
i=

such that Icpi(x)-cpi(wx)l <e¢ forall x€G, weE€W, 1<i<n,

We claim N(F,W) € W .c- Let T €N(P,W). Then for x€F,
= "Pqreess®p;

ﬂ'(:{)x"’I €W and 'r"q(x)x’/‘e W, so

() oy -9 (rG)] < ¢ and o (x) -9 (7 (@))| < e, 1<i<n.

If 7(x) € F, then 'r",'('r(x))'r(x)"q EW, i.e. x'r(x)"] €W, so
lcpi(x)-cpi('r(x))l <e, 1<i<n. Similarly if 'r'/l(x) € F then
los () -9, (7' (x))| < e, 1<i<n. Clearly if x £F and 7(x) £ F,
then Icpi(x) -cpi('r(x))l < €, since in this case cpi(x) =cpi('r(x)) =0,

1<i<n. Thus, for x £ F, we have the following subcases:

(a) t(x) €F apnd T (x) € F
(b) T(x) €F and T N(x) £F
(e) 'l’_,l(x) €F and T(x) £ F

(@ T(x) £F and 1 (x) £ F.

In each case (*) is satisfied. Thus T ¢ N(F,W) implies

| .
“cPi":Pi°T"oo<e and HCPi"CPi“" ”OO<€, 1.€., T ewtp/l,.-o,CPn;e"

Conversely, let F € G be compact and W a neighborhood of e
in G. Let U Dbe a compact xieighborhood of e in G such that

g2y~

cW. Let ¢ € Cc(G) be such that 0 <y <1, support (§)

c U‘2 , and {¢(u) >+, Vvu € U, (The existence of such a { is clear.,
Let {xq,...,xn} be a finite subset of F such that

{Uxi :1<i<n} covers F. Define ¥ € CC(G) by wi(x) = w(yx;])

1<i<n. We claim W < N(F,W) .

‘b/‘,t.c,\vn;%
Indeed, suppose T € W .+ and let x € F, Then x € Ux,
q"/|10°~,qfn9'f J

for some Jj, and



Wj(x)-wj('r(x))l < %+ implies 71(x) € ng..

j
2%.x 1 c U cW. Similarly,

-1

But then t(x)x~| € U x %

|\ltj(x) - ﬂ!j('f—,‘(x))l < %+ 1implies (x)x' € W. This proves the

claim, O

1.2. By Bracammier [1] there is a continuous (modular) homomorphism

A :Aut(G) = RY with the property
A(a)"/lj f°oc'1(x)dx = J f(x)ax, for f € CC(G) ,
G G
where dx is a fixed Haar measure. Defining
8(f) = a(e)” fe6” , f €L (G), © € Aut(G),

it is easy to see that 6 becomes an automorphism of the group
algebra L/I(G) . Denote by A the left regular representation of
G as well as the left regular representation of L1(G) on L2(G) .
Viewing '5, 8 € Aut(G), as an automorphism of X(L/I(G)) , we show
that 6 can be extended to an automorphism of the von Neumann alge-
bra of the left regular representation, ®&(G) = )\(L’](G))" = aM&)".,
We define a unitary operator U9 , 6 € Aut(G), by

&) - -
g = a(e)Fgee™! , g € 12(Q).

A straight forward calculation shows

~ -
\8e)) = thee) vV .

The unitary implementation 8 +—> Ue allows us to define 6(T)

for T € ®(G) by

~ 8 ol
8(T) = U T ¥

1¢3. Lemma. The map o € Aut(G) +—> Uag € LE(G) is continuous
(g € I°(®)) .



Proof. Let G € CC(G) and € > 0 be given. Fix a compact
neighborhood U, of e in G and set K = U,-support (g) . By
Lemma 1.1. there is a neighborhood N(C, U) in Aut(G) so that
o € N(C,U) implies

2
2

-
lgea™ - gll, < €/20(K)?,

where | is a left Haar measure on G. We can assume support (g)
cC and U = U-q < Uy If o€ N(C, U) and x € support (g°a°q),
then X € Uesupport (g) € K. By continuity of A there is a

neighborhood N, of the identity + € Aut(G) so that for o € N,,
la@F -1 < e/2)glu(x)?

