
Automorphisms for locally compact groups 

1. Let G be a locally compact group and Aut(G) the group of 

all its topological automorphisms with the Birkhoff topology. A 

neighborhood basis of the identity automorphism consists of sets 

N(C,V) = {9EAut(G): e(x)EVx and e-1(x)EVx, all xEC},where C 

is compact and V is a neighborhood of the identity e of G • As 

is well known, Aut(G) is a Hausdorff topological group but not gen­

erally locally compact [1;p.57]. In this article we are mainly 

concerned with the topological properties of Aut(G) and its sub­

group Int(G) of inner automorphisms. We prove that for G arbitra­

ry locally compact Aut(G) is a complete topological group. In 

particular, if G is also separable Aut(G) is a Polish group. As 

far as we can determine this result is new; and of course, this fact 

will be useful for the further study of Aut(G). Furthermore, we 

give two new characterizations of the topology for Aut(G), (1.1. 

and 1.6.). In Section 2 we turn to the question of when certain 

-subgroups (among them Int(G) ) are closed in Aut(G) , and several 

equivalent conditions are given; for instance, Int(G) is closed iff 

G admits no nontrivial central sequences (2.2). Applications to 

more special classes of groups are also given, as well as to the 

question of unimodularity of Int(G) , (2.5). We remark that there 

is no separability assumption on the groups before 1.11. 

1.1. Lemma. The sets w 
'P1 ' • • • ' 'Pn; e: 

= {T E Aut(G) 

where cpj E Cc(G) and e > 0, form a basis for the neighborhoods 

of the identity in Aut(G) a 
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Proof. Let ~1 , ••• ,~n E Cc(G) and e > 0 be given. Set 
n 

F = U support (cp.) , and let W be a symmetric nbh. of e in G 
. 1 ~ 
~= 

such that I cpi (x)- cpi (wx) I < e for all x E G, w E W, 1 ~ i ~ n. 

We claim N(F,W) _sW . rn ·e· Let T E N(F,W). Then for xEF, cp1, ••• ,,.n, 
T(x)x-1 E W and T-1(x)x-1 E W, so 

( *) l~i (x)- cpi (T(x))l < e and 

If 'f(x) E F; then T-1 (T(x))T(x)-1 E W, i.e. XT(x)-1 E W, so 

l~i (x)- ~i (T(x))l < e:, 1_::i~n. Similarly if ,.-'\x) E F then 

~~i (x)- cpi (,--1 (x))! < e:, 1_::i,:Sn. Clearly if x ~ F and 'r(x) ~ F, 

then I cpi (x)- ~i ( 'r(x)) I < e , since in this case ~i (x) = ~i ( T(x)) = 0, 

1 ~ i! n J Thus, i'or x ~ F , we have the following sub cases: 

(a) T(x) E F and ,--1 (x) E F 

(b) T(x) E F and T-1 (x) !_ F 

(c) 'l"-1 (x) E F and T(x) ~ F 

(d) T(X) 1. F and ,.-1 (x) ~ F. 

In each case (*) is satisfiede Thus T E N(F,W) implies 

II~·- cp. o,--1 1100 < e:, i.e., T E W • 
~ ~ cp1, ••• ,cpn;e: 

Conversely, let F c G be compact and W a neighborhood of e 
•. 

in G. Let u be a compact neighborhood of e in G such that 

u2.u-1 c w. Let 1jr E Cc(G) be such that 0 .:: '¥ ! 1 ' support ( 1lr) 

c if' and 1jr(u) > f, V u E U. (The existence of such a 

Let (x1 , ••• ,xn} be a finite subset of F such that 

{Uxi: 1 ~i_::n} covers F. Define wi E Cc(G) by 1jli (x) 

We claim W,1, d •• ~ c N(F,W). 
"'1'•••'"'n' 2 

1jl is clear.: 

Indeed, suppose Then x E Uxj 

for some j , and 
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2 T(x) E U xj. 

( ) -1 2 -1 2 -1 w s But then T x x E U xjx c U U c • imilarly, 

I w j (x)- w j ( .,.-1 (x)) I < t implies .,.-1 (x)x-1 E W. This proves the 

claim. 0 

1 • 2. By Braccmrl.er [ 1 J there is a continuous (modular) homomorphism 

A : Aut (G) .... JR+ with the property 

A(a)-1 J foa-1 (x)dx = J f(x)dx, for f E Cc(G) , 
G G 

where dx is a fixed Haar measure. Defining 

""' it is easy to see that a becomes an automorphism of the group 

algebra L 1 (G) • Denote by A. the 1 eft regular representation of 

G as well as the left regular representation of L1 (G) on L2(G). 

