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Abstract

Congestion Control (CC) is used to achieve high performance and good
utilization of network resources during high load in lossless interconnec-
tion networks. Without CC a congestion which started from a single node
can grow, spread and degrade the performance of the network. Conges-
tion can affect both the contributors of the congestion and also other traffic
flows in the network. Infiniband (IB) is one of communication standards
providing support for Congestion Control. The IB standard describes the
CC functionality for detecting and resolving congestion. The behavior of
the IB CC mechanism depends on the values of CC parameters. The given
values of the parameters will determine characteristics like how aggressive
the congestion detection should be, the rate of feedback from the forward-
ing node detecting congestion to the contributors of the congestion - and
how much and for how long the contributors should lower their injection
rates. But there are very few guidelines about how to set the values of the
CC parameters for IB CC it to be efficient.

In this thesis, an experiment of a Mesh network topology will be
conducted using OmNet++ as a simulation platform. Large amount
of traffic will be generated and fed to the network until a congestion
is contributed. The performance will be measured when Infiniband
congestion control is disable and when it is enabled. The results from those
simulations will be compared and analysed. The topology‘s host-to-switch
link capacities are to be increased. There will be a search for proper IB CC
parameters and finally, we will learn more about how IB CC parameters
influence performance by focusing on some of the parameters.
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Chapter 1

Introduction

According to a report from IHS inc (IHS, 2014), more than 6 billion new
Internet-enabled devices were produced in 2014. The number of new prod-
ucts that are connecting to Internet, are increasing beyond expectations.
Cellphones, tablets and computers are among the most popular items. It is
common that every user has and uses more than one Internet connectable
device. These devices have very huge impact to existing network infras-
tructures. The infrastructure development can not level up to our existing
demand (David Ely & Wetherall, 2001).

It is not only that the number of Internet-enabled devices are increasing
rapidly, but also our data consumption changed very much in the last few
years. Streaming, peer-to-peer file sharing and cloud use, has became part
of our everyday activities. Our ever growing demand is deteriorating the
performance of the traffic in the network. If our network bandwidth con-
sumption continues like how it is today, it will not take long time before
the performance of major networks degrade severely. What was once few
computers connected together, grew to be the Internet, and today more
than ever, we consume more network bandwidth, and the increase will
continue many years in the near future. That is why, Congestion Control in
lossless high performance interconnection network in data centers will be
focused on in this thesis. Though network hardware is getting more and
more powerful, it will soon be impossible to handle all the traffic that is
going through, and an increase of network congestion is inevitable.

Congestion is simply the outcome of too much traffic fed into a net-
work link; exceeding link capacity. When a congestion occurs, its effect in-
cludes queueing delay, packet loss or blocking new connections. These will
have severe consequences to a lossless interconnection network. Conges-
tion Control (CC) which also refers as Congestion Management is a counter
measurement for relieving the consequences of congestion in congested in-
terconnected network. CC has been widely studied, debated and solved
in traditional networks such as local area networks (LANs) and wide area
networks (WANs) according to E. Gran et al., 2010. InfiniBand Congestion
Control is among existing congestion counter measurement.
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Infiniband Congestion Control (IB CC) is one of communication stan-
dards providing support for Congestion Control, (Gusat et al., 2005). IB
provides congestion detection, congestion signaling, injection rate reduc-
tion and injection rate recovery for congested high performance computing
(HPC).

Networks are everywhere and there are different types of networks, but
in this thesis, it is subjected to lossless high performance interconnection
network in data centers, especially the management of the traffic in such a
network during the peak of the traffic and avoiding any kind of possible
congestion.

1.1 Motivation

The term interconnection network or just network is referred to any in-
frastructure that allows distributed digital units to communicate (E. Gran,
2014). In this thesis, the term will be referring to the type of network
that serves as shared communication infrastructure in a High Performance
Computing (HPC) supercomputers or modern data center (Yan, Min, &
Awan, 2006; S.-A. Reinemo, Skeie, & Wadekar, 2010). Two requirements
which are important for HPC are high throughput and low latency; to
achieve lossless interconnection network. Unlikely the lossy network
where it is permitted for the forwarding node to drop data if it receives
faster than what it can able to forward, lossless network never drops any
data during operation. If the forwarding node cannot forward data, it still
keeps the data and causes congestion if an action is not taken. It is inef-
ficient and expensive to drop data, and lossless interconnection improves
the performance of the network but with a cost.

Lossless Interconnection is achieved by using a link-level flow control
mechanism. The forwarding node forwards only after it has ensured that
the next node has available buffer space to receive. Until the space is freed
nothing will be sent. This procedure makes sure that no data gets dropped,
but with a high cost, which is allowing the forwarding node to spread sat-
uration to other nodes, some with plenty of free buffer spaces which other-
wise can be used for the delivering of data. The node which is withholding
and waiting until the other node gets free buffer space, denies others to for-
ward any data on its way too. The longer this node is occupied, a growing
tree of buffer occupancies will block an increasingly larger part of the net-
work. With the use of InfiniBand, it is believed that the blockage will be
loosened up and the performance will get improved.
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1.1.1 Problem statement

The growing interest of environmental and economical efficient industries
has its impact also among HPC community. Green computing demand is
gradually grown. From last decade, an interest for congestion management
in lossless interconnection networks has shown been among both research
community and in the industry. In that revolution, Infiniband has become
a leading player. According to Top500‘s last statics from November 2014,
InfiniBand leads TOP500 as most used Interconnect technology for High-
Performance Computing. InfiniBand has 225 systems in the TOP500, rep-
resenting 45 percent of the list. Its popularity grow year after year, the
number of InfiniBand-based supercomputers increased by 8.7 percent from
November 2013 to November 2014 (Top500, 2014) .

Congestion Control (CC) mechanism of Infiniband (IB) is based on a
closed-loop feedback control system; where a forwarding node detecting
congestion inside the network informs all the nodes injecting traffic con-
tributing the congestion about the situation of the network (Santos, Turner,
& Janakiraman, 2003). When a congestion occurs, the node detecting the
congestion informs the congestion contributing nodes to slow down its in-
jection rate; until the congestion is removed. As the congestion loosens up
and is removed, the source starts injecting in a higher rate until it reaches
to its normal injection rate, if no more congestion occurs (E. Gran et al.,
2011). The behavior of the IB CC mechanism depends on the values of CC
parameters. The given values of the parameters will determine character-
istics like how aggressive the congestion detection should be, the rate of
feedback from the forwarding node detecting congestion to the contribu-
tors of the congestion - and how much and for how long the contributors
should lower their injection rates. CC parameters give a great flexibility
to the CC IB mechanism (E. Gran, 2014), but there are very few guidelines
about how to set the values of CC parameters for it to be efficient. More
knowledge is needed on how to use the parameters. It is not also known
much about what effect each individual parameter has, on the performance
of the network, and relations between the individual parameters.

In this thesis, an experiment of a Mesh network topology will be
conducted using OmNet++ (OmNeT++, 2014) as test bed. Hugh amount
of traffic will be generated and fed to the network until a congestion is
contributed. This project tries to address following research questions:

• How is the performance of the network when IB CC is disabled?

• How is the performance of the network when IB CC is enabled?

• How is the performance of the network when host-to-switch link size
is doubled?

• How does IB CC parameters influence performance?

• What is the proper IB CC parameter of this network topology?

3



1.2 Thesis outline

This thesis is divided into six chapters. Most chapters are further divided
into sections and subsections. The very first chapter is the Introduction
chapter. This chapter contains details about the whole thesis, especially
the introduction, the motivation of the thesis and the problem statement.
The second chapter is a brief background information of the thesis. The ba-
sic characteristics of Congestion, Congestion Control (CC), Infiniband (IB),
IB CC, OmNet++ and more, will be described. Chapter 3 consists the ap-
proach of the experiment. In it, details of what is intended to do and how
it is intended to implement it, is to stated. Chapter 4 is all about the result
of the experiments after the experiments have been conducted. Chapter 5
consists an analyse of the result. In chapter 5, there will also be a compar-
ison between the approach and the result. And at last chapter 6, which is
the conclusion and future work chapter of the thesis. A list of references
and appendices will follow it.

4



Chapter 2

Background

In this chapter, there will be a short introduction to the basic characteristics
of network, lossless interconnection network, congestion, congestion
management. Infiniband, OmNett++ and other related technologies will
also be all briefly explained, in some cases with examples.

2.1 Network topology

In communication networks, a topology is a usually schematic description
of the arrangement of a network, including its nodes and connecting lines.
There are two ways of defining network geometry: the physical topology
and the logical (or signal) topology (Rouse, 2014).

The physical topology of a network is the actual geometric layout of
workstations, servers, storage nodes and etc. There are several common
physical topologies, as described below and as some of them shown in the
illustration.

Figure 2.1: Bus network
topology Figure 2.2: Tree network

topology

Other well known network topologies are bus network topology, tree
network topology, star network topology, ring network topology, star or
ring topology and mesh network topology.
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2.2 Congestion in Lossless Networks

In Lossless Networks, congestion occurs when a link or node is carrying so
much data that its quality of service deteriorates. In real life, most of us ex-
perience congestion in non-network related occasions everyday especially
mornings and afternoons. When most of the people leave their homes to
work in the morning, we tend to overload the capacity of the roads and
cause congestion (traffic jams). Again, we finish work around the same
time, and repeat the same scenario as earlier of that day.

To understand it better, we can use an example of a network topology
to describe how a congestion happens. Figure 2.3 shows a network of 4
switches, which is serving for 5 hosts.

Figure 2.3: A network of four switches and 5 end nodes.

• Switch1 is connected to Host1, Switch2 and Switch3.

• Switch2 to Host2 and Switch1.

• Switch3 to Switch1, Host4, Host5 and Switch4.

• And Switch4 to Host3 and Switch3.

This figure represent normal traffic, flowing as intended without any
congestion.

2.2.1 Traffic flow between end-nodes

Next figure 2.4 shows the traffic flow of the network topology. This is the
traffic flow between the different end-nodes.

• Host1 is sending data to Host4. The traffic is going through Switch1
and Switch3.

• Host3 is also sending traffic to Host4. The traffic is going through
Switch4, and Switch3.
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• While Host2 is sending to Host5. The traffic is going through
Switch2,Switch1 and Switch3.

Figure 2.4: Traffic flow between the nodes.

The Green lines represent the traffic going to Host4, while the blue line
represent the traffic coming from Host2 and Host5.

2.2.2 Congestion occurring

When a node in the network can not manage to serve the traffic it is re-
ceiving, the flow control in a lossless network will make buffers in the sur-
rounding nodes fill up as well, then the backpressure effect will continue,
until the whole network in congested.

Figure 2.5: A network topology - Congestion tree

In figure 2.5, we can assume that source nodes Host1 and Host3 want
to send at the full link capacity of their connected links. The connection be-
tween Switch3 and Host4 will then become a bottleneck. In this scenario,
each one of the two different sources will get a half of the link. As the
sources still continue to send traffic to Host4, traffic will start to pile up
at Switch3. Switch3‘s buffer space will soon fill and the flow control will
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notify neighbours Host5, Switch1 and Switch4 that Switch3 is running out
of buffer space. The sources will continue to send traffic to the bottleneck
link, until no more buffer space is available at Switch3. The source nodes
become contributors to congestion.