Set N = N,]nN(C,U) o Then if o € N,
I 0% - gl = 8@ Fgea™ —gll, < c/u@®)E.

a
Since support (U g-g) € K we have

| tg-gl3 < JKH "g-gl aux) < || Ug- gl v(R) < €°.

If b € L°(G) is arbitrary, € >0, let g € C(6) with |lg-hl|,<e.
It | Uag-gllz <e, a €N, then

| Pn-nl, < )| On- Cely+ )l Ue-ell+lle-nl, < 3¢, g

1e4. Our next aim is to stud;); Aut(G) by embedding it in Aut(®(G)),
and we shall prove that the embedding is topological if Aut(&(G))
is provided with the appropriate topology, namely the uniform-weak
topology, and a neighborhood base at the identity 1+ € Aut(® (G))

is given by

{a EAut(W(G)) : '((0"-7’)@13 °pi>‘<€’°pi E@(G)*, /l.<.i_<.n} y €20,

where @,‘ denotes the unit ball in @(G) o Recall that the pre-
dual, ®(G),, is the Fourier algebra A(G), [3]. Let



= {a €Aut(G) ¢ |

PpreeesPpyi€ o -9;°all <€, 1<i<n}, 9; €4(G),
n

where ||¢|| denotes the norm in A(G).

1.5, Lemma. Wy o .o = (x€hut(): K@-1) Ry, ;] <€, 1<i<n}.

Proof. First note <{a(T),9) = {(T,p°ad, T € R(G), o € A(G),
o € Aut(G) ; i.e., 8°(p) =gea : If T = A(£), £ €L'(G), we have

EOE)),0 = b(a)7" ijea"'cao @(x) ax = (A(£),9°a) .
Since {A(f): fELq(G)} is dense in ®(G) , the claim follows.

Now <{(a-1)T,q) = {T,p°a-g), T € ®,. Taking the supremum over
all T € @,‘ we get

((@-1) ®yy9) = lloca-afl , o €A,

and the lemma follows. D

1.6. Proposition. The sets W v; € A(G) and € >0,

Praeeecs®@y i€ ?
form a base at the identity + € Aut(G) for the Birkhoff topology.

Hence the embedding Aut(G) &> Aut(®(G) is topological.

Proof. We show first that the topology generated by the sets
W . is weaker than that of Aut(G). By Lemma 1.5, for
cp/‘ 9 ® © ,¢n’ e
@ € A(G), a € Aut(G),

- pcall = sup|(T~-a(T), ol .
o = @eall Teﬁli ) @)1
Writing o = (£*g™)Y, £, g€ 12(G), we have

lo = weall = sup [<(T-3a(T))f,ed|
TEQ/}

=1
= sup [K(T-U*TU% )f,g)]
773
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-1 | =1
= sup |[¢(U* T-T0* Df, 1% g
€ R,

-1 -1 -1 -1
< sup | T-m)F, 0% g)| +sup |K(T-U T)r, 1% g
TGOP,] Te

Now

-1 =1 =1 -1
[K(r-10* )£, 0 @ < iTE-1" DIt el

-1
<le-v* sl llel, ., all Te®R,.

/]

=1
By continuity of the map o #> o~ @ +> U f (Lemma 1.3) given

€ >0, there is a neighborhood N, of + € Aut(G) so that
=1
“f"Ua f”g”%”g < %, all « € N,. Furthermore,

1 -1
K@ r-m)f,U* g

/]

- - -1
[(u* T, 0% g)-<Trf, U g

1}

=1 -1
(T £,g) -<T£,0* g)| = [<Tf,g-1* @]

=1 =1
sl ol -0 elly < Iflllle -1 el

N

all T € R,.
Again there is a neighborhood N, of t € Aut(G) so that

Ilf[lzn'g--Uﬂ”’lgll2 < €/2. TLetting N = N NN,, we get o= o] < €.
Conversely, let F < G be compact and W a neighborhood of e

in G. Let U be a compact neighborhood of e such that

.l cw.