Viewing a, a E Aut(G), as an automorphism of A.(L1 (G)), we show 

"" that a can be extended to an automorphism of the von Neumann alge-

bra of the left regular representation, Qi(G) = A.(L1 (G)) 11 =>..(G)". 
a 

We define a unitary operator U , a E Aut (G) , by 

9 ( )-i -1 U g = A 9 go a , 

A straight forward calculation shows 

A.(e(f)) = u9A.(f) u9- 1 • 

The unitary implementation 9 ~> u9 allows us to define B(T) 

for T E fA?(G) by 

9 s-1 
S(T) = U T U 

1.3. Lemma. The map a E Aut(G) ~> Uag E L2 (G) is continuous 

(g E L2 (G)) .. 
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Proof. Let G E Cc(G) and e > 0 be giveno Fix a compact 

neighborhood U 1 of e in G and set K = U 1 • support (g) • By 

Lemma 1.1. there is a neighborhood N(C, U) in Aut(G) so that 

a. E N(C,U) implies 

II goa. -1 - giJc:o < e /2~(K) i ' 

where iJ. is a left Haar measure on G. We can assume support (g) 

c C and U = u-1 c u1 • If a. E N(C, U) and x E support (goa.-1 ), 

then x E U•support (g) c K. By continuity of A there is a 

neighborhood N1 of the identity t E Aut(G) so that for a. E N1 , 

1 1 

IA(a.)-2 -11 < E:J2IIg!lc:oll(K)2 .. 

Set N = N1nN(C,U). Then if a. E N, 

II ua. g- glb = II A(a )-t goa. - 1 - gllc:o < € /1J.(K) yt. 
a. 

Since support ( U g- g) c K we have 

ll Ua g- g[l~ ,:: JKII ua. g- gl~ d!J.(x) ,:: II ua g- gllc:o 1-1CK) < e2 • 

If h E L2 (G) is arbitrary, e > 0, let g E Cc(G) with llg-hiJ 2 <e. 
a. 

If II U g - gll 2 < e , a E N , then 

a. a. a. a. 
II u h-hll 2 ,:: II u h- u gll2+1l u g-gll2+llg-hll2 < 3e. 0 

1.4-. Our next aim is to study Aut(G) by embedding it in Aut(c1((G)), 

and we shall prove that the embedding is topological if Aut(~(G)) 

is provided with the appropriate topology, namely the uniform-weak 

topology, and a neighborhood base at the identity t E Aut(~ (G)) 

is given by 

(a EAut(O?(G)): j((o:.-t.)ut1 , cpi)j<e,cpi EOi((G)*' 1,::i,::n}, e>O, 

where 0( 1 denotes the unit ball in fR (G) .. Recall that the pre­

dual, U((G) * , is the Fourier algebra A( G) , [3].. Let 
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W = {a. E Aut(G) : llep1. -cp1 aa.!l < e:, 1 ~i ~n} , cp1. E A(G) , 
cp1 '• • • 'cpn; e: 

where 11·11 denotes the norm in A(G). 

Proof. First note (a(T),cp) = (T,cpaa.), T E d((G), cp E A(G), 

a. E Aut(G); i.e., at(cp) = cpoa. : If T = >..(f), f E L1 (G), we have 

(a(A.(f)),cp) = A(a)-1 J foa.-1 (x) cp(x) dx = (A.(f),cp•a.). 
G 

Since {>..(f) : f E L 1 (G)} is dense in 6\)(G) , the claim follows. 

Now ((a-t )T,cp) = (T,cp•a.-cp), T E ~1 • Taking the supremum over 

all T E 0?1 we get 

((U'-t)W1,ep) ,;.jJcpoa.-a.l!' cp E A(G)' 

and the lemma follows. 0 

1.6. Proposition. The sets W , cp1. E A (G) and e: > 0 , 
cp1' •• • ,cpn;e: 

form a base at the identity t E Aut(G) for the Birkhoff topology. 

Hence the embedding Aut(G) ~ Aut(L$((G) is topological. 