2.2.3 Contributor and Victim

From figure 2.5, it can be seen that the bottleneck exists at the link between
Switch3 and Host4, and that the traffic flow coming from Host1 and Host3
contributes the bottleneck. In this scenario, Host1 and Host3 is considered
to be the Contributors of the bottleneck while Host2 is the victim. The traf-
fic flow between Host2 and Host5 is not causing any bottleneck and its
links until reached Switch3 and between Switch3 and Host5 is empty and
can handle more traffic flow. But as a side effect of the bottleneck at the link
Switch3-to-Host4, the traffic flow of Host2-to-Host5 is affected. And that is
why Host2-to-Host5 is referred as a victim in this example. A traffic from
Host1 and Host2 could also cause congestion at switch1.

2.2.4 Congestion spreading

Whenever a link cannot handle the traffic passing through in it, a bottle-
neck gets created there. While the link still struggles to catch up the flow,
more and more traffic flow comes, causing it to spread more nodes back-
ward to the sources to the traffic.

Continuing to figure 2.6, it shows when the the link between Switch3
and Host4 got congested, the traffic flow piled up in Switch3 until no more
buffer space was available, then the congestion tree grew more backward
to Switch1 and Switch4 and then finally to Switch2. Switch2 gets little traf-
fic from Host2 but as it cannot forward any traffic because of Switch1 and
Switch3 the little traffic pills up there.

Now all the forwarding nodes in the network is congested. The con-
gestion tree is spread from Switch3 towards Host1, Host2 and Host3 as the
spread is one direction.

This is one scenario of how a single bottleneck in one link between two
nodes can cause a full congestion in a network. This topology has few for-
warding nodes and several hosts but it can represent a network topology
in a larger scale.

2.3 Congestion management

Congestion management or congestion control concerns controlling traffic
entry into a network, and tries to avoid congestive collapse, by attempting
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Figure 2.6: A network topology - Congestion spreading to other nodes.

to avoid any thing that will cause oversubscription of any processing or
link capacities. The node, which is trying to take more than its share of the
resources, gets resource reducing steps such as reducing the rate of sending
data (Amol & Rajesh, 2014).

A possible congestion solution will be to increase network resources
more than strictly necessary or overprovisioning (Lugones, Franco, &
Luque, 2009). Which will mean that by overprovisioning the resources,
no congestion will probably ever happen. Competition for resources and
contention will be avoided, and the network will function as intended.
By overprovisioning, more resources than necessary will be needed. That
will be fine for a small interconnection network, but for a large network in
High Performance Computing systems, the power consumption and com-
ponents for the network will cost too much, as well as environmental effect,
space and so on. Overprovisioning is not a suitable alternative for HPC sys-
tems.

Like overprovisioning, there are other proactive techniques, but they
are not appropriate for general HPC systems or modern data centers be-
cuase they do not conduct congestion management in a universal and scal-
able way (E. Gran, 2014).

According to (Lugones et al., 2009) adaptive congestion control mech-
anisms typically perform three basic tasks, which are to monitor Network
traffic, to detect Congestion and to control or reduce congestion.

Adaptive routing and load balancing techniques (E. Gran, 2014) helps
to alleviate congestion by distributing the traffic in the network in a favor-
able way. The adaptive routing and load balancing techniques do the path
selection depending on network status, in that way congestion trees will be
removed or made less likely to grow. But its success is not granted every
time depending on where the congestion happens. If the root of the con-
gestion tree is located at the last downstream switch prior to a destination,
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an attempt to remove the congestion by adaptive routing or load balancing
will not remove the congestion tree, it could even make the situation worse.
(E. Gran, 2014)

2.4 Infiniband

InfiniBand is an industry-standard specification that defines an in-
put/output architecture used to interconnect servers, communication in-
frastructure equipment, storage and embedded systems (Valentini et al.,
2009; Grun, 2010). InfiniBand is a true fabric architecture that leverages
switched, point-to-point channels with data transfers today at up to 120 gi-
gabits per second, both in chassis backplane applications as well as through
external copper and optical fiber connections (IBTA, 2015).

According to (IBTA, 2015) InfiniBand‘s advantages are that it has;

• Superior performance

• Low-latency

• High-efficiency

• Cost effectiveness

• Fabric consolidation and low energy usage

• Reliable and stable connections

• Data integrity

• Rich and growing ecosystem

• Highly interoperable environment

2.4.1 The CC concept in Infiniband

E. G. Gran and Reinemo, 2011 explained beautifully in their paper what CC
concept in Infiniband is; "The InfiniBand Congestion Control (IB CC) mecha-
nism is based on a closed loop feedback control system where a switch detecting
congestion marks packets contributing to the congestion by setting a specific bit
in the packet header, the Forward Explicit Congestion Notification (FECN) bit.
Then the congestion notification is carried through to the destination by this bit.
The destination registers the FECN bit, and returns a packet with the Backward
Explicit Congestion Notification (BECN) bit set to the source. The source then
temporarily reduces the injection rate to resolve congestion."

The exact behaviour of the IB CC mechanism depends upon the values
of a set of CC parameters governed by a Congestion Control Manager.
These parameters determine characteristics like when switches detect
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congestion, at what rate the switches will notify destination nodes using
the FECN bit, and how much and for how long a source node contributing
to congestion will reduce its injection rate (E. Gran et al., 2011). These
parameters should enable the network to resolve congestion by avoiding
head-of-line blocking, while still utilizing the network resources efficiently.

2.4.1.1 IB CC at a Switch

The switches are the ones that are responsible to detect congestion and
notify the destination node using FECN bit. It is the switch that detects
congestion on a port or a Virtual Lane depending on a Threshold param-
eter. If the threshold is crossed, it will lead to FECN marking of pack-
ets (E. Gran, 2014). The switch‘s parameters are Threshold, Victim_Mask,
Marking_Rate, Packet_Size.

Threshold has a weight ranging from 0 to 15 in value. And is the same
for all port, if it is not specified to each different port. The value zero indi-
cates that no packets should be marked. From 1 to 15 represent a decreasing
value of threshold. A value of 1 indicates a high threshold with high pos-
sibility of congestion spreading, while 15 is its opposite, it indicates low
threshold with a corresponding low possibility of congestion spreading.
The first one (a value of 1) risks to move the congestion state (packets eligi-
ble for FECN marking) too late. And the later one to move into the conges-
tion state even when the switch is not congested (E. Gran et al., 2012). It is
the designer of the switch architecture that is left for the exact implementa-
tion of the threshold.

When a port is in the congestion state, its packets are eligible for FECN
marking. A packet will then get the FECN bit set depending on two CC
parameters at the switch, which are Marking_Rate and Packet_Size. Pack-
ets with a size smaller than the Packet_Size will not get FECN bit set. It
is Marking_Rate, which sets the mean number of eligible packets sent be-
tween packets actually being marked. (E. Gran et al., 2010)

Switch
Threshold
Victim_Mask
Marking_Rate
Packet_Size

2.4.1.2 IB CC at a Channel Adapter

When a Channel Adapter (CA) receives a packet with a FECN bit set from
the switch, the CA as soon as possible seeks to notify the corresponding
source about the congestion. To do so, the method it uses, is to return a
packet with the BECN bit set back to the source of the packet (E. Gran
et al., 2011). CA uses a Congestion Control Table (CCT) and a set of CC
parameters. The Channel Adapter‘s Congestion Control parameters are
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CCTI_Increase, CCTI_Limit, CCTI_Min, and CCTI_Timer.

Channel Adapter Description
CCTI_Increase When traffic injection is to resumed
CCTI_Limit The upper limit of the CCTI
CCTI_Min The minimum limit of the CCTI
CCTI_Timer The time traffic injection is to be halted

2.5 OmNet++

While answering what the OmNet++ is, the official website of OmNet++
(OmNeT++, 2014) stated that " OMNeT++ is an extensible, modular,
component-based C++ simulation library and framework, primarily for
building network simulators. "Network" is meant in a broader sense that
includes wired and wireless communication networks, on-chip networks,
queueing networks, and so on. Domain-specific functionality such as sup-
port for sensor networks, wireless ad-hoc networks, Internet protocols, per-
formance modeling, photonic networks, etc., is provided by model frame-
works, developed as independent projects. OMNeT++ offers an Eclipse-
based IDE, a graphical runtime environment, and a host of other tools.
There are extensions for real-time simulation, network emulation, database
integration, SystemC integration, and several other functions."

It provides a component architecture for models (OmNeT++, 2014).
Components (modules) are programmed in C++, then assembled into
larger components and models using a high-level language (NED).
Reusability of models comes for free. OMNeT++ has extensive GUI sup-
port, and due to its modular architecture, the simulation kernel (and mod-
els) can be embedded easily into your applications.

An InfiniBand model has been implemented using the OmNet++
framework. The model consists a set of modules to simulate an Infini-
Band network with the support for the IB flow control scheme, arbitration
over multiple virtual lanes, congestion control, and routing using linear
forwarding tables (E. Gran et al., 2010).
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Chapter 3

Approach

This chapter explains how the experiment is going to be implemented. In
it, the network topology design, the test bed, and the outcome assumption
are all going to be discussed here. Later in the analysis chapter, the content
of this chapter and the content of the upcoming result chapter will be
compared and analysed. What went as assumed and what have not, will
be stated. This chapter is very important as it is defining the whole project.
What, why and how to do, is all mentioned here.

3.1 The Test Bed

To conduct a simulation of any network topology, either a complete hard-
ware or a software simulator is needed. Getting a whole sett of hardware
for an entire network topology in any size can be very expensive and time
consuming. That resources are not available for this project. For the soft-
ware solution, all it is needed, is to get access a good simulation tool. Many
of them are available in the marked, most of them have their strengths and
weaknesses. The chosen simulator of this project is OmNet++. In earlier
projects, OmNet++ has proven to be the right simulation tool. It is an open
source software and an InfiniBand (IB) model has been created for it. All
the simulation of this project, OmNet++ with its IB model is going to be
used.

3.2 Network topology

A network topology different from earlier tested topologies, is going to be
designed. The topology must not be a very large one because of the thesis
time frame and it has to also be large enough to cause a congestion. Many
topologies have been designed and tested, either using hardware or soft-
ware simulation environment. Yet there are too many untested topologies
that have to be tested. It has not been published the behaviour of many
tested Mesh network topology. The topology in this experiment is going to
be a mesh or partial mesh network. It will be different from those earlier
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tested and documented.

3.2.1 Topology design

First, it has been proposed a topology of four hosts and four switches, each
host for one switch and that every switch connected to two other switches.
After some testing and discusses, a one more host has been added to the
network topology, in order to generate more traffic flow. It is very impor-
tant in this project to able to inject a huge traffic in the network, so that a
congestion can be contributed.