Since A(G) isaregular algebra, there exists { € A(G) with

0<¢4 <1, ¥(u) =1 for ue€U, and support (¥) c v? [3; Lemma

3.2]. Let {x;y...,x } € F be so that {Ux,:1<i<n} covers F.

c N(F,W).

. -1 . .
Define ¢;(y) = ¥(yx; ), 1<i<n. We claim wcp,‘,..,,cpn;'l

and let x € F, Then x € Ux.

deed S T EW
Indeed, suppose € cp,l,...,cpn;’! j
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for some j. Now ][wj“r-\vjn < 1 implies ||¢J.°T-¢J.ILJO< 1, so that

|t|:j°'r(x)—\bj(x)| <1, But for x € Ux. wj(x) = wj(uxj) =y =1,

J 9

where X = ux.,, u € U. Hence 7(x) € support (wj) , Or

J b
T(x) € U2}cj . But then
'r(x)x",] € sza.}c"/l € U2U'1 c W.

In addition
° il = o
”“’J T ‘WJ” = ”‘1'3 T WJ“ < 1,

so the same argument as above yields 'r"/l(x) € Wx. 0

1.7. Corollary. Suppose G has small neighborhoods of the identity,
invariant under inner automorphisms (i.e., G € [SIN]). Then viewing
the group Int(G) as a subgroup of Aut(®(G)) , the pointwise-weak

and uniform-weak topologies coincide on Int(G) .

Proof. As is well known, G € [SIN] if and only if & (G) is
a finite von Neumann algebra. The conclusion follows from [73; Propo-

sition 3.7]. []

Note that the above can just as well be stated for [SD\T]B-
groups where B < Aut(G) is a subgroup. Also, the corollary is
not too surprising in view of the fact that for [SIN] - groups the
point-open and Birkhoff topologies of Aut(G) agree on Int(G)

[6; Satz 1.6].

1.8. We say that G is an [FIA]];-—group if B is a relatively
compact subgroup of Aut(G) (see [5]). It is now a trivial conse-
quence of 1.6 that G € [FIA]; if and only if B, viewed as a

subgroup of Aut(®R(G)) endowed with the uniform-weak topology, is



relatively compact. Cf. [4; Theorem 2.4)]. By [4; Corollary 1.6],

the pointwise-weak topology may be substituted for the uniform-weak

topology,

1.9. Next we show in an elementary way that for an arbitrary locally
compact group G, Aut(G) is a complete topological group (in its

two-sided uniformity).

Theorem. Let G be a locally compact group, then Aut(G) is

complete with respect to its two-sided uniformity.

Proof. Let <°Lv) be a Cauchy net in Aut(G). Since a > Ua,
Aut(G) - J(Lg(G)) is continuous in the strong operator topology, it
is also weakly continuous. Now U € J,(Lz(G)),] ( = unit ball of
J(L2(G))); also the weak and ultraweak topology coincide on oa(]::e(G)),l
and .;QZ(I.E(G)),I is compact in this topology. Thus (Uav) has a
point of accumulation U € QE(LE(G)),]; let (au) be a subnet such
that U M 5 U weakly. Then for £,g € 12(G)

a a Qa a
(U Y =mE,e) = (U Y=U M, +U *-1)f,g)

a;/‘au a;q a
=(£-T £,U 7 g+ (U H-mf,e)
=1
< ||£ gy e £, gl +<(UOLM U)f,g) > 0
= 2 18llp 18 RY)
since c,',]a s—> ¢ in Aut(G) Thus UOLV 3 U in the weak
vV ou (V,u) —"’ Y
operator topology. ©Similarly v converges weakly to some

Ve L(17(6),. Weclaim V=0, Let f,g €L°(6), € >0,

Let v be such that for v > v
o} o}

-1 =1
a o c

a
v
|<U VvE-Uvf,g)| <e, and |UY g-U ©Ogl, < .
) s 2 = 27,
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Choose VY, such that v > v, implies
=1 o=
[<uY £-ve,U Yogy| < €.