Proof. We show first that the topology generated by the sets 

W is weaker than that of Aut (G) • By Lemma 1 • 5 , for 
cp1 ' o • o 'epn; e: 

cp E A(G) , a. E Aut(G) , 

ll cp - cp 0 a. II = sup I < T - a ( T) ' cp > I • 
TEw1 

Writing cp = (f*gl"oJ)V, f, g E L2 (G) , we have 

llcp-cpoa.ll = sup I<CT-a(T))f,g)l 
TE~1 

-1 
= su:e. I<CT-lf'Tua. )f,g)j 

TE w'( 1 
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-1 -1 -1 
= sup I (elf T - Tlf )f, tf g) I 

TE 6?1 

-1 -1 -1 -1 
~ sup I (elf T- T )f, tf g) I + su~ I ( eT - uo. T )f '1f1 g) I 

TE(R1 TE Uk1 

all T E Qt 1 • 

1 -1 
By continuity of the map a. +-> a.- ,..._.:> Ua. f (Lemma 1. 3) given 

e: > 0 , there is a neighborhood N1 of t E Aut(G) so that 
-1 e 

llf-lf fll 2 1lgll 2 < ~' all a. E N1 • Furthermore, 

-1 -1 
1 <elf T- T)f ,ua. g) 

-1 -1 -1 
= j(lf Tf, Uo:. g)- (Tf, Ua. g)l 

-1 -1 
= I<Tf,g)-(Tf,tf g)l = I<Tf,g-tf g)l 

-1 -1 
~ llTfll2llg-1fl g!l2 ~ \1~112\lg-Ua. gl12 ' 

all T E a? 1 • 

Again there is a neighborhood N2 of t E Aut(G) so that 

. -1 
!lfll 2 llg- tf gll 2 < e:;2. Letting N = N1 ('\ N2 , we get llcp- cpoc:.l] < e:. 

Conversely, let F c G be compact and W a neighborhood of e 

in G • Let U be a compact neighborhood of e such that 

if~ u-1 c w. 

Since A(G) is a regular algebra, there exists ~ E AeG) with 

0 ~ 1Jr ~ 1, 1jr(u) = 1 for u E U, and support (~) c if [3; Lemma 

3.2] o Let {x1 , ••• ,xn} c F be so that (Ux. : 1 < i < n} covers F. 
~ - -

Define '¥· (y) = ljr(yx.-1 ), 1 <i <n. We claim W~n rn •1 c N(F,W). 
~ l. - - '~"1 ' " • • ''~"n' 

Indeed, suppose T E W 1 and let x E F o Then x E UxJ. cp1, ••• ,cpn; 
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for some j • Now 11111 joT -111 jll < 1 

lv j o -r(x) - lit j (x) I < 1 • But for 

where x = uxj , u E U • Hence 

T(x) E ifxj • But then 

implies !lilt j aT - ljt j lb < 1 , SO that 

X E UxJ., 111-(x) = $.(ux.) = ~jt(u) = 1, 
J J J 

T(x) E support ( $ j) , or 

-r(x)x-1 E u2x .x-1 E u2u-1 c W. 
J 

In addition 

... - 1 (x) E Wx. so the same argument as above yields , 0 

1.7. Corollary. Suppose G has small neighborhoods of the identity, 

invariant under inner automorphisms (i.e., G E [SIN]). Then viewing 

the group Int(G) as a subgroup of Aut(@(G)) , the pointwise-weak 

and uniform-weak topologies coincide on Int(G). 

Proof. As is well known, G E [SIN] if and only if Qt(G) is 

a finite von Neumann algebra. The conclusion follows from [7; Propo­

sition 3.7]. I] 

Note that the above can just as well be stated for [SIN]B­

groups where B c Aut(G) is a subgroup. Also, the corollary is 

not too surprising in view of the fact that for [SIN]-groups the 

point-open and Birkhoff topologies of Aut(G) agree on Int(G) 

[6; Satz 1 .. 6]. 

1 .. 8. We say that G is an [FIA]B- group if B is a relatively 

compact subgroup of Aut(G) (see [5]). It is now a trivial conse­

quence of 1.6 that G E [FIAJ:B if and only if B , viewed as a 

subgroup of Aut(~(G)) endowed with the uniform-weak topology, is 
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relatively compact. Cf. (4; Theorem 2.4]. By [4; Corollary 1.6], 

the pointwise-weak topology may be substituted for the uniform-weak 

topologyo 

1.9. Next we show in an elementary way that for an arbitrary locally 

compact group G, Aut(G) is a complete topological group (in its 

two-sided uniformity). 