Figure 3.1: Proposal of the network topology

Figure 3.1, shows the proposed 2x2 network topology of the project.
Three of the hosts are connecting to each its own unshared switch. Switch
one (top left) has two hosts connecting to it. The link between switches
and hosts have a 20 Gbit/s capacity. While switch to switch links have 40
Gbit/s capacity.

For this topology, Hosts have names which start with letter H accom-
panied by a number from 1 to 5, while switches have names which start
from letters SW and accompanied by a number from 1 to 4. H1 and H5 are
linked to SW1, H2 to SW2, H3 to SW3 and H4 to SW4. All the switches
have three active ports except SW1 which has four ports.

For the sake of simplicity, the connection between each host and its clos-
est switch goes through port 1, except H5 which is exceptional. H5-SW1‘s
connection goes through port three because SW1 is the primary switch for
two hosts unlikely to the other three switches. The table below shows the
whole switch-to-host port connections.
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Switch H1 H2 H3 4H H5
1 1 2 0 0 3
2 2 1 0 0 2
3 0 0 1 2 0
4 0 0 2 1 0

3.2.2 Traffic flow

H1 starts to send traffic to H4 right after the simulation is started. The traffic
goes through SW1 and SW2 before it gets to SW4 and finally arrives to H4.
One second later H2 starts to send traffic to H4 through SW2 and SW4. The
two flows do not meet before they reach switch SW4. Two seconds after
the simulation started, the third host (H3) starts to send too to the same
destination as the other two nodes. Finally and three seconds after the
simulation started, H5 starts to send traffic to another destination. Instead
of the other three sources, which all send to H4, H5 sends traffic to H3. The
traffic from source H5 to destination H3, goes through SW1 and SW2. H4
never sends any traffic during the simulation is running

Figure 3.2: InfiniBand Congestion Control - traffic flow directions

Source name Switch Switch Switch Destination name
H1 SW1 SW3 SW4 H4
H2 SW2 - SW4 H4
H3 SW3 - SW4 H4
H4 - - - -
H5 SW1 - SW2 H3

The table below shows when the hosts start sending traffic flow to their
destinations.

Host name Start time (in second)
H1 0
H2 1
H3 2
H5 3
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3.3 InfiniBand Congestion Control OFF

As stated earlier in the introduction chapter, the experiment will first con-
ducted when the Congestion Control is off. Its performance will be anal-
ysed, and a plan to improve the performance of the topology will be
worked out. Later, the Congestion Control will be turned on, and when
the right parameters are discovered, and the final simulation is conducted,
the two will be compared. Then the impact of the InfiniBand Congestion
Control (IB CC) of the network topology will be presented in the analysis
chapter of this thesis.

In the later sections, there will be a further explanations on how to get
the proper IB CC parameters of this network. Many experiments will be
done and compared before the best suited parameters is gained.

3.3.1 Expected performance when IB CC is disabled

Figur 3.3 shows the expected result of the experiment when IB CC is off.
This analysis is based on the assumption that all switches are fair.

Figure 3.3: Congestion Control Off - flow share in per centage

It is believed that H1 will use almost the maximum link capacity if it
can generate all that traffic. The links between switches have 40 GBit/s
capacity and the links between hosts have 20 GBit/s. The maximum link
capacity H1 can use, is up to 20 GBit/s, but it is improbable that a host can
manage to use all the link capacity that are available for it. H1 will start
high and continue to use most of the link capacity from zero second to the
first second. Then H2 will start to send traffic to destination H4. H2 will
try to use its link capacity which is as same as H1. The two traffics do not
share any links until reached SW4. The link between SW4 and H4 has a 20
GBit/s capacity and can not handle both traffic flows which combined can
be as high 30s GBit/s, because of the configuration and other factors also,
it is unlikely to benefit the whole 40 GBit/s capacity.
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The link between SW4 and H4 get congested, and the traffic flow is re-
duced. SW4´s closest switches SW3 and SW2 start sharing the link capacity
that is available for them. Each of the switches will send in half of what it
was sending. One second later, H3 starts to send to H4. H3 have to share
with H1 links from SW3. We know that SW3 is allowed to send in half.
Now it has traffic flows coming from two sources, and going to the same
destination. SW3 can only use its quota, its two closest forwarding nodes
will not be able to send faster due to the link level flow control and con-
gestion. Now, H2 is sending in half while H1 and H3 are sending in each a
quarter. After that, H5 starts to send to destination H3. Though H5´s desti-
nation is different then the other sources´ destination and have nothing to
do with the SW4-H4 link, yet it has to suffer for it. H1, H2 and H3 are con-
tributing the congestion while H5 becomes a victim of the other sources.
It happen because H5 shares a switch and a link with H1 (SW1). They are
given fair share of the capacity (reduced by congestion) 25% each. They
have a sending opportunity window in a quarter of the time, in which SW1
is allowed to send, and another quarter for H3. Yet, we think that both H1
and H5 will manage each of them to send in a quarter because when H5
sends, there is no waiting and the traffic passes through SW3 to H3, so be-
fore the window closes H1 sends a quarter and H5 sends a quarter. That
is possible because there is nothing hindering H5´s traffic flow after passed
SW2.

Figure 3.4: Congestion Control Off

In graphics, graph 3.4 shows how H1´s performance degraded from top
to half as H2 started to send its traffic. H2 starts in half the level of H1´s
performance just before H2 started to send. Then H3 started to send, this
time H2´s performance stayed the same as earlier while H1´s performance
degraded even more to a quarter of what it started in the beginning. Finally
H5 begins to send traffic, H1, H2 and H3 continue the same way and H5
starts sending equal as H1 and H3. There is unfairness between the con-
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tributors. H2 gets more bandwidth than its fellow contributors whom each
gets half of what H2 gets.

On the other side, the performance of the receivers is expected to seem
more like figure 3.5. H3 and H4 are the only receivers of this topology. H4 is
the one that start receiving traffic from the start of the simulation. H3 start
getting traffic from the last second. H4 receives all the traffic that H1 can
generate from the start, then as more nodes try to send more traffic than
what H4‘s link can handle, SW4 start controlling what other forwarding
nodes sending. Later H3 start getting traffic from H1 and not much traffic
is getting to H3 as most of the traffic is held back/slowed down at SW1.

Figure 3.5: The receivers of the traffic flows when CC is disabled

3.4 InfiniBand Congestion Control ON

After the first simulation is implemented, in which the CC was off. The
CC will enabled. Using CC, network´s performance will be increased as a
whole and especially, the victim will get much better performance. When
using IB CC, it is the given that the values of the CC parameters will make
the difference. These parameters determine characteristics like when the
switch detects congestion, and at what rate the switches notify destina-
tion nodes using Forward Explicit Congestion Notification (FECN) bit, and
how much and for how long a source node contributing to congestion will
reduce its injection rate. These parameters should enable the network to
resolve congestion and to avoid blocking, while still utilizing the network
resources at the root of the congestion tree efficiently.
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3.4.1 IB CC parameters

For now, the values of the parameters of this network are not known.
During the simulations, many experiments will be conducted to deter-
mine which parameter values that are best suited for this network. On the
switch´s side, the value of the "Threshold" is an important one. The Thresh-
old is represented by a weight ranging from 0 to 15 in value. It is same for
all ports. On the Channel Adapter´s parameters, it is the CCTI_Timer which
is chosen in this case. Channel Adapter relies on the CCTI_Timer to increase
the injection rate again after it received a BECN bit. In some scenarios, the
Packet_Size will be changed to see its effect in action.

3.4.2 Expected performance when IB CC is enabled

It is expected that the traffic flow will be the same as the previous experi-
ment (IB CC Off). It will start close to maximum of its link capacity. After it
run one second, the second host (H2) will start sending traffic and as they
have to share the SW4-H4 link capacity which is just 20 GBit/s, a satura-
tion will be risked. When SW4 detects that its buffer space is getting filled
up, it will mark packets (marking-rate) going to H4 using Forward Explicit
Congestion Notification (FECN) bit. The destination (H4) then notifies the
sources (H1 and H2) of the packets about the congestion. That can be done
by Backward Explicit Congestion Notification (BECN) bit set back to the
sources. For now, the sources have been notified about the congestion and
they reduce their sending according to their parameters.

With the right parameters, it is expected that the two forwarding nodes
will share the resources evenly. Then the third host (H3) starts to send to
destination H4. Now, as two nodes were sharing the resources, the third
one will start to share with them too and if the parameters is set right, all
of them will use a third of the resources that are available for them. This is
unlike expectation from the previous experiment, where H2 maintained to
use half of the resources while the other two competed for the other half,
each getting one fourth of the total SW4-H4 link capacity.
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Figure 3.6: An assumption of performance when the Congestion Control
enabled - flow share in per centage

The last node (H5) will start sending traffic to H3. From previous ex-
periment, we remember that H5-H3‘s connection was the victim. As, it is
expected that the others got a fairer share of the resources, it is our goal
that the victim gets to use more its unused resources. H5 shares H1 with
switch SW1 and the link from that switch to SW2. The link has a 40 GBit/s
capacity, in which both of them can share comfortably. Now, with the right
parameters, the victim will not stay a victim any more and will use up to
its maximum link capacity. It is expected that with the help of the enabled
IB CC, that other will not be a hinder for H5 to send traffic.

Figure 3.7: Congestion Control ON

Figure 3.7, visualizes the final outcome result of the experiment when
the IB CC is enabled. In the analysis chapter, we shall compare and analysis

20



figure 3.7 and the real result of the simulations, when the IB CC is enabled.

Figure 3.8: The receivers performance when CC enabled

When it comes to, how the receivers are expected to perform while re-
ceiving traffic from the sources. It is expected that H4 will maintain to
receive all the traffic that it can handle. As well as that H3 is also expected
to receive all what H5 can generate. One of the goals of this project is that
all sender and receivers to be able to use all their available capacities if they
are not contributing any congestion.

3.5 Bigger host-to-switch link

The capacity of the links between hosts and switches are increased from 20
GBit/s to 40 GBit/s. Our goal for this part is to learn more about the be-
haviour of the network if it is equipped with links with bigger capacities.
Already the link between switches have a 40 GBit/s capacity. And now,
as the rest of the links are replaced, the whole network has links with the
same size.

From the last two experiments (when the CC is disabled/enabled), the
biggest challenge was that the receiver‘s link to SW4 (switch) had a smaller
capacity and could not handle all traffic going through in it when more
than one sender is sending. For now, the receiver has bigger capacity but
also the senders have too. What we want to understand is, how much im-
provement will the new links come with?

From previous experiments, it was the link between H4 and SW4 which
could not handle the traffic it was receiving. In this experiment is it be-
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lieved that if the sources manage to use all capacities that are available for
them, then they can produce up to double of what the source could produce
earlier. That will mean, it will not be the link between H4 and SW4 whom
will struggle to make the throughput, but also switch-to-switch links will
not manage to transfer all traffic. All links have same size capacities, so
when the source try to send in full speed, switch-to-switch link gets con-
gested. The later scenario can not be realized in this topology because as
H2 injects traffic toward H4, the same as previous experiments will hap-
pen. The link-level flow control messages from SW4 to SW2 and SW3 will
prevent SW2 and SW3 from sending towards SW4 at full capacity, and then
later, when SW2 and SW3 runs out of buffer space, SW2 and SW3 will sim-
ilarly send link-level flow control messages to their neighbours.

