Ui0O ¢ Department of Informatics
University of Oslo

Automated cloud bursting on a
hybrid cloud platform

Evaluating and prototyping automated cloud bursting and
hybrid cloud setups using Apache Mesos

Noha Xue
Master’s Thesis Spring 2015

Automated cloud bursting on a hybrid cloud
platform

Noha Xue

May 18, 2015

ii

Abstract

Hybrid cloud technology is becoming increasingly popular as it merges
private and public cloud to bring the best of two worlds together. However,
due to the heterogeneous cloud installation, facilitating a hybrid cloud
setup is not simple.

In this thesis, Apache Mesos is used to abstract resources in an attempt to
build a hybrid cloud on multiple cloud platforms, private and public. Vi-
able setups for increasing the availability of the hybrid cloud are evaluated,
as well as the feasibility and suitability of data segmentation.

Additionally an automated cloud bursting solution is outlined and imple-
mentation has been done in an attempt to dynamically scale the hybrid
cloud solution to temporarily expand the resource pool available in the hy-
brid cloud platform using spot price instances to maximize economical ef-
ficiency.

The thesis presents functional and viable solutions with respect to avail-
ability, segmentation and automated cloud bursting for a hybrid cloud plat-
form. However, further work remains to be done to further improve and
confirm the outlined solution, in particular a performance analysis of the
proposed solutions.

ii

iv

Acknowledgements

I would like to offer my special thanks to my supervisor, Harek Haugerud,
for guidance and encouragement during the thesis work. His opinions and
constructive suggestions given during our discussions have been of great
help and are greatly appreciated. Without his support, the thesis would not
have been as improved to its current shape and form.

My special thanks to Lars Haugan for introducing me to interesting
emerging technologies, including Apache Mesos which ended up being a
central piece of technology in my thesis.

I also wish to acknowledge the guidance provided by Kyrre Begnum, in
particular for his lectures and inspiring assignments during the master
program which prepared me for my thesis work. His work with managing
and keeping Altocloud in tip top shape is also greatly appreciated.

To my friends, fellow students, and in particular my family, I would like
to express my endless gratitude for the support both in academia and in
general.

Finally, I wish to express my sincere appreciation to everyone, who directly
or indirectly, have lent their support to me in any manner or form.

Thank you,
Noha Xue

vi

Contents

Introduction
1.1 Problemstatement
Background
21 Clustering
211 ApacheMesos.
22 Cloudcomputing
221 Altocloud
222 Amazon Web Services
223 Terms and implementationmodels
23 Relatedwork.
Approach
31 Theobjective.
3.2 Formalization,
33 Thetestbed.
3.3.1 Choice of technologies
3.3.2 Other considerations
3.4 Outlining thedesign
3.5 Prototype implementation
3.5.1 \Verifying the implementations
3.6 Considerations and limitations
3.7 Expectedresults
Results: Design
41 OVerview i e e e e
42 Environment
43 Architecture
431 Availability 000
432 Segmentationofdata.,
43.3 Automated cloud bursting,
Results: Implementation
5.1 Setting up the testbed and Apache Mesos
52 Availability oo
52.1 Prototype 1: Maximizing availability
5.2.2 Prototype 2: Prioritizing local availability

vii

53 Segmentationofdata
54 Automated cloud bursting 000
54.1 Scalinginaction

6 Analysis
6.1 Thetestbedand VPN
611 VPN
6.2 Availability o oo
6.2.1 Prototype 1: Maximizing availability
6.2.2 Prototype 2: Prioritizing local availability
6.3 Segmentationofdata
6.4 Automated cloud bursting 0 0L
6.41 Experimentl
6.42 Experiment2

7 Discussion

7.1 Theproblemstatement
711 Hybridcloud 0L

712 Highavailability

713 Datasegmentation

714 Cloud bursting and spot price instances

7.2 Other limitations and considerations
7.2.1 Performance and abstraction

7.2.2 Depth of testing and experiments

723 DNSmanagement

724 Spotpriceinstances

7.2.5 OpenNebula and virtualization

726 ApacheMesos.

727 Suitability o o oo

7.3 Future work and improvement suggestions
7.3.1 Evaluating the performance and long-time availabil-

ity ofahybridcloudsetup

7.3.2 Evaluate and prototype additional public cloud
providers for a hybrid cloud platform

7.3.3 Improve the cloud bursting solution

74 Potential impactof thethesis

8 Conclusion
Appendix A Install notes for Apache Mesos master nodes
Appendix B Script for bootstrapping Apache Mesos slave nodes

Appendix C Cloud bursting script

viii

77

77
78
78

81

89

93

95

List of Figures

21
2.2

2.3
24

3.1
3.2

4.1

4.2

43

51

52

5.3

54

55

5.6

57

5.8

Abstraction model of Apache Mesos and some related

frameworks.o L oo 6
A simplified model of how tasks are scheduled and executed. 7
The layered components that provides redundancy. 9
[ustration of how cloud bursting works when the capacity

limit of the private data center is exceeded. 13
Region A can not reach Region B, but RegionBcan. 23

An UML Sequence diagram describing a possible interaction
sequence assuming MasterY is the working Mesos master

node. 24
A hybrid cloud setup, distributing the Mesos master nodes
to independent availability zones. 32
A five Mesos master node cluster with the majority of them
located at Altocloud. 33
Projected activity flow for the script illustrated in an activity
diagram. L o 37

Communication flow between an Apache Mesos slave node
and master node with the registration attempt failing due to

how public IP-addresses are handled in cloud platforms. . . 40
Prototype 1: Maximizing availability. = Distributing the
master nodes and thereby therisks.. 41
A screenshot of the Marathon GUI with a some created tasks
available to scaleupordown. 43
An illustration showing how the semi-isolated test scenario
lookslike 45

A screenshot taken over three browser windows showing
each of the state of the master nodes. "No master is currently

leading...". oo 46
Prototype 2: Prioritizing local availability. Focusing on the
availability at the local site. 47
A screenshot in the Marathon GUI listing up the running
tasks at the Mesos slavenodes. 49

A screenshot in the Marathon GUI showing the Marathon
application with the constraint attempting to scale beyond
the available resources that fulfill the constraint requirements. 49

ix

59 An activity diagram showing the decision logic for deter-
mining whether ornottoscale. 52
5.10 Experiment 1: The market price rises at the same interval as
the cloud bursting script does and drops as soon as the script
stopsbidding. o L. 54
5.11 Experiment 1 revised: A successful scale-up experiment
with the market price being stable for the entire duration of
theexperiment. 55
5.12 Experiment 2: A successful scale-down experiment with the
script waiting until the specified minimum time spent in an
hour-cycle before terminating the instances. 56

List of Tables

3.1

4.1

4.2

51
52
53
54

55

5.6

6.1

Specifications for subset of instance types available at the
Altocloud and Amazon Web Service EC2.

The specifications for the instance types chosen for running
Mesos masternodes.
List of five possible bidding strategies for the spot price
instances at Amazon Web Services EC2 (Voorsluys & Buyya,
2012). ...

The network partitioning of the RFC1918 private addresses
divided into separate subnets.
A subset of available slave nodes in this scenario. The
information has been taken from the Apache Mesos GUI and
represents a truncated view of the available slaves.
A list of specifications regarding the Mesos Master nodes. . .
The parameters for the cloud bursting experiment 1.
The parameters for the revised cloud bursting experiment 1
and experiment2. L L oL
Additional parameters in the configurations set for experi-
ment2.

Artificially set failure rates for Altocloud and a two Amazon
Web Services availability regions.

xi

20

36

Xii

Chapter 1

Introduction

The use of cloud computing is becoming more common, bringing along
the advantages of flexibility and abundance of available resources, but
also a higher degree of complexity along with privacy and security
concerns.

Nevertheless, the cloud technologies progresses and matures each year,
providing functionality for individuals for personal use, as well as
enterprises with huge requirements to performance, availability, and
price.

According to the report, State of the Market, Enterprise Cloud 2014 published
by Verizon Enterprise Solutions (2014), 65% of enterprises are using cloud
services, with 71% of them expecting to use the cloud for external-facing
applications by 2017.

However, some data storage and processing may be more sensitive and
require restrictions to on-site data centers or approved cloud providers due
to laws or confidentiality policy. An example of this would be processing
of highly sensitive information, that would be required by law to only take
place within the residing country of the company.

In 2013, Edward Snowden disclosed a vast amount confidential documents
regarding USA’s governmental institution National Security Agency’s
surveillance operations and capabilities, which raises concerns about the
risks of storing sensitive information at external cloud locations.

Additionally, the use of a single cloud provider may be problematic in
terms of vendor lock-in as well as price and availability. Even the largest
cloud companies experience downtime which may have an adverse effect
on the service, depending on the requirements and system design.

In 2014, Amazon Web Services, one of the biggest and most established
cloud provider, experienced 23 outages on Elastic Compute Cloud (EC2)
resulting in 2.69 hours of downtime (Shado, 2015). While the Service Level
Agreement (SLA) ended up being an impressive 99.9974%, there was still
other parts of Amazon’s services that was affected.

1

Amazon’s Content Delivery Network (CDN) service CloudFront experienced
issues that resulted in downtime for approximately 90 minutes in Novem-
ber 2014 (Silasi, 2014).

Furthermore, SLA alone does not by default guarantee anything but the
availability of the service and by extension does not guarantee any set
Quality of Service (QoS), which may adversely affect the performance of an
application to the unacceptable levels.

A possible solution for this is to utilize multiple cloud providers to min-
imize the risks of service disruption and degradation. There are several
organizations, like MODAC]louds, that are working with solutions for pro-
viding interoperability between different cloud providers (MODAClouds,
n.d.).

Additionally, a platform utilizing multiple clouds will also allow organi-
zations to be able to pick one or several cloud providers based on various
of factors like price, location, availability, and performance among many
others.

An another viable option would be the use of private data centers in
addition to external cloud providers in a hybrid setup. This type of setup
is often referred to as hybrid cloud and is becoming increasingly popular as
more companies are starting to invest and offer these solutions. According
to Google Trend Search, there has been an increasing interest in the term,
hybrid cloud, since the beginning of 2009 (Google Inc., 2015).

However, most solutions on the market are either proprietary or not open-
sourced which is not ideal if the purpose of using multiple cloud providers
is to avoid vendor lock-in.

Even with the possibilities of using multiple cloud providers and private
data centers, there is still the issue of static partitioning and isolation of
resources due to the design of virtualization. Static partitioning of systems
makes it difficult to fully utilize the resources due to fluctuations in system
use which may be affected by various factors like business hours, holidays,
and batch processing just to name a few.

Clustering technology as an abstraction layer on top of cloud resources
is one way to solve the issue of static partitioning, with the possibility to
turn scattered hardware into a flexible platform to be able to dynamically
allocate resources depending on needs at the time, thus facilitate a more
efficient use of the resources.

Most frameworks working on top of clustering technologies seem to allow
for restrictions on how and where an application can be executed based
on set attributes. This could solve the issues regarding the concerns of the
confidentiality and the wish to segmented sensitive data and processing
based on some specified restrictions.

Additionally, Amazon Web Services offers an interesting payment model
for instances called spot instances (Amazon Web Services, Inc., n.d.-a). These

2

instances uses the excess capacity Amazon Web Services have available and
the prices for spot instances fluctuates according to supply-and-demand
hourly. There are some considerations that needs to be addressed when
using spot instances, with the possibility of sudden termination being
the main concern. The use of spot instances requires fault-tolerance
mechanisms in order to be beneficial for running workloads with SLA or
QoS requirements.

This thesis will explore and document the attempts at designing and and
prototyping one or several possible solution for constructing a computer
cluster built on top of a private servers and external cloud providers. Ad-
ditionally, investigations will be conducted on the possibilities utilizing
spot instances for cloud bursting purposes and for segmenting applications
based on certain parameters as well as high availability solutions, leverag-
ing multiple clouds as a possible way to further minimize downtime.

1.1 Problem statement

The following problem statement will used as the foundation for this
thesis.

How can we build highly available, segmented computer clusters using private
computer hardware together with public cloud providers as a hybrid cloud
platform, leveraging spot price instances for an automated cloud bursting
solution?

For the purpose of the thesis, several assumptions and definitions are made
to narrow down the scope of the project. Here follows a short breakdown
of some terms used in the problem statement. Additional clarifications will
be found in the Background chapter 2 and Approach chapter 3.

* Highly available alludes to high levels of service uptime and availabil-
ity. The solution should be available for a legitimate user with as lit-
tle service disruption as possible. The solution should, by combining
the characteristics of a computer cluster and multiple cloud providers
further lower the risk of service downtime beyond the levels of a sin-
gle cloud provider.

o Segmented denotes the possibility to divide the cluster into logical
segments based on certain variables like location, performance, and
any other desired factor. The segments should be isolated from each
other. Furthermore it also refers to the ability for the solution to
restrict tasks to be run on those divided segments.

* Spot price instances are instances available for a changing price levels
that may be terminated immediately should the current price exceed
the offered price for the instances.

* Cloud bursting refers to the use the cloud to handle spikes in process-
ing needs. An organization can with cloud bursting dimension their

3

data center for average workloads and only pay for additional pro-
cessing during spikes using public cloud providers.

Chapter 2

Background

2.1 Clustering

Computer clustering can loosely be defined as a group of hardware
connected together to provide a single virtual and powerful platform of
hardware. Clustering setups allows developers to leverage a multitude of
types of machines as a single platform. This abstracts the hardware layer,
rendering the hardware as not essential by itself and can easily be swapped
out either due to performance needs or condition.

Having a single and uniform interface towards a cluster makes it possible
for flexible partitioning of the resources. A typical workload of a front
facing web server would be high traffic during working hours and little
during night time. In the case of static partitioning, a set amount
of resources is dedicated to that particular task and it is difficult to
efficiently use the idle resources during the night time for other purposes.
Additionally, in order to deal with peak level of traffic during working
hours, the resources granted would be overprovisioned for the rest of the
time.

With the added layer of abstraction clustering gives, it is possible to
partition the hardware dynamically using software. Services running on
top of a cluster can therefore dynamically scale and move within the cluster
without being limited by the underlying hardware partitioning. Large
companies leverages this type of flexible partitioning for their services.
Google with their self-developed platform Omega and Twitter with Apache
Mesos (Wilkes, 2014; Schwarzkopf, Konwinski, Abd-El-Malek, & Wilkes,
2013; The Apache Software Foundation, 2015b).

2.1.1 Apache Mesos

Apache Mesos is a distributed system kernel that abstract hardware
resources like CPU, memory and storage to construct a dynamically

5

services

Frameworks Apache Hadoop
Kernel Apache Mesos

Figure 2.1: Abstraction model of Apache Mesos and some related
frameworks.

Tasks ‘ Big data processing ’ ‘ Long running

’ ‘ Cron jobs

partitioned computer cluster. Due to similarities in how an operating
system abstracts hardware, Apache Mesos has been referred to as a
"datacenter OS" (Leopold, 2015).

The Apache Mesos project was initially started as a research project at
the University of California, Berkeley by eight students, including one
of the founders of Mesosphere, Benjamin Hindman (Zaharia et al., 2011;
Mesosphere, Inc., n.d.-b). The goal of the project was to create a system
to allow for fine-grained resource sharing in computer clusters (Hindman
etal., 2011).

Apache Mesos provides a uniform computer environment for operators
and developers to work against without the need to consider the under-
lying hardware setup. This works by adding an abstraction between the
hardware and software frameworks and handling resource allocation be-
tween those parts as seen in Figure 2.1.

There are various parts of Apache Mesos working to provide a functioning
and robust master-slave setup, as well as scheduling and executing tasks
given by a framework in the distributed environment.

Coordination of master node and fail-over

Apache ZooKeeper is the subsystem responsible for coordinating the election
of master nodes and to manage fail-over should a master node fail to
respond. This subsystem is what provides redundancy for the master
nodes in Apache Mesos.

In essence, Apache ZooKeeper provides the tools and means to coordinate
distributed applications, providing distributed synchronization, leader
election, and group services to name a few.

The slave nodes by themselves are dispensable and the cluster will function
as long as there is a adequate level of resources available.

6

Scheduler 1 Scheduler 2

Apache ZooKeeper

Mesos Standby
master master

Standby

master

Mesos slave 1 § Mesos slave 2

Executor 2 Executor 2
................ §"|"ei sk

Figure 2.2: A simplified model of how tasks are scheduled and executed.

Resource management

Apache Mesos operates with a layered resource negotiation handled by
an allocation module located at the master node. A framework specific
scheduler will receive and process resource offerings, while a framework
specific executor running at the slaves will allocate resources and launch
tasks given. The general setup can be viewed in Figure 2.2.

An example of steps conducted for negotiating the resources and tasks can
be summarized briefly as following:

1. A slave node will generate a report of the available resources on the
machine and send it to the Mesos master.

2. The allocation module at the master node will, according to some
predefined priority, send a resource offering to a framework through
the scheduler.

3. The framework will then either accept or reject the resource offer.

¢ If the framework accept some or all the resources, it will generate
the tasks and send it to the Mesos master.

¢ Otherwise, the Mesos master will send the resource offer to the
next framework.

4. The Mesos master forwards the tasks to the particular slave node
which offered the resources.

5. The slave node receives the tasks and the executor allocates the
necessary resources and launches the task.

Encapsulation

Apache Mesos can be deployed directly on a Linux distribution, like
for instance CentOS or Ubuntu. Apache Mesos supports most major
Linux distributions and provides isolation for the running tasks using
Linux containerization utilizing a Linux kernel feature, Control groups

(cgroups).

cgroups limits and isolates resources like CPU, memory, disk I/O, network
on processes. Apache Mesos uses it to encapsulate the executors from each
other, thus preventing different frameworks from colliding and interfering
with each other.

Additionally, Apache Mesos also supports the use of Docker as the
encapsulation mechanism.

Alternatives

Yet Another Resource Negotiator (YARN), was developed as a resource
manager and scheduler for the next generation of Hadoop. YARN can
be looked upon as a competitor of Apache Mesos, as both technologies
attempts to solve the same problem, albeit with different strategies. Apache
Mesos utilizes a two-level resource scheduling strategy and was developed
as general type of scheduler, while YARN opts for a monolithic approach
mainly focusing on Hadoop. However, despite the technologies being
similar and arguably competing, an Apache Mesos framework that utilizes
YARN has been developed called Myriad (Mesos, n.d.).

Usage

Apache Mesos is being used by several large and well known companies
for various purposes. Airbnb, eBay, Groupon, Netflix, and Uninett
are just a few, with Twitter as one of the main driving forces behind
the development of Apache Mesos (The Apache Software Foundation,
2015¢c; Twitter, Inc., 2013). Twitter embraced Apache Mesos after a
conference talk by Benjamin Hindman in March 2010, with a few of
Twitter’s engineers having previously worked at Google. They missed
the capabilities of Google’s own clustering solution, Borg, the predecessor
of Omega, Google’s new clustering solution, and saw an opportunity to
shape Apache Mesos into an alternative solution for this (Metz, 2015).
Today Twitter uses Apache Mesos for various of their core services in
production. Interestingly, Benjamin Hindman restarted a Mesos master
running critical production Twitter services during a demo at AMPLab at
University of California, Berkeley in 2012, having enough confidence in the
Apache Mesos to risk considerable consequences (UC Berkeley AMPLab,
2012).

Services and applications

Marathon

Provides redundancy on the software layer

Apache Mesos

Provides redundancy on the hardware layer

Figure 2.3: The layered components that provides redundancy.

Currently, Apache Mesos is very early in its developing stages with
current version being 0.22.1 Transport Layer Security (TLS) support is under
development and is currently staged to be released in version 0.23.0 (The
Apache Software Foundation, 2015a). The rapid development in its initial
stages shows that this is a project still in its inception and yet, is being used
in production environments in large companies like Twitter.

Mesos frameworks

The frameworks are what provides utility to the cluster, also referred to as
Mesos applications. Through the schedulers the frameworks receive resource
offers and submit tasks to be launched.

Marathon on top of Apache Mesos provides a robust platform for running
long time services, making it easier to achieve high SLA and to scale
services. With Apache Mesos managing hardware redundancy, Marathon
does the same for applications. The Marathon framework will ensure that
the specified applications are running as long as Marathon is running, with
Apache Mesos ensuring that Marathon is running as long as there is a bare
minimum of nodes running and idle resources are available. See Figure 2.3
for an illustration.

Hadoop, a popular distributed processing framework, can be run on top of
Apache Mesos. As opposed to a standalone Hadoop cluster, Apache Mesos
provides an easier and a more flexible way of managing the cluster itself.
Additionally, the cluster can be shared with other frameworks for an even
more efficient use of the resources.

Chronos was created as a distributed version of Cron and just like Cron,
schedules and runs jobs at specified intervals. This framework utilizes the

9

Mesos cluster to provide a redundant and fault-tolerant service to execute
batch jobs.

There are many more frameworks available for Apache Mesos and it
is possible to create your own framework for Apache Mesos using the
primitives provided.

2.2 Cloud computing

Cloud computing has over the past few years taken off in popularity and
availability. Instead of handling acquisition of hardware along with the
cost, installation, and maintenance needed to keep an IT infrastructure
running, it is now possible to rent virtual machines with a cloud provider
and only pay for the resources used, thus making it possible to avoid capital
expenditure. Companies are looking towards the cloud for cutting costs
and improving their services.

With the ability to manage virtual machines at the cloud or instances, which
they are commonly referred as, one can within a short amount of time add
or remove instances. This flexibility brings along numerous possibilities.
By clustering together the instances, one could scale a service according to
various variables like demand, cost, power efficiency or any other one see
fit.

Cloud services are mainly provided according to one of three service
models:

e Infrastructure as a Service (laaS)

Provides resources as physical or virtual hardware. Mature cloud
providers using this service model often has a rich feature set,
which gives the possibility to control and change storage devices, the
underlying network, and other underlying mechanisms one need to
be able to control in order to emulate a data center.