Then for wv,n > Vo and Vg, We have
o c,;q
ke u Y r-uve,g|
a a;q a a
<lkuruYe-utve, g+ | Hve-wr, ),

a
where |(U MVf, g)] < €. Also

-1 -1 -1
a a a a
oV s-uMve,gd = U Y £-vE, UM gl
-1 -1 -1 - -1
a ay o a ay,
<KUY e-ve,U Og)| + KUY £-VE, UM g-U Og)|
=1 =1 =1
CI.V ) a a\)
<e+|u’ c=ve vt g-u gl
-7 -1

au Qy
<e+ 2l vt g-u Ogl, < 2¢,

so that 1
a a;
[<u Pu Y r-uve,g)| < Ze.

But
Qa a'q a a;q
WHT Y f,8) = WMV £,8) — (f,8),
(1,V)
hence
(UVE,g) = (£,8) , 81l f,g € I2(G) ;

thus V = U”'. In addition,

., Oy . “Cq
(Uf,g) = l%m(U f,8) = l%m(f,U gy = (£,Vg),
so V = U*, and we have il U*, so U is unitary.
a
argument now shows U Y converges strongly to U:

C a a 08
lu ¥t -vzl5 = v Vr,U V) - (ug,U Ve

G-v } C(.v G,v
- (U V£, UEY + (UE,UEY = 2{F,£) ~ (UF,U "£) - (U Y£,Uf)

A standard
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It remains to show that A(x) > U MX)U"/I defines an automorphism
of MG) (and thus of G). Fix x € G, clearly (au(x)) 1is a
Cauchy net in G and (since G is complete) converges to an element,

say a(x) € G. Then
Gy oy
U "AM(x)U = x(av(x)) <> rMa(x)) weakly,
and
=1
%y Oy -1
U a(x)U ~> UA(x)U weakly .

I.e. Ma(x)) = U)\(x)U"q . To prove o is a homomorphism,
Ma(xy) = UAGHIU™ = (UAGEU HUAGU) = raEx)(a(y)) =
AMa(x)a(y)); so a(xy) = a(x)a(y). Also

A@(x ) = AT = )T = AU = a@@) -
AaG)™T), dee. alxT) = a7,

To prove continuity of a, 1let (xu) ~x, in G. Then

Ma(xy) = Ux(xu)u"1 e m(xom‘1 = A(a(x,))

in the weak operator topology. But x +—> A(x) is a homeomorphism
of G into A(G), where A(G) c J,'(Lz(G)) carries the weak topo-
logy ([4; Lemma 2.2]). Thus a(xu) - a(xo) . Similarly, 1 is

continuous, and we have a € Aut(G), so that Aut(G) is complete.

1.10. Remark. Since by 1.6 Aut(G) is topologically embedded in
the complete group Aut(®(G)), [7; Proposition 3.5], it would be
natural to prove completeness of Aut(G) by shoﬁing it is closed in
Aut (R (G)) . Actually, such a proof can be given, utilizing the
profound duality theory in [9]. We sketch the argument. Consider
a net (av) in Aut(G) such that E\) -y € Aut(AR(G)) in uniform
weak topology. By duality theory ®(G) is a Hopf - von Neumann
algebra with comultiplication & : R(G) ~ ®R(G)® ®(G) which is a
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0 - weakly continuous isomorphism given by &(T) = W (T® )W, TeRr(G),
where Wk(s,t) = k(s,st), k € L2(GxG), s,t € G, [9; Section 41.
Furthermore, one has

{Te AG):6(T) =T®T} - {0} = {Te A(G):T=21r(s), for some s €Gl.
Notice that Aut(G) corresponds to the subgroup
{o € Aut(A(G)): 6(a r(s)) = a r(s)®a A(s), all s€G}.
Since Ev - yehiut(R(G)) and 6(&’\) A(s)) = Ev x(s)®€v A(s), all
s € G continuity of & gives

s(vy(A(s))) = y(a(s))®y(A(s)), all s € G.