3.6 In search of proper IB CC parameters

Finding the proper IB CC parameters for this topology, is the most time
consuming and hardest for the whole project. There are no guidelines or
formulas of how to get the right parameters. It is known what these dif-
ferent parameters do and there are clear description of them. But The pa-
rameters do not have the same effect for every given network topology (no
same values for all). Network topology designers must experiment differ-
ent values of the IB CC parameters and check how the network reacts.

In the background chapter, it has been described the Channel Adapter
and Switch CC parameters. Here in this chapter, no further details of the
CC parameters will be given. But we will choose some parameters from
Channel Adapter and from the Switch. Those chosen ones will get new
and different values for every simulations, the outcome of the simulations
will be plotted in graphs. The graphs get studied and analysed, in that
way, we have a chance to detect the proper IB CC parameter values of this
topology.

Probably, dozens if not hundreds of simulations is been expected to be
done before the most proper IB CC parameters is gained.

Parameter Value
CCTI_Increase
CCTI_Limit
CCTI_Min
CCTI_Timer

Parameter Value
Threshold
Marking_Rate
Packet_Size

From the Channel Adapter, it is the CCTI_Timer which will be tested
with different values for many times. And from the switch, Threshold is
the one that gets different values. Finally, switch‘s Packet_Size will also
be modified in some experiments.
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The search for proper IB CC parameters for this topology will not stop
until the performance of the network is optimized or proofed that it is not
possible to do that while following the approach of this thesis. The goal is
to get a performance equal or better the expectations stated above.

3.7 How IB CC parameters influence performance

IB CC parameters are difficult to get them right while designing a network
topology. The goal of this section is get more insight about how IB CC
parameters work and influence performance especially these parameters;
CCTI_Timer, Packet_Size and Threshold.

This section gives more insight about how IB CC influence perfor-
mance. Both the CCTI_Timer and the Threshold will get values in given
intervals between. One of the parameters will remain the same while the
other one gets increased or decreased. Whatever the outcome is get pre-
sented in the result chapter. This process is going to be repeated many
times until sufficient data is gathered. In a fewer times compared to Thresh-
old and CCTI_Timer, Packet_Size‘s values gets increased and decreased.
Because the later one is easier to understand how it influence the perfor-
mance.

Threshold/CCTI_Timer 20 40 80 120
2

√ √ √ √

6
√ √ √ √

8
√ √ √ √

10
√ √ √ √

The tables lists values of the parameters that we are expecting to exper-
iment. The row on the left contains the values of the Threshold and the top
column lists the values of the CCTI_Timer. A total of 16 simulation will be
conducted. And for each of these 16 simulations, a graph containing the
performance of the sender and another one for the performance of the re-
ceiver will be plotted.

Couple of more experiment will be ran after the value of the
Packet_Size is changed. CCTI_Timer and the Threshold will remain the
same as one of the simulation from the above table.

3.8 Collecting data

A Python script will be developed for extracting desired data and then for
plotting graphs. After running a simulation using OmNet++, one ends up
a text file containing various information. It will be very tricky to get the
desired rows and columns. One will need much times to go through the
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output file and to study it well before understanding it. The output file for
a topology like this is expected to be around two gigabytes. The size of the
file heavily depends on log level, simulation time and parameter values.

Python is chosen as the scripting language for this thesis, because it is
the scripting language that I have been using last semesters. Python is very
powerful programming and scripting language. It is well suited for the
purposes for this kind of assignments.

First, the text output file from OmNet++ is opened, a new file is created
and by using regular expressions the rows that are interested, get extracted
and saved in the newly created file. Finally, the process of plotting the
graph from the content of the file starts. For now, the very first graph for
this thesis is expected to get plotted.

3.9 Summary of the approach

In this chapter, it was been discussed and decided the most important
steps of this project. And it is in this chapter that the authors expectation
/ assumption of the final result is presented. The answers of all these
questions have been answered;

• How will the topology look like?

• How will traffic flow?

• How will data be collected?

• What will be the simulator of the simulations?

• What performance is expected when IB CC is disabled

• What performance is expected when IB CC is enabled

In the same chapter, it has also been stated and explained in details
the project‘s assignments (to do list). After the simulations are done, it is
expected that these five different points should be answered;

• How is the performance of the network when IB CC is disabled?

• How is the performance of the network when IB CC is enabled?

• How is the performance of the network when host-to-switch link size
is doubled?

• How does IB CC parameters influence performance?

• What is the proper IB CC parameter of this network topology?
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Chapter 4

Results

In this chapter, the results of all assignments are to be presented. All
the simulations have been done by now and all the outputs are ready.
There will be some explanation about how the simulations went and what
changes that have been made while the implementation of the simulations
were taking place. This chapter is divided into five main section, each sec-
tion contains the answer of one problem statement. For each problem state-
ment, the performance of both senders and receivers are measured and
plotted into graphs. The first graph shows the performance of the senders
and the second one shows the performance of the receivers. As the net-
work is a lossless, packet dropping is not allowed. The performance of the
receivers are going to be studied and later compared to the senders just to
make sure that the results are genuine.

Figure 4.1: InfiniBand Congestion Control - traffic flow directions

4.1 IB CC is disabled

The InfiniBand Congestion Control was disabled for the first simulation
that was ran. The simulator OmNet++ spent about one and half hour to
finish the simulation. A laptop with four cores and with 8 GB of RAM is
used for all the simulations. Four of the five hosts send traffic according to
the traffic flow design of the network topology. H4 is the only one that is
not generating any traffic.
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Figure 4.2: Congestion Control OFF with 20 GBit/s link bandwidth

The graph 4.2, shows the result of a simulation in which IB CC is dis-
abled. H1 is represented by the blue colour, starts from the beginning of
the simulation at about 1620 MBps and then continued approximately the
same level for the first second. From there H2 represented by the red colour
started. As H2 started, H1´s performance deteriorated down to about 1000
MBps , while H2 started in the very first time in a higher rate which re-
sulted a congestion but soon after that both of them leveled at the same
level. Both of them continued to perform the same way until H3 started to
send traffic. From there H1´s performance turned down to about 500 MBps
as well as H3 which started just above that number but very soon leveled
the same level as H1. Meanwhile H2 kept the same level as it continued
before H3 was activated because of the unfair sharing. Finally, the fourth
and last host (H5) started to send. As we know from the previous chap-
ter, H5 is the victim node while the other three nodes are the ones that are
contributing the congestion. It sends traffic to H3 through SW1 and SW3,
while the congestion tree started from the link between SW4 and H4. Yet
the victim can only send about 500 MBps equal to H1 and H3.

When it comes to the receivers of the traffic, according to the topology
design only H4 and later H3 will receive traffic. If more nodes receiver traf-
fic, it will be a sign of error. In order to make sure that everything is work-
ing as it is supposed, it is plotted a graph from receivers´ actives. Graph 4.3
show that from the start, H4 received traffic at a level of above 1600 MBps
and a second later, the traffic injection increased to 2000 MBps . Since after
that H4 continued to keep on at that level. Three minutes after the simu-
lation is started, H3 began to receive traffic at a level of about 500 MBps .
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And it continued to receive in that level after that time.
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Figure 4.3: Receivers - CC OFF with 20 GBit/s link bandwidth

What this graph is proofing, is that the simulation setup is correct and
everything is working is its supposed. It is proofing that all the traffic in-
jections from the senders are actually coming to the right receivers. When
it comes to why H1 is not using all of the link capacity that is available for
it in the first second, the answer is that, a single nodes can generate traffic
up to about 1620 MBps , and a receiver can handle upto 2000 MBps when
the host-to-switch link capacity is 20 GBit/s. As the second node start its
traffic injection, each of the two nodes send around 1000 MBps which is the
receiver‘s full link capacity. Later, H2 continues keep sending in half of the
link´s full capacity while H1 and H3 are sharing the other half of the link´s
capacity.

4.2 IB CC is enabled

In this simulation, the IB CC is to be enabled. For weeks, we have been
working for getting the most suited IB CC parameters for this topology. It
looks like that we finally managed to do that. The aim for this section is
to gain the best possible performance both for the victim node and other
nodes too. All nodes will share the resource in a fair way. Only those who
are contributing congestion will get their traffic flow reduced. From previ-
ous experiment in which the IB CC was disabled, H4 was receiving traffic
injections from all of its senders, but their link sharing was not fair for all
of them. Instead for each getting a third, one was getting half and the other
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two were sharing the other half between them. On the other hand, H1 was
using only a fourth of the resources that was available for it. This experi-
ment will show that the victim node is not a victim anymore and that the
other three nodes share H4´s resource in a fair way.
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Figure 4.4: Sender - CC ON with 20 GBit/s link bandwidth

Graph 4.4 visualizes how the performance of the network topology im-
proved. In the first two seconds, the performance is the same as the previ-
ous experiment. But when the third host (H3) starts to send traffic, some-
thing new happens. All of the three nodes gain an equal share of the re-
sources. Each of them a third of the H4-SW4 link capacity. And finally, the
last node started to send. From the last experiment, it was the victim node.
Now, it is sending in its full capacity. H1 can generate up to 1620 MBps of
traffic and H3 is receiving all of it.

On the receivers side, graph 4.5 shows that all the packets sent to H4
and H3, came to right place. H4 receives traffic of 1620 MBps for the first
second. That is all the traffic H1 can generate. From there, H4 continued to
receive in its full link capacity of 2000 MBps . Later, H3 receives traffic of
1620 MBps and continues in that way. No noticeable changes after that.
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Figure 4.5: Receiver - CC ON with 20 GBit/s link bandwidth

4.3 In search of proper IB CC parameters

As, we know, it is needed to get the right IB CC parameters, in order IB CC
to be efficient. Without the proper IB CC parameters, the IB CC will not
matter much. We have gone through a long process for finding the proper
parameters especially CCTI_Timer and Threshold. Their values have been
changed, simulation after simulation. Each time the values got increased or
decrease. For each simulation, we learnt more about how to balance them.
And finally these values which can be seen below, are accepted as the most
proper parameter values for this network topology. With this, the victim
node is not a victim anymore and when it comes to fair throughput, all the
other three nodes are sharing the link capacity (H4-SW4 link) in a fair way.
After all, every node is performing in its best possible way.

The IB CC parameters of this experiment.

**.Threshold = 2
**.Marking_Rate = 1
**.Packet_Size = 1
**.CCTI_Timer = 20
**.CCTI_Limit = 128
**.CCTI_Min = 0
**.CCTI_Increase = 1
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4.4 Bigger host-to-switch link

After, we have implemented two simulations where the link between hosts
and switches had a capacity of 20 GBit/s, it is decided to conduct an ex-
periment, in which the link capacity between the hosts and switches get
increased into 40 GBit/s. The switch to switch link will stay the same as
before (40 GBit/s). First, the experiment is done without IB CC then later
with IB CC. Both the performance of the senders and the receivers will be
measured. These simulations are identical to those previously conducted
in the last two sections except the link size.