The users of these type of cloud services needs to install and maintain
everything that is needed for their purposes on top of the virtual
hardware. This would include setting up and maintaining operating
systems, software, and security among others.

* Platform as a Service (PaaS)

In this service model, an environment is provided to the user
for running applications and services. This commonly includes
web services, databases and runtime environments for executing
software.

Resources in this service model is often allocated dynamically and
scales according to the required levels, without the need for users to
manually maintain the resources.

10

* Software as a Service (SaaS)

SaaS refers to the service model that provides software and services
to the users directly. The users interact with software directly and do
not need to install and maintain the hardware and service needed to
maintain the software. Typical software available through this service
model would be Office 365, Gmail, and the CRM solutions provided
by Salesforce just to name a few.

2.2.1 Altocloud

Altocloud is the name of the OpenStack installation located at Oslo and
Akershus University College of Applied Sciences. The installation is
running the Havanna release, two versions prior to the current release,
Juno.

For the purposes of this thesis, Altocloud will function as a role of a
private data center. The OpenStack provides an interface to manage
virtual machines, which in this thesis, will be used to build part of the
cluster.

2.2.2 Amazon Web Services

Amazon Web Service (AWS) is the name of the collection of cloud services
provided by Amazon Web Services, Inc. with Amazon EC2 and Amazon
S3 in the center as the key services among many others. AWS is one of
the first cloud providers that emerged, is one of the most mature cloud
provider, with a reach feature set, and has an impressive amount of known
companies using their services.

The abbreviation for Amazon S3 is Amazon Simple Storage Service and
provides cheap storage for use in combination with other Amazon services
or standalone. Amazon S3 is primarily used for bulk storage and when
more persistent type of storage is desired.

Amazon EC2 is an abbreviation of Amazon Elastic Computing Cloud
and provides computer resources in what essentially are virtual machines.
Many different levels of instances are offered each with their own resource
priorities, such as compute optimized, M3 and memory optimized,
R3.

A very interesting pricing scheme which if offered for Amazon EC2 is the
spot instances (Amazon Web Services, Inc., n.d.-a). Unused EC2 capacity
is put out for bidding and the price will fluctuate based on the demand.
It works by creating spot instances and only paying for the current price
up until a self-specified maximum bid. If the current price should exceed
the maximum bid, the spot instances will be terminated with a 2 minute

11

warning. For setups with proper fail-over procedures this type of instances
may be very attractive for certain workloads.

Even with proper a fail-over solution, there is a cost associated with fault-
handling a task. An unfinished task running for a set amount of time is
wasted use of resources. Voorsluys and Buyya (2012) highlights this and
looks into the pricing system and proposes a solution for determining the
optimal price with respect to cost of fault-handling the tasks that was lost
in instance termination. The paper outlines 5 different bidding strategies
which may be employed.

Furthermore, according to Agmon Ben-Yehuda, Ben-Yehuda, Schuster, and
Tsafrir (2013), the prices are not purely based on the supply-and-demand,
but also involves an additional specific value calculated from an algorithm
at Amazon Web Services.

2.2.3 Terms and implementation models
Hybrid cloud

The term hybrid cloud is fairly well defined and denotes the use two or more
distinct cloud platforms, usually an in-house and private cloud platform in
combination with a public and third-party cloud platform to perform some
set workload (Mell & Grance, 2011; Interoute Communications Limited,
n.d.; Apprenda Inc., n.d.; Sanders, 2014; Bittman, 2012). Private clouds
provide security, privacy, and control of data stored and processed there,
low latency due to locality, and prevents service disruption due to external
networking problems. The use of public cloud services are cheap, does
not require capital expenditure, are easily scalable, and applications can be
deployed on different geographic locations for extra redundancy. Hybrid
cloud platforms combines these advantages and attempts to increase the
degree flexibility as well as control of the data. Additionally, IP address
ownership is one of the issues with using public cloud providers that can
be mitigated by using hybrid clouds. Moving away from a public cloud
provider may pose problems if the service is highly coupled to the IP
addresses.

Cloud bursting

A specific workload deployment model called cloud bursting utilizes
a hybrid cloud solution to load balance a workload between private
computer resources and public clouds (Mell & Grance, 2011; Nair et al.,
2010). In this model, workloads are mainly processed in-house using
private resources, with the possibility to "burst" out into public cloud
providers should the workload be too much for the in-house resources
to handle. This allows an organization to dimension their data center for

12

average workloads and deal with the spikes using the public cloud and
only pay for the extra computer resources when used.

Workload 60% 100% 120%
bursting
100% 149% 100%

With cloud 100%
bursting

Publlc
cloud

100%
platform

Figure 2.4: Illustration of how cloud bursting works when the capacity
limit of the private data center is exceeded.

Spot prices instances

Spot price instances are for Amazon Web Services EC2, instances that
are running on surplus resources of the availability region. Currently,
there are no other public cloud providers that are offering the same price
scheme.

Spot price instances are leased out at a very cheap price, often amounting
to 40-50 percent off the on-demand price of the same instance type. The
spot prices fluctuates depending on the current supply and demand, with
the top bidders getting the spot instances. The prices is set to the lowest
winning bid and even if a maximum bid of 1.000 USD has been made, if
the lowest winning bid is 0.010, only 0.010 will be billed.

Due to an interesting mechanic of the spot instances offered at Amazon
Web Services, should EC2 be the cause of instance termination, no charge
will be billed for any interrupted hour (Amazon Web Services, Inc., n.d.-a).
This means that if a spot instance is terminated after 50 minutes since start,
the cost for that partial hour will be waived, ultimately resulting no charge
for that spot instance. Termination initiated by the user will be billed for
every partial hour used, just as normal on-demand instances.

Additionally, when a spot instance request has been made, it can not be
modified, only canceled. Consequently, the only way to change a price offer
is to terminate the spot requests, along with the actual spot instances and
re-request them at the new price level desired. Furthermore, once a spot

13

price instance has been marked for termination, it can not be prevented.
This is most likely to a countermeasure to prevent complete auto-adapting
solutions, which would affect the the spot price market considerably. An
example of such a scenario is the trader bots in the the stock markets
where undesired noise and large spikes occurs due to the high-speed
trading.

2.3 Related work

The concept of multicloud and hybrid cloud is not new and several companies
are venturing out to explore and capitalize these concepts.

Multicloud is defined as something that utilizes multiple cloud platforms
to run a set of tasks. The definition is still somewhat fuzzy partly because
of how new the concepts are and how little the word has been used in
general. For the purpose of this thesis, multicloud will be defined as the
use of multiple externally provided cloud platforms in tandem which
have separate Service Level Agreements (SLA). For instance, using AWS in
combination with a private OpenStack installation.

A project that is looking into multicloud scenarios specifically is MODA-
Clouds (MODAClIlouds, n.d.). The project lists up various reason for why
the use of multiple clouds in advantageous and is working on a several
tools to provide an environment for utilizing multiple cloud providers. By
the end of 2015, MODAClouds aims to provide methods and tools for de-
veloping multicloud applications, run them and provide quality assurance.
The project has collaborators from many countries in the Europe, including
the Imperial College of Science in London, Sintef in Norway, and Siemens
to name a few.

Several large companies are offering hybrid cloud solutions, aiming to
provide a seamless experience, and often in conjunction with existing
product portfolio. VMWare is offering a hybrid cloud solution called
vRealize suite which provides one interface to manage the entire hybrid
cloud platform (VMWare, Inc., n.d.-b, n.d.-a). vRealize supports numerous
of public cloud providers and private cloud solutions and makes it easy to
manage it through their interface. This solution is proprietary and may
pose some problems in terms of vendor lock-in. There are other companies
that are looking into or are already offering hybrid cloud solutions where
they have geographic presence, like Cisco, IBM and RackSpace just to name
a few well known companies (Butler, 2015; IBM, n.d.; Rackspace, Inc.,
n.d.). In a paper written by Breiter and Naik (2013), the authors attempts to
address the challenges of managing heterogeneous virtual environments to
create a hybrid cloud platform. However, this proposed solutions involves
proprietary technologies.

PaaSage is an interesting initiative for building a hybrid cloud solution
from grounds and up using a defined deployment model, Cloud Application

14

Modeling and Execution Language (CAMEL) (PaaSage, n.d.; Zachariassen,
2015). PaaSage applications will specify tasks according to the CAMEL
model, which will then be processed and then deployed on a platform
according to the requirements. For tasks requiring high levels of SLA,
PaaSage may determine to deploy the application on multiple cloud
providers, including external cloud providers. PaaSage is a collaboration
project, with contributions from large companies as well as research
institutions. Lufthansa and Evry are are running prototypes and is among
the main contributors of PaaSage and the project is scheduled to be finished
September 2016. Multicloud Deployment of Computing Clusters for Loosely
Coupled MTC Applications written by Moreno-Vozmediano, Montero, and
Llorente (2011) published in an IEEE journal, explores the concept of
deploying a computer cluster on top of a multicloud environment, but also
in some configurations a hybrid type of setup, using both local hardware
and rented hardware from Amazon EC2. The article investigates the
viability of such a setup and analyzes the cost-performance ratio on each
of the setups. According to the findings outlined in the paper, deploying
a cluster on top of a multicloud environment scales linearly with little
overhead. Additionally, in some hybrid setups, the cost-performance ratio
was slightly improved compared to a pure local setup.

However, there are some aspects of the paper that does not fully translate to
the practical issues a system administrator may encounter. The clustering
technology used in this study was Sun Grid Engine (SGE), a long time
veteran of approximately 15 years. Incidentally, Apache Mesos was
designed to address some of the design weaknesses of SGE, in particular
the use of static partitioning for the jobs run in the cluster, which prevents
fully efficient utilization of the resources (Ghodsi, Hindman, Konwinski, &
Zaharia, 2010).

OpenNebula is a cloud management technology with rich feature set to
handle virtual machines and supports both hybrid cloud deployments
and cloud bursting (OpenNebula Projec, n.d.). However, installation
and management of OpenNebula is fairly complex as it consist of many
parts to facilitate the rich feature set of a virtual machine manager. With
virtualization of infrastructure, resources, network, and storage, there
are many vectors for failure and SLA rates may also be be affected.
Additionally, with clustering technologies like Apache Mesos, virtual
machines may not be necessary and may even deter performance due to
virtualization overhead.

According to a paper written by Iosup et al. (2011), public cloud providers
does not perform as good as a local alternative for the purpose of many-
task computing (MTC). This is mainly due to resource time sharing and
the potential overhead virtualization may incur. However, the study was
conducted around 2011 and may be obsolete, which the authors themselves
also state in the conclusion. This is due to services like Amazon High
Performance Computing (HPC) that has introduced since the article was
published that seems to have addressed the issues outlined in the paper

15

to considerable degree (Amazon Web Services, Inc., n.d.-b). Despite this,
there may still be use cases where a private data center or cloud may be
preferred for other reasons, like privacy concerns and regulations.

For the aspect of segmented workloads, a paper written by Jayaram et
al. (2014) looks into the problems regarding geographical segmenting of
hybrid clouds and discuss the challenges of such a mechanism. Several
issues regarding trust management, attestation, and integrity management
are analyzed in the paper. As the paper states, one of the main issues with
a hybrid cloud is the trust issue regarding proper segmenting of the data.
How can one be sure that data stored and processed in one area does not
leak into an another?

Despite of the myriad of solutions and findings related to hybrid cloud
within both the scientific and commercial communities, there has been
no practical demonstration of using open-source and freely available
clustering technology to attempt to address the multitude of challenges
with creating a hybrid cloud platform that is available and supports
data segmentation. This thesis outlines an attempt to prototype such
a solution in addition to facilitation of cloud bursting, using spot price
instances.

16

Chapter 3

Approach

This chapter will outline and explain the methods, processes, objectives,
and general approach to solve the defined problem statement.

3.1 The objective

The objective for this thesis is outlined in the problem statement in the
introduction chapter section 1.1:

How can we build highly available, segmented computer clusters using private
computer hardware together with public cloud providers as a hybrid cloud
platform, leveraging spot price instances for an automated cloud bursting
solution?

The problem statement can be broken down into several sub-tasks
that needs to be addressed for the whole question to be adequately
answered.

Using the definitions written in the introduction chapter section 1.1:

* How can one build a computer cluster on top of private computer
resources in addition to multiple public cloud providers.

* How can one, by utilizing both a private hardware and public cloud
providers, gain improved levels of availability?

e How is it possible to segment data and data processing to specified
locations or groups?

* How can one automate the use of spot price instances to accommo-
date for cloud bursting?

The main goal of this thesis is to prototype and implement a hybrid
cloud solution that satisfies the requirements outlined in the problem
statement. Therefore, the feasibility of deploying a hybrid cloud platform
on multiple public cloud providers with increased availability, support for

17

segmentation and facilitation of cloud bursting use cases is paramount in
this thesis.

3.2 Formalization

As a large part of the thesis is about designing and evaluating system
designs, it is important to describe those designs with accuracy and there
are many ways to express that. A formal and detailed way of describing
a system design is with the use Unified Modelling Language (UML). UML
consist of various diagrams, each describing a specific aspect of the system
in order to visualize the design of the system accurately. Used correctly,
even complex systems can be accurately described with UML. However,
with the increasing level of system complexity, so do the UML diagrams
increase in both amount and complexity of the diagrams.

In this thesis, a subset of the UML diagrams available will be used
to describe the design when appropriate, in addition to more general
types of figures and text. The UML diagrams used will not necessarily
be as according to the UML specifications and will be used solely to
illustrate.

3.3 The testbed

The testbed will consist of the following main technologies:
¢ Cloud:
— Altocloud - as the private cloud/data center

— Amazon Web Services, Virtual Private Clouds (VPC) - as the
public cloud provider

e (Cluster:

— Apache Mesos - as the clustering technology

3.3.1 Choice of technologies

Altocloud is the local OpenStack installation at Oslo and Akershus
University College of Applied Sciences and is available for students and
employees at the university college. For this thesis, Altocloud will emulate
a private data center or cloud installation and will function as the baseline
in the hybrid cloud configuration. In a production environment this would
emulate an organizations in-house data center, installed and maintained
specifically for the organizations private use. In addition to being able to
boot up instances, Altocloud makes it possible to manipulate and manage
the virtual network around the instances. This makes Altocloud a preferred

18

choice over setting up physical machines, as it requires more time and can
not be self-managed at the degree which the virtual environment Altocloud
gives.

In regards of the choice of public cloud providers, several options were
considered. DigitalOcean, Linode, Softlayer, Rackspace were a few of those
considered, though in the end, the wide array of features available and the
maturity of Amazon Web Services made it the final choice for the public
cloud component of the hybrid cloud configuration. Amazon Web Services
provides multiple geographical regions, each which for the purpose of this
thesis can function as a separate public cloud provider for the hybrid cloud
configuration. It is also the only public cloud provider that offers spot price
instances. Additionally Amazon Web Services VPC allows quite extensive
manipulation of the emulated network in the virtual private cloud.

For the choice of clustering technology, Apache Mesos has been chosen.
Apache Mesos is a relatively new and emerging piece of technology
which is fully open source and used in production environments in large
companies like Twitter and AirBnB, attesting for the maturity and stability
of the technology. Other technologies considered for the thesis include
Kubernetes and Docker. While the mentioned technologies can to some
degree be viewed as competing technologies, the mentioned technologies
can be deployed in a single installation to leverage the advantages of each
one.

3.3.2 Other considerations

As the focus of the thesis is resolves around Apache Mesos, hybrid cloud
configuration and cloud bursting, the choice of other aspects of the solution
will not be given much priority.

The choice of a operating system for running the Apache Mesos cluster is
not vital for this thesis. Apache Mesos will run on most of the common
and popular Linux distributions, and while the initial decision was to
use CentOS, the final choice became Ubuntu LTS 14.04 x64. The choice
was made on the basis that Mesosphere, a start-up company focusing on
Apache Mesos and frameworks for the technology, provides a repository
for this distribution which allows for easier install and maintenance. In
addition, there are readily available Ubuntu LTS 14.04 x64 images on both
Altocloud and Amazon Web Service EC2, with the recommended Ubuntu
image at EC2 being eligible for the free tier, which allows for free t2.tiny
instances at Amazon Web Service EC2.

Other aspects of the testbed that needs to be considered is the instance type
of the virtual machines running the different components of the cluster.
As shown in Table 3.1, the instance types at Altocloud and Amazon Web
Service EC2 are not identical and while there are some similarities, the
instance types deviates enough to warrant caution when setting up a
hybrid cloud platform, especially considering the number of vCPUs. Do

19

note that only a subset of the currently available instance types at Altocloud
and Amazon Web Services EC2 are listed up in Table 3.1 and that Amazon
Web Services EC2 also offers specialized instance types for specific types
workloads.

Altocloud AWS EC2
m1l.small t2.small
vCPUs: 1 1
RAM: 2048 MB 2 GiB
ml.medium m3.medium
vCPUs: 2 1
RAM: 4096 MB 3.75 GiB
ml.large m3.large
vCPUs: 4 2
RAM: 8192 MB 7.5 GiB

Table 3.1: Specifications for subset of instance types available at the
Altocloud and Amazon Web Service EC2.

The instance types has to be carefully considered, more ideally chosen
based on benchmarks for the specific use. While this does not have a
large consequence regarding the Mesos slave nodes, as they can flexibly
be added, modified and removed depending on the workload, the backup
Mesos master nodes needs to be dimensioned with consideration, as they
are largely redundant and does not necessarily actively participate in the
workload of the cluster, with the exception of keeping redundant states
in case of a master node failure. For a small cluster with little network
activity, a small instance type for the master node may suffice. On the other
hand. with a large cluster consisting of 1000+ slave nodes, it would require
alarger instance type to handle the workload. For small clusters, the master
nodes can in addition to the Mesos master process, also run a Mesos slave
process, thus participate in the cluster as slave node to process tasks.

3.4 Outlining the design

A considerable part of the thesis will be to develop, model and evaluate
different designs of setting up a Apache Mesos cluster. As previously
explained in the background chapter 2, Apache Mesos clusters can be very
roughly be described as a master-slave architecture consisting of master
nodes and slaves nodes.

At all times, only one master node is active, with any additional master
nodes functioning as live backups in case the active master node should
become unresponsive. Depending on the SLA requirements, there may
not be need for any redundant master nodes at all, or it may require
five or more master nodes due to higher SLA requirements. However,
as the number of master servers increases, the complexity of electing the

20

active master node increases. The number of master nodes should not
be arbitrary and should be carefully considered, as this is one of the few
parts of a Apache Mesos cluster that results in almost fully idle resources
as backup.

Another important aspect that needs to be considered regarding the master
nodes are their distribution. How can one distribute the master nodes in a
hybrid cloud architecture with respect to certain requirements? In the case
of high availability, the most obvious and immediate solution would be to
spread the master nodes to different locations to minimize the risk for the
platform as a whole to fail. However, if privacy is of utmost importance,
then that would require the master nodes to be placed at locations that
fulfill the privacy requirements, which may very well be only a single
location. There are also other aspects like price, latency, and throughput
requirements that would require different setups to fulfill.

As for the cloud bursting scenarios, it is important to consider the
use cases for such a setup and how it fits with existing requirements
like high availability or segmentation of the data. Cloud bursting by
itself may require a specific hybrid cloud configuration for it to function
optimally.

The problem statement considers three aspects of a hybrid cloud solu-
tion:

¢ high availability
* segmentation of the data
* cloud bursting

As a result at least two main design models will be proposed and
implemented that considers high availability and segmentation of the data.
Additionally the solution for automating cloud bursting with the design
models proposed as a viable option will be considered.

3.5 Prototype implementation

One or several prototypes will be implemented according to the proposed
models defined in the design phase to verify the feasibility of the
configurations and to test the models against a set of criteria deviated from
the problem statement.

3.5.1 Verifying the implementations

To verify that the prototypes fulfills the requirements of the problem
statement several test scenarios will be tested.

21

Availability

To accurately measure availability in a real life scenario, one would need
to sample the availability over a long period of time, with the at least a
year as a baseline to even be able to make somewhat accurate assumptions.
Due to the time constraints for this thesis, this is not possible. While
statistical analysis is powerful, even with a small sample, due to the
relatively low failure rates of cloud services, there may very well be a rate of
100% availability within period of a few months, thus rendering statistical
analysis powerless. As a result, theoretical simulations and calculations
will be conducted and should for the purpose of this thesis be adequate for
answering the problem statement.

Availability has different prioritization and aspects that needs to be
considered. In particular the amount of resources and complexity. There
has to be a degree of efficiency involved, as redundant, but a passive
resource pool is not very efficient. Additionally, it is important to consider
for who the availability is important for.

The test scenarios that will be simulated are as follows:

A Mesos slave process becomes unavailable.

The working Mesos master process becomes unavailable.

* An entire region within the hybrid cloud becomes unavailable.

The hybrid cloud splits and semi-isolates part of the platform.

A Mesos slave process becomes unavailable

In this scenario, a Mesos slave process on becomes unavailable. There are
numerous possible causes for this to happen, including hardware failures,
network troubles, failures in operating system or kernel, and problems
with the Mesos process itself.

The working Mesos master instance cease to function
Similar to the previous scenario, this scenario covers the event of a Mesos
master becoming unavailable for some reason.

An entire region within the hybrid cloud becomes unavailable

This scenario covers the possibility of an entire region failing within the
hybrid cloud. This could the entire private data center or it could be that
a public cloud provider is unavailable due to networking problems. In the
case where multiple availability regions are used, each one of them will be
considered a region within the hybrid cloud platform.

22

Region A —————) Region B
Region B

Figure 3.1: Region A can not reach Region B, but Region B can.

The hybrid cloud splits and semi-isolates part of the platform

This covers the scenario of part of the the hybrid cloud becoming split,
possibly due to a split in the network. This could result in parts of the
hybrid cloud having degraded reachability, thus resulting in a split or semi-
isolated network. This scenario is illustrated in Figure 3.1.