Thus y = o for some o € Aut(G). N

1.1, Corollary. If G is a separable locally compact group, then

Aut(G) is a Polish topological group.

(o] .
Proof. Indeed, if G = U F , F_  compact, and if {Um}mEJN
is a neighborhood base at e € G, then {N(Fn,Um.)}n o is a neigh-
9
borhood base at 1+ € Aut(G), so that Aut(G) is metrizable [8],

and by 1.9. it is complete. 0

2. We proceed now to applications of the Theorem in 1.9. First
we turn to the question of when certain subgroups of Aut(G) are
closed. The following result contains a group theoretical analog.

to [2; Theorem 3.1].

2,1, Proposition. Let G be a separable locally compact group, and

B a subgroup of Aut(G). Suppose there is a Polish group H and
a continuous surjective homomorphism w:H = B. Then the following

are equivalent.
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a) B is closed in Aut(G).
b) w:H =B is open onto its range B.

c) For any neighborhood V of the identity in H there exist
Pqaees @, € CC(G) and € > 0 such that, for all h € H,

lo; cwh) - o;llo < ¢ and

”CPi°w(h'1)-cpiHoo< €, 1<i<n, =>h € Ve(kerw)

d) Same statement as c¢) with CC(G) replaced by the Fourier
algebra A(G) (end its norm ||+|| ).

Proof., a) =>b): If B is closed in Aut(G) then H and B
are both Polish. Observe then that a continuous homomorphism between
two Polish groups is open [2; Lemma 3.4]

b) =>c): Put K = kerw. Since w is open it follows from Lemma

1.1 that given a neighborhood V of the identity in H +there are

functions ¢q,...,9, € C,(G) and ¢ >0 so that

W .cNB < w(V) . Now w can be lifted to a map @ of

Ppaoees®Ppns

H/K - B, so that the diagram commutes and & is a homeomorphism.
Thus w(h) €W implies

l \ w(h) €ew(V) = W(VK) , hence w(hK) € w(VK), so that

> B h e hKk < VK,

c) <=> d4) is clear in view of Proposition 1.6.
d) => a): By 1.6 there is a sequence (cpn) fi*om A(G) such that

the sets Wn =W form a base for the identity in

cp/],..,,wn;"/n
Aut(G) . Let {Vn} be a countable base for the identity in H.
By d4), given n there is an m(n) so that w(h)ewm(n) implies

h € VnK’ Let 6 € B~ and choose a sequence (onn) from B so
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a) B is closed in Aut(G).
b) w:H -~ B is open onto its range B.

c) For any neighborhood V of the identity in H there exist
Pgseeer®y € CC(G) and € > 0 such that, for all h € H,

Ilcpi°w(h) - CPinoo < € and

logew™) - g llo< e, 1sisn, =>h € V-(kerw)

d) ©Same statement as c) with CC(G) replaced by the Fourier
algebra A(G) (and its norm ||| ).

Proof. a) =>b): If B is closed in Aut(G) then H and B
are both Polish. Observe then that a continuous homomorphism between
two Polish groups is open [2; Lemma 3.4]

b) =>c): Put K = kerw. Since w is open it follows from Lemma
1.1 that given a neighborhood V of the identity in H there are
functions @q,...,9, € CC(G) and € > 0 so that

chq,“”cpn;e NB < wlV). Now w can be lifted to a map @ of
H/K - B, so that the diagram commutes and & is a homeomorphism.