According to graph 4.6, H1 starts to inject traffic at a level of 2670 MBps
, then H2 starts at a level of 1850 MBps but soon after that, it stabilised to
1700 MBps , at the same time H1 went down to the same level as H2. H2‘s
performance stayed there while H1´s performance turned down to 850 as
H3 started sending traffic. The rest of the experiment, both nodes contin-
ued at the same level. The victim node started finally at 850 MBps .

0 1 2 3 4
Time

0

500

1000

1500

2000

2500

3000

B
a
n
d
w

id
th

 (
M

B
/s

)

CC OFF
H1 to H4

H2 to H4

H3 to H4

H5 to H3

Figure 4.6: Sender - CC OFF with 40 GBit/s link bandwidth

The receivers´performance is shown in graph 4.7, It can be seen that H4
is receiving traffic from one host for the first second, then as second host
began to send, the traffic it receives get increased to 3400 MBps and stabi-
lized there for H4. For H3, it got traffic three second after the simulation
is ran and the traffic it received leveled at a level of 850 MBps for the rest
of the simulation time. Resource sharing of the nodes are not changes at
all but when it comes link capacity usage. The performance has increased
about 160%. It is still less than the 200% which was the ideal performance.
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Read in the analysis and discussion chapter for why it could not maintain
to use the whole capacity.
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Figure 4.7: Receiver - CC OFF with 40 GBit/s link bandwidth
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Figure 4.8: Sender - CC ON with 40 GBit/s link bandwidth

When the IB CC is enabled and the host-switch link capacity is in-
creased to 40 GBits/s, it is showing a picture more like the one, we have
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explained in previous paragraph. Resource sharing is just like what it was,
when the host-switch link was 20 GBit/s, but the link usage level is not
proportional to the increase which the host-switch link capacity is double.

H4-SW4 link capacity of 40 GBit/s is never used in its full capacity. Ac-
cording to graph 4.9, at onces, right after H2 started to send, it reached its
peak of about 3500 MBps . Soon after that it turned down to 3400 MBps
and stayed there the whole time. H5 to H3 traffic flow is also performing
very poor. It is sending the whole time about 2600 MBps . One excuse is
that a single host does not generate enough traffic to fill the whole link, but
still the difference is too big, and that excuse to be taken as the sole cause
of the bad performance.

No attempts were tried to experiment the existence of better suited IB
CC parameters for this network topology after the host-switch link capac-
ity was increased. The same IB CC parameters as before were used. It is
believed as the resource sharing is the same and has not changed at all, that
the parameters can not be the root of the poor link usage performance. The
cause is probably related to the "in/out" limitations of the PCIe i the sim-
ulator internal to the end node. No changes have been done in the .ini file
except increasing the host-to-switch link size. So there is a full possibility.
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Figure 4.9: Receiver - CC ON with 40 GBit/s link bandwidth

4.5 How IB CC parameters influence performance

By now, we are all well aware that the IB CC parameters have a huge impact
to the performance of the network. The parameters have a great influence
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to the behaviour of the whole network, both on the switch side and also
the host side. From chapter two and later chapter three, we learnt much
about the most important parameters and got a list of all the parameters.
It was decided to focus just two main parameters, one from the Channel
Adapter (CCTI_Timer) and one from the Switch (Threshold). And we will
do two simulations, in which the Packet_Size parameter from the Switch
is changed from one to eight.

First, we started to focus the main two parameters. A total of 16 sim-
ulations were conducted to see whether there are common patterns that
are present in all of them. Four different values have been given to the
Threshold and as well as to the CCTI_Timer. Threshold‘s given values
are two, four, eight and ten. While CCTI_Timer‘s given values are twenty,
forty, eighty, and hundred twenty.

After all the simulations were done, a system of comparison was intro-
duced. Two values of the Threshold were chosen which are the values; two
and eight (Look scenario 1 and 2).

Scenario 1 Scenario 2

Threshold CCTI_Timer Threshold CCTI_Timer

2 ---> 20 8 ---> 20
40 40
80 80

120 120

The performances of when Threshold value is two and the CCTI_Timer
are twenty, forty, eighty and hundred twenty will be presented side by
side to each other. Exactly, the same will happen when the value of the
Threshold is eight. And from CCTI_Timer, values twenty and eighty will
each go head to head to every and each of the Threshold‘s values (two,
four, eight and ten). See scenario 3 and 4.

Scenario 3 Scenario 4

Threshold CCTI_Timer Threshold CCTI_Timer

2 <--- 20 2 <--- 80
4 4
8 8

10 10
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We are doing this to get a broader picture of how the IB CC parameters
influence performance. For each part, one of the parameters stays the same,
while the other one changes four times.
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4.5.1 Scenario 1 - Threshold 2

In this part, the parameter Threshold get a value of two, while
CCTI_Timer‘s value is twenty for the first time, then forty for the second
time, eighty for the third time and finally, the value is hundred twenty.
Both senders and receivers get measured. The graph of the left side is for
the senders and the one the right side is for the receivers. By putting side
by side, a graph of the senders and one for the receivers, we can see and
study their performances easily. After that one can see how much the per-
formance changed when the CCTI_Timer is changed one level up.

The first line shows the result from when the Threshold is two and
CCTI_Timer is twenty (graph 4.10 and 4.14). This one, is the one with the
best performance. There is no victim at all and the throughput is shared
fairly. Each of the three congestion contributors get a third of the H4-SW4
link capacity.

Below it, graph 4.11 and graph 4.15 shows how the performance
changed after the value of the CCTI_Timer is changed to forty. There are
noticeable decline on the performances of H1, H2 and H3. When H1 is the
only one sending, there is no problem, but as H2 and later H3 starts to send,
they will never manage to use all the capacity that are available for them.
H4‘s receiving peak is about 1900 MBps of the 2000 MBps capacity it can
receive. H5 (the victim) maintained to keep up in its maximum capacity
that it can generate and is unchanged.

Graph 4.12 and graph 4.16 show when the value of the CCTI_Timer is in-
creased to eighty. The performance decline is more noticeable than before.
H1 starts fine, then H2 starts and the performance deteriorates instead of
increasing. And as H3 starts to send, their common traffic injection going
to H4, is measured to be as low as about 1450 MBps . H5 is not effected by
the change. It is performing as it did last two times.

The last two parallel graphs are graph 4.13 and 4.17, H5 is the same as
before but the first second of H1 is the same as before too. Beside that, the
performance is the worse that have been experienced so far. H4 receives
as low as 1300 MBps from when H2 starts to send and goes down to 1100
MBps as H3 starts to send and keeps on the same for the rest of the simula-
tion.
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Figure 4.10: Threshold=2, Timer=20
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Figure 4.11: Threshold=2, Timer=40

0 1 2 3 4
Time

0

200

400

600

800

1000

1200

1400

1600

1800

B
a
n
d
w

id
th

 (
M

B
/s

)

CC ON - Threshold 2, CCTI_Timer 80

H1 to H4

H2 to H4

H3 to H4

H5 to H3

Figure 4.12: Threshold=2, Timer=80
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Figure 4.13: Threshold=2, Timer=120
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Figure 4.14: Threshold=2, Timer=20
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Figure 4.15: Threshold=2, Timer=40
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Figure 4.16: Threshold=2, Timer=80
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Figure 4.17: Threshold=2, Timer=120
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4.5.2 Scenario 2 - Threshold 8

The value of parameter Threshold is increased to eight in this part. We keep
to the same system as previous part. The CCTI_Timer values are twenty,
forty, eighty and hundred twenty. The Threshold will stay the same the
whole time in this part. As the previous part, we start with when the
Threshold is eight and CCTI_Timer is twenty.

Graph 4.18 and graph 4.22 show how the performance is well in the first
second, after that, the performances of both H1 and H2 decline to about 950
MBps each, not the 1000 MBps which was supposed to. And as H3 starts
to inject traffic in the network. H4 receives about 1900 MBps , slightly less
than the 2000 MBps , it can receive. This experiment‘s result is good but not
good enough. All the available capacity of the link between H4 and SW4,
was never used to its maximum. For H3, it receives all the traffic, H5 can
generate.

Next in line are, Graph 4.19 and graph 4.23, whose show us the result of
when the Threshold is eight and the CCTI_Timer is forty. Almost the whole
time during the simulation, H1, H2 and H3 have a combined throughput
of slightly less than 1600 MBps . H2 can be noticed to perform little better
than the other two as H3 started to send traffic. H5 is doing well, there is
no victim in this simulation as well as the last simulation were.

Graph 4.20 and graph 4.24, and also graph 4.21 and graph 4.25, both
simulations show how receiving performance of H4 deteriorates as the
value of parameter CCTI_Timer is increased more. The first of these two
simulations, the CCTI_Timer is eighty and the second one the CCTI_Timer
is hundred twenty. The first simulation H4 receives at low as 1100 MBps ,
while for simulation two, H4 receives in its lowest point (two third of the
time) as little as 800 MBps . Every time, H1 is sending in its full capacity
for the first second and there is no victim node at any time.

37



Senders

0 1 2 3 4
Time

0

200

400

600

800

1000

1200

1400

1600

1800

B
a
n
d
w

id
th

 (
M

B
/s

)

CC ON - Threshold 8, CCTI_Timer 20

H1 to H4

H2 to H4

H3 to H4

H5 to H3

Figure 4.18: Threshold=8, Timer=20
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Figure 4.19: Threshold=8, Timer=40
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Figure 4.20: Threshold=8, Timer=80
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Figure 4.21: Threshold=8, Timer=120
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Figure 4.22: Threshold=8, Timer=20
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Figure 4.23: Threshold=8, Timer=40
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Figure 4.24: Threshold=8, Timer=80
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Figure 4.25: Threshold=8, Timer=120
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4.5.3 Scenario 3 - CCTI_Timer twenty

In scenario 1 and 2, we have experienced how CCTI_Timer influence the
performance of the network. We kept the Threshold the same in each sce-
nario. Scenario 1, the Threshold was two and the second one, it was eight.
For this scenario and the next one, we will do the opposite of what we
have done in scenario 1 and 2. The CCTI_Timer will stay the same but the
Threshold will be changed in each simulation.

CCTI_Timer is twenty and Threshold is two for this simulation (see
graph 4.26 and graph 4.30). The outcome of this simulation have been ex-
plained before, two times in the past sections, but it can be said brief that
it is the best among all the outcomes. And graph 4.27 and graph 4.31 show
what happens when the CCTI_Timer stays the same but the Threshold is
changed to four. No, major changes happen. The performances are very
much the same as when the Threshold was two. The throughput is shared
by H1, H2 and H3 almost equally and H5 is sending all the traffic, it can
generate to H3.

For graph 4.28 and graph 4.32, in which the Threshold is eight. It can
be seen that unlike, the last two simulations, H4 is not receiving all it can
receive. When H2 starts to send, its and H1‘s combine traffic is not reaching
the 2000 MBps which H4 reached earlier. Their combine injection is about
1850 MBps until H3 starts to send, in which the trios combined injection
is about 1950 MBps . It is not bad but not as good as the last two results
where all H4‘s received close to 2000 MBps . For H5 no changes have been
registered.