Segmentation

Verification of segmentation of tasks and data will be done by confirming
that segmented tasks are segmented as specified. For the aspect of privacy,
it is difficult to really be sure that traffic is truly private and does not at any
time leak out. To verify that that no data regarding the tasks are leaked
to undesired locations, the source code of ZooKeeper, Apache Mesos and
the used frameworks has to be inspected. For the time constraint of this
thesis, this is not possible. To narrow down the scope of this project, a
major assumption has been made for the sake of analyzing the aspect of
privacy and segmenation.

The flow of the internal traffic of Apache Mesos has been briefly covered
in the Background chapter 2. Initially, only traffic regarding resource
availability at the Mesos slave node is sent to the Master in addition
to traffic related to the cluster itself and keep-alive pings is assumed
to be sent at a regular interval. It is therefore assumed, based on the
official documentation of the internal traffic that no information about
the available tasks are sent to the Mesos slave nodes before the tasks are
being granted (Hindman et al., 2011). This means that only when tasks are
being handed out after checking any constraints, will there be any other
traffic than the traffic necessary for the cluster to function. Consequently,
information about the tasks are sent out on a need-to-know basis. An
UML sequence diagram is shown in Figure 3.2 and describes the a possible

23

interaction between the different Apache Mesos components, assuming
MasterY is the working Mesos master node.

Note that the sequence diagram is simplified and not meant to be fully
accurate. It is included to illustrate the a possible interaction between the
components.

FrameworkZ

O o o

getCurrentMaster()

Slave MasterX MasterY
I
|
|
|
|
"masterY" |
|
|

regi%ter()

|

| .

| registerSlave()
|

acknowledgekegistration()
«— — — — — — — e —— = — — —
|
offerReiources()

checkConstraints()

sendTasks()

T | offerResources()
|
|
|
|
|
|
|

send'lfsks() |
| . |
| | |

Figure 3.2: An UML Sequence diagram describing a possible interaction
sequence assuming MasterY is the working Mesos master node.

Automated cloud bursting

To build a cloud bursting solution there are several obstacles that needs
to be cleared. In traditional data centers the first major obstacle to cloud
bursting is the lack of integration. There are no easy way to offload or
expand workloads into public cloud platforms, let alone other platforms
at all. For cloud bursting to be a feasible option, the solution has to be
simple, easy, and fast enough to be useful. As a result the solution will
have to utilize cloud bursting as efficiently as possible and should be able
to allow applications and processes to burst into the cloud with little to no
interference with existing services and no downtime.

It is possible to offload workloads into the public cloud, using more
traditional means like virtual machine migrations. However, this is a fairly
rigid and lengthy process, especially over the Internet, which for some
use cases can result in unavoidable downtime. Furthermore, a simple

24

migration may break dependencies and there might simply not be any
straightforward way to burst into the cloud from the existing environment.
In addition, the time and resources spent on migration may negate the
potential benefits of offloading the workload to the cloud, possibly due to
the sheer amount of resources needed to migrate or due to the time span
for which the extra resources are needed.

A cluster on a hybrid cloud solution will solve this by pooling together
physical and virtual resources and abstracting it. Frameworks running on
top of Apache Mesos will only see a pool of available resources, regardless
of the location of the the actual resources.

The solution should be able to:
¢ start and stop cloud instances
¢ collect at least one variable to aid in the decision making

e based on the variables collected, decide whether or not to burst into
the cloud

* leverage the use of spot price instances

In addition, experiments will be conducted to simulate bursty workloads
to verify the functionality of the cloud bursting solution. The simulations
will cover two aspects of a cloud bursting scenario with increasing and
decreasing workloads. The automatic cloud bursting solution should,
when needed, automatically burst into the cloud and then maintain
and scale the number of Mesos slave nodes located at the public cloud
site.

3.6 Considerations and limitations

There are several known limitations to the thesis and the technologies at
hand that will needs to be considered in a real-life scenario.

The thesis assumes the use of Apache Mesos as a clustering technology and
derives the possibilities and design based on the functionality provided by
the Apache Mesos as a piece of technology. As a result, any limitations to
Apache Mesos will also be true for the final solution of the thesis.

A potentially large limitation which has to be considered before deploying
an Apache Mesos cluster is that it runs a Linux environment. This means
applications that needs to be run on other types of operating systems like
Microsoft Windows, will not function.

Additionally, as mentioned in the background chapter 2, there are currently
no support for encryption of the internal traffic between the master and
the slave nodes in the current version of Apache Mesos. This is especially
severe if the traffic is going out on the Internet. Measures should be taken
to secure the traffic using other means like Virtual Private Network (VPN)

25

tunneling if an Apache Mesos cluster is to be deployed in a production
environment.

By that extension, it is assumed that Apache Mesos is intended to be
used on private networks, which is also evident in how it benefits from
fast networking with low latency, assumably to keep the overhead of
node management low (alexr_, 2015). Consequently, deploying Apache
Mesos in a hybrid cloud configuration could potentially result in unoptimal
performance and sudden timeouts as a result of the higher latency incurred
by the hybrid cloud configuration. However, in a paper written by (Bicer,
Chiu, & Agrawal, 2011), the authors present a distributed system with
the overhead incurred by remote retrieval and potential load imbalance
amounting to approximately 15%. Furthermore, the authors argue that the
overhead is at a manageable level which makes cloud bursting feasible and
scalable for the distributed systems they were testing. Their findings could
possibly also be true for Apache Mesos if the configurations are tuned for
a hybrid cloud setup.

As mentioned in the Background chapter 2, Apache Mesos is currently not
designed for the use on the Internet and it is therefore not a given that
the implementation of the proposed designs will work. Consequently,
additional solutions will be considered in the event that Apache Mesos
does not work as intended outlined in the designs.

A known limitation to the testbed is the lack of a working domain in the
network. This means that local hostnames in the network will not be
resolved. The installation and maintenance of Domain Name Server (DNS) is
outside the scope of problem statement and will not be included. Instead,
IP-addresses will be used directly. Due to this, any peculiar glitch related
to DNS will be mitigated should they arise. In a production environment,
a proper domain, even a local one, should be set up with a DNS properly
resolving it.

3.7 Expected results

For the design and implementation of the highly available cluster, several
designs will be proposed and implemented. The prototypes will then
undergo testing as outlined in the test scenarios to analyze the behaviour
and the characteristics of the prototypes. These prototypes will then be
discussed with the problem statement in mind in addition to potential
value within the field.

As for the design and implementation of the segmented cluster, as long
as the assumption regarding the flow of traffic within Apache Mesos
holds, the design and implementation should be successful. With the
assumption withstanding, the use cases for such a system will be analyzed
and discussed.

26

Regarding the automated cloud burst solution, it is expected that a
rudimentary solution will be prototyped and tested. The cloud bursting
solution is expected to fulfill the requirements stated, however, the
prototype will most likely not include any extra functionality, and may
contain smaller bugs. The solution will then be analyzed and evaluated
against the problem statement.

27

28

Chapter 4

Results: Design

41 Overview

This chapter will describe the proposed solutions for addressing the
problem statement, discovered limitations and additional considerations
regarding the set up of a Apache Mesos cluster in a hybrid cloud setup.
Additionally, a solution for automating cloud bursting, leveraging spot
price instances to maximize the cost effectiveness of the proposed solution
will be proposed.

The proposed designs and solutions in this chapter will be tailored to the
testbed environment described in the Approach chapter 3. Further details,
adjustments and specifications regarding the testbed will described in this
chapter.

4.2 Environment

As alluded to in the Approach chapter 3, the choice of instance type for
the Mesos master node has to be given extra consideration, as it is the only
part of the cluster which results in almost fully idle resources. In a paper
written by Hindman et al. (2011), a series of performance benchmarks
were conducted to gauge the capacity of certain parts of the Apache Mesos
cluster. With a 8 vCPUs and 6 GB RAM instance at Amazon Web Services
EC2 used as the Mesos master node, the scheduling of tasks and internal
processing required for the cluster adds an overhead of less than one
second, with 50 000 Mesos slave node in the cluster. The paper was
published in 2011 and it is assumed that further performance optimizations
has been done since then, reducing the overhead even further.

For this project, a medium instance type will be used for the Mesos master
nodes. For Altocloud this would be m1.medium, while at EC2 it would be
m3.medium. While a small instance type may have worked out, a medium
instance type was chosen. This was done as a safety measure, as too

29

Altocloud AWS EC2

ml.medium m3.medium
vCPUs: 2 1
RAM: 4096 MB 3.75 GiB

Table 4.1: The specifications for the instance types chosen for running
Mesos master nodes.

low performance might result in unexpected glitches, especially regarding
network performance. In order to be sure this would not cause an issue, the
instance type was over-dimensioned by a considerable margin. The focus
is to evaluate and design the cluster for high availability, segmentation of
date in particular and cloud bursting scenarios. Performance as factor is
less of a priority. The specifications are for the medium instance types has
been re-listed for convenience in Table 4.1. It should be noted that it is
common to run Mesos-frameworks on the same machines as the Mesos
master nodes, and the machines should be dimensioned for this extra load,
unless the frameworks are running on separate machines.

Since it was determined that Amazon Web Services would be the public
cloud provider for the hybrid cloud setup, the availability region has to
be determined. When deciding the availability region to be used, it is
important to consider price, latency, and regulations among other things.
Due to the time frame for the project, the overall price difference will be
minor. The latency to the availability region was therefore given priority.
As a result, the availability regions EU Central (Frankfurt) was picked to be
the primary choice, with EU West (Ireland) as the secondary choice.

4.3 Architecture

This section will contain the proposed solutions for addressing the problem
statement in three main parts concerning availability, segmentation of data
and automated cloud bursting.

431 Availability

Depending on the the level of availability needed, it is necessary to consider
fault-tolerance at multiple levels from the fundamental level hardware
resources up to the individual applications. A key technique for improving
availability, is to duplicate and keep a redundant copy or backup of the
entity one wish to improve. This could mean physical machines, network
links, power circuits, or multiple instances of a application. In most cases,
it is also possible to use the redundancy to load balance, which lowers the
overhead of keeping a duplicate.

However, it is imperative that the redundant entities are as independent

30

from each other as possible in order minimize the risk for failure. Consider
the following scenario: A service is running on two servers located in a
single data center and load balancing distributes the load between them.
While the the servers are separate, they both depend on the data center
being functional, which may experience full blackout due a disaster of
some type. In order to improve availability, the servers should ideally be
placed in two separate data centers.

To achieve higher levels of availability, Apache Mesos can be deployed
on multiple cloud platforms and data centers, forming a hybrid cloud.
Before setting up a Apache Mesos cluster, several things has to be
considered.

In a Apache Mesos cluster, the Mesos master node is responsible for
managing the cluster and is therefore vital for the cluster. The number of
master nodes in a cluster must be odd. This is required in order to prevent a
split brain problem, which occurs when the cluster splits into two or more
smaller clusters, each with their own Master node managing the cluster.
This is a problem as it results in inconsistent states for the cluster as a
whole and must be prevented. With an odd number of Mesos master nodes
correctly configured, more than half of the Mesos master nodes needs to be
able to communicate to change the state of the cluster.

Prototype 1: Maximizing availability

Figure 4.1 illustrates a solution using three separate cloud platforms as
components of the hybrid cloud. The Mesos master nodes are distributed
between the availability zones, with a few Mesos slave nodes arbitrarily
present in each of the zones. The failure rate of each of these zones are
assumed to highly independent of each other, which will lower the the
risk of failures of the the underlying resources used by the Apache Mesos
cluster.

For this prototype, the officially recommended number of three Mesos
master nodes has been chosen. For a proof of concept, this will suffice.
Should the underlying resources the Mesos master nodes utilize have
a high failure rate, a higher number of Mesos master nodes should be
considered.

This setup will maximize availability, which is ideal for public facing ser-
vices that does not have any particular requirement other than to maximize
availability. A public service like a website, back-end infrastructure for ad-
vertising services or smartphone applications are examples of such types
of services.

Due to the architecture of Apache Mesos, any slave node can become
unavailable without affecting the overall service availability. As long
as the framework deploying the services is fault-tolerant and there are
enough slave nodes to be able to accommodate for the bare minimum of

31

AWS (Ireland) AWS (Frankfurt)

<> Master nodes
L Altocloud (Oslo) ’

Figure 4.1: A hybrid cloud setup, distributing the Mesos master nodes to
independent availability zones.

the processing needed to keep the services running, a large amount of
slaves can fail simultaneously. Additionally, this setup accommodates for
downtime in an entire availability zone, the hybrid cloud platform will still
be functional in that scenario.

This setup requires each and every node of the network to have a public IP-
address which is routable on the Internet. This is a huge limitation, as the
number of IPv4 addresses are limited. Alternatively, the number of Mesos
slaves nodes deployed on Altocloud can be reduced or removed altogether,
relying on the public routable IP-addresses Amazon Web Services EC2
provides each node by default. Another solution is to set up VPN tunnels
between the availability zones and route with private addresses.

Prototype 2: Prioritize local availability

This prototype is illustrated in Figure 4.2. In this suggested setup, local
availability is given a priority, with the majority of the Mesos master nodes
present in the local cloud. This particular setup uses five master nodes, but
can easily be extended to a higher number as long as the majority of the
Mesos master nodes are located in the local cloud.

Even if the access to the Internet is lost, local access can be gained from the

32

@ ==&

AWS (Ireland) AWS (Frankfurt)

<> Master nodes
Altocloud (Oslo) ’

Figure 4.2: A five Mesos master node cluster with the majority of them
located at Altocloud.

same network as the local cloud and the services running on the cloud will
continue to be responsive for internal use. This makes this type of setup
ideal for local services like Enterprise resource planning (ERP) applications,
local batch jobs, and analysis frameworks like Hadoop running, which is
not normally publicly accessible. The proposed setup will function well
where the private cloud or data center is used as the preferred baseline
location, with public cloud resources added to increase processing power
and/or availability.

However, this setup does not account for the opposite scenario and
depends on a the stability of the private site to keep the cluster running.
While the master nodes themselves are independent, in the event that the
entire private data center goes down, the entire cluster will experience
downtime, regardless of the total number of masters. This is due to the fact
that for the cluster to remain available locally should the site be isolated, the
site needs to have the majority of the Mesos master node present, which
effectively prevents the hybrid cloud platform from functioning without
the private site.

This setup does not give the highest availability possible, but sacrifices the
overall level of availability for the priority of local access. This prototype
works well in scenarios where cloud bursting is desired, as the private
locations functions as a baseline platform that scale out on public cloud

33

platforms.

Like the first prototype, this setup requires an IP-address for each node
in the cluster. As this is not feasible for larger clusters, setting up
VPN gateways and tunnels between the sites will abstract the network,
providing a virtual private network with a numerous of private IPv4 IP-
addresses.

Fallback solution: VPN tunneling

A fallback solution has been prepared, in order to account for the possibility
that Apache Mesos does not work as intended for the proposed prototypes
or any other networking issue that may cause an issue. In those cases, an
instance dedicated to work as a VPN gateway will be set up at each site,
which will establish VPN tunnels between the them. This can be done due
to the amount of control Amazon Web Services gives over the network with
their VPC service. Likewise, Altocloud, being an OpenStack installation,
also permits a higher level of manipulation of the network.

IPSECv2 tunnels will be set up at VPN gateways and will be installed and
configured through Openswan, an IPSEC implementation that supports
an array of features, with NAT traversal being particular interesting.
As mentioned previously, Apache Mesos currently is developed and
maintained to work in private networks configurations and with the way
public IPs are handled by the cloud platforms, NAT traversal may end up
being the main issue.

Correctly set up, a VPN environment will for the machines present in the
network function just like any other private network.

4.3.2 Segmentation of data

The segmentation of the hybrid cloud can be facilitated by existing
functionality in Apache Mesos and the Marathon framework. Every node
in an Apache Mesos cluster can be tagged with a arbitrary number of
attributes, which will be sent along with the resource offers from a Mesos
slave node. The frameworks can by reading the attributes in combination
with the offered resources to make a decision of whether or not to accept
the offered resources.

There are, in addition to Marathon, other Mesos frameworks that manages
long-running services like Aurora and Singularity. However, Marathon
was picked due to the simple graphical interface, well documented REST
API, and a clear cut way of enforcing constrains, which is vital for
segmenting the hybrid cloud.

Marathon supports a number of operators to set constraints on how
applications are run, with CLUSTER being the operator of interest. This

34

operator will require the tasks to run in a cluster constrained by the
attribute defined. For constraining an application to only run on nodes
where the attribute color is set to blue then a constraint will look like:
color:CLUSTER:blue.

For segmenting the data, an attribute will be set on every slave node in the
Mesos cluster. The attribute will be named cloud_type and contain either
public or private. Attributes can be set when starting the Mesos services or
pre-configured in files. Another way to segment the cluster is to create an
attribute named clearance_level and have values that mimic the clearance
levels of public, confidential, secret, and top secret.

4.3.3 Automated cloud bursting

A cloud bursting solution with a hybrid cloud setup utilizing Apache
Mesos to provide an abstraction layer on top of physical or virtual resources
makes cloud bursting as simple as adding a Mesos slave node located in
the cloud. The slave node will join the cluster and offer its resources within
minutes after booting up and start processing tasks.

The challenge therefore becomes to automate it and to utilize the spot price
instances, while considering the billing-cycle interval of one hour and price
fluctuations. A prototype will be written in Python and will run on top of
Marathon in a fault-tolerant manner.

The script will consist of three main parts:
* Data collection
* Price and scaling decision logic
¢ Management of the spot requests and instances

The first part of the script is the data collection and encompasses the
collection of metrics from Apache Mesos and through the Amazon Web
Services API that will aid in the decision-making process. Interesting
metrics includes total resources available, resources in use, spot requests
pending, number of spot instances, and meta data connected to each of the
spot instances.

Using the collected information, a decision of whether to scale up or down
the cloud bursting capacity is made. Depending on how many factors
and considerations one wish to account for, this step is potentially highly
complex.

The paper written by Voorsluys and Buyya (2012), briefly mentioned in
Background chapter 2, describes five bidding strategies that can be used.
The bidding strategies are listed up in Table 4.2, where G = 0.001, which is
the lowest granularity value allowed to be used at Amazon Web Services
when bidding for spot instances.

35

Bidding strategy Bid value definition
Minimum The minimum value observed in the price history + G
Mean The mean of all values in the price history
On-demand The listed on demand price
High A value much greater than any price observed
Current The current spot price + G

Table 4.2: List of five possible bidding strategies for the spot price instances
at Amazon Web Services EC2 (Voorsluys & Buyya, 2012).

As there are several aspects of the proposed algorithms in the mentioned
paper that does not apply directly to the hybrid cloud scenario, a simpler
decision algorithm has been devised, which is adequate for the purpose of
answering the problem statement. In Figure 4.3, the projected activity flow
is illustrated.

At the launch of the script, the values of available resources at the private
location will be provided through a configuration file. Based on the total
available baseline resources and the resources currently in use, a percentage
is calculated. This percentage will be the sole variable which will determine
whether or not to utilize public cloud resources. In a live production a more
complex decision algorithm should be considered, as the one proposed for
this prototype does not account for any edge cases.

The script will operate with a burst point threshold, which represents the
usage-percentage of the available resources at which the cloud should scale
up. For instance, if the burst point threshold is set to 0.70, the script will
request spot instances at when resource usage reaches 70%. Additionally,
a specific maximum limit will be artificially set in order to prevent the
prototype from scaling up too much and incurring huge costs.

The decision to scale down will be based on actual usage of the resources
and the lifetime of a spot instance. Lifetime has to be considered, due to
to the hourly billing cycle that applies when the termination of an instance
is initiated by the user. To avoid wasting already charged resources, a spot
instance will be terminated only if the lifetime of the instance is nearing
the next hourly billing-cycle. For example, a spot instance may only be
needed for 20 minutes, but will not be user-terminated for at least 30-35
more minutes to capitalize on the already charged hour.

The chosen bidding strategy is the current price + x, where x is a predefined
variable that is supplied with the script at launch time. x serves as price
padding to avoid bidding at the exact market price, bids at that level will
be highly contested. By setting x to a high value, one can increase the
likelihood for the instance to last longer before terminated. On the other
hand, by setting a low value, the instances could potentially be terminated
due to increased prices, which would result in the charge for the last partial
hour to be waived. In the end, the script will bid the lowest price possible
plus a padding value, which can be arbitrary set to tweak the bidding
strategy.

36

Infinite loop 4
l Collect data from

> Mesos and
Marathon

-

—

Calculate the
bidding price
—/

Based on the
data collected.
Scale?

@Down Up@

No

Sleep by the set
interval

Interupt signal
(Ctrl+c)

Terminate the
script

Figure 4.3: Projected activity flow for the script illustrated in an activity
diagram.

37

38

Chapter 5

Results: Implementation

This chapter describes the actual implementations of the proposed proto-
types and solutions, the testbed, and other aspects that is relevant for ad-
dressing the problem statement.

5.1 Setting up the testbed and Apache Mesos

As described in the Approach chapter 3, the testbed uses Altocloud and
Amazon Web Services VPC to emulate a private site and public cloud plat-
forms, with the Apache Mesos chosen as the clustering technology.

There are several ways of installing and managing Apache Mesos. Configu-
ration management tools can be used to bootstrap and manage the Apache
Mesos binaries in addition to other miscellaneous configuration. However,
in order to to have full control over the installation process, the Apache
Mesos was installed manually. This is due to the deployment prototypes
being non-traditional and of experimental nature. In contrast of modifying
and tweaking existing configuration management templates, a manual in-
stallation gives more control over the installation process which eases the
debugging process.

During the installation of Apache Mesos master nodes, several issues were
encountered. One of the issues caused the Mesos master nodes to not reach
full equilibrium, resulting in a new leader being elected every minute,
flip-flopping between the master nodes present. This was found to be a
DNS related issue and was mitigated through an entry in the /etc/hosts
tile, which effectively functions as a manually maintained and makeshift
DNS entry. Additionally, due to a bug in ZooKeeper, an Apache Mesos
process will crash if proper DNS handling is not in place (Apache Software
Foundation, n.d.-b, n.d.-a).