H/K Thus w(h) €W implies

cp"l""Qcpn;e

~

’|\ w w(h) € w(V) = H(VK) , hence &(hK) € &(VK), so that

HT>B h € hKk ¢ VK,

c) <==> d) is clear in view of Proposition 1.6.
d) => a): By 1.6 there is a sequence (cpn) from A(G) such that

the sets W_ =W form a base for the identity in

n cp,],.“,cpn;"/n
Aut(G) . Let {Vn} be a countable base for the identity in H.
By d4), given n there is an m(n) so that w(h) ewm(n) implies

h EVnK. ILet © € B© and choose a sequence (an) from B so
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- "/l . . ~_/]
that o - & and O’n+janewm(n) for j>0. Setting w (onn)

-1 . C s
=hnK, we have hn+jhn°KCVnK’ j20. This is to say that
(hnK) is Cauchy in the left uniformity of H/K. Since H/K is
locally compact, it is complete, and h K —> hK € H/K, hence

w(h) = ®(hK) = 6 by continuity of @&, and thus 6 € B. 0

2.2. A sequence (Xn) from G is said to be central if
ad(xn) —> ¢ in Aut(G) . (xn) is trivial if there is a sequence

. =1
(zn) from the center Z(G) of G such that X2, T>e-

Corollary. Suppose G 1is separable, then Int(G) is closed

=> 3ll central sequences in G are trivial.

Proof. If Int(G) is closed, let (Xn be a central sequence,
and let - {Vn} be a base for the identity in G. By d) of 2.1. we

can find, for each n€W, ¢ €A(G) and € >0 so that
||cpn°w(x) - cpnll <e, (x€G) => xeV_ .7(G).
Choosing a sequence (kj) from IN such that

> . = .o A - Jdl < N
k2ks => o d(xkj) sl <ey s
1 eV, for some ¢ € Z(a).
j 9 j
Let Ch = C. for kj§n<kj+,|; J =12,3,00. - Then

J
XCn > ©s and (xn) ‘is trivial.

we have x_ € VJ.oZ(G) ,» hence x 01;
J J

The converse is shown in the same way as d) => a) in 2.1. ]

2.3. We remark that the class of groups for which Aut(G) is
locally compact includes the compactly generated Lie groups [6; Sats
2.2]. For 1Int(G) we have the following

Corollary. Let G be separable and locally compact. Then
Int(G) is locally compact <=> Int(G) is closed.
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Proof. If Int(G) is locally compact, it is necessarily
closed [8; Theorem 5.11]. On the other hand if 1Int(G) is closed,
take G =H and w = Ad, where Ad(g)x = g}cg"/I , X,8 € G, in 2.1,
Then by continuity of Ad, Int(G) is homeomorphic with G/Z(G).
Z(G) = center of G. B

2.4, Let GF be the closed normal subgroup of elements x 1in G
having relatively compact conjugacy classes {gx g"/]': geGl. If
G € [s1w], Gp is open since any compact Int(G) - invariant neigh-
borhood of e is contained in G,. Let w:G - Aut(GF) be the
continuous homomorphism w(g) = Ad(g)IGF , [8], and 1let B be the
subgroup w(G) < Aut(Gp) . Clearly Gp is an ([SIN]; group, and

we have

Corollary. Let G be separable. Then, with notation as above,

B 1is closed <==> B 1is compact <=> G/kerw is compact.

Proof. The first equivalence is proved in [5]. If B is
closed, B is homeomorphic with G/kerw (The Proposition in 2.1,
a) => b)) so by compactness of B, G/kerw must be compact. Con-
versely, if G/kerw is compact then so is B = @(G/kerw) by contin-

uity of the lifted map ., 0

Specializing the preceeding corollary even further we obtain

2.5. Corollary. Let G Dbe a locally compact group and suppose
Int(G)~ is compact. Then Int(G) is closed <=> G/Z(G) is compact
(Z(G) = the center of G ).