And for last, graph 4.29 and graph 4.33 visualises the performance
when the Threshold is ten. First second the performance is the best it could
be, and for the second second, the combined performances of H1 and H2
is about 1750 MBps and for the third second, the trios combined perfor-
mances went up to at most 1900 MBps . This is the worst so far of the
performances in when CCTI_Timer is twenty. The performances got worse
as the Threshold increased from two to finally ten.
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Figure 4.26: Threshold=2, Timer=20
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Figure 4.27: Threshold=4, Timer=20
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Figure 4.28: Threshold=8, Timer=20
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Figure 4.29: Threshold=10, Timer=20
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Figure 4.30: Threshold=2, Timer=20
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Figure 4.31: Threshold=4, Timer=20
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Figure 4.32: Threshold=8, Timer=20
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Figure 4.33: Threshold=10, Timer=20
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4.5.4 Scenario 4 - CCTI_Timer eighty

The CCTI_Timer will remain eighty in the next four simulations while the
Threshold will be two, then four, eight and finally ten. The first graphs
(4.34 and 4.38) show how the performance is when CCTI_Timer is eighty
and Threshold is two. As usual from last simulations, H1 starts at about
1650 MBps which is the maximum, it can generate. H4, the receiver re-
ceives all. Then H2 starts to send. In which both of them, H1 and H2 start
sending little bit less than 800 MBps . As, H3 starts to send traffic, all three
of them, send around 500 MBps each. H4 receives around 1500 MBps of
traffic. H5 performance fine. So, no victim node has been observed.

Graph 4.35 and 4.39, fellows the same pattern as the last simulations. In
this simulation the Threshold is increased to four. Its performance is close
to last simulation‘s performance. There is about 100 MBps of decrease in
all the performances of H1, H2 and H3, except the very first second, which
always is the same for all the simulations that have been conducted until
now.

When we increased the value of the Threshold one more time to eight,
the performance get even worse than ever since swiping the Threshold
started. H2 starts to send and both H1 and H2 send around 600 MBps
each and as H3 starts to send, all of them send around 400 MBps . H4‘s
receiving rate goes down from 1650 MBps to 1200 MBps and then to 1100
MBps . H5 still does well as it was supposed to. In graphics see graph 4.36
and graph 4.40

And finally, the last simulation that will be presented in this section is
that in which the Threshold is changed to ten, still the CCTI_Timer is eighty,
as it has been last three simulations. Graph 4.37 and 4.41 show that from
when H2 starts to send, its and H1‘s rate turn to be around 500 MBps each.
When H3 activated, Its and H1‘s become around 300 MBps each and H2
performed slightly better in about 350 MBps . H5 stays as it always is,
around 1650 MBps . It can be seen that H4 from the second second receives
only 1000 MBps and then it is receiving rate turn down to around 950 MBps
. That rate is less than half of what it has capable to receive. With these pa-
rameters, much of the bandwidth is unused.

On the appendices, some more simulation results like these but with
different parameters can be seen. We believe that one can easily view the
rest of the graphs and continue to build their understand of how IB CC pa-
rameters influence performance.
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Figure 4.34: Threshold=2, Timer=80
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Figure 4.35: Threshold=4, Timer=80
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Figure 4.36: Threshold=8, Timer=80
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Figure 4.37: Threshold=10, Timer=80
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Figure 4.38: Threshold=2, Timer=80
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Figure 4.39: Threshold=4, Timer=80
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Figure 4.40: Threshold=8, Timer=80
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Figure 4.41: Threshold=10, Timer=80
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4.5.5 Influence of Packet_Size parameter

We have seen how the Threshold and CCTI_Timer influence performance.
Now, Packet_Size and its influence will be examined here. For the next
four simulations, each simulation has the same IB CC parameters with
one other simulation, except the Packet_Size which is different. In that
way, each two are paired together, a comparison of every pair will be done.
The goal is to see how much influence parameter Packet_Size has. For
all the previous simulation and those on the appendices have all of them
a Packet_Size of one. Two from the previous simulations which has a
Packet_Size of one, will go head to head two new simulations with a
Packet_Size of eight.

The first to go, are the ones who have a Threshold of two and a
CCTI_Timer of twenty. From Graph 4.42 and graph 4.44, it can be viewed
how it performed when it has a Packet_Size of one. Below it, graph 4.43
and 4.45 show when it has a Packet_Size of eight.
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Figure 4.42: Packet_Size 1
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Figure 4.43: Packet_Size 8
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Figure 4.44: Packet_Size 1
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Figure 4.45: Packet_Size 8

No, major difference can seen from the graphs. The numbers are the
same or very close to each other. Viewing both the senders graphs and the
receivers graphs, no difference been detected.
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One single simulation can not proof or disproof about any thing, so one
more simulation has been conducted. Still the Threshold and CCTI_Timer
are the same for both the simulation that we will compare to each other. The
Threshold is ten and CCTI_Timer is 20 for both of them. The Packet_Size
is once one and again eight.

Viewing the result of these two simulations when the Packet_Size is
one (4.46 and 4.48) and when it is eight (4.47 and 4.49), seem very much the
same. Every up-swing and down-swing can be found both of the results.
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Figure 4.46: Packet_Size 1
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Figure 4.47: Packet_Size 8
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Figure 4.48: Packet_Size 1
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Figure 4.49: Packet_Size 8

As, stated earlier, the result of one simulation is not enough to proof
anything and two simulations can still not be much of evidence, but we
have to acknowledge that it must mean something as every pair of results
shown to be identical. We went back to the configuration file and we found
out that in the configuration file, the packet length in bytes was 2176 bytes.
And that both the values that we tested are smaller than the packet length
size, so increasing the Packet_Size from one to eight do not do any differ-
ence.
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Two more simulations have been conducted again, these simulations
have a Packet_Size value of 2200. This value is bigger than the packet
length size in the configuration file which is 2176 bytes.
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Figure 4.50: Packet_Size 2200
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Figure 4.51: Packet_Size 2200

These two graphs 4.50 and 4.51 are clearly different from graph 4.46
and 4.47. We can see that the new Packet_Size value has changed the
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whole result. These new results are identical to the result of when the IB
CC is off (see graph 4.2). By having a value which is bigger the one from
the configuration file shown to disable the effect of the IB CC. For more
analyses, see the analyses chapter, Packet_Size section.
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Chapter 5

Analysis and Discussion

In this chapter, we analyse and discuss the results and explain our find-
ings. Results from when IB CC was enabled and when it was disabled, will
be compared and analysed, both for throughput and fairness. Also, the
results gained after the host-to-switch link size was increased will too be
analysed. The kind of influences parameters Threshold, CCTI_Timer, and
Packet_Size have to congestion contributors, congestion victim and traffic
receiving nodes, will be studied and presented in this chapter. In chapter
three "the approach", some expectations toward the results have been pre-
sented, those expectations are going to be compared the real results from
chapter 4, "the result chapter". And finally, we are also going to see the val-
ues that are considered to be the best for this topology.

This chapter consists six different sections, each section is supposed to
address one or several relating issues. We are hoping that the content of
this chapter, will answer all issues that have been touched in the last four
chapters.

5.1 Throughput and Fairness

The results of two different simulations (section 4.1 and 4.2), in which one
of them has IB CC enabled, while the other one has not, was conducted.
The one without IB CC was first conducted and as its result was recorded,
the second one with IB CC was also conducted. Four graphs have been
plotted from their results (see sections 4.1 and 4.2). From that graphs, it is
very easy to see the improvements caused by the IB CC.

When it comes to the throughput, the receiving rate of H4 stayed the
same, as there were no room for an improvement, but the throughput of
the victim flow (H5-to-H3) have improved. From previous simulation, it
could only benefit from a quarter of the resources. But now, all the traffic
that H5 is capable to generate, gets to destination H3. No more victim flow
exists after IB CC was enabled. All the negative impact the congestion had
on the victim flow is removed.
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And for the fairness, the contributors (H1, H2 and H3) get each a third
of H4‘s available receiving capacity. When the IB CC was disabled, H1
and H3 shared a half and the other half was for H2. An eight percent
improvement for each of them (H1 and H3) is resulted. H2‘s unfair share
was eliminated.

Table 5.1: A comparison of when IB CC is on and when it is off
Node Throughput Fairness Expectations
H1 - sending Better Fairer As expected
H2 - sending Worse Fairer As expected
H3 - sending Better Fairer As expected
H5 - sending Better Fairer As expected
H3 - Receving Better As expected
H4 - Receving Same As expected

It is a good news that all the nodes are using their fair share of the band-
width and the congestion has not any impact to any node rather than those
contributing. The receiving rate of both the receiving nodes (H3 and H4)
are on top depending on the traffic injections sent toward them. When this
result is compared to the expectations that was presented in the approach
chapter, they are very close to each other (See the last column of the tables
5.1.

5.2 Bigger host-to-switch link

The capacity of the host-to-switch links have been increased from 20
GBit/s to 40 GBit/s (section 4.3), while the switch-to-switch link size
stayed the same as previous (40 GBit/s). Two new simulations have been
implemented from this slightly modified network topology. Once IB CC is
disabled and the second time it is enabled. These two results is going to be
compared to those of when the host-to-switch link size were 20 GBit/s.

Table 5.2: Improvements in % when host-to-switch link is bigger
Node Throughput improvement Fairness
H1 - sending 160 percent Same
H2 - sending 160 percent Same
H3 - sending 160 percent Same
H5 - sending 160 percent Same
H3 - Receiving 160 percent Same
H4 - Receiving 160 percent Same

A major throughput improvement has been observed, but this improve-
ment is not in the reach of what one may expect (two times the previous
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throughput). All the sending and receiving nodes improved their through-
put performances around 160 percent. The throughput improvement is
constant all the time and for all the nodes in both the two simulations. But
the bandwidth fair sharing is exactly the same as their counterparts.

The reason why performances never reached its peak of around 40
GBit/s is that there is a limitation in the configuration. 34 GBit/s is the
upper limit for the receivers. While we were implementing this simulation
nothing else was changed except the host-to-link size. For future simula-
tions, it will be nice to do some more modifications in the configuration file,
when the link capacity is increased. In that way, there can be a chance to
further improve the performance.

5.3 CCTI_Timer influence

According to the simulations that are presenting in this project, CCTI_Timer
proofed to be the most influential when compared to the influences
of Threshold and Packet_Size. Table 5.3 displays how each of four
simulations with different values of CCTI_Timer perform against the result
of a simulation without IB CC. In a recap the performance rate of a
simulation without IB CC (NO CC) was 2000 MBps for H4 and 500 for H3.
The values of H4‘s performance rate is when all the contributing nodes
start to send, or the last three seconds of the simulation‘s total five second
running time. The improvement of the victim flow is constant when IB CC
is on. And it is the performance of the contributors which changes each
time.