Theorem. Let G be a locally compact group, then Aut(G) is 

complete with respect to its two-sided uniformity. 

Proof. Let (a.'V) be a Cauchy net in Aut(G). Since a. .,_> W, 
Aut(G) ~ oCCL2(G)) is continuous in the strong operator topology, it 

is also weakly continuous. Now W E .1. (L 2 (G)) 1 ( = unit ball of 
. 2 2 J (L (G))); also the weak and ultraweak topology coincide on r£ (L (G))1 

2 a.'V 
and JC(L (G))1 is compact in this topology. Thus (U ) has a 

point of accumulation U E cL(L2(G)) 1 ; let (a.~) be a subnet such 
a. 2 

that U ~ ~ U weakly. Then for f,g E L (G) 

a. 'V a. 'V a. a. 
((U -U)f,g) = ((U -U ~)f,g)+((U ~-U)f,g) 

a.-10. a.-1 a. 
= (f-U v ~f, U 'V g) +((U IJ.-U)f,g) 

-1 a. a. a. 
~ llf-U v llfll2 1!g!l 2 +((U ll-U)f,g) (~J.,v)> 0 

since in Aut(G) • 
av 

Thus U v U in the weak 
-1 

operator topology. Similarly ua.v converges weakly to some 

Let f , g E L 2 (G) , t: > 0 • V E oL'(L2(G)) 1 • We claim V = u-1 • 

Let v 0 be such that for v >- v 0 

a. 
I (U v Vf- UVf, g) I < e , and 
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Choose v1 such that v ~ v1 implies 

-1 -1 a a. 
I (U v f- Vf U 'Yo g) I < e: • 

Then for v, 1J. .:> v 0 and v1 , we have 

a. a.-1 
I (U IJ. u v f - UVf 'g) I 

a. a.-1 a. a. 
< I (U IJ. u v f- u IJ. Vf' g) I + I (U IJ. Vf - UVf' g) I ' 

a. 
where I (U 1-L Vf, g) I < e • Also 

-1 a. a 
!<u v f-U 1-lvr, g)l = 

-1 -1 
a.'J a. l (U f- Vf, U IJ. g) l 

-1 -1 -1 -1 -1 a. a.v a. a. o.v 
< I (U v f- Vf 'u 0 g) I + I (U 'J f- Vf u IJ. g- u 0 g) I 

_4 -1 -1 
a.v a.IJ. a.v0 

< e: + 11u f..: VfU 2 lJu g- u gll 2 

-1 -1 
a av 

< e: + 2llfll 211u IJ. g- u 0 gll 2 < 2e , 

so that -1 a. a. 

But 

hence 

I (U IJ. u 'J f- UVf 'g) I < 3e: • 

-1 a. a. 
(U \.1 U v f, g) 

-1 a. a., 
= (U 1-1 v f,g) > 

(IJ.,V) 
(f 'g) ' 

(UVf,g) = (f,g) 2 f ,g E L (G) ; 
' 

all 

thus V -- u-1 • In dd · t · a ~ ~on, 

-1 
a.v a.v 

(Uf,g) = lim(U f,g) = lim(f,U g) 
v v 

= (f,Vg), 

so V = U* , and we have u 1 = U* , so U is unitary. 

Uo.'J 
argument now shows converges strongly to u: 

a.v 2 a.v a.v o.v 
IIU f- Ufll2 = (U f 'u f)- (Uf 'u f) 

o.v a.v a.v 
-(U f,Uf)+(Uf,Uf) = 2(f,f)-(Uf,U f)-(U f,Uf) 

A standard 

-> 0. 
'J 
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It remains to show that A.(x) 1-> U A.(x)u-1 defines an automorphism 

of A. (G) (and thus of G ) o Fix x E G, clearly (a.v(x)) is a 

Cauchy net in G and (since G is complete) converges to an element, 

say a. (x) E G • Then 

and 

-1 a. a. 
U 'VA.(x)U v = A.(a.v(x)) -> A.(a.(x)) 