An Apache Mesos cluster including both master nodes and slaves nodes
were successfully installed and configured in Altocloud, with slave nodes
correctly registering themselves to the cluster through the leading master

39

node. However, when attempting to register a slave node running at
Amazon Web Services EC2 peculiar activity was observed. The traffic from
the slave node located at EC2 managed to successfully send a registration
request to the leading master node, passing through multiple layers of
network abstraction including two layers of NAT. Although the master
node receives the registration requests, no registration acknowledge is ever
sent back.

Eventually, the cause was discovered to be a combination of the use of
NAT and the way Mesos nodes communicates between each other. When
a slave node sends a registration request, it includes information about the
resources available and an IP-address. The IP-address sent along is the
one that is defined on the network interface bound by the Apache Mesos
process. Furthermore, in a cloud environment like Altocloud and Amazon
Web Services EC2, the public IP-addresses are loosely coupled with the
virtual machine and functions similarly as NAT does. Consequently, the
Mesos master attempts to send the acknowledgement and other internal
traffic meant for that slave node to the non-routable private IP-address.

The communication flow is illustrated in Figure 5.1.
Master
10.0.19.5
|

Slave NAT NAT
192.168.0.10 52.17.132.200 128.39.121.20
|

- From: 192.168.0.10 R, —_—
To: 128.39.121.20
—
Payload:
Registration request” ™|
lam 192.168.0.10

From: 52.17.132.200
I— To: 128.39.121.20
Payload:
Registration request

| am 192.168.0.10
From: 52.17.132.200

To: 10.0.19.5
Payload:
Registration request
I am 192.168.0.10

e

From: 10.0.19.5
To: 192.168.0.10
Payload:
‘/Registration acknowledged

—

IP-address not routable

Figure 5.1: Communication flow between an Apache Mesos slave node
and master node with the registration attempt failing due to how public
[P-addresses are handled in cloud platforms.

As previously indicated in the Results: Design chapter 4, NAT traversal
appears to be an issue for Apache Mesos. In order to mitigate this
limitation, a VPN solution has been deployed as outlined in the previous
chapter. As the set up of a VPN solution is outside the scope of this thesis,

40

it will not be explained in detail. The subnets of the VPN network was
divided into three main parts for simplicity, using all three private address
spaces as defined by RFC1918. The resulting network has been listed in
Table 5.1.

Availability region / Site Subnet
Altocloud (Oslo) 10.0.19.0/24
AWS (Ireland) 172.16.0.0/16
AWS (Frankfurt) 192.168.0.0/16

Table 5.1: The network partitioning of the RFC1918 private addresses
divided into separate subnets.

A good chunk of the 172.16.0.0/12-subnet has been left unallocated in
case a need for additional private addresses arises.

52 Availability

5.2.1 Prototype 1: Maximizing availability

CX X X] 000
aws (retang) 2 g % , i< cranicury

172.16.0.0/16 / 192.168.0.0/16

Y- hud

VPN |

| eeee®
<> Master nodes L |
. _Altocloud (Oslo) -
. Slave nodes 10.0.19.0/24

Figure 5.2: Prototype 1: Maximizing availability. Distributing the master
nodes and thereby the risks.

By using VPN tunneling, the need for allocating public IP-addresses
for each node disappears for the purpose of maintaining the cluster,

41

as the private IP-addresses becomes routable within the hybrid cloud
platform. With the exception of the extra infrastructure to maintain a VPN,
the prototype is identical to the proposed proposed design. Figure 5.2
illustrates the final implementation of the prototype, showing how the
Mesos master nodes are distributed between the different availability
regions.

Slave ID Host
...5050-5669-S0 192.168.187.205
...5050-5669-52 192.168.178.239
...b050-5669-51 172.16.231.155
...5050-900-S71 10.0.19.9
..5050-900-S69 10.0.19.8

PUs Mem Disk
496 MB 3.9 GB
27GB 39GB
496 MB 3.9GB
6.8GB 73.7GB
6.8GB 73.7GB

e e

Table 5.2: A subset of available slave nodes in this scenario. The
information has been taken from the Apache Mesos GUI and represents
a truncated view of the available slaves.

Table 5.2 shows subset of available slaves that is listed up in the graphical
user interface (GUI) of Apache Mesos. Note the subnet differences of the
slaves, which indicates the where the slaves are located.

As for the Mesos master nodes, they were installed manually on top of
instances booted up in their respective availability zones. The installation
notes for setting up the Apache Mesos master nodes has been included as
Appendix A. The specifications for the Mesos master nodes is listed in
Table 5.3.

Master ID IP-address Location Instance type
1 10.0.19.5 Altocloud (Oslo) ml.medium
2 192.168.0.5 AWS (Frankfurt) m3.medium
3 172.16.0.5 AWS (Ireland) m3.medium

Table 5.3: A list of specifications regarding the Mesos Master nodes.

The Mesos slave nodes are set up using a bash script which is sup-
plied at instance start-up as user-data. The script is included as an Ap-
pendix B

For creating tasks for testing the availability, the meta framework Marathon
has been installed. Marathon exposes a small subset of the functionality of
the Marathon REST API, through a very simple GUIL Although simple, it
suffices for creating, destroying and scaling tasks. A screenshot of the GUI
is shown in Figure 5.3

Test scenarios
A Mesos slave process becomes unavailable

In the event of a Mesos slave node becoming unavailable for some reason,
the Mesos master node allows a default timeout period of 75 seconds to

42

O MARATHON

Iburst A Running
fhog—cpu-1 Suspended
Ihog-cpu-3 Suspended
Inog-mem-32-mb . Suspended
fhog-mem-512mb A Suspended
Ihog-mem-6gb A Suspended

Isegment . Running

Figure 5.3: A screenshot of the Marathon GUI with a some created tasks
available to scale up or down.

pass before procedures for deactivating the slave node is begun. Should
the slave node start responding within this timeout period, nothing will
happen and both the Mesos master node and the slave node simply ignores
the temporary unavailability.

However, if the timeout period is exceeded and the slave nodes is still
unavailable, the Mesos master node will attempt to deactivate the Mesos
slave process on the slave node before it from the list of available slave
nodes. Tasks that were lost will be rescheduled to other slave nodes with
available capacity. In Listing 1 an excerpt of the Mesos master log is
included. The events logged are the result of a simple reboot of the instance
for this particular Mesos slave node.

17:00:26.087030 Disconnecting slave ...5050-5669-S0 at

< slave(1)@192.168.187.205:5051 (192.168.187.205)
17:00:26.087103 Deactivating slave ...5050-5669-S0 at

< slave(1)@192.168.187.205:5051 (192.168.187.205)
17:00:26.087155 Slave ...5050-5669-S0 deactivated

17:00:37.940727 Registering slave at slave(1)@192.168.187.205:5051
< (192.168.187.205) with id ...5050-5669-S3

17:00:38.116992 Registered slave ...5050-5669-S3 at

< slave(1)@192.168.187.205:5051

17:00:38.117085 Added slave ...5050-5669-S3 (192.168.187.205)

Listing 1: Excerpt from /var/log/mesos/mesos-master.INFO showing the
deactivation and the new registration of the rebooted slave. Truncated for
increased readability.

Should a slave node simply be temporarily disconnected from the master
node, but exceed the timeout period, the Mesos master will forcibly shut

43

the Mesos slave node down. To account for such scenarios, the official
Apache Mesos documentation recommends monitoring the Mesos slave
process and restart if it should be terminated for any reason. In this case,
this is achieved with a simple check using Monit. In Listing 2 log events of
such a case is listed.

17:34:23.298998 Shutting down slave ...5050-5669-8S3 due to health check
— timeout

17:34:23.300134 Removing slave ...5050-5669-S3 at

< slave(1)@192.168.187.205:5051 (192.168.187.205)

17:34:23.301009 Removed slave 20150501-230056-2407081856-5050-5669-S3
17:34:23.536837 Notifying framework ...5050-27030-0006 (marathon) at

= ...473b-b57a-83121a00a01c0128.39.121.140:43217 of lost slave

< ...5050-5669-S3 (192.168.187.205) after recovering

17:34:29.017205 Slave ...5050-5669-S3 at slave(1)©@192.168.187.205:5051
— (192.168.187.205) attempted to re-register after removal; shutting it
— down

17:34:57.329751 Registering slave at slave(1)@192.168.187.205:5051

< (192.168.187 .205) with id ...5050-5669-S4

Listing 2: Excerpt from /var/log/mesos/mesos-master.INFO showing the
forced shut down of the Mesos slave process at 192.168.187.205 and the
registration as new slave at end. Truncated for increased readability.

The working Mesos master instance cease to function

ZooKeeper maintains an active connection to the participants of the
quorum and will after a very short timeout lasting a few seconds, will
initiate a new leader electing for choosing a new leading Mesos master
node. As long as the number of functional Mesos master nodes is equal or
higher than the quorum size, a new leader will be elected and will replace
the unresponsive Mesos master node.

This scenario was tested with a simple reboot of the instance where the
leading Mesos master was running. The backup Mesos masters quickly
discovers the loss of connection to the leading Mesos master and promptly,
with the use of ZooKeeper elects a new leading Mesos master node. The
rebooted Mesos master node later joins the cluster as a backup node after
coming back online.

The setup proposed in this prototype has three Mesos master nodes, with
the quorum size set to two. This means that among the Mesos master
nodes, one can fail without crippling the cluster, as the quorum size dictates
the number of election participants that has to be able to communicate to
be able to elect a new leader.

An entire region within the hybrid cloud becomes unavailable
If an entire region becomes unavailable, the Mesos nodes located within

44

those regions will by extension also become unavailable. In this particular
case, the loss of one single site equals the loss of one Mesos master node
and four slave nodes. Each node, depending on the type, is handled as
specified in the test scenarios mentioned above.

This was tested by taking down the VPN tunnels at the VPN gateway
of the concerned region. This cuts all communication between the the
affected region and the other ones. As expected the the Mesos master
nodes continued without any issues, as the current leader was not the
affected one. As for the affected Mesos slave nodes, after the timeout of 75
seconds, the leading Mesos master node determined that the slave nodes
were unresponsive deactivated them.

The hybrid cloud splits and semi-isolates part of the platform

In the event of split in the hybrid cloud, resulting in a partly isolated
availability region, the quorum mechanics will prevent inconsistencies of
the cluster and avoid issues like the split-brain problem.

To test this scenario, two simple iptables DROP rules was added on the
Mesos master node located in Frankfurt with the IP address 192.168.0.5.
This test scenario is illustrated in Figure 5.4. The following two lines were
executed at the instance:

Sy Sty
0000 (X X X)
aws (rotangy 3 <l % .15 (cranicure
172.16.0.0/16 192.168.0.0/16

| eeee
<> Master nodes] |
. Slave nod L Ngeaitociond|(O sioj g
ave nodes 10.0.19.0/24

Figure 5.4: An illustration showing how the semi-isolated test scenario
looks like

45

iptables -A INPUT -s 10.0.19.5 -j DROP
iptables -A OUTPUT -d 10.0.19.5 -j DROP

¢« 2> C 52.28.57.249:

€« =>C 128.39.121.27:

1 No master is currently leading ...

No master is currently leading ...

[Mesos %
€ 5 C [45217.132.212:5050/%

_l Cluster: NoxCluster

Server:

Active Tasks

No master is currently leading .. L PSR o "
28.39.12 505 ame

Version: 0.22.0

Built: No active tasks

2015-03-

2RT14-35-972010N hy

Figure 5.5: A screenshot taken over three browser windows showing each
of the state of the master nodes. "No master is currently leading...".

The leading Mesos master node at the current time was 10.0.19.5, with
nothing occurring immediately as a result of the iptables DROP rules.
The leading master continued with no issues and other two standby Mesos
masters correctly redirected to the leading master node. However, after
rebooting the ZooKeeper process and Mesos master process on the master
nodes, the cluster is unable to elect a new leader. The cluster if effectively
frozen as depicted in the screenshot shown in Figure 5.5. Immediately after
the iptables DROP rules were removed, a new leading Mesos master were
elected and operations continued as normal.

5.2.2 Prototype 2: Prioritizing local availability

Due to the architecture of Apache Mesos, it is possible to perform rolling
updates on the Mesos master nodes. This ensures no downtime as each
Mesos master node is updated separately and then restarted. The setup
of this prototype was done by adding two more Mesos master nodes at
Altocloud with the final configuration of the five master node cluster.
Afterwards, each of the existing three master nodes had their configuration
updated and restarted. The cluster was fully operational during this
process.

As some of the test scenarios does not introduce anything new and behaves

just the same as in the previous prototype, a few of those test scenarios has
been omitted for this prototype.

46

—

|
N) N
aws (retong) Y Gl B s (€ rankurt)

172.16.0.0/16 /

192.168.0.0/16

. VPN |
<> e0@® -
O Master nodes @ CX X X] |
@ slave nodes 0N i;‘:)?;ﬁzs‘ll?) v

Figure 5.6: Prototype 2: Prioritizing local availability. Focusing on the
availability at the local site.

Test scenarios

An entire region within the hybrid cloud becomes unavailable

The effect on cluster depends largely on which availability region that
becomes unavailable. For any other region other than the private site,
Altocloud, the effect on the cluster as a whole is limited. For the prototype
illustrated in Figure 5.6, that would mean the loss a of single Mesos master
and two slave nodes. With four Mesos master nodes left, with the majority
of the slaves located in Altocloud, the cluster is fully functional with
slightly less processing capability.

To verify this, the VPN gateway deactivated at Altocloud, thus simulating
both the failure of the private site from the perspective of the Mesos nodes
located in the public cloud and the failure of the public cloud Mesos
nodes or ISP connection problems from the perspective of the private
location.

The Mesos master nodes located at Frankfurt and Ireland entered a
leaderless state, waiting for a leader to be elected. Since the Mesos master
nodes located at the public cloud locations can not form a majority, thus
satisfying the quorum size requirement, they are practically frozen while
awaiting the connection of one additional Mesos Master node in order to
elect a new leader.

47

While in the private location, Altocloud, the cluster re-elects a new leader,
as the previous leader was located at Frankfurt, and continues delegating
tasks and restoring those that were lost in the disconnection.

The hybrid cloud splits and semi-isolates part of the platform

In contrast to the previous prototype, a semi-split between the the regions
will not cause the cluster to freeze. This is due to the majority of the
Mesos master node being present at a single location. Ultimately, the Mesos
master nodes present at Altocloud will sustain cluster.

However, even for this prototype, should the internal network of Altocloud
be split, with semi-isolated Mesos master nodes in combination with a
network split between the different regions, it is possible that the cluster
will experience the same problem as prototype 1, with the Mesos master
nodes being unable to elect a new leader. It is not immune to the problem
although, the cluster will still run in the event of a network split occurring
between the availability regions.

5.3 Segmentation of data

To accommodate for segmentation of specific data, Mesos slave nodes was
tagged with a few attributes after installation. This was done by adding
a configuration file in /etc/mesos-slave/attributes with the following
contents:

cloud_type:private;country:norway;city:oslo

The contents of this file tags the slaves with attributes marking them with
unique properties that later can be used for constraints.

To verify the segmentation of takes place the within the hybrid cloud
platform, cloud_type:CLUSTER:private was added as a constraint for the
Marathon application executed. Additionally, due to the considerable
large amount of resources available, a second constraints was added,
hostname : UNIQUE, requiring a unique hostname for each instance of the
task deployed. In short, only one instance of a task can be run on a single
slave nodes and the slave node has to be tagged with an attribute named
cloud_type which is set to private.

As there are 10 slave nodes located at Altocloud with the attributes set, a
maximum of 10 task instances can be run at all times, unless additional
Mesos slave nodes are added that fulfill the constraints. Figure 5.7
lists up the 10 Mesos slave nodes running the constrained Marathon
application. Note the subnet of the IP-addresses listed, as they are part
of the 10.0.19.0/24-subnet which was allocated to Altocloud.

48

11 minutes ago 6.5.2015, 15.15.32

11 minutes ago 6.5.2015, 15.15.32

11 minutes ago 6.52015, 15.15.31

11 minutes ago 6.5.2015, 15.15.30

11 minutes ago 6.5.2015, 15.15.30

11 minutes ago 6.5.2015, 15.15.29

11 minutes ago 6.5.2015, 15.15.29

11 minutes ago 6.5.2015, 15.15.28

12 minutes ago 6.5.2015, 15.15.28

12 minutes ago 6.5.2015, 15.15.15

Figure 5.7: A screenshot in the Marathon GUI listing up the running tasks
at the Mesos slave nodes.

When attempting to scale further than the 10 slave nodes available, the
Marathon application is unable to execute additional tasks instances, as
there are no available resources that fulfill the constraint requirements. As
displayed in Figure 5.8, the Marathon application is unable to scale beyond
10 tasks instances in this particular setup.

Isegmented 16 01 10715 Deploying

Figure 5.8: A screenshot in the Marathon GUI showing the Marathon
application with the constraint attempting to scale beyond the available
resources that fulfill the constraint requirements.

5.4 Automated cloud bursting

The main script can be found in Appendix C.

The automated cloud bursting solution uses a Python script which was
developed as outlined in Results: Design chapter 4, and depends on two
configuration YAML files and an additional small script for importing some
basic functions.

The first configuration file is the main configuration file and contains the
main preferences used by the script. Amazon Web Services API credentials,
execution interval, and maximum limits are just a few of those settings. The
second configuration file is the launch configuration file and contains the

49

properties that is used when launching a spot instance.

The particular setup of the hybrid cloud platform followed the prototype
2, as outlined in Figure 5.6, with the exception of the Mesos slave nodes
located at the public cloud providers. The Mesos slave nodes located
in Ireland and Frankfurt were deactivated prior to the experiments. The
setup utilizes 10 Mesos slave nodes as the baseline resources located in the
private location, Altocloud. Each of the ten slave nodes were running on a
ml.large instance type, resulting in 40 CPUs, 80 GB of memory, and 800 GB
of storage in total.

The script is designed to be executed as Marathon application and depends
on being present in the cluster, as it attempts to discover to leading Mesos
master node dynamically each iteration. Except for this, the script can be
executed as any other python script from the bash prompt and accepts the
following arguments:

usage: burst.py [arguments]

Arguments:
--help Prints this help message
-v [--verbose] Verbose output
-c [--config] Specify another config file

The automated cloud bursting solution consist of three main parts: data
collection, price and scaling decision logic and management of the spot
requests and spot instances.

Before any data is collected, the script load the configuration file into the
script and use the preferences retrieved to resolve a ZooKeeper URL to
find the current leading Mesos master. The script then proceeds to collect
resources metrics from the leading Mesos master before moving on to
collecting information about any active spot requests and instances from
Amazon Web Services EC2.

If the verbose flag was set when executing the script, the following
information about resource usage is displayed in the terminal:

| Resource usage: | Percent | Count

| = = m oo
| CPUs | 2.68% | 1.10

| Memory | 0.25% | 176 MB

| Disk | 0.00% | 0 MB

As previously stated, the bidding strategy chosen was the current price + x
and was implemented by polling the price each iteration through the EC2
API In addition, a maximum bid limit, specified in the configuration file,
is checked before returning a bid value. As the prices fluctuate, so does the

50

bid the script up until the maximum limit.

The decision to scale or not it determined on the current resources usage
percent compared to the burst point threshold. The script ensure that that
the number of spot instances that serves as a Mesos slave node corresponds
to the numbers required to keep the usage percent just below the burst
point threshold. As with the maximum bid limit, there is also a maximum
spot slave limit which limits the number of spot slaves the script is allowed
to scale up to. With the value set to 0.75, the script will automatically
burst into the cloud and start requesting spot instances if the the limit of
75% of any single resource is exceeded. The script will evaluate the usage
percentage with the current active Mesos slave nodes in addition to the
pending resources to calculate the percentage. To scale down, the script
will calculate the usage percentage of the cluster after removing x amount
of slaves before in order to find the optimal number of spot instance Mesos
slaves with respect to the burst point threshold.

The script will also cancel older spot instance requests that exceeds a
certain time limit, which is set in the configuration. This is done in
order account for spot instance requests that for some reason is stuck
and will not result in any spot instance any time soon. This could be
due to an error or that the price bid is too low. In the use cases of a
cloud bursting solution, the requested resources should appear within a
reasonable amount of time, otherwise it would not serve the purpose as a
cloud bursting solution.

The activity diagram shown in Figure 5.9 describes the logic which
determines the scaling action.

5.4.1 Scaling in action

To showcase the functionality of the cloud bursting solution, two exper-
iments has been conducted. Each experiment covered a unique use case
which is interesting in a cloud bursting scenario.

To simulate heavy workloads, several Marathon applications were created
with the sole purpose of hogging available resources. Below is an example
of the commands used for resource-hogging tasks.

while true; do echo hello world; sleep 60; done

As evident by looking at the command, it does not by itself consume
a lot of resources to run. However, each tasks are allocated a certain
amount of resources by the Marathon framework and can within those
allocated resources use as little or as much as needed. For the simulations
each of these small while-loop tasks are given excessive amounts of
resources in order to quickly hog up large quantities of resources for the
simulation.

There are three possible resources variables to simulate:

51

Is the usage
percentage higher
than the burst point
value?

Is the max
number of spot
slaves reached?

Yes No: Scaleup by 1

No Yes

Is the number of
active or pending
slaves zero?

Do not scale

Scale down the
same number
as downCount

Continue if no more nodes to kill J

Calculate the usage
percent if we remove
one (more) slave

Does the percentage
exceed the burst
point value?

Is downCount
more than 0?

downCount += 1 Yes No: downCount -= 1

Figure 5.9: An activity diagram showing the decision logic for determining
whether or not to scale.

e CPUs
* Memory
¢ Disk

CPUs as a resource is normally denoted with integer numbers and was
therefore picked as the resource to exhaust in order to test the cloud
bursting solution. To do so, a Marathon application named hog-cpu-1 was
created and scaled up to 100 tasks, effectively hogging 100 CPUs. The
baseline resources consist of 40 CPUs and any additional resource required
will there depend on resources available through the cloud bursting
solution. With the maximum amount of spot slaves set to 10, the cluster can
not accommodate for 100 CPUs while scaling up on the lower tier instance
types, resulting in a constant need for resources.