Table 5.3: CCTI_Timer against when IB CC is off
Simulation H4 receiving rate H3 receiving rate Total Improvement
NO CC 2000 500 100%
20 - 2 2000 1650 146%
40 - 2 1900 1650 142%
80 - 2 1450 1650 124%
120 - 2 1300 1650 110%

In this comparison, a noticeable improvement is registered. Best
performing one is when the Threshold is two and the CTI_Timer is twenty,
with a total improvement of 146%. Then 142%, 124% and 110%. All of them
shown to increase the overall performance.
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Table 5.4: CTI_Timer against when IB CC is off
Simulation H4 receiving rate H3 receiving rate Total Improvement
NO CC 2000 500 100%
20 - 8 1900 1650 142%
40 - 8 1600 1650 130%
80 - 8 1100 1650 110%
120 - 8 800 1650 98%

When another four simulations were conducted, this time with a big-
ger Threshold (eight). Still the CTI_Timer influences the performance into
a positive way. Three of the four simulation shown improvement while the
last one‘s performance about the same as when IB CC is off.

The reason why CCTI_Timer has so much of influence is that when the
destination registries a FECN bit from the switch and it returns a packet
with BECN bit to the source. The source puts a gap between its injection
rates. That gap widens as more BECN bits arrive at the source. If no new
BECN arrives, it starts to narrow down, until normal injection rate resumes
again. To increase injection rate again, the source relies on the CCTI_Timer.
The higher value CCTI_Timer has, the longer time it takes to reach normal
injection rate, even though the congestion has been removed a long time
ago.

5.4 Threshold Influence

Threshold shown also to have a big influence to the performance of the
network topology with the enabled IB CC. A great increase for all the
different Threshold values when the CCTI_Timer is twenty. When the
Threshold‘s values are two and four, a total overall improvement of 146%
is registered that is the highest point, performance can reach. Followed by
144% and 142%.

Table 5.5: Threshold influence - CCTI_Timer twenty
Simulation H4 receiving rate H3 receiving rate Total Improvement
NO CC 2000 500 100%
2 - 20 2000 1650 146%
4 - 20 2000 1650 146%
8 - 20 1950 1650 144%
10 - 20 1900 1650 142%

The closeness of the results are little worrying, compared to the previ-
ous section where the CCTI_Timer was focused. Each time the value of the
CCTI_Timer is changed, the performance differentiated very much. From
table 5.5, we can see that changing the Threshold value have an impact but
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not as big as when the CCTI_Timer is changed.

Table 5.6 displays the overall performances of the receivers in percent-
age when the Threshold varies and the CCTI_Timer is eighty. The results
vary from 126% to 104%. That is also a good improvement, but far less
than the previous one.

Table 5.6: Threshold influence - CCTI_Timer eighty
Simulation H4 receiving rate H3 receiving rate Total Improvement
NO CC 2000 500 100%
2 - 80 1500 1650 126%
4 - 80 1400 1650 122%
8 - 80 1100 1650 110%
10 - 80 950 1650 104%

From these simulations, we have learnt that modifying Threshold
parameter is important and can make an improvement to the network.
Each time the values get increased noticeable changes can be observed in
the result, that shows the influence Threshold parameter has. We have
also found out that smaller Threshold values have the best performances.
And whenever a smaller Threshold value is combined with a smaller
CCTI_Timer value, the performance shown to the best.

5.5 Packet_Size influence

Four simulations have been compared into pairs (section 4.4.5). Two with a
Packet_Size of one and two with a Packet_Size of eight. All the other pa-
rameters were the same for every opposite ones except their Packet_Size
values. In that way, we have paired them into two pairs with two different
Packet_Size values. The goal was to see the influence Packet_Size has.

From the results, no differences between each pair, have been detected
in any of the two pairs. We later found out that in the configuration file,
the packet length in bytes was 2176 bytes. And that both the values we
used in the simulations, are smaller than the packet length size value in the
configuration file, because of that no changes have been recorded.

Packet_Size works this way. When a congestion state occurs, pack-
ets get FECN marked. The FECN bit set, depends on Packet_Size and
Marking_Rate. Packets with a size smaller than the Packet_Size will not
get a FECN bit set. Both of the values are smaller and because of that the
Packet_Size parameter did not have any impact in these simulations. We
believe if the Packet_Size value was bigger than 2176 bytes then the re-
sult will have been totally different. All packets will have got FECN bit, in
which could have destroyed the whole effect of the IB CC and the result
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will have been similar when the IB CC is disabled.

From that theory, we decided to do the same simulation again but this
time, the Packet_Size value is bigger than the packet length size in the con-
figuration file (2176). The Packet_Size value of these two new simulations
are 2200 bytes.

After both the simulations are finished. We can with a confidence say
that the theory mentioned above is true. When the Packet_Size value is
greater than the packet length size in the configuration file, the IB CC effect
will not exist anymore. The result is the same as when the IB CC was dis-
abled.

5.6 Best IB CC values for this topology

The best IB CC parameters values so far are the ones shown below. It is
only the Threshold, CCTI_Timer and Packet_Size which have been tested
in these simulations. When Threshold is two, CCTI_Timer is twenty and
Packet_Size is one (or less than its given value in the configuration file)
performed best of all the different values which have been tested during
this thesis period.

The best IB CC parameters so far for this topology.

**.Threshold = 2
**.Marking_Rate = 1
**.Packet_Size = 1
**.CCTI_Timer = 20
**.CCTI_Limit = 128
**.CCTI_Min = 0
**.CCTI_Increase = 1

These values eliminated all negative impacts that the congestion had on
the victim flow. And they contributed a fairness to the flows that otherwise
would be treated unfairly due to their positioning in the network topology.
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Chapter 6

Conclusion and Future Work

In this thesis, we studied and explored the influence and effect of Infini-
Band Congestion Control in interconnection networks. Simulations have
been conducted when InfiniBand Congestion Control (IB CC) is enabled
and when disabled. There have also been a search for finding proper IB
CC parameters and to understand the influence of different parameters,
especially Threshold, CCTI_Timer, and Packet_Size . Not only that but we
have also increased the size of some of the links in the network topology,
in order to see what kind of effect that action would have to the overall
performance of the network.

We found out that when IB CC is enabled the throughput is better and
there is a fairness among all nodes. The node‘s positions in the network will
no longer have negative effects on fairness; every node get its fair share of
the bandwidth. For the victim flow, all the negative impacts of the conges-
tion have been removed without affecting congestion contributors‘ perfor-
mances.

There are strong indications that the parameters Threshold and
CCTI_Timer, have great influence on the performance. In both cases, when-
ever one parameter is changed and all others are kept constant, a notice-
able change get registered in the result of the simulation. Furthermore, the
smaller values are shown to produce a better performing results. And for
the Packet_Size When the Packet_Size value is bigger than the packet
length size in the configuration file. All packets will get FECN bit, in which
destroys the whole effect of the IB CC and the result will be similar to when
the IB CC is disabled.

A major throughput improvement has been observed when the host-
to-switch capacity was doubled. All the sending and receiving nodes im-
proved their throughput performances around 160 percent. The through-
put improvement is constant. There is also a fairness among all the nodes,
where every node get its fair share of the bandwidth.
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For future work, there are much to do. Only three IB CC parameters
have been explored, all the other IB CC parameters are still unexplored
and needs more studying. The parameters do not have the same affect to
all network topologies, so for each time, a system architecture is designing
a network topology, more testing for that given topology must be done.
But, the content of this project and future similar work will help others to
understand the IB CC parameters better.

For future simulations, it will be nice to do some more modifications in
the configuration file, when the link size is modified. In that way, there can
be a chance to further improve the performance. As, there are few available
guidelines, any kind of exploration of this technology is recommended.
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Appendix A

Appendix

A.1 OmNet++ configuration files

A.1.1 the Ned file

network FABRIC extends h5_s4
{

parameters:
}
package networks.h5_s4;

import src.HCA;
import src.Switch;
import src.IDGenerator;

module h4_s4
{

@display("bgb=946,315");

submodules:
H_1: HCA {

@display("p=108,116");
}
H_2: HCA {

@display("p=108,209");
}
H_3: HCA {

@display("p=526,116");
}
H_4: HCA {

@display("p=526,209");
}

H_5: HCA {
@display("p=108,46");

}
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SW1: Switch {
parameters:

numSwitchPorts = 4;
@display("p=248,116");

gates:
out[4];
in[4];

}
SW2: Switch {

parameters:
numSwitchPorts = 3;
@display("p=248,209");

gates:
out[3];
in[3];

}

SW3: Switch {
parameters:

numSwitchPorts = 3;
@display("p=366,116");

gates:
out[3];
in[3];

}
SW4: Switch {

parameters:
numSwitchPorts = 3;
@display("p=366,209");

gates:
out[3];
in[3];

}

IDGen: IDGenerator {

@display("p=311,23");
gates:

gate[5];
}

connections:
//SW1 --> HCAs
SW1.out[1] --> { delay = 5ns; } --> H_1.in;
H_1.out --> { delay = 5ns; } --> SW1.in[1];
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SW1.out[3] --> { delay = 5ns; } --> H_5.in;
H_5.out --> { delay = 5ns; } --> SW1.in[3];

SW2.out[1] --> { delay = 5ns; } --> H_2.in;
H_2.out --> { delay = 5ns; } --> SW2.in[1];

SW3.out[1] --> { delay = 5ns; } --> H_3.in;
H_3.out --> { delay = 5ns; } --> SW3.in[1];

SW4.out[1] --> { delay = 5ns; } --> H_4.in;
H_4.out --> { delay = 5ns; } --> SW4.in[1];

SW1.out[0] --> { delay = 5ns; } --> SW3.in[0];
SW3.out[0] --> { delay = 5ns; } --> SW1.in[0];

SW1.out[2] --> { delay = 5ns; } --> SW2.in[2];
SW2.out[2] --> { delay = 5ns; } --> SW1.in[2];

SW2.out[0] --> { delay = 5ns; } --> SW4.in[0];
SW4.out[0] --> { delay = 5ns; } --> SW2.in[0];

SW3.out[2] --> { delay = 5ns; } --> SW4.in[2];
SW4.out[2] --> { delay = 5ns; } --> SW3.in[2];

IDGen.gate[0] <--> { delay = 5ns; } <--> H_1.gateIDGen;
IDGen.gate[1] <--> { delay = 5ns; } <--> H_2.gateIDGen;
IDGen.gate[2] <--> { delay = 5ns; } <--> H_3.gateIDGen;
IDGen.gate[3] <--> { delay = 5ns; } <--> H_4.gateIDGen;
IDGen.gate[4] <--> { delay = 5ns; } <--> H_5.gateIDGen;

}

network FABRIC extends h5_s4
{

parameters:
}
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A.1.2 The fdbs file

file.fdbs

0: 255 1 2 0 0 3
1: 255 2 1 0 0 2
2: 255 0 0 1 2 0
3: 255 0 0 2 1 0

A.1.3 The fdbs.ini file

file.fdbs.ini

[General]
**.SW1.fdbIndex = 0
**.SW1.DRGroups = " "
**.SW2.fdbIndex = 1
**.SW2.DRGroups = " "
**.SW3.fdbIndex = 2
**.SW3.DRGroups = " "
**.SW4.fdbIndex = 3
**.SW4.DRGroups = " "