'V 

-1 
a.'V a.'V 1 

U A.(x)U -> U A.(x)u- weakly. 
'V 

weakly, 

I. e. A.(a. (x)) = U A.(x)u-'1 • To prove a is a homomorphism, 

A.(a.(xy)) = UA.(xy)u-1 = (UA.(x)u-1 )(UA.(y)tr1 ) =A.(a.(x))A.(a.(y)) = 

A.(cx.(x)a(y)); so a.(xy) = a.(x)a.(y). Also 

A.(a.(x-1 )) = U A.(x-1 )tr1 = U A.(x)-1u-1 = (U A.(x)u-1 )-1 = A.(a(x) )-1 = 

A.(o.(x)-1 ) , i.e. o.(x-1 ) = o.(x)-1 • 

To prove continuity of a , let 

-> 
!l 

.... X 
0 

in G. Then 

in the weak operator topology. But x ~> A.(x) is a homeomorphism 

of G into A.(G), where A.(G) c oL(L2 (G)) carries the weak topo­

logy ([4; Lemma 2.2]). Thus o.(x ) .... o.(x ) • Similarly, o.-1 is 
!l 0 

continuous, and we have a. E Aut (G) , so that Aut (G) is complete .. 
0 

1.10. Remark. Since by 1.6 Aut(G) is topologically embedded in 

the complete group Aut( c:'R(G)) , [7; Proposition 3.5], it would be 

natural to prove completeness of Aut(G) by showing it is closed in 

Aut (Ji> (G)) • Actually, such a proof can be given, utili zing the 

profound duality theory in [9]. We sketch the argument. Consider 

a net (a.v) in Aut(G) such that Civ .... y E Aut( ~(G)) in uniform 

weak topology. By duality theory ut (G) is a Hopf - von Neumann 

algebra with comultiplication 5: C/t(G) .... dt(G) ® (/{(G) which is a 
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a- weakly continuous isomorphism given by 5 (T) = w-1 (T ® 1 )W , T E cR.(G ), 

where Wk(s,t) = k(s,st), k E L2(Gx G), s,t E G, [9; Section 4]. 

Furthermore, one has 

(TE ~(G):6(T)=T®T}- {0} = (TE ot(G):T=A(s), for some sEG}. 

Notice that Aut(G) corresponds to the subgroup 

(a.EAut(t'l\>(G)):6(a).(s)) = a.A.(s)®a.).(s), all sEG} o 

Since av .... y EAilt(uY(G)) and 6(av A.(s)) = av X.(s)®av A.(s), all 

s E G ; continuity of 6 gives 

6 ( y (A ( s))) = y (). ( s)) ® y ().. ( s) ) , all s E G • 

Thus y = a for some a. E Aut(G) o 0 

1o11. Corollary. If G is a separable locally compact group, then 

Aut(G) is a Polish topological group. 

00 

Proof. Indeed, if G = n~1 Fn , Fn compact, and if {Um}mEJN 

is a neighborhood base at e E G , then {N(Fn, Um) }n m is a neigh-
' borhood base at 1. E Aut(G), so that Aut(G) is metrizable [8], 

and by 1.9. it is complete. 
0 

2. We proceed now to applications of the Theorem in 1.9. First 

we turn to the question of when certain subgroups of Aut(G) are 

closed.· The following result contains a group theoretical analog. 

to [2; Theorem 3.1]. 

2.1. Proposition. Let G be a separable locally compact group, and 

B a subgroup of Aut(G) • Suppose there is a Polish group H and 

a continuous surjective homomorphism w : H .... B • Then the following 

are equivalent. 
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a) B is closed in Aut(G). 

b) w: H ... B is open onto its range B. 

c) For any neighborhood V of the identity in H there exist 

cp1 ,. o • , cpn E C c (G) and e > 0 such that, for all h E H , 

llcpi •w(h)- cp1 ll00 < e and 

llcpi •w(h-1)- cpillco < e, 1 ~i~n, => h E V•(kerw) 

d) Same statement as c) with Cc(G) replaced by the Fourier 

algebra A (G) (and its norm 11·11 ) • 

Proof. a) => b): IT B is closed in Aut( G) then H and B 

are both Polish. Observe then that a continuous homomorphism between 

two Polish groups is open [2; Lemma 3.4] 

b) => c): Put K = kerw o Since w is open it follows from Lemma 

1.1 that given a neighborhood V of the identity in H there are 

functions cp1 ,o •• ,cpn E Cc(G) and e > 0 so that 

W n B c w(V) • 
cp1 ' • • • 'cpn; e: 

Now w. can be lifted to a map 
,..., 
w of 

H/K ... B, so that the diagram commutes and w is a homeomorphism. 