Proof. This follows immediately from the Corollary in 2.4. if
G is separable. From [6] Int(G) is closed <=> Int(G) is compact.
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But Int(G) compact implies Ad : G - Int(G) is open [8; Theorem
5.29], hence Int(G) = G/Z(G), and so G/Z(G) is compact. Conver-
sely if G/Z(G) is compact, lifting Ad to a continuous map
G/Z(G) = Int(G) we see that Int(G) is compact, hence closed.

2.6, Corollary. Let G be a separable locally compact group. Then

Int(G) is unimodular <=> G is unimodular and Int(G) is closed.

Proof. If Int(G) is unimodular, in particular it is closed,
so by the Proposition in 2.1 it is topologically isomorphic with
G/Z2(G) , so that the latter is unimodular. It is then easy to see
G is unimodular, we give a proof for completeness. Let dz and dx
be Haar measures on Z(G) and G/Z(G) respectively, and x k> X,

G —> G/Z(G) +the canonical map. Let

J p(xz)dz dx , @ € CC(G).

w(e) = j 2(6)

G/Z(G)
By the Weil integration formula ¢ is a left Haar measure on G.
Using right invariance of dX and the fact that Z(G) is the center,
one verifies easily that u 1is even right invariant. Thus G is
unimodular. Conversely, if G is unimodular and Int(G) is closed
we show that G/Z(G) is unimodular. It will then follow that Int(G)
is unimodular. since Int(G) = G/Z(G) .

Define W4 as above. By assumption ¢ is right-invariant. Since
the mapping CC(G) - CC(G/Z(G)), o > o, o(x) = IZ(G)Q(xz)dz is
surjective [8, Theorem 15.21]; u(y) = p(¢y) for all ¢ € CC(G),

y € G, then implies dx is right-invariant:

0o (X)d%x = o) = =
JG/Z(G)wy(X) x = ples) = ule) fG

~, 0 ©

o(x)dx ,

(here my(x) = @(yx) ). Thus Int(G) is unimodular, 0
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2.7. Corollary. Let G be separable and locally compact and sup-
pose Int(G) is closed. Each of the following properties for G

implies the same property for Int(G).

a) There is a compact neighborhood of the identity element invari-
ant under inner automorphisms ([IN] - property).

b) There is a neighborhood basis of the identity consisting of
compact sets which are invariant under inner automorphisms
([SIN] - property).

c) All the conjugacy classes of G are precompact ([FC]'—p;foperty).

Proof. We need only notice that in each case G/Z(G) has the

required property. The easy details will be omitted. 0

Next we give an example of a group G for which Int(G) # Int(GJ,

using Corollary 2.5.

2.8. Example. Fix an irrational number X\, and let Wy zzng -7 ;

i Xm,lnz

wx((m,,,m2),n,|,n2)) = e , where T is the circle group. Let
G = 2Z2xﬂ with the product topology and group composition
mi A0,
(m,l,mz,s)o(n,l,nz,t) = (m,l+n,‘,m2+n2,e st) .

G 1is a topological group with center ((0,0))xT , and since
((0,0))x®™ is open, G has small Int(G)-invariant neighborhoods

of the identity. Moreover, all the conjugacy classes of G are pre-
compact, so by the Ascoli theorem for groups [6, Satz 1.7], Int(G)~
is compact. However G/Z(G) is non-compact, being infinite discrete;

and hence Int(G) is not closed (Corollary 2.5). To see this direct-
mi Ak eni/g
b

ly, choose a sequence (kn) from Z such that e —_—
n
i im,t/2
and put o,k(m,l,mz,eﬁlt) = (mq,me,em' 2 / ) . Then a, € Aut(G) and

is not inner. A routine calculation shows that Ad(O,kn,’l) > a

(by [6; Satz 1.6] it suffices to check Ad(0,k ,1)e>a, pointwise).
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