52

Experiment 1 - Scaling up

Table 5.4, contains the parameters which was used when conducting the
experiment 1. The goal of this experiment is the showcase the cloud
bursting functionality, more specifically the scale-up part of the script. At
the beginning of the experiment, hog-cpu-1 will be scaled up to 100 tasks
in the attempt have the script scale up to 10 spot instances to serve as Mesos
slave nodes.

Variable Value
Execution interval 60 seconds
Instance type m3.medium

Maximum spot slaves 10
Maximum bid limit 0.500
Burst point percentage 85%

Spot request timeout 10 minutes
Price padding 0.001

Table 5.4: The parameters for the cloud bursting experiment 1.

As seen in Figure 5.10, the cloud bursting script scales up the desired
number of slave nodes to 10, alternating between 10 and 9. During runtime,
the script calculates a bidding price each iteration, which is the current
market price along with a padding of 0.001. However, the number of
instances registered to Apache Mesos alternates between one and zero.
This is due to the increasing market price, which invalidates the previous
spot instance requests, as the bidding price for those instances were lower
than the current market price. As a result, the instances are terminated
shortly after they are booted up.

After 30 minutes, the CPU-hogging tasks were halted, thus resulting in
almost no resource requirements for the cluster. As a result, the number of
desired slave nodes as well as the bidding price is 0, as no slave nodes are
needed. A few minutes later the current market price falls to the original
prices before the scaling experiment took place.

Experiment 1 revised- Scaling up

As the original experiment 1 did not showcase the scripts ability to scale
up the instances, a number of tweaks to the configuration were made for a
revised experiment. As the price changes deterred the script from properly
bursting into the cloud within 30 minutes of time, a revised experiment
was deemed necessary. Table 5.5 lists up the tweaked parameters for the
revised experiment.

Due to the very volatile market price for the m3.medium instances type
in Frankfurt, c4.large instance type was chosen instead. Compared to
m3.medium, the market price for c4.large instances was far more stable.
Additionally, as the goal is to verify the scaling functionality of the script,

53

Experiment 1

=
o

0,300

-9

-8
5 8
£ 0,200 ’ g
g S
a Ls &
g 5
£ r4 g
§ 0,100 L3 §
& 2

2

b1

0,000 0

1 6 11 16 21 26 31 36
Minutes
= = = Script-bid e Varket price Desired instances ——=Registered instances

Figure 5.10: Experiment 1: The market price rises at the same interval as the
cloud bursting script does and drops as soon as the script stops bidding.

the price padding was set to 0.100 as an aggressive measure to deal with
any spikes to the market price.

Variable Value
Execution interval 60 seconds
Instance type c4 large

Maximum spot slaves 10
Maximum bid limit 0.500
Burst point percentage 75%

Spot request timeout 10 minutes
Price padding 0.100

Table 5.5: The parameters for the revised cloud bursting experiment 1 and
experiment 2.

As seen in Figure 5.11, the script managed to successfully request
spot instances, with the Mesos slave nodes registering in bulks. After
approximately 15 minutes, all the requested slave nodes were online and
processing for the cluster. The price remained the same for the entire
duration.

Experiment 2 - Scaling down
The goal of of this experiment is to showcase the script in a scale-down

scenario. The configuration used for experiment 2 was the same the
revised experiment 1 had, listed in Table 5.5. This was to ensure the cloud

54

Experiment 1 - Revised

0,300 10

0,200

o T J """""""" |

0,000

S

T
IS

Price in USD per hour
Number of instances

o r N W

Minutes

e Market price = = = Script-bid Desired instances Registered instances

Figure 5.11: Experiment 1 revised: A successful scale-up experiment with
the market price being stable for the entire duration of the experiment.

bursting script to successfully scale down without any major disruptions.
Additionally, Table 5.6 contains specific parameters relevant for experiment
2 which.

In this experiment, the spot instances that were active in the revised
experiment 1 where used to scale down.

Variable Value
Partial hour threshold 20 minutes

Table 5.6: Additional parameters in the configurations set for experiment 2.

Figure 5.12 shows the cloud bursting script downscaling the number of
spot instances from 10 down to 0. The number of hog-cpu-1 tasks were
scaled from 59 tasks down to 24 in the interval of 5, with 24 CPUs being
just below the limit before the script will burst into the cloud. As seen
in the graph, although the desired number of spot instances is zero, the
script keeps them alive for a longer period of time before scaling down.
This is due to the imposed requirement that requires each instance to be
alive for at least x amounts of minutes in an hour-cycle, where x is the
partial hour limit set in the configuration. For this experiment, the limit was
set to 20 minutes in order to make the waiting period for this experiment
shorter.

Listing 3 is an example of an single iteration of the script. In this case
there are five active spot instances serving the cluster as slave nodes.
However, none are desired as the current resource usage is below one

55

Experiment 2

0,300

=
o

0,200

0,100 \

Price in USD per hour

T
O B N W & U1 O N 0 O
Number of instances

0,000 4 S

Minutes

e Market price = = = Script-bid Desired instances Registered instances

Figure 5.12: Experiment 2: A successful scale-down experiment with the
script waiting until the specified minimum time spent in an hour-cycle
before terminating the instances.

percent for all three categories of resources. In this case, even the baseline
resources available at the private location is mostly idle. The script
attempts to terminate the excessive slave nodes however, since the number
of minutes since last integer hour has not passed the specified limit, the
script postpones the termination of the instances. The limit for the least
amount of minutes that is required to pass before terminating an instance
is set in the configuration file.

56

Resolving ZooKeeper url for the working Mesos Master
Current Mesos master 128.39.121.27
Fetching http://128.39.121.27:5050/metrics/snapshot

| Curent market price: 0.026
| Maximum bid limit 0.050
| Our bid 0.027

| Resource usage: | Percent | Count
| s e e -

| CPUs | 0.22% | 0.10

| Memory | 0.02% | 16 MB

| Disk | 0.00% | 0 MB
[

| = mm o o e

| Number of | Count

| Desired instances |
| Pending requests |

| Active instances |

Excessive spot instances. Attempting to terminate 5
i-4bf24b8a has not reached the set partial hour limit. 16 minutes has
— passed.

i-6ff24bae has not reached the set partial hour limit.
i-84f54c45 has not reached the set partial hour limit.

minutes has passed.
minutes has passed.
i-bffb4c7e has not reached the set partial hour limit.
i-16£24bd7 has not reached the set partial hour limit.
The script used 0.615634202957 seconds this loop
Sleeping additional 59.384365797 seconds

minutes has passed.

w © © ©

minutes has passed.

Listing 3: The verbose output of one iteration in the cloud bursting script.
Five instances are excessive and attempted terminated, but is ultimately
postponed due to the lifetime of the instance.

57

58

Chapter 6

Analysis

This chapter contains the analysis of the results written in chapter 4 and
chapter 5 and covers the analysis of the proposed designs, the implemented
solutions, and the test and experiment results.

6.1 The testbed and VPN

The testbed consist of Altocloud as the private site and Amazon Web Ser-
vices VPC regions as separate external sites. An interesting consideration
regarding this is how close to the hardware one should install Apache
Mesos. In this project, the cluster was installed on an OpenStack instal-
lation, thus on top of a virtual environment. This entails some extra over-
head that may not result in any distinct advantages for Apache Mesos di-
rectly over a bare-metal installation. In this thesis, focus on performance is
not within the scope and the use of a virtual environment makes it easier
to request and manage resources, as it is shared among other users at the
University College. However, in a production environment, a bare-metal
installation should be considered as performance is a vital part of any data
center regardless of the form factor.

However, there are cases where the use of virtual machines is needed
and preferred. For instance, when migrating over to a cluster solution
like Apache Mesos, it would make sense to run Apache Mesos on virtual
machines, as the same resources can be used to accommodate other services
that does not run on top of Apache Mesos. This is particularly true for
services running on top of non-Linux operating systems like Microsoft
Windows.

Though in the end, the most obvious use case for an Apache Mesos cluster
is when data center-like properties are required. Easier management, large
amounts of pooled resources, as little overhead as possible and a lean
interface to interact with for developers and system operators. In this use
case, Apache Mesos would benefit from being installed on bare-metal, as

59

it results in less complexity and overhead for the system operators to deal
with.

The testbed was mostly installed and configured manually however, in a
production environment the use of a configuration management would
be more preferred. Configuration management systems will streamline
the installation process and ensure the environment is updated and in the
desired state.

6.1.1 VPN

Due to the way the OpenStack installation, Altocloud handles floating
IPs and Amazon Web Services handles elastic IPs, coupled with the way
Apache Mesos communicates, several VPN tunnels had to be set up as
mentioned in Results: Implementation chapter 5.

VPN emulates a private network and solves not only the issue of the cluster,
but also adequately secures the transmission, thus making TLS encryption
support not as vital. However, the network is most likely also used by other
services and a malicious user could potentially sniff the packets to uncover
the contents of the traffic. A malicious user could potentially perform a
man-in-the-middle attack to manipulate the contents of the tasks sent to
set up malicious tasks in the Apache Mesos cluster. TLS encryption would
add an another layer of encryption to Apache Mesos traffic and it would
be more difficult to read and manipulate the traffic between the Mesos
nodes.

Apache Mesos is arguably designed and intended to be used in a single
location with low latency networking, which is why the use of NAT-like
functionality like floating and elastic IPs does not work well with Apache
Mesos. Additionally, for traffic that is transmitted over the Internet, setting
up VPN tunnels is considered good practice, as it encrypts all the traffic
between the VPN sites.

However, setting up VPN potentially introduces a single point of failure
to the whole cluster, depending on the way the cluster is set up. To
mitigate this, the VPN tunnels should be set up in a redundant manner with
multiple VPN connections between the sites, possibly with with separate
Internet Service Providers (ISP) for each link.

Additionally, to set up a site-wide VPN connection, some degree of
network manipulation has to be possible. Due to this, a VPN solution
may potentially exclude some public cloud providers that does not support
internal networking. Although it is possible to route traffic through the
Internet to an instance at the same cloud provider functioning as a VPN
gateway, it defeats one of the main purposes of a VPN, namely secure
transfer.

60

6.2 Availability

As stated in the Approach chapter 3, theoretical simulations and calcula-
tions will be done analyze the availability of the hybrid cloud platform.
Table 6.1 lists up the failure rates used in the simulations to verify any in-
creased availability due to the hybrid setup. The failure rates are artificially
set and does not represent the actual failure rates of any services.

Locations Failure rate in a year
Site A: Altocloud 15%
Site B: AWS Ireland 2%
Site C: AWS Frankfurt 5%

Table 6.1: Artificially set failure rates for Altocloud and a two Amazon Web
Services availability regions.

Due to a mathematical property regarding probability. If P(x) is indepen-
dent of P(y), then the probability of both x and y occurring is P(x) - P(y).
Which, will always be equal to or lower than min(P(x), P(y)). This is called
the multiplication rule.

As long as it can be established that the chance for the locations to fail are
independent of each other, then the probability of each of them failing at
the same time will always be lower due to the multiplication rule. With
redundant power lines and ISP links to the Internet, the hybrid cloud
platform can achieve high availability from the very bottom of the stack
with hardware, all the way up to each application.

However, there are other sources of failures that are not related to the
sites directly. At the same time as independence between the locations are
preferred, several other vectors for failure are introduced, with the Internet
being a particular possibility. Apache Mesos makes the platform fault-
tolerant for failures at the hardware level, while distributing the Mesos
master nodes between independent sites makes the platform fault-tolerant
to site-wide failures. However, it does introduce the additional risk of
losing network connectivity.

There are also extreme cases like natural disasters or a nation wide or larger
outage of electricity or damage to an intercontinental backbone connection.
In those cases there is little a single organization can do to mitigate and
service disruptions of this level would most likely affect the end users
as well. Fortunately, the chances for extreme cases like this are low,
at least compared the probabilities for a single cloud location becoming
unresponsive.

Consider the following: A single location data center with a cluster running
is only dependant the internal networking and the hardware within the
data center. The moment an external dependency is introduced, the
Internet becomes a factor. Depending on the use case of the cluster, that
may result in additional risks being added, thus lowering the expected

61

availability. For a cluster that is meant to be accessed from the Internet,
with public facing services like websites, this does not introduce additional
risk, as Internet is already a part of the equation for these type of use
cases.

For the purpose of the simulations, several assumption has been
made:

¢ Each location is 100% independent of each other, meaning that the
probability of failure in one location does not affect the probability of
any of the other locations.

¢ There are no other causes for failures on the hybrid cloud platform

6.2.1 Prototype 1: Maximizing availability

The setup outlined in prototype 1 was designed for maximizing availability
for a three Mesos master node setup. However, this setup mainly accounts
for hardware issues and problems with the Mesos processes and does not
include the aspect of networking issues to the same degree. On the other
hand, the cluster remains accessible as long as at least two of the sites are
responsive which, unless there are major issues with backbone-tier Internet
infrastructure is not very likely to occur, as the location of the sites are
geographically spread.

While the this particular cluster setup can survive a national-level of
networking failure, it is important to consider the target audience for the
the hybrid cloud platform. If the end-users are mostly contained within a
single country, the sites should, if possible be located within the country
or at least close neighboring countries, to improve latency and make the
hybrid cloud platform independent on other countries infrastructure, as it
is irrelevant for the target audience in this case. The setup described in
prototype 1 would work well for an European target audience, as the sites
are spread across the continent of Europa.

The probability for the entire hybrid cloud platform to become unavailable
is when at least two of the sites becomes available. ~Assuming the
probability for failure is as listed in Table 6.1, the highest probability for
the cluster to fail is the combination of the private location, Altocloud
and the public cloud location, Amazon Web Services Frankfurt to fail
simultaneously. The calculations therefore becomes:

P(Afailure) ’ P(Cfailure>
0.15-0.05 = 0.0075
Even with the two sites with the highest likelihood for a failure, the
probability of them occurring at the same time is lower than 1%. The

probability for failure with any other combinations of the sites that results
in the hybrid cloud platform do become unavailable are even lower.

62

A Mesos slave process becomes unavailable

Depending on the workload deployed in the cluster, one or several Mesos
slave nodes can become fail without affecting the cluster as whole. Though,
the tasks that were running on the affected Mesos slave nodes will be lost
and rescheduled for other Mesos slave nodes with available capacity. The
main causes for one or few slave nodes to fail would most likely be due to
a hardware issues, as the timeout of 75 seconds rules out the possibility of
smaller and temporary network issues. It could also be due to a freeze or a
crash in the Mesos slave process.

The working Mesos master instance cease to function

In this prototype, the number of Mesos master nodes that can become
unresponsive while still maintaining the cluster is one. To elect a leader,
ZooKeeper requires a majority vote to be conducted with the the excepted
number of ZooKeeper participants as baseline. A new leader is elected as
long as there are two ZooKeeper participants left.

As for the Mesos slave nodes, they have to re-register at the new master
within a set time frame. The default value is set to 10 minutes. Any slave
nodes that fails to do so is marked as unresponsive and is deactivated. Even
in the event of a leaderless cluster, the slave nodes will continue to process
whatever tasks that were given and a separate timeout period is tracked at
the Mesos slave node, which is by default set to 15 minutes. If the slave
node does not manage to re-register with a leading Mesos master node
within this timeout, the Mesos slave process will self-terminate.

An entire region within the hybrid cloud becomes unavailable

For the setup outlined in this prototype, the effects of an entire region
becoming unresponsive will be limited, as each region is equal in both the
number of Mesos master nodes and slave nodes. As long as the remaining
slave nodes can handle the workload of the cluster by themselves, the
cluster survives and continues to process tasks. Even if the remaining
cluster should lack the capacity to fulfill the entire workload, the tasks will
be queued up and prioritized depending on how the framework running
on top of the cluster has been designed. Apache Mesos will prioritize
between the frameworks depending on prespecified prioritizing, should
multiple frameworks be present.

The hybrid cloud splits and semi-isolates part of the platform
A semi-isolated network can happen for various reasons. For instance it

could be due to issues with backbone-tier connections that result in a highly
throttled connection that could prioritize certain traffic, thus semi-isolating

63

certain networks. However, the Internet is designed to be quite resilient in
terms of connection faults and a packet should eventually be routed to its
destination as long as a path exist. With a VPN solution a split network
is possible if the the specific VPN tunnel between two sites goes down for
some reason. It could also be due to security systems wrongfully flagging
traffic from a certain source IP-address as malicious and therefore dropping
it.

The testing the case of a semi-isolated network produced some unexpected
results. The Mesos masters were unable to elect a new master in the semi-
isolated network scenario with the Mesos master node located in Ireland
unable to reach consensus with two isolated networks communicating to it.
As the Apache Mesos cluster was functioning until a new election had to be
made, it would seem that the issue originates from ZooKeeper alone.

In order to mitigate this, additional Mesos master nodes can be added,
thus forming a five, seven or larger Mesos master node cluster. A single
semi-isolated network is not enough to affect the cluster, as the number of
participants for the ZooKeeper leader election would exceed the quorum
size requirement. While it is possible to experience the same issue with
clusters with more than three Mesos master nodes, it would arguably be
less likely to happen, as it requires the network to partition itself in such
a way that leaves a single Mesos master node dealing with equal parts of
isolated networks.

6.2.2 Prototype 2: Prioritizing local availability

As stated in Results: Design chapter 4, this type of setup sacrifices overall
availability for the purpose of prioritizing local access. With this setup
the majority of the Mesos masters are located in the private location, thus
making that particular site a single-point of failure. The cluster has a failure
rate equal to the private location where the majority of the Mesos masters
are located which, with the failures rates set in Table 6.1, would mean
15%.

On the other hand, this setup would guarantee that the cluster is running
as long as the private site is functioning. This makes this type of
setup ideal for cloud bursting scenarios where a baseline resources are
running services with the added option to supply the cluster with extra
resources and heightened availability, without depending on the the
external resources.

In the event of issues with the ISP for the Altocloud location, the cluster
will isolate itself and keep the cluster available for those with access to the
local network. The external parts of the cluster will not be able to form a
cluster, due to the required quorum size.

Whereas, if Altocloud becomes unavailable, the entire cluster will be
suspended, as the majority of the Mesos master nodes are unresponsive.

64

Additionally, since most of the processing is done at Altocloud by the 10
slave nodes located there, a considerable amount tasks becomes lost.

6.3 Segmentation of data

As written in the Approach chapter 3, there is an assumption that the
internal Mesos traffic follows a certain pattern regarding the flow of
information outlined in Figure 3.2.

The use of constraints adequately segments tasks as shown in the results.
For use cases where the purpose of segmentation is not related to privacy
concerns, it suffices as a solution. However, if privacy is the priority, then
several challenges arises.

In terms of use cases where privacy is the priority, there a weakness of
the solution that needs to addressed. With the framework Marathon,
the default constraint is no constraint, thus the default behaviour is to
spread the workload evenly. This may pose a problem for use cases where
tasks are sensitive in nature. This could for incautious developers or
system administrators result in private data leaking out and thus breaking
regulations or privacy interests.

As an alternative, Apache Mesos can be deployed at compliant sites.
his would mean private locations and certified cloud providers for the
purpose. This way, data segmentation becomes irrelevant for the cluster.
Amazon Web Services has an availability region named GovCloud which
satisfies several U.S. requirements for government agencies to be able to
use. Other cloud providers in other nations may have the same type of
product that meets requirements for other use cases or nations.

If a cluster with the possibility to leverage public cloud provider is still
desired, a separate cluster can be maintained as an alternative. One being
a hybrid for cloud bursting and public services and one for sensitive
workloads that needs to be separated for compliance or privacy needs.
However, this would mean additional maintenance to be done and may
not work for the use case or be too expensive.

In the event that the regulations or privacy requirements only concerns
data storage location, and not processing of the data, the use of a hybrid
cloud may be an viable option, with or without constraints.

6.4 Automated cloud bursting

The automated cloud bursting solution was written as prototype to
showcase the possibilities with automated cloud bursting coupled with
spot price instances. The main focus of the script was to adequately

65

design, prototype, and test a solution adequate for answering the problem
statement.

The script is built on the assumption of that cloud bursting is is not critical
for the operation of the services and merely an addition which is preferred
to have. One of the reasons for this is the delays of several minutes
incurred when requesting spot price instances, as the the requests has to
be processed and then a machine has to boot up and register itself to
the cluster. This may take from 5 to 10 minutes, depending on Amazon
Web Services, as spot requests seems to be processed in batches every few
minutes or so. For a more prompt solution, on-demand instances should
be considered, as they are booted up almost instantly.

Furthermore, to bootstrap the the slave nodes, a simple bash script is
supplied as user data at instance launch. The script will install and
configure the necessary services to make it register itself to the cluster. This
adds an approximate of three to four minutes of overhead when deploying
a Mesos slave node. This overhead would most likely not be improved with
the use of any configuration management tool, on the contrary, it would
most likely add additional overhead. In order to shorten this time, an image
can be prepared beforehand with the necessary services configured.

During the experiments, a default execution interval of 60 seconds was
used. The reason for such a lengthy execution interval is due to the slow
update rate regarding spot requests at Amazon Web Services EC2. It takes
around 20-30 seconds at most for a spot request to become registered and
in order to prevent duplicate requests, the execution time has been set to 60
seconds. In addition, the length of the execution time allows the script to
follow price fluctuations better, as the time granularity is higher.

6.4.1 Experiment1

The first attempt of experiment 1 ended up in a failure in terms of scaling
up the desired number of Mesos slave nodes within a reasonable amount
of time. Due to the script bidding at very minimum of the current price +
0.001, the instances were constantly terminated as the prices rose. Although
the experiment was a failure in terms of scaling up within a reasonable
amount of time, given an infinite max bid limit, the script would eventually
stabilized at a high enough bid to maintain a spot instance for more than
a few minutes. Interestingly though, the current market price during the
experiment increased with 0.010 approximately every three to five minutes
in steps for the entire duration of the experiment. Shortly after terminating
the hog-cpu-1 tasks, the price fell down to the price before the experiment
started as seen in Figure 5.10.