H/K Thus w(h) E W implies 
cp1 ' • • • 'cpn; e: 

i~ w(h) E w(V) = w(VK) , hence w(hK) E w(VK) , so that 

H > B hEhKCVK. 
w 

c) <==> d) is clear in view of Proposition 1.6. 

d) => a): By 1.6 there is a sequence (cp ) from A(G) n such that 

the sets W = W rn .1/n form a base for the identity in n cp1, ••• ,..,..n, 

Aut(G) • Let {Vn} be a countable base for the identity in H. 

By d) , given n there is an m(n) so that w(h) E Wm(n) implies 

h E VnK. Let 9 E B- and choose a sequence (a.n) from B so 
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H/K -+ B, so that the diagram commutes and w is a homeomorphism. 

H/K 

i~ 
Thus w(h) E W implies 

cp1, ••• ,cpn;e: 
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that a. n - e and a.-1 a. E W n+j n m(n) for j > 0. Setting w-1 ca. ) n 

= hnK, we have -1 v h .h o K c K, n+J n n j > 0 0 This is to say that 

(hnK) is Cauchy in the left uniformity of H/K o Since H/K 

locally compact, it is complete, and hnK I? hK E H/K , hence 

w(h) = w(hK) = e by continuity of w, and thus e E B. Q 

2.2. A sequence (xn) from G is said to be central if 

is 

ad(x ) -> 1 in Aut(G) o n n is trivial if there is a sequence 

(zn) from the center Z(G) o.f G such that ->eo 
n 

Corolla£l. Suppose G is separable, then Int(G) is closed 

<==> all central sequences in G are trivial. 

Proof. If Int(G) is closed, let (xn be a central sequence, 

and let· {Vn} be a base for the identity in G. By d) of 2.1. we 

can find, .for each n E JN, cpn E A( G) and e > 0 
n so that 

Choosing a sequence (k . ) from JN such that 
J 

k > k. => jjq>. 0 Ad(x. ) - q> -II < €. ' 
- J J . Kj J J 

we have ·xk E V.·Z(G), hence ~ ck1 E V. for some 
j J j j J 

Let en= ck. for kj ~ n < kj+1 ; j = 1,2,3, •••• 
J 

~c~1 7 e, and (xn) is trivial. 

ck. E Z(G) • 
J 

Then 

The converse is shown in the same way as d) => a) in 2.1. 0 

2.3. We remark that the class of groups for which Aut(G) is 

locally compact includes the compactly generated Lie groups [6; Sats 

2.2]. For Int(G) we have the following 

Corollary. Let G be separable and locally compact. Then 

Int(G) is locally compact <==> Int(G) is closed. 
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Proof.. If Int(G) is locally compact, it is necessarily 

closed [8; Theorem 5.11]. On the other hand if Int(G) is closed, 

take G = H and w =Ad, where Ad(g)x = gxg-1 , x,g E G, in 2.1 .. 

Then by continuity of Ad, Int(G) is homeomorphic with G/Z(G). 

Z(G) = center of G.. O 

2.4.. Let GF be the closed normal subgroup of elements x in G 

{ -1· J having relatively compact conjugacy classes gx g : g E G • If 

G E [SIN] , GF is open since any compact Int(G)- invariant neigh­

borhood of e is contained in GF.. Let w : G .... Aut(GF) be the 

continuous homomorphism w(g) = Ad(g)IG , [8], and let B be the 
F 

subgroup w(G) c: Aut(GF) • Clearly GF is an [SIN]B group, and 

we have 

Corollary.. Let G be separable.. Then, with notation as above, 

B is closed <=> B is compact <=> G/ker w is compact. 

Proof.. The first equivalence is proved in [5].. If B is 

closed, B is homeomorphic with G/ker w (The Proposition in 2 .. 1, 

a) => b) ) so by compactness of B , G/ker w must be compact. Con­

versely, if G/kerw is compact then so is B = w(G/kerw) by contin­

uity of the lifted map w.. 0 

Specializing the preceeding corollary even further we obtain 

2 .. 5.. Corollary.. Let G be a locally compact group and suppose 

Int(G)- is compact.. Then Int(G) is closed <==> G/Z(G) is compact 

(Z(G) = the center of G) .. 

Proof. This follows immediately from the Corollary in 2.4 .. if 

G is separable.. From [6] Int(G) is closed <==> Int(G) is compact .. 
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But Int (G) compact implies Ad : G ... Int (G) is open (8; Theorem 

5 .. 29], hence Int(G) ~ G/Z(G) , and so G/Z(G) is compact. Conver­

sely if G/Z(G) is compact, lifting Ad to a continuous map 

G/Z(G) ... Int(G) we see that Int(G) is compact, hence closed. 

2.6. Corolla;z. Let G be a separable locally compact group. Then 

Int(G) is unimodular <=> G is unimodular and Int(G) is closed. 

Proof. If Int(G) is unimodular, in particular it is closed, 

so by the Proposition in 2.1 it is topologically isomorphic with 

G/Z(G) , so that the latter is unimodular. It is then easy to see 

G is unimodular, we give a proof for completeness. Let dz and dX 

be Haar measures on Z(G) and G/Z(G) 

G --> G/Z(G) the canonical map.. Let 

IJ.(cp) = I J cp(xz)dzdx , 
UG/Z(G) Z(G) 

respectively, and 

By the Weil integration formula 1J. is a left Haar measure on G. 

Using right invariance of dx and the fact that Z(G) is the center, 

one verifies easily that IJ. is even right invariant. Thus G is 

unimodular. Conversely, if G is unimodular and Int(G) is closed 

we show that G/Z(G) is unimodular. It will then follow that Int(G) 

is unimodular. since Int(G) ~ G/Z(G) .. 

Define 1J. as above. By assumption 1J. is right-invariant. Since 

the mapping Cc(G) ... C (G/Z(G)), cp ~ cp, cp(x) = J cp(xz)dz is 
c Z(G) 

surjective (8, Theorem 15.21]; IJ.(cp) = IJ.(cpy) for all cp E Cc(G), 

y E G, then implies dx is right-invariant: 

J q;Y .. Cx)dx = IJ.Ccp·) = IJ.(cp) = J Cf)Cx)a.X, 
G/Z(G) y G/Z(G) 

(here cpy(x) = cp(yx) ) • Thus Int (G) is unimodular.. 0 
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2.7. Corollary. Let G be separable and locally compact and sup­

pose Int(G) is closed. Each of the following properties for G 

implies the same property for Int(G) • 

a) There is a compact neighborhood of the identity element invari­

ant under inner automorphisms ([IN]- property). 

b) There is a neighborhood basis of the identity consisting of 

compact sets which are invariant under inner automorphisms 

( [Slli] -property). 

c) All the conjugacy classes of G are precompact ([FC]--property). 

Proof. We need only notice that in each case G/Z(G) has the 

requirec property. The easy details will be omitted. 0 

Next we give an example of a group G for which Int(G)-} Int(Gf, 

using Corollary 2.5. 

2 2 2.8. Example. Fix an irrational number A , and let wA: 2Z x 2Z -~ ; 
ni >un..,n2 wA((m1 ,m2),n1 ,n2)) = e , where 'll' is the circle group .. Let 

G = 2Z2 x 'lt.' with the product topology and group composition 

ni Am1n2 
(m1 ,m2 ,s)•(n1 ,n2 ,t) = (m1+n1 ,m2+n2 ,e st). 

G is a topological group with center ((O,O))x'Ir, and since 

( ( 0, 0)) x 'F is open, G has small Int (G)-invariant neighborhoods 

of the identity. Moreover, all the conjugacy classes of G are pre­

compact, so by the Ascoli theorem for groups [6, Satz 1.7], Int(G)­

is compact. However G/Z(G) is non-compact, being infinite discrete; 

and hence Int(G) is not closed (Corollary 2.5). To see this direct-
ni A~ ni/2 

ly, choose a sequence (kn) from Zl such that e -> e , 
n 

( TTi t ) ( TTi m2 t /2 and put aA m1 ,m2 ,e = m1 ,m2 ,e ) .. Then aA E Aut(G) and 

is not inner. A routine calculation shows that Ad(O,kn,1) 11> aA 

(by [6; Satz 1.6] it suffices to check Ad(0,~,1) 11>aApointwise) .. 
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