Note that the market price for m3.medium during the experiment was well
beyond the on-demand price of 0.083 USD per hour for that particular
availability zone. By looking at the the price history for that particular type
of spot instance, the more common price level is approximately 0.012 USD,

66

which makes the market price during the experiment about nine times as
high than normal.

It is possible to make spot instance requests persistent, meaning that a
request will persist even if a spot instance is terminated, effectively re-
requesting spot instances should they be terminated. This feature possibly
combined with a lot of competition for the resources may caused the rise.
Another possible explanation for this kind of behaviour could be that other
users of spot instances also have some kind of dynamic price bidding
system in place, dynamically bidding on the spot instances.

Interestingly, due to the characteristic of Amazon Web Services not
charging for any partial hour used, nothing was billed for the spot instances
during the experiment, even if some amount of processing was done for the
Apache Mesos cluster.

In order to successfully showcase the functionality of the script, a revised
experiment was conducted. As the instance type m3.medium had a very
volatile price fluctuations for the current market price, c4.large was
picked in instead. c4.large had a rock stable market price of 0.016 for
the entire day the experiment was conducted and was therefore picked.
In addition a lot more aggressive bidding price of 0.100 higher than the
current market price was used. In the end, the aggressive price bid was
not necessary, as the market price remained stable for the entire duration
of the experiment. In addition, in order to get a more stable behaviour in
terms of the desired amount of slave nodes, the burst point threshold was
adjusted to 0.75, resulting in the cloud bursting solution to scale up with
lower workloads on the baseline resources.

In contrast to the first attempt of experiment 1, the script managed to
successfully scale up the number of Mesos slave nodes to the desired
number after approximately 15 minutes. Spot requests are processed
by Amazon Web Services in batches, resulting in the Mesos slave nodes
registering in batches as well, as evident in Figure 5.11.

6.4.2 Experiment 2

Experiment 2 covers the the scenario of scaling down the number of Mesos
slave nodes serving from a spot instance. When the resource usage drops
below the burst point threshold, the script attempts to terminate excessive
instances. However, as seen in Figure 5.12, the script does not immediately
terminate the instances, but waits until the partial hour threshold has
passed before terminating. This ensures that cluster will utilize the
resources for the hour charged, as the instances that are terminated by user-
initialization will be billed by the hour rounded up.

For this experiment, the threshold was set to 20 minutes however, in a
production environment the threshold should be set to a value that is just
below 60 minutes in order to fully capitalize on the hour charged. As

67

Amazon Web Service EC2 instances are not truly terminated before the
instance is fully shut down, a few minutes should be incorporated into the
threshold.

68

Chapter 7

Discussion

This chapter contains discussion about the results with respect to the
problem statement, the process of the project, additional considerations,
and impact of the findings.

7.1 The problem statement

First and foremost: the main goal of the thesis was to design and implement
a hybrid cloud solution as described in the Approach chapter 3.

For convenience, the problem statement is listed below:

How can we build highly available, segmented computer clusters using private
computer hardware together with public cloud providers as a hybrid cloud
platform, leveraging spot price instances for an automated cloud bursting
solution?

Proposed solutions for the different aspects of problem statement have
been made, each attempting to address the challenges of availability, seg-
mentation and cloud bursting for a hybrid cloud environment. By ab-
stracting the resources located in heterogeneous cloud environments, using
Apache Mesos, practical solutions has been prototyped that collectively ad-
dresses the problem statement.

By combining data segmentation and automated cloud bursting with the
proposed prototypes on availability setups, two possible combinations are
possible. Prototype 1 for maximizing availability and prototype 2 for
prioritizing local availability. Both setups are viable and addresses the
problem statement adequately.

The sub-questions defined to answer the problem statement in the
Approach chapter 3 is each answered below.

69

7.1.1 Hybrid cloud

How can one build a computer cluster on top of private computer resources in
addition to multiple public cloud providers?

In this thesis, Apache Mesos was used as an abstraction layer between the
resources and the higher layers where the applications reside to tie together
heterogeneous cloud locations.. Since Apache Mesos does not support
NAT network configurations, VPN was installed. With VPN abstracting
the network layer for Apache Mesos a computer cluster was successfully
deployed in a hybrid cloud configuration using private computer resources
and public cloud resources.

As mentioned in Results: Design chapter 4, without VPN, the proposed
prototypes for setting up the hybrid cloud relies on a vast amount of
Internet routable IP-addresses. With the IPv4 address space being full,
it is difficult to acquire a large amount of IPv4 IP-addresses that would
be required for a larger hybrid cloud platform. These problems may be
solved in the future as a result of IPv6 support in OpenStack, Amazon
Web Services, and Apache Mesos. With IPv6 IP-addresses, every node
in the cluster can have their own unique Internet routable IP-address.
For securing the communication between the nodes, IPSEC or another
encryption method can be used. As mentioned in the Background
chapter 2, TLS support for Apache Mesos is upcoming and may be
adequate for securing the traffic.

However, depending on the use case, VPN may still be the preferred
option, as it isolates and simplifies the network. Though, it may affect the
performance and should be investigated if this is of great importance.

7.1.2 High availability

How can one, by utilizing both a private hardware and public cloud providers, gain
improved levels of availability?

This thesis outlines some possible ways to set up a hybrid cloud using
Apache Mesos to achieve higher availability than on a single cloud
provider or data center location. By deploying a hybrid cloud on multiple
and independent locations, the risks for the entire cluster to fail is
distributed and lowered as result of the characteristics of independent
probabilities. However, by relying on distributed locations, network
becomes a factor in the equation.

This is the reason for why two prototypes was designed and evaluated.
One prototype that maximizes availability in general with no concern for
where the data is accessed, and an another prototype that prioritizes local
access.

With prototype 1, Mesos master nodes are distributed between indepen-
dent sites for reducing the failure rates of the Mesos master nodes in spe-

70

cific. By modifying this prototype slightly by adding additional indepen-
dent sites and additional Mesos master nodes, the failure rates are in the-
ory decreased for each node added. However, for each independent site,
another dependency is added in the form of dependency of network con-
nectivity. Though, the failure rates for the network connectivity through
the Internet would mainly be regarded as an independent probability, sep-
arate of the failure rates of the Mesos nodes location. This could therefore
reduce the probability for failure for the hybrid cloud platform as a whole
if the number of sites are sufficient.

Prototype 2 on the other hand, prioritizes local availability. Here the focus
is on the local access that is independent of external influence. Should
Internet access be lost, this setup will allow the cluster to be run and
accessed from the network of the private location. This setup considers
the external cloud providers as an addition, and not as a critical part of the
cluster. This type of setup works well with cloud bursting use cases, as
the private data center functions as a preferred baseline, with the option to
utilize public cloud resources for additional processing power.

Additionally, the discovered issues regarding semi-isolated networks for
prototype 1 in particular, the availability improvements may not be as high
as initially expected. Due to the issue with semi-isolated networks, a three
master node cluster may not be sufficient, and additional master nodes
may be required in order to partly mitigate this issue. While semi-isolated
connectivity problems is not all common on the network in general, the
use of VPN tunnels makes it a more likely event to occur, as separate
VPN tunnels between the sites may in theory fail independently of each
other. Consequently, any final setup should account for a semi-isolated
network and the issues that arises, thus a three Mesos master node setup
may not be good enough for hybrid cloud usage. Five or seven Mesos
master nodes should be considered where a semi-isolated network is prone
to happen.

7.1.3 Data segmentation

How is it possible to segment data and data processing to specified locations or
groups?

Apache Mesos accommodates for segmenting data into parts of the hybrid
cloud platform using attributes for tagging the Mesos slave nodes and the
constraints feature of the Marathon framework. This has also been verified,
as no tasks were delegated to any Mesos slave nodes that did not satisfy
the constraint requirements. While the solution does segment the tasks as
defined, it may not be sufficient for use cases where strict compliance and
regulation is the motivation for segmenting data.

However, data segmentation may be interesting when considering task
locality, as it may be desired to place certain services in a particular data
center for some reason other than privacy reasons. For example, it may

71

be desired to group a number of tasks together for performance reasons.
Segmenting for this purpose is possible and should be adequate with the
use of Mesos framework Marathon constraints feature.

However, this may not be good enough for every use case that requires
segmentation of data, as there may be strict regulations and compliance
to satisfy. It could be a requirement of the data not crossing the border,
to guarantee that the data is not exported outside a nation. In order to
properly guarantee data segmentation, source code analysis coupled with
auditing tools to verify and attest that the data segmentation is functioning
as intended is required. Alternatively a self developed framework that
works by using the primitives provided by Apache Mesos. This is possible
due to the fact that it is built as a two-level scheduler, allowing the
individual frameworks to implement the algorithm for deciding whether
or not to accept or reject offered resources based on the attributes and
resources offered. A framework can therefore be designed to focus on
data segmentation with the required functionality and auditing tools to
guarantee and attest for compliance.

In the end, if security is of the highest order, then the hybrid cloud
introduces additional vectors of attacks and this is something that needs to
be considered. Attack vectors increase with the use of publicly accessible
services. VPN does isolate the traffic in transit, however the public cloud
providers have direct access to the virtual resources and by extension the
data contained within it. The terms of services for each provider may
contain clauses that gives them ownership of the data stored or the right to
disclose the information to third parties. These are aspects of public cloud
providers that needs to be considered before using them with sensitive type
of data.

7.1.4 Cloud bursting and spot price instances

How can one automate the use of spot price instances to accommodate for cloud
bursting?

The cloud bursting solution outlined in this thesis automatically deploy
additional resources in the public cloud when the resource usage exceed
a presepcified threshold. Additionally, the solution utilizes spot price
instances and calculates a bidding price that is based on the current market
price and a preset padding to ensure a winning bid.

The solution scales of a prespecified burst point threshold that is set in
the configuration file. This solution is therefore quite rudimentary and
does not account for edge cases as it will only read the usage percentage
and scale based on this. The reason for why such a basic scaling decision
algorithm was picked, was due to the lack of appropriate information to
scale the solution on. The Marathon framework for Mesos does provide
information about the tasks that is queued and await deployment however,
the API does not provide the reason for why tasks are queued. This means

72

that the API does not distinguish between tasks that are queued up because
of resource depletion or tasks that can not be deployed due to constraints
requirements.

Additionally, in a multi-framework environment, where Hadoop, Chronos,
Marathon, or more frameworks are running simultaneously, the script
would have to account for the resource usage between all the participating
frameworks. This complicates the scaling decision algorithm. This is
the reason for why the solution scales up in steps and not in one big
burst, as there are no information that can be used to accurately gauge the
needed resources, and therefore the needed number of spot instance slave
nodes. A possible solution for this is to make an algorithm that evaluates
the state of the Mesos cluster in combination of the information given
by the frameworks as a composition and make a decision. This requires
considerably complex logic to achieve with the information given by the
APIs.

The pricing algorithm implemented is also quite simple and will bid the
current price + x, where x is a prespecified padding set in the configuration.
There are several other bidding strategies to which one can build a pricing
algorithm as mentioned in Results: Design chapter 4. For the price bidding
strategy to be viable, it has to win a bid within a reasonable amount of
time, as the resources are needed in when the bids are made. Additionally,
for the bid to be cost efficient, the proposed algorithm also has to consider
on-demand prices.

While the solution does not account for every possible use case, it proves
the viability of a cloud bursting solution using spot instances on a hybrid
cloud platform using Apache Mesos.

7.2 Other limitations and considerations

7.2.1 Performance and abstraction

In this thesis, performance has not been evaluated for the hybrid cloud plat-
form. Except from the feasibility of the hybrid cloud setup, performance is
perhaps the most important factor to consider when attempting to create
such a platform. Due to the way the hybrid cloud platforms may be set
up, increased latencies are incurred. The effect of the increased latencies
for Apache Mesos is unknown. As mentioned in the Approach chapter 3,
Apache Mesos benefits from fast networking and latencies observed out on
the Internet may possibly have an adverse effect on the performance of the
cluster.

The prototypes implemented in this thesis uses multiple levels of abstrac-
tion that each incur some overhead. Hardware resources were abstracted
through the use of virtualization due to how Altocloud and Amazon Web
Services EC2. If performance is important, one should consider installing

73

Apache Mesos in on bare-metal hardware. The network was abstracted
and secured with VPN, which also entails some overhead. However, it
could argued that the overhead is required, as VPN also secures the traffic.
Finally, there is the abstraction done by Apache Mesos. Apache Mesos ab-
stracts the the machines, virtual or not, and presents them to applications
and frameworks as a pool of available resources.

Additionally, the locations of the cloud sites are important to consider
as well when performance is vital. Depending on the target audience
and performance requirements, the location of the cloud sites could
severely affect the performance of not only the cluster itself, but also
perceived quality of service from the perspective of the users of the hybrid
cloud.

Before any performance and latency sensitive workloads are considered for
such a setup, performance and overheads should be evaluated.

7.2.2 Depth of testing and experiments

One limitation of this thesis is the lack of long-term experiments conducted
on availability. Solutions were designed, evaluated, implemented, and
analyzed during the thesis, however no verification beyond theory was
done. As mentioned in the Approach chapter 3, it was assessed that to
get any real indication of actual availability rates for the platform, uptime
has to be monitored over a period of at least a year or more to be close
to accurate. This is due to the nature of the metric tied to availability,
as it is denoted with a percentage representing availability as function
of time. For instance, at the time of writing, the downtime for Amazon
Web Services EC2 for the availability region eu-central-1 (Frankfurt) and
eu-west-1 (Ireland) had a total of 73 seconds of downtime for the last year
(CloudHarmony, n.d.). Due to the high rates of availability it is difficult to
gauge it in a short period of time. For an experiment lasting a few months
it is possible that the availability rate found is 100%.

The opposite is also true. If a cloud provider is unlucky and experiences
downtime during an experiment, the resulting availability rate may be
terrible for the duration of the experiment, but could be impeccable for
the rest of the year, resulting in a high availability rate. To properly gauge
availability, a long-term experiment has to be conducted, preferably one to
two years in duration at least.

Regarding the cloud bursting solution, a few experiments were conducted
to verify the main functionality of the script. The main purpose of the
experiments were to showcase two use cases that the script is intended
to be used for, namely scaling up and down Mesos slave nodes depending
on the needs for resources. While the experiments were sufficient to verify
the feasibility of the proposed solution, the data were only collected for the
few experiments outlined in the the Results: Implementation chapter 5,
and lacks quantitative foundation to be used for something more than

74

indication of the expected behaviour of the script. It is not given that
the script will handle every use case as outlined in the results and further
experiments must be conducted to verify that the behaviour is stable for
other use cases.

7.2.3 DNS management

As no proper configuration and infrastructure was set up for resolving
hostnames, there are several limitations with the testbed. For public facing
applications, a proper DNS environment has to be in place for Apache
Mesos and Marathon to utilize service discovery for serving publicly
accessible services. With the Mesos-DNS project, public services can be
made available to the Internet (Mesosphere, Inc., n.d.-a) by dynamically
binding hostnames to the tasks. However, this requires the Mesos
slave nodes that hosts those tasks to have Internet routable IP-addresses.
Otherwise, a load balancer like HAProxy or Nginx has to be set up.

7.2.4 Spot price instances

Currently, there are no other providers of the spot price model for instances.
The solution developed for automated cloud bursting may not work for
other spot price model providers should they emerge, as the principles
and the mechanisms may differ considerably. The cloud bursting script is
therefore tailored for Amazon Web Services due to lack of alternative spot
price markets.

An interesting observation during the cloud bursting experiments, were
the volatility the prices for certain instance types. With fewer than 10 spot
requests, the script were able to push the price upwards from 0.124 at an
interval of 0.010 up until the experiment was terminated with price hitting
0.214 before dropping down to 0.124 just a few minutes later. Due to such a
volatility, alternative instance types, availability regions, instance billing
types, or an another cloud provider should considered when instance
stability is important.

7.2.5 OpenNebula and virtualization

While OpenNebula may have been an adequate solution, it is overly
complex for workloads where a simple, but powerful data center is desired,
as OpenNebula is first and foremost a cloud manager. This entails higher
complexity in the code with multiple services and abstraction to facilitate
a cloud environment. The rich feature set increases the probability of
experiencing issues that affect availability, as there are many parts that
inter-operate. Apache Mesos is in comparison easier to install and manage
and incurs less overhead, as resource isolation with cgroups or Docker
replaces virtualization. OpenNebula revolves around virtual machines,

75

providing flexibility and features with this prioritizing. On the other hand
Apache Mesos puts applications, tasks, and services in the center and
provides flexibility at application level, which for a larger scale data center
is arguably more important, as it is ultimately the applications and services
that provides utility.

Additionally, with virtualization, there are arguably two main advantages
among many that drives the motivation for using virtual machines in a
data center scenario. Isolation or commonly referred to as sandboxing, for
increased security and to enable multi-tenancy use cases. And the second
one being resource flexibility and utilization for increasing resource utilization
per virtual machine, as they can be migrated for optimal resource usage on
the physical hardware. Additionally, the flexibility of resource partitioning,
enabling system administrators to shrink, expand, and relocate virtual
machines depending on the requirements.

Docker, an emerging and increasingly popular containerization technol-
ogy, can for certain workloads be a better alternative than full fledged
virtual machine sandboxing as it has a lighter footprint. Combined with
Apache Mesos which facilitates application level flexible resource parti-
tioning, the need for virtualization technology diminishes for data center
scenarios.

7.2.6 Apache Mesos

Apache Mesos is a relatively new piece of technology with the current
version being 0.22.1. Although Apache Mesos is used in production
environments in large companies like Twitter and Airbnb, there is a
possibility of significant changes to the API and how Apache Mesos
functions.

As mentioned in the Background chapter 3, Apache Mesos currently only
support Linux environments. For applications requiring other operating
systems, Apache Mesos is not the choice for now. If there is large
enough demand for it, support may arguably be implemented in a future
version.

7.2.7 Suitability

It is important to consider the the requirements of the use case for a setup
of this size. For hosting a small personal website, installing and managing
Apache Mesos may be overkill and result in far more complexity that can
not easily be justified. However, there are a situations where it may be
appropriate to use Apache Mesos, even for low requirement use cases. It
may be for educational purposes or to dimension for future scalability, as
Apache Mesos is easily scalable after setup.

76

For existing data centers, it may be difficult to migrate to an Apache
Mesos cluster due to legacy software with old dependencies or non-
Linux applications. It is important to consider the cost of migration in
both time and resources compared to the potential benefits. Migrating
existing solutions may be a large undertaking depending on the size and
complexity.

7.3 Future work and improvement suggestions

This section contains suggestions for improvements and further work that
would interesting to investigate.

7.3.1 Evaluating the performance and long-time availability of a
hybrid cloud setup

In this thesis, a hybrid cloud solution with automated cloud bursting has
been designed and implemented. With a working setup, what remains
to be done is to gauge the long-time availability and performance of the
proposed prototypes. The results of those investigations in combination
with this thesis would make it possible to determine the level of utility the
proposed solutions has.

Another aspect that would be interesting to investigate is QoS. This has
to be gauged by monitoring the services running on the hybrid cloud
platform and comparing it to the expected quality of service. It could be
the expected response time, latency, performance, or any other metric that
affect quality of the service.

7.3.2 Evaluate and prototype additional public cloud providers
for a hybrid cloud platform

While the different availability zones for Amazon Web Services functioned
as different cloud locations in the thesis, it does not consider any additional
public cloud providers other than Amazon Web Services. Other cloud
providers may use different architectures, locations, hypervisors, and
hardware among other things that in theory should increase the availability
if used in the hybrid cloud platform, as the degree of independence
increases. Though, for the proposed solution it requires the other public
cloud providers to facilitate the setup of a site-to-site VPN solution.

An evaluation of the possibilities of using additional public cloud
providers to build a hybrid cloud platform would be interesting to investi-
gate further.

77

7.3.3 Improve the cloud bursting solution

There are many interesting improvements that may be done to the
automated cloud bursting script. Regarding the price bidding algorithm
for spot instances, a new algorithm should be developed that is far more
resistant to price spikes and that also considers on-demand prices. For
instance, the script may chose to boot up a on-demand instance instead
of a spot price instance when the spot prices exceeds the on-demand
prices.

Another improvement to the script is to develop a new or expand the
existing scale decision logic to rely on more tangible data when a scaling
decision is made. By finding more suitable data to aid in the decision to
scale, the script could more intelligently request the required number of
nodes directly instead of scaling one node per script iteration.

Sometimes a lower tier instance-type is more expensive than a higher
tier instance type solely because of demand. This was observed during
this thesis. An algorithm could therefore be developed, which picks the
most price efficient instance type based on the spot market prices for
each instance type normalized with respect to the amount of resources
on the virtual machine. With such an algorithm, the most price efficient
instance type for the required amount of resources can be requested
without being limited to one instance type. A thesis written by Borgenholt
(2013) focuses on such a concept and uses a theater analogy to evaluate
and pick a suitable virtual machine given certain performance and pricing
requirements.

Although there are no other spot price market competitors among the
other public cloud providers other than Amazon Web Services, the pricing
for the on-demand instances differ. While these prices are fairly static,
the cloud bursting solution could evaluate the pricing for other cloud
providers as well and pick the most suitable option depending on the
current availability and resource needs.

7.4 Potential impact of the thesis

Apache Mesos introduces a new way of thinking data center resources
and may cause a change in paradigm regarding how data centers are
built and managed. It is a proven concept with Twitter running Apache
Mesos in their production environment for a few years now. Apache
Mesos puts applications and services in the center and abstracts the layers
below to provide a single unified interface to develop against. In this
thesis, a hybrid cloud solution has been prototyped and implemented
and challenges, potential pitfalls, and advantages with such a deployment
model has been evaluated and discussed. While there are other ways to
set up a hybrid cloud that facilitates cloud bursting, few if any of them

78

can compare to the ease of installation and management, and flexibility of
Apache Mesos.

If the performance and long-time availability of Apache Mesos is adequate,
then the proposed prototypes and solutions presented in this thesis ought
to be viable. With the hybrid cloud solutions outlined, higher levels of
availability beyond Apache Mesos alone is possible. As for segmentation,
it is be possible to segment certain applications and tasks that are not
designed for high distribution to be located in the same rack or data center
for increased performance, thus partly negating the latency overhead
caused by the location of the individual cloud sites in the hybrid cloud
platform.

The automated cloud bursting solution proposed sets the foundation for
a cloud bursting solution using Apache Mesos and spot price instances to
make an easily scalable solution. With some improvements, the solution
represents a proof-of-concept in regards to cloud bursting using Apache
Mesos.

In combination, prototype 2 with cloud bursting along with the segmenta-
tion seems to be to the a viable and practical solution that balances different
aspects of a hybrid cloud setup and is most likely what one would expect
of a hybrid cloud setup of an organization. This would arguably be due to
larger interest for organizations with existing data centers that would like
to simply extend workloads to the public cloud instead of offloading huge
parts of the workload to public cloud providers.

At the time of writing, no documented attempts where discovered that
attempts at deploying Apache Mesos using multiple sites of heterogeneous
nature. Consequently, this thesis explores new concepts and solutions in
regards to Apache Mesos and hybrid clouding. While the final solution
ended up abstracting the network using VPN, a few discoveries were
made in the attempts to deploy Apache Mesos without relying on network
abstraction.

79

80

Chapter 8

Conclusion

This thesis presents multiple prototypes of setting up a hybrid cloud
platform using Apache Mesos to weave together heterogeneous cloud
types and geographical locations into a unified platform. The prototypes
proposed each focuses on a specific perspective, maximizing availability
and local access prioritization.

Data segmentation has also been demonstrated in this thesis with the
hybrid cloud platform using Apache Mesos and the framework Marathon
to set constraints to segment data flow. However, for strict requirements
in terms of compliance or high level of confidentiality requirements, the
outlined solution may not be adequate. Alternative solutions has been
proposed.

An automated cloud bursting solution has also been prototyped and im-
plemented on the hybrid cloud platform. It automatically requests spot in-
stances in Amazon Web Services EC2 depending on resource usage of the
hybrid cloud platform. The solution calculates a bidding price deviated
from the current market price and adapts to price fluctuations. When re-
source usage decreases, the solution considers billing mechanics to ensure
that resources that has been paid for are be fully utilized for maximum eco-
nomical efficiency before terminating excessive resources.

While the thesis presents functional and viable solutions with respect to
availability, segmentation and automated cloud bursting for a hybrid cloud
platform, further work remains to improve and confirm the proposed solu-
tion, in particular a performance analysis of the proposed solutions.

81

82

Bibliography

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2013).
Deconstructing amazon ec2 spot instance pricing. ACM Transactions
on Economics and Computation, 1(3), 16.

alexr_. (2015, April). Displaying #mesos/2015-04-13.1og. Retrieved April
19, 2015, from http://wilderness.apache.org/channels / 7f=mesos /2015-
04-13

Amazon Web Services, Inc. (n.d.-a). Amazon ec2 spot instances. Retrieved
April 19, 2015, from http://aws.amazon.com /ec2/purchasing-options/
spot-instances

Amazon Web Services, Inc. (n.d.-b). Aws | high performance computing.
Retrieved March 19, 2015, from http://aws.amazon.com/hpc

Apache Software Foundation. (n.d.-a). C client bug in zookeeper_init (if
bad hostname is given). Retrieved May 4, 2015, from https:/ /issues.
apache.org/jira/browse/ZOOKEEPER-1029

Apache Software Foundation. (n.d.-b). Mesos crashes if any configured
zookeeper does not resolve. Retrieved May 4, 2015, from https: //
issues.apache.org/jira/browse/MESOS-2186

Apprenda Inc. (n.d.). Hybrid cloud. Retrieved March 16, 2015, from http:
//apprenda.com/library/glossary /hybrid-clouds-a-definition

Bicer, T., Chiu, D., & Agrawal, G. (2011, September). A framework for
data-intensive computing with cloud bursting. In Cluster computing
(cluster), 2011 ieee international conference on (pp. 169-177). doi:10 .
1109/CLUSTER.2011.21

Bittman, T. (2012, September). Mind the gap: here comes hybrid cloud.
Gartner Blog Network. Retrieved April 19, 2015, from http://blogs.
gartner.com/thomas_ bittman/2012/09/24 /mind-the-gap- here-comes-
hybrid-cloud

Borgenholt, G. (2013). Audition: a devops-oriented quality control and
testing framework for cloud environments.

Breiter, G. & Naik, V. (2013, March). A framework for controlling and
managing hybrid cloud service integration. In Cloud engineering (ic2e),
2013 ieee international conference on (pp. 217-224). doi:10.1109/1C2E.
2013.48

Butler, B. (2015, January). Re-examining cisco’s intercloud strategy. Net-
work World, Inc. Retrieved March 17, 2015, from http: / / www .
networkworld . com / article / 2864857 / cloud - computing / re - examining -
cisco-s-intercloud-strategy.html

83

http://wilderness.apache.org/channels/?f=mesos/2015-04-13
http://wilderness.apache.org/channels/?f=mesos/2015-04-13
http://aws.amazon.com/ec2/purchasing-options/spot-instances
http://aws.amazon.com/ec2/purchasing-options/spot-instances
http://aws.amazon.com/hpc
https://issues.apache.org/jira/browse/ZOOKEEPER-1029
https://issues.apache.org/jira/browse/ZOOKEEPER-1029
https://issues.apache.org/jira/browse/MESOS-2186
https://issues.apache.org/jira/browse/MESOS-2186
http://apprenda.com/library/glossary/hybrid-clouds-a-definition
http://apprenda.com/library/glossary/hybrid-clouds-a-definition
http://dx.doi.org/10.1109/CLUSTER.2011.21
http://dx.doi.org/10.1109/CLUSTER.2011.21
http://blogs.gartner.com/thomas_bittman/2012/09/24/mind-the-gap-here-comes-hybrid-cloud
http://blogs.gartner.com/thomas_bittman/2012/09/24/mind-the-gap-here-comes-hybrid-cloud
http://blogs.gartner.com/thomas_bittman/2012/09/24/mind-the-gap-here-comes-hybrid-cloud
http://dx.doi.org/10.1109/IC2E.2013.48
http://dx.doi.org/10.1109/IC2E.2013.48
http://www.networkworld.com/article/2864857/cloud-computing/re-examining-cisco-s-intercloud-strategy.html
http://www.networkworld.com/article/2864857/cloud-computing/re-examining-cisco-s-intercloud-strategy.html
http://www.networkworld.com/article/2864857/cloud-computing/re-examining-cisco-s-intercloud-strategy.html

CloudHarmony. (n.d.). Cloudsquare service status. Retrieved May 14, 2015,
from https://cloudharmony.com/status- lyear-of-compute-group-provider

Ghodsi, A., Hindman, B., Konwinski, A., & Zaharia, M. (2010). Mesospro-
posal. Retrieved March 18, 2015, from http: / / wiki . apache . org /
incubator/MesosProposal

Google Inc. (2015, February). Google trends - web search interest: multi
cloud, hybrid cloud, inter cloud - worldwide, jan 2008 - jan 2015.
Retrieved February 3, 2015, from http:/ /www.google.com /trends /
explore7hl=en-US#q=multi%20cloud, %20hybrid % 20cloud, %20inter %
20cloud&date=1/2008%2085m&cmpt=q

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz,
R. H., ... Stoica, I. (2011). Mesos: a platform for fine-grained resource
sharing in the data center. In Nsdi (Vol. 11, pp. 22-22).

IBM. (n.d.). Private and hybrid cloud. Retrieved March 17, 2015, from http:
/ /www.ibm.com/cloud-computing/uk/en/private-cloud.html

Interoute Communications Limited. (n.d.). What is a hybrid cloud? Re-
trieved March 16, 2015, from http://www.interoute.com/cloud-article/
what-hybrid-cloud

Iosup, A., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., & Epema,
D. (2011, June). Performance analysis of cloud computing services
for many-tasks scientific computing. Parallel and Distributed Systems,
IEEE Transactions on, 22(6), 931-945. d0i:10.1109/TPDS.2011.66

Jayaram, K. R., Safford, D., Sharma, U., Naik, V., Pendarakis, D., &
Tao, S. (2014). Trustworthy geographically fenced hybrid clouds. In
Proceedings of the 15th international middleware conference (pp. 37-48).
Middleware '14. Bordeaux, France: ACM. doi:10 . 1145 / 2663165 .
2666091

Leopold, G. (2015, February). Apache mesos emerges as datacenter os.
enterprisetech.com, EnterpriseTech. Retrieved April 2, 2015, from
http://www.enterprisetech.com/2015/02 /23 /apache- mesos-emerges-as-
datacenter-os

Mell, P. & Grance, T. (2011, September). The nist definition of cloud comput-
ing. National Institute of Standards and Technology. Retrieved April
19, 2015, from http:/ /csrc. nist.gov / publications / nistpubs / 800- 145 /
SP800-145.pdf

Mesos. (n.d.). Myriad. Retrieved May 16, 2015, from https://github.com/
mesos/myriad

Mesosphere, Inc. (n.d.-a). Mesos-dns. Retrieved May 9, 2015, from http:
/ /mesosphere.github.io/mesos-dns

Mesosphere, Inc. (n.d.-b). The mesosphere team. Retrieved March 18, 2015,
from http://mesosphere.com/team

Metz, C. (2015). Return of the borg: how twitter rebuilt google’s secret
weapon. WIRED. Retrieved March 16, 2015, from http://www.wired.
com/2013/03/google-borg-twitter-mesos

MODACIlouds. (n.d.). Modaclouds. Retrieved March 16, 2015, from http:
//www.modaclouds.eu

Moreno-Vozmediano, R., Montero, R., & Llorente, I. (2011, June). Multi-
cloud deployment of computing clusters for loosely coupled mtc ap-

84

https://cloudharmony.com/status-1year-of-compute-group-provider
http://wiki.apache.org/incubator/MesosProposal
http://wiki.apache.org/incubator/MesosProposal
http://www.google.com/trends/explore?hl=en-US#q=multi%20cloud,%20hybrid%20cloud,%20inter%20cloud&date=1/2008%2085m&cmpt=q
http://www.google.com/trends/explore?hl=en-US#q=multi%20cloud,%20hybrid%20cloud,%20inter%20cloud&date=1/2008%2085m&cmpt=q
http://www.google.com/trends/explore?hl=en-US#q=multi%20cloud,%20hybrid%20cloud,%20inter%20cloud&date=1/2008%2085m&cmpt=q
http://www.ibm.com/cloud-computing/uk/en/private-cloud.html
http://www.ibm.com/cloud-computing/uk/en/private-cloud.html
http://www.interoute.com/cloud-article/what-hybrid-cloud
http://www.interoute.com/cloud-article/what-hybrid-cloud
http://dx.doi.org/10.1109/TPDS.2011.66
http://dx.doi.org/10.1145/2663165.2666091
http://dx.doi.org/10.1145/2663165.2666091
http://www.enterprisetech.com/2015/02/23/apache-mesos-emerges-as-datacenter-os
http://www.enterprisetech.com/2015/02/23/apache-mesos-emerges-as-datacenter-os
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://github.com/mesos/myriad
https://github.com/mesos/myriad
http://mesosphere.github.io/mesos-dns
http://mesosphere.github.io/mesos-dns
http://mesosphere.com/team
http://www.wired.com/2013/03/google-borg-twitter-mesos
http://www.wired.com/2013/03/google-borg-twitter-mesos
http://www.modaclouds.eu
http://www.modaclouds.eu

plications. Parallel and Distributed Systems, IEEE Transactions on, 22(6),
924-930. doi:10.1109/TPDS.2010.186
Nair, S., Porwal, S., Dimitrakos, T., Ferrer, A., Tordsson, J., Sharif, T.,
. Khan, A. (2010, December). Towards secure cloud bursting,
brokerage and aggregation. In Web services (ecows), 2010 ieee Sth
european conference on (pp. 189-196). doi:10.1109/ECOWS.2010.33

OpenNebula Projec. (n.d.). Opennebula. Retrieved May 17, 2015, from http:
//opennebula.org

PaaSage. (n.d.). Paasage: model-based cloud platform upperware. Re-
trieved March 17, 2015, from http://www.paasage.eu

Rackspace, Inc. (n.d.). Hybrid cloud computing, hybrid hosting by
rackspace. Retrieved March 17, 2015, from http:/ / www . rackspace .
com/cloud/hybrid

Sanders, J. (2014, July). Hybrid cloud: what it is, why it matters. ZDNet.
Retrieved March 16, 2015, from http://www.zdnet.com /article /hybrid-
cloud-what-it-is-why-it-matters

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., & Wilkes, J. (2013).
Omega: flexible, scalable schedulers for large compute clusters. In
Sigops european conference on computer systems (eurosys) (pp. 351-364).
Prague, Czech Republic. Retrieved from http://eurosys2013.tudos.org/
wp-content/uploads/2013/paper/Schwarzkopf.pdf

Shado, S. (2015, January). Azure trails aws & google in 2014 uptime
numbers. Retrieved February 3, 2015, from http://www.cloudwedge.
com/azure-trails-aws-and-google-in-2014-uptime-numbers-2001

Silasi, S. (2014, November). Amazon cloudfront — about today’s downtime.
Retrieved February 3, 2015, from http: / / mo . nitor . me / amazon -
cloudfront-about-todays-downtime

The Apache Software Foundation. (2015a, March). Add ssl support to
mesos. Retrieved March 1, 2015, from https:/ /issues.apache.org/jira/
browse/MESOS-910

The Apache Software Foundation. (2015b). Apache mesos. Retrieved
March 16, 2015, from http://mesos.apache.org

The Apache Software Foundation. (2015¢c, February). Powered by mesos.
Retrieved March 1, 2015, from http : / / mesos . apache . org /
documentation/latest/powered-by-mesos/

Twitter, Inc. (2013, July). Mesos graduates from apache incubation. Re-
trieved March 1, 2015, from https:/ /blog. twitter.com /2013 / mesos-
graduates-from-apache-incubation

UC Berkeley AMPLab. (2012, September). Managing twitter clusters with
mesos - benjamin hindman. [Video file]. Retrieved March 6, 2015,
from https://www.youtube.com/watch?v=370MbAjnJn0

Verizon Enterprise Solutions. (2014). State of the Market, Enterprise Cloud
2014. Retrieved February 3, 2015, from http: / / cloud . verizon.com /
enterprise-cloud-report

VMWare, Inc. (n.d.-a). Cloud computing. Retrieved March 17, 2015, from
http://www.vmware.com/cloud-computing/hybrid-cloud.html

VMWare, Inc. (n.d.-b). Vrealize suite. Retrieved March 17, 2015, from http:
//www.vmware.com/products/vrealize-suite/features.html

85

http://dx.doi.org/10.1109/TPDS.2010.186
http://dx.doi.org/10.1109/ECOWS.2010.33
http://opennebula.org
http://opennebula.org
http://www.paasage.eu
http://www.rackspace.com/cloud/hybrid
http://www.rackspace.com/cloud/hybrid
http://www.zdnet.com/article/hybrid-cloud-what-it-is-why-it-matters
http://www.zdnet.com/article/hybrid-cloud-what-it-is-why-it-matters
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://www.cloudwedge.com/azure-trails-aws-and-google-in-2014-uptime-numbers-2001
http://www.cloudwedge.com/azure-trails-aws-and-google-in-2014-uptime-numbers-2001
http://mo.nitor.me/amazon-cloudfront-about-todays-downtime
http://mo.nitor.me/amazon-cloudfront-about-todays-downtime
https://issues.apache.org/jira/browse/MESOS-910
https://issues.apache.org/jira/browse/MESOS-910
http://mesos.apache.org
http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://mesos.apache.org/documentation/latest/powered-by-mesos/
https://blog.twitter.com/2013/mesos-graduates-from-apache-incubation
https://blog.twitter.com/2013/mesos-graduates-from-apache-incubation
https://www.youtube.com/watch?v=37OMbAjnJn0
http://cloud.verizon.com/enterprise-cloud-report
http://cloud.verizon.com/enterprise-cloud-report
http://www.vmware.com/cloud-computing/hybrid-cloud.html
http://www.vmware.com/products/vrealize-suite/features.html
http://www.vmware.com/products/vrealize-suite/features.html

Voorsluys, W. & Buyya, R. (2012, March). Reliable provisioning of spot
instances for compute-intensive applications. In Advanced information
networking and applications (aina), 2012 ieee 26th international conference
on (pp. 542-549). doi:10.1109/AINA.2012.106

Wilkes, J. (2014, July 14). Cluster management at google. Faculty Summit
at Google. Retrieved from http://static.googleusercontent.com/media/
research.google.com/no/ /university/relations/facultysummit2011/2011
faculty summit _omega wilkes.pdf

Zachariassen, E. (2015, February). Kobler regnekraft mellom flere nettskyer.
digi.no, Teknisk Ukeblad Media AS. Retrieved March 17, 2015, from
http://www.digi.no/932831/kobler-regnekraft-mellom-flere-nettskyer

Zaharia, M., Hindman, B., Konwinski, A., Ghodsi, A., Joesph, A. D., Katz,
R., ... Stoica, I. (2011). The datacenter needs an operating system. In
Proceedings of the 3rd usenix conference on hot topics in cloud computing
(pp. 17-17). USENIX Association.

86

http://dx.doi.org/10.1109/AINA.2012.106
http://static.googleusercontent.com/media/research.google.com/no//university/relations/facultysummit2011/2011_faculty_summit_omega_wilkes.pdf
http://static.googleusercontent.com/media/research.google.com/no//university/relations/facultysummit2011/2011_faculty_summit_omega_wilkes.pdf
http://static.googleusercontent.com/media/research.google.com/no//university/relations/facultysummit2011/2011_faculty_summit_omega_wilkes.pdf
http://www.digi.no/932831/kobler-regnekraft-mellom-flere-nettskyer

Appendices

87

Appendix A

Install notes for Apache Mesos
master nodes

Install notes derived from https://docs.mesosphere.com/getting-started/
datacenter/install/

To prevent a bug/glitch/oddity of having the ZooKeeper electing new
masters every minute, add the local hostname into the /etc/hostsfile.
Use the public/elastic ip. Like this:

127.0.0.1 localhost
128.39.121.22 masterl

Proceed with the install:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF
DISTRO=$(1lsb_release -is | tr ’[:upper:]’ ’[:lower:]’)
CODENAME=$ (1sb_release -cs)

echo "deb http://repos.mesosphere.io/${DISTRO} ${CODENAME} main" | \
sudo tee /etc/apt/sources.list.d/mesosphere.list

sudo apt-get -y update

sudo apt-get -y install mesos marathon

Change /etc/zookeeper/conf/myid into an unique id (Match the host-
name).

Add the following values in /etc/zookeeper/conf/zoo.cfg:

server.1=10.0.19.5:2888:3888
server.2=192.168.0.5:2888:3888
server.3=172.16.0.5:2888:3888

89

https://docs.mesosphere.com/getting-started/datacenter/install/
https://docs.mesosphere.com/getting-started/datacenter/install/

or

server.1=10.0.19.5:2888:3888
server.2=192.168.0.5:2888:3888
server.3=172.16.0.5:2888:3888
server.4=10.0.19.16:2888:3888
server.5=10.0.19.17:2888:3888

Restart ZooKeeper: sudo service zookeeper restart.

Change /etc/mesos/zk into:

zk://10.0.19.5:2181,192.168.0.5:2181,172.16.0.5:2181/mesos

or

zk://10.0.19.5:2181,192.168.0.5:2181,172.16.0.5:2181,10.0.19.16:2181,
< 10.0.19.17:2181/mesos

Change /etc/mesos-master/quorum to:

or (for five masters)

Set /etc/mesos-master/hostname to a resolvable address.

Create a folder tree for Marathon with the command
mkdir -p /etc/marathon/conf and put the same thing as above into
/etc/marathon/conf/hostname.

sudo service mesos-slave stop

sudo sh -c "echo manual > /etc/init/mesos-slave.override"

sudo service mesos-master restart

sudo service marathon restart

Extra settings to set:

/etc/mesos-master/cluster: Name of the cluster

NoxCluster

90

/etc/marathon/conf/http_port: For storing information in ZooKeeper
for the Marathon framework

zk://10.0.19.5:2181,192.168.0.5:2181,172.16.0.5:2181/mesos

or

zk://10.0.19.5:2181,192.168.0.5:2181,172.16.0.5:2181,10.0.19.16:2181,
< 10.0.19.17:2181/marathon

/etc/marathon/conf/master: For choosing the Mesos-master to use for the
Marathon framework

zk://10.0.19.5:2181,192.168.0.5:2181,172.16.0.5:2181/mesos

or

zk://10.0.19.5:2181,192.168.0.5:2181,172.16.0.5:2181,10.0.19.16:2181,
< 10.0.19.17:2181/mesos

/etc/marathon/conf/http_port: For choosing the service port for the
Marathon GUI

6060

91

92

[

10

11

12

13

14

15

16

17

18

19

20

2

=

22

23

24

25

26

27

28

Appendix B

Script for bootstrapping
Apache Mesos slave nodes

#1/bin/bash

Set some wariables:
INIT_ZOOKEEPER_MESOS_URL=zk://10.0.19.5:2181,192.168.0.5:2181,

— 172.16.0.5:2181,10.0.19.16:2181,10.0.19.17:2181/mesos
INIT_PRIVATE_IP=‘curl -s http://169.254.169.254/latest/meta-data/local-ipv4¢
INIT_HOSTNAME=‘curl -s http://169.254.169.254/latest/meta-data/hostname |

- cut -d. -f1 ¢

Add an entry in /etc/hosts to deal with a Mesos/ZooKeeper bug:

https://issues.apache.org/jira/browse/MESOS-2186

grep -q "$INIT_PRIVATE_IP $INIT_HOSTNAME" /etc/hosts

if [$7 '= 0]; then
echo -e "\n#Private IP\n$INIT_PRIVATE_IP $INIT_HOSTNAME" >>
< /etc/hosts

fi

Unzip
apt-get install unzip -y

HARHARRHRARHAREHRRBRARRERARHAA

Apache Mesos

HERRBRRARBRRRRARRRRARRRRARRRS

Add the Mesosphere repository and install Mesos

apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF

DISTRO=$(1lsb_release -is | tr ’[:upper:]’ ’[:lower:]’)

CODENAME=$ (1sb_release -cs)

echo "deb http://repos.mesosphere.io/${DISTRO} ${CODENAME} main" | \
tee /etc/apt/sources.list.d/mesosphere.list

apt-get -y update

apt-get -y install mesos

93

29

31

32

33

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

Stop the ZooKeeper and Mesos-master service if it is running

sudo service zookeeper stop

sudo sh -c "echo manual > /etc/init/zookeeper.override"

sudo service mesos-master stop

sudo sh -c "echo manual > /etc/init/mesos-master.override"

Set the ZooKeeper url for Mesos to use

echo $INIT_ZOOKEEPER_MESOS_URL > /etc/mesos/zk

Configure some settings for Mesos and Marathon to use
echo $INIT_PRIVATE_IP > /etc/mesos-slave/hostname

mkdir -p /etc/marathon/conf

echo $INIT_PRIVATE_IP > /etc/marathon/conf/hostname

Start/restart the Mesos-slave service

service mesos-slave restart

HABRHARBERRRIARRHRARRRAREHRAREAA
Python pip
HARHHAARHAARHARRHARRAARRHARAA
Install pip
apt-get -y install python-pip

Install virtualenv

pip install virtualenv

HEBREHRBRRERBRRERBRRER R RERBHH
Monit
HEBRHARHRHARRARARRRRAERRHAHA
Install Monit

apt-get -y install monit

Configure the check

cat > /etc/monit/conf.d/mesos-slave <<- EOM

check process mesos-slave

matching "/usr/sbin/mesos-slave"

start program = "/usr/sbin/service mesos-slave start"

< seconds

stop program = "/usr/sbin/service mesos-slave stop"

EOM

Reload Monzt

monit reload

94

with timeout 60

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Appendix C

Cloud bursting script

Example

configuration and dependencies can be found at https://git.cs.

hioa.no/s171636/burst.

#!/usr/bin/env python

import basics

import boto3

import yaml

import syslog

import getopt

import signal

import sys

import time

import datetime

import dateutil

import json

import urllib2

from math import ceil,floor

def print_

print
print
print
print
print

print

usage() :

"Automated cloud bursting script\n"

"usage: " + __file__ + " [arguments]\n"
"Arguments:"

" --help\t\t\t Prints this help message"

" -v [--verbose]\t\t Verbose output"

" -c [--config]\t\t Specify another config file"

def get_params():

try:

opts, args = getopt.getopt(sys.argv([1:], "vc:",

< ["verbose","help","config="])

except getopt.GetoptError as e:

basics.handle_error(e)

95

https://git.cs.hioa.no/s171636/burst
https://git.cs.hioa.no/s171636/burst

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

def

def

def

def

return opts, args

set_options(opts):
global verbose
global config_path
verbose = False

config_path = False

for o,p in opts:
if o in ["-v", "--verbose"]:
verbose = True
elif o in ["--help"]:
print_usage()
exit()
elif o in ["-c", "--config"]:

config_path = p

print_verbose (message) :
global verbose
if verbose:

print message

sleep(start_timestamp, duration):

loop_time = time.time() - start_timestamp

sleep_time = duration - loop_time

print_verbose("The script used " + str(loop_time) + " seconds this

— loop")

if sleep_time <= O:

print_verbose("Time used >= the set interval. Skipping sleep.")

sys.stdout.flush()

else:

print_verbose("Sleeping additional " + str(sleep_time) + " seconds")

sys.stdout.flush()

time.sleep(sleep_time)

import_config():

global config_path

if config _path == False:
config_path = ’config.yml’

if not basics.check_file_exists(config_path):
print_verbose(’Attempted to find config file: %s’ 7 config_path)

basics.handle_error(’No configuration file found’)

try:

with open(config_path, ’r’) as configfile:

config = yaml.load(configfile)

except StandardError as e:

print_verbose(e)

78 basics.handle_error (’Error when attempting to read the configuration
— file’)

79

80 return config

81

82 def purge_old_spot_requests(ec2client,cur_spot_requests,timeout,max_bid):

83 now_time = datetime.datetime.utcnow()

84 now_time = now_time.replace(tzinfo=dateutil.tz.tzutc())
85

86 for request in cur_spot_requests:

87 if request[u’State’] == ’open’:

88 #print now_time - request[u’Createlime’]

89 if (int(now_time.strftime(’%s’)) -

— int(request[u’CreateTime’] .strftime(’%s’)) > timeout and

90 not request[u’SpotPrice’] == max_bid):
91 try:
92 print_verbose(’Lingering spot request, canceling %s’ %

— request[u’SpotInstanceRequestId’])

93 response = ec2client.cancel_spot_instance_requests(
— SpotInstanceRequestIds =
< [request[u’SpotInstanceRequestId’]])

94 except Exception as e:
95 print_verbose(e)
96 basics.handle_error(’Some error ocurred. Could not

< cancel old spot instance request.’)
97
98

99 def get_current_spot_slaves(ec2resource):

100 spot_slaves = []

101 filter = [{

102 ’Name’: ’instance-lifecycle’,

103 ’Values’: [’spot’],

104 },

105 {

106 ’Name’: ’instance-state-name’,

107 ’Values’: [’pending’,’running’,’rebooting’]

108 },

109 1

110

111 for instance in ec2resource.instances.filter(Filters=filter):
112 spot_slaves.append(instance)

13

114 return spot_slaves,ec2resource.instances.filter(Filter=filter)

115

1

jary

6 def get_current_spot_requests(ec2client,states):
17 spot_requests = []

118

119 data =

< ec2client.describe_spot_instance_requests() [’SpotInstanceRequests’]

97

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163
164

165

def

def

def

def

if states == ’all’:

return data

for request in data:
if request[’State’] in states:

spot_requests.append(request [’SpotInstanceRequestId’])

return spot_requests

import_launch_config():

config_path = ’launch_config.yml’

if not basics.check_file_exists(config_path):
print_verbose(’Attempted to find config file: %s’ 7 config_path)

basics.handle_error(’No configuration file found’)

try:
with open(config_path, ’r’) as configfile:
config = yaml.load(configfile)
except StandardError as e:
print_verbose(e)
basics.handle_error (’Error when attempting to read the configuration
— file’)

return config

request_spot_instances(ec2client,num_to_boot,instance_type,max_bid):

launch_config = import_launch_config()

try:
response = ec2client.request_spot_instances(SpotPrice=str(max_bid),
InstanceCount=num_to_boot,
LaunchSpecification=1aunch_config)
except Exception as e:
print_verbose(e)

basics.handle_error(’Requesting spot instances failed’)

cancel_spot_requests(ec?client,spot_requests,num_to_cancel):
try:

response = ec2client.cancel_spot_instance_requests(

< SpotInstanceRequestIds=spot_requests[-num_to_cancel:])
except Exception as e:

print_verbose(e)

basics.handle_error(’Termination of spot requests failed’)

terminate_spot_instances(ec2client, spot_instances, raw_spot_info,
num_to_terminate, partial_hour_limit):
try:

list_with_timestamp = dict()

now_time = datetime.datetime.utcnow()

98

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

def

now_time = now_time.replace(tzinfo=dateutil.tz.tzutc())

terminated = 0

for instance in spot_instances:
list_with_timestamp[instance.instance_id] =

< 1instance.launch_time.strftime(’%s’)

for instance in sorted(list_with_timestamp,
— key=list_with_timestamp.get):
if terminated == num_to_terminate:

break

instance_lifetime_delta = int(now_time.strftime(’%s’)) -

< int(list_with_timestamp[instance])

Calculate minutes in a partial hour used
if instance_lifetime_delta < partial_hour_limit:
part_seconds = instance_lifetime_delta
else:
part_seconds = instance_lifetime_delta -
< (floor(instance_lifetime_delta/3600)+*partial_hour_limit)

if part_seconds > partial_hour_limit:
print_verbose(’Terminating %s...’ 7 instance)
response =
< ec2client.terminate_instances(Instancelds=[instance])
else:
print_verbose(’’;s has not reached the set partial hour
< limit. %.0f minutes has passed.’

< (instance,part_seconds/60))

terminated += 1

except Exception as e:
print_verbose(e)

basics.handle_error(’Termination of spot requests failed’)

fetch_current_mesos_master (mesos_zkurl):

print_verbose(’Resolving ZooKeeper url for the working Mesos Master’)

#return ’52.17.132.212:5050°

try:

mesos_master = basics.run_command(’mesos-resolve %s’ 7 mesos_zkurl)
except Exception as e:

print_verbose(e)

basics.handle_error(’Could not resolve the ZooKeeper url for the

< leading master node.’)

99

207 return mesos_master

209 def fetch_and_parse_json(request):

210 try:

211 print_verbose(’Fetching s’ 7 request)

212 json_data = urllib2.urlopen(request).read()

213 parsed_data = json.loads(json_data)

214 except Exception as e:

215 print_verbose(e)

216 basics.handle_error(’Failed JSON fetch and parse.’)
217

218 return parsed_data

219
220 def get_scaling decision(resources_in_use, current_percent_in_use,
< active,pending, config):

221

222 # Set some settings from the configration

223 burst_point = config[’burst_point_percentage’]
224 max_slaves = config[’maximum_spot_slaves’]

225

226 baseline_cpus = config[’baseline_cpus’]

227 baseline_mem = config[’baseline_mem’]

228 baseline_disk = config[’baseline_disk’]

229

230 instance_cpus = config[’instance_cpus’]

231 instance_mem = config[’instance_mem’]

232 instance_disk = config[’instance_disk’]

233

234 pending_active_slaves = active + pending

235

236 # Calculate pending resources

237 pending_active_spot_resources = {’cpus’: pending_active_slaves *

— 1instance_cpus,
238 ’mem’: pending_active_slaves *
< 1instance_men,
239 ’disk’: pending_active_slaves *
< instance_disk}
240
241 # Total of pending, active and baseline resources
242 total_resources_apb = {’cpus’: baseline_cpus +
< pending_active_spot_resources[’cpus’],
243 ‘mem’: baseline_mem +
< pending_active_spot_resources[’mem’],
244 ’disk’: baseline_disk +
< pending_active_spot_resources[’disk’]}
245
246 # Calculate usage percentage if the pending resources would have been

— available

100

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

pending_usage_percent = {’cpus’:
< resources_in_use[’cpus’]/total_resources_apb[’cpus’],
‘mem’ :
— resources_in_use[’mem’]/total_resources_apb[’mem’],
’disk’:

< resources_in_use[’disk’]/total_resources_apb[’disk’]}

print_verbose(’ R e)
print_verbose(’ | Burst point value set to %.2f A

< burst_point)

print_verbose(’ R e)
print_verbose(’ | = e e o)
print_verbose(’ | Resource usage: | Percent\t | Count)
print_verbose(’ [m e)
print_verbose(’ | CPUs | %.2£%%\t | %.2f > %

< (current_percent_in_use[’cpus’]*100,resources_in_use[’cpus’]))
print_verbose(’ | Memory | %.2f%%\t | %i MB A

— (current_percent_in_use[’mem’]*100,resources_in_use[’mem’]))
print_verbose(’ | Disk | %.2£%%\t | %i MB >
<+ (current_percent_in_use[’disk’]*100,resources_in_use[’disk’]))

print_verbose(’ [mm)

Scale up if the burst point is lower than the resources used
if any(pending_usage_percent[i] >= burst_point for i in
< pending_usage_percent):
if pending_active_slaves + 1 > max_slaves:
print_verbose(’The specified limit for max number of slaves has
< been hit. Will not scale up.’)
return O
else:

return 1

Stop evaluating if the number of slaves is zero
if pending_active_slaves ==
print_verbose(’’)

return O

Calculate the number of slaves that can potentially be terminated
scale_down_num = O

while pending_active_slaves >= O:

Calculate the usage percent i1f we remove scale_down_num slave
x_less_usage = {
’cpus’: (resources_in_use[’cpus’])/(total_resources_apb[’cpus’]
— - scale_down_num*instance_cpus),
‘mem’: (resources_in_use[’mem’])/(total_resources_apb[’mem’] -

< scale_down_num*instance_mem),

101

284

285

286

287

288

289

290

291

292

293

294

296

297

298

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

def

’disk’: (resources_in_use[’disk’])/(total_resources_apb[’disk’]

< - scale_down_num*instance_disk)}

Set any negative values to zero
for i in x_less_usage:
if x_less_usage[i] < O:

x_less_usage[i] = 0.0

Check if the usage exceeds the burst point

if not any(x_less_usage[i] >= burst_point for i in x_less_usage):
scale_down_num += 1
pending_active_slaves -= 1

continue

break

Subtract 1 from scale_down_num, otherwise the script will scale up and
< down

every minute. This will ensure that the number stays right above the
— the burst point

scale_down_num -= 1

if scale_down_num > O:

return - scale_down_num

No change

return O

fetch_current_price(ec2client, avail_zone, instance_type, price_x,

max_limit):

Fetch the most recent price entry for the set zone and instance type
price_entry = ec2client.describe_spot_price_history(
InstanceTypes=[instance_type],
AvailabilityZone=avail_zone,
ProductDescriptions=[’Linux/UNIX (Amazon
< VPC)’1,
MaxResults=1)

original_price = float(price_entry[’SpotPriceHistory’][0] [u’SpotPrice’])
bid = float(price_entry[’SpotPriceHistory’][0] [u’SpotPrice’]) + price_x

print_verbose(’ | m -)
print_verbose(’ | Curent market price: %.3f % original_price)
print_verbose(’ | Maximum bid limit %.3f > % max_limit)

final_bid = bid

102

328 if bid > max_limit:

329 final_bid = max_limit

330

331

332 print_verbose(’ | Our bid %.3f >), £inal_bid)
333 print_verbose(’ [m e)

334

335 return final_bid

336

337 def main():

338 # Get paramaters and process them

339 opts, args = get_params()

340 set_options(opts)

341

342 # Import the configuration and set some session settings

343 config = import_config()

344

345 try:

346 session = boto3.session.Session(

347 aws_access_key_id=config[’aws_access_key_id’],

348

— aws_secret_access_key=config[’aws_secret_access_key’] s

349 region_name=config[’default_region’])

350 except Exception as e:

351 print_verbose(e)

352 basics.handle_error(’Could not establish a session towards AWS API,

< check config’)

353

354 # Start EC2 and resource and client session
355 try:

356 ec2resource = session.resource(’ec2’)
357 ec2client = session.client(’ec2’)

358 except Exception as e:

359 print_verbose(e)

360 basics.handle_error(’Could not establish a session towards EC2.7)
361

362 # Main exzecution

363 while True:

364 start_time = time.time()

365 print 7’

366

367 (33333333333 TETETTTE T332 333334

368 ### Collect hybrid cloud metrics

369 RERRRRABRABRRERERERRRRRABRRERERIRAR

370

371 ## Fetch current Mesos master

372 mesos_master = fetch_current_mesos_master(config[’mesos_zkurl’])
373

374 ## Create a Marathon url

103

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

marathon_url = ’%s:%i’ % (mesos_master[:-5],
< config[’marathon_port’])

rint_verbose(’ Current Mesos master %s’ % mesos_master[:-5])
p

Collect Mesos metrics
mesos_data = fetch_and_parse_json(’http://%s/metrics/snapshot’ %

< mesos_master)

Collect the usage values of the resources

resources_in_use = {’cpus’: float(mesos_datal[u’master/cpus_used’]),
‘mem’: float(mesos_data[u’master/mem_used’]),
’disk’: float(mesos_datal[u’master/disk_used’])}

current_percent_in_use = {
’cpus’:
— float(mesos_datal[u’master/cpus_percent’]),
‘mem’: float(mesos_data[u’master/mem_percent’]),
’disk’:

— float(mesos_datal[u’master/disk_percent’])}

Collect EC2 metrics

cur_slaves,cur_slaves_raw = get_current_spot_slaves(ec2resource)
cur_spot_requests = get_current_spot_requests(ec2client,’all’)
cur_open_spot_requests =

— get_current_spot_requests(ec2client, [u’open’])
num_active_pending_slaves = len(cur_slaves) +

< len(cur_open_spot_requests)

HARHARBHRRARHARRHRARHARRRRRRRARRAA
Calculate the bidding price
HARHHAARHAARRAARHAARHARRHARRHARRAA

Fetch the current price

bid = fetch_current_price(ec2client,
config[’availability_zone’],
config[’instance_type’],
config[’price_x’],
config[’maximum_bid_limit’]

)

RARRARBARRARARRARRRRRARRRRRRRARRARRARRARARRRARRRRARRARRRHE

Make a descision of whether or not to cloud burst

[33 3333333 FTTTTTTETTET T3 333333333333F3TTTETTTETETEEES

slaves_to_adjust = get_scaling_decision(resources_in_use,
current_percent_in_use,
len(cur_slaves),
len(cur_open_spot_requests),

config)

104

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

desired_slaves = len(cur_open_spot_requests) + len(cur_slaves) +

— slaves_to_adjust

print_verbose(’ [—mm e -)

print_verbose(’ | Number of: | Count)

print_verbose(’ [= m e - 7)

print_verbose(’ | Desired instances | /i ’ 7, desired_slaves)
print_verbose(’ | Pending requests | i 2

< len(cur_open_spot_requests))
print_verbose(’ | Active instances | %i % len(cur_slaves))

print_verbose(’ [= m e -)

HERHHRRRAHBRR AR RR AR RR RS HAY
Ezecute the descision
RERBBRARBBRAR BB BRRRRBRR A Y

Remove spot requests that exceeded the timeout and that does bid
— at maz limit
purge_old_spot_requests(ec2client,
cur_spot_requests,
config[’spot_request_timeout’],

config[’maximum_bid_limit’])

The number of pending and active instances are ok
if desired_slaves == num_active_pending_slaves:
print_verbose(’The number of pending and active slaves are ok’)
try:
sleep(start_time,config[’execution_interval’])
except KeyError as e:
basics.handle_error(’’s has not been set in the config.’ %

— e)

continue

Request new spot instances
if desired_slaves > num_active_pending_slaves:
print_verbose(’Not enough pending or active slave nodes.
— Requesting new ones’)
request_spot_instances(ec2client,
desired_slaves-num_active_pending_slaves,
config[’instance_type’],
bid)
Terminate excessive pending spot requests
if (num_active_pending_slaves > desired_slaves
and not len(cur_open_spot_requests) == 0):

excessive_slaves = num_active_pending_slaves - desired_slaves

if excessive_slaves < len(cur_open_spot_requests):

105

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

481

482

483

484

485

486

print_verbose(’Excessive spot requests. Attempting to cancel
< %i’ , excessive_slaves)
cancel_spot_requests(ec2c1ient, cur_open_spot_requests,
< excessive_slaves)
num_active_pending_slaves = num_active_pending_slaves -
— excessive_slaves
else:
print_verbose(’Excessive spot requests. Attempting to cancel
< %i’ 7% len(cur_open_spot_requests))
cancel_spot_requests(ec2client, cur_open_spot_requests,
< len(cur_open_spot_requests))
num_active_pending_slaves = num_active_pending_slaves -

— len(cur_open_spot_requests)

Terminate excessive spot instances

if (num_active_pending_slaves > desired_slaves):
excessive_slaves = num_active_pending_slaves - desired_slaves
print_verbose(’Excessive spot instances. Attempting to terminate

< %i’ % excessive_slaves)

terminate_spot_instances(ec2client, cur_slaves, cur_slaves_raw,

< excessive_slaves, config[’partial_hour_limit’])

Sleep and repeat

try:
sleep(start_time,config[’execution_interval’])

except KeyError as e:

basics.handle_error(’/s has not been set in the config.’ 7, e)

_name__ == ’__main__’:

original_sigint = signal.getsignal(signal.SIGINT)
signal.signal(signal.SIGINT, basics.exit_script)

main()

106

	Introduction
	Problem statement

	Background
	Clustering
	Apache Mesos

	Cloud computing
	Altocloud
	Amazon Web Services
	Terms and implementation models

	Related work

	Approach
	The objective
	Formalization
	The testbed
	Choice of technologies
	Other considerations

	Outlining the design
	Prototype implementation
	Verifying the implementations

	Considerations and limitations
	Expected results

	Results: Design
	Overview
	Environment
	Architecture
	Availability
	Segmentation of data
	Automated cloud bursting

	Results: Implementation
	Setting up the testbed and Apache Mesos
	Availability
	Prototype 1: Maximizing availability
	Prototype 2: Prioritizing local availability

	Segmentation of data
	Automated cloud bursting
	Scaling in action

	Analysis
	The testbed and VPN
	VPN

	Availability
	Prototype 1: Maximizing availability
	Prototype 2: Prioritizing local availability

	Segmentation of data
	Automated cloud bursting
	Experiment 1
	Experiment 2

	Discussion
	The problem statement
	Hybrid cloud
	High availability
	Data segmentation
	Cloud bursting and spot price instances

	Other limitations and considerations
	Performance and abstraction
	Depth of testing and experiments
	DNS management
	Spot price instances
	OpenNebula and virtualization
	Apache Mesos
	Suitability

	Future work and improvement suggestions
	Evaluating the performance and long-time availability of a hybrid cloud setup
	Evaluate and prototype additional public cloud providers for a hybrid cloud platform
	Improve the cloud bursting solution

	Potential impact of the thesis

	Conclusion
	Appendix Install notes for Apache Mesos master nodes
	Appendix Script for bootstrapping Apache Mesos slave nodes
	Appendix Cloud bursting script