A.1.4 The .ini file

The .ini file

# This file is shared by all ib_credits simulations.
# Lines beginning with ‘#’ are comments

[General]

sim-time-limit = ${simtime=0.5}s # max number of simulation seconds to run
network = FABRIC # this line is for Cmdenv
print-undisposed = false
debug-on-errors = true

cmdenv-express-mode = true
#cmdenv-express-mode = false
# cmdenv-runs-to-execute=1

##################################################################
# "speed"
##################################################################

**width = 4 # link width 4x, 8x, or 12x
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**speed = 5.0 # link speed 2.5, 5.0, or 10.0
# interface width, should we set to match the link width
#**vlarb.width = 4 # switch core frequency should be 200, 400, and 800 for SDR, DDR, and QDR respectively
**SW**vlarb.coreFreq_MH = 800
#**.SW**.port[0].obuf.width = 4
#**.SW**.port[0].ibuf.width = 4
# the next one is not used(?)
#**L**vlarb.coreFreq_MH = 200
# HCAs frequency is the wire frequency, should be 125, 250, and 500 for SDR, DDR, and QDR respectively
**H_**vlarb.coreFreq_MH = 250

##################################################################
# GENERATOR
##################################################################
**.gen.floodVLs = "0"
**.gen.dstHotSpotPerc = 0

**.H_1.gen.genStartTime = 0s
**.H_2.gen.genStartTime = 1s
**.H_3.gen.genStartTime = 2s
**.H_5.gen.genStartTime = 3s

#**.H_1.gen.slowStart = 0
#**.H_1.gen.genFullTime = 0.1s # time after genStartTime to be at full

#never start these
**.H_4.gen.genStartTime = 10s # relates to sim time - must be higher to avoid traffic gen

#################
# DESTINATION
#################

# possible values are: dstLid, dstSeqOnce, dstSeqLoop, dstRandom, dstHotSpot, dstBurstHotSpot
**.dstSeqMode = "dstLid"
# send by the given dstLid parameter
**H_1**.srcLid = 1
**H_2**.srcLid = 2
**H_3**.srcLid = 3
**H_4**.srcLid = 4
**H_5**.srcLid = 5

**H_1**.dstLid = 4
**H_2**.dstLid = 4
**H_3**.dstLid = 4
**H_4**.dstLid = 1
**H_5**.dstLid = 3

63



#################
# TRAFFIC
#################
**.gen.trafficDist = "trfFlood"
**.gen.dstSeqVecFile = ""
**.gen.sizeSeqVecFile = ""
**.gen.dstSeqIndex = 0

##################################################################
# SWITCH
##################################################################
# generated file holding port groups and FDBs vector indexes
**.SW**.fdbsVecFile = "h4_s4.fdbs"
include h4_s4.fdbs.ini

#################
# TESTING (Tuning)
#################
#**gen.srcLid = 1
**gen.burstLength = intuniform(20,100)
**gen.burstNumber = 128
**gen**.interBurstDelay = 0

##################################################################
# IBUF
##################################################################
**H**.ibuf.maxStatic* = ${hibuf=1000}
**H**.ibuf.totalBufferSize = ${hibuf}
#**ibuf.maxStatic0 = 96 # in credits
**ibuf.maxStatic* = ${sibuf=1000} #
**ibuf.totalBufferSize = ${sibuf} # in credits
# speedup
**ibuf.maxBeingSent = 1

**.Victim_Mask = 1

#####################################
# RUNS
#####################################
**.logInterval = ${logint=1}ms #5
#**.vlarb.recordVectors = 0
**.recordVectors = 0
include ../../src/modules.ini

[Config flood]
**gen**.trafficDist = "trfFlood"
description = "Simple Run"
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#fast interswitch link:
**SW**.port[0].obuf.width = 4
**SW**.port[0].obuf.speed = 10.0 #toban ayay ahayd
**SW**.port[0].ibuf.maxBeingSent = 2
**SW**.port[0].ccmgr.Victim_Mask = 0
**SW**vlarb.coreFreq_MH = 800
#**SW**.port[0].ibuf.totalBufferSize = ${swsw=2000}
#**SW**.port[0].ibuf.maxStatic* = ${swsw}
#**.SW2.port[3].ibuf.totalBufferSize = ${redbuf=500}
#**.SW2.port[3].ibuf.maxStatic* = ${redbuf}
#**.SW2.port[4].ibuf.totalBufferSize = ${redbuf}
#**.SW2.port[4].ibuf.maxStatic* = ${redbuf}
#---
# start of hosts:
#**.H_1.gen.genStartTime = 10s
**.H_2.gen.genStartTime = 0.1s
**.H_3.gen.genStartTime = 0.2s
**.H_4.gen.genStartTime = 0.6s
**.H_5.gen.genStartTime = 0.3s

#---
# Gen speed
**gen**.interBurstDelay = 0 # Update this one to slow down a sender...
**gen**.intraBurstDelay = ${intrabd=26}
**gen**.dstHotSpotPerc = 0
#---
# Sink must not be too efficient
**sink.pciExpWidth = 8
**sink.pciExpTransferRate = 5 # 2.5 equals PCI 1.1, 5.0 equals PCI 2.0, and 8.0 PCI 3.0
**sink.hiccupDuration_us = ${hdur=0.0125}
#**.H_5.sink.hiccupDelay_us = 0.001
**sink.hiccupDelay_us = 0.1
#---
# Msg and packet sizes:
**gen**.msgLength = 65536 # message length in number of bytes
**gen**.msgLengthInMTUs = 32 #message length in number of mtus
**mtu = 34 # number of credits in one mtu
**gen**.packetlengthbytes = 2176 # packetlength in bytes
**gen**.packetlength = 34 # packetlength in number of credits
**gen**.floodVLs = "0"
**gen**.PktLenDist = "2176"
**gen**.PktLenProb = "100"
#---
#slow node
#**SW2**.port[2].**.speed = 2.5
#**SW2**.port[2].**.width = 1
#---
#dynamic hotspot support
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#**.dynamicHSFile = ${dyn=true} # no file provided
#**.dynHSSeqVecFile = "dynHS"
#**.gen.dstSeqVecFile = "dstSeq"
#**.dstSeqMode = "dstHotSpotR"
**.H_1.gen.dstSeqIndex = 4
**.H_2.gen.dstSeqIndex = 4
**.H_3.gen.dstSeqIndex = 4
**.H_4.gen.dstSeqIndex = 1
**.H_5.gen.dstSeqIndex = 3

#---
# CC:
**.cc_enabled = true
**.cc_extended_ibuf_log = false
**.qp_level = ${qp=true}
**.cc_single_thr_per_outport = ${singleThr=true}
**.cc_single_thr_devide = ${singleThrDev=false}
#**.SW**.port[0]**.Threshold = ${SWThres=8..13 step 4}
**.Threshold = ${thr=2} #15
# REMARK: Reset_Threshold needs to be HIGHER than Threshold for the settings to make sense!
**.Reset_Threshold = ${thrlow=3}
#**.Reset_Threshold = ${ResetTH=0..13 step 4}
**.Marking_Rate = ${mr=1}
**.Packet_Size = 1 # originaly 8
**.CCTI_Timer = ${cctitimer=20}us
**.CCTI_Limit = 128
**.CCTI_Min = 0
**.CCTI_Increase = ${cctiinc=1}
**.CCT_Algorithm = 0 # 1
**.CCT_Div = ${cctdiv=95}
**.num_nodes = ${nn=10} #..70 step 10} # value originaly 50
output-vector-file = C:/cc1/1-20/dynHS/${resultdir}/${configname}-AllRandom-dynHS_false-qp_${qp}-siThr_${singleThr}_d_${singleThrDev}-ib${sibuf}_${hibuf}-Thr${thr}_${thrlow}-nn${nn}-${cctitimer}us-mr${mr}-intrabd${intrabd}-hdur${hdur}-cctdiv${cctdiv}-${logint}ms-simt${simtime}-ccti_inc${cctiinc}-RR.vec
output-scalar-file = C:/cc1/1-20/dynHS/${resultdir}/${configname}-AllRandom-dynHS_false-qp_${qp}-siThr_${singleThr}_d_${singleThrDev}-ib${sibuf}_${hibuf}-Thr${thr}_${thrlow}-nn${nn}-${cctitimer}us-mr${mr}-intrabd${intrabd}-hdur${hdur}-cctdiv${cctdiv}-${logint}ms-simt${simtime}-ccti_inc${cctiinc}-RR.sca
#output-vector-file = d:/tempresults/dynHS/${resultdir}/${configname}-NoCC-AllRandom-dynHS_${dyn}-ib${sibuf}_${hibuf}-intrabd${intrabd}-hdur${hdur}-${logint}ms-simt${simtime}.vec
#output-scalar-file = d:/tempresults/dynHS/${resultdir}/${configname}-NoCC-AllRandom-dynHS_${dyn}-ib${sibuf}_${hibuf}-intrabd${intrabd}-hdur${hdur}-${logint}ms-simt${simtime}.sca
#output-vector-file = ${resultdir}/fairness2xThr/${configname}-ib${sibuf}_${hibuf}-intrabd${intrabd}-hdur${hdur}-${logint}ms-simt${simtime}-V2-NoCC.vec
#output-scalar-file = ${resultdir}/fairness2xThr/${configname}-ib${sibuf}_${hibuf}-intrabd${intrabd}-hdur${hdur}-${logint}ms-simt${simtime}-V2-NoCC.sca
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A.2 More scenarios of IB CC parameters

A.2.1 Scenario 5
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Figure A.1: Threshold=4, Timer=20
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Figure A.2: Threshold=4, Timer=40
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Figure A.3: Threshold=4, Timer=80

0 1 2 3 4
Time

0

200

400

600

800

1000

1200

1400

1600

1800

B
a
n
d
w

id
th

 (
M

B
/s

)

CC ON - Threshold 4, CCTI_Timer 120

H1 to H4

H2 to H4

H3 to H4

H5 to H3

Figure A.4: Threshold=4, Timer=120
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Figure A.5: Threshold=4, Timer=20
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Figure A.6: Threshold=4, Timer=40
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Figure A.7: Threshold=4, Timer=80
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Figure A.8: Threshold=4, Timer=120
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A.2.2 Scenario 6
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Figure A.9: Threshold=10, Timer=20
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Figure A.10: Threshold=10,
Timer=40
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Figure A.11: Threshold=10,
Timer=80
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Figure A.12: Thresh.=10, Timer=120
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Figure A.13: Threshold=10,
Timer=20
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Figure A.14: Threshold=10,
Timer=40
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Figure A.15: Threshold=10,
Timer=80
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Figure A.16: Thresh.=10, Timer=120
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A.3 Extracting and graph plotting scripts

A.3.1 For the sender graph

#! /usr/bin/python

import re
import matplotlib
matplotlib.use("Agg")
from matplotlib import pylab as plt

def extractLines():
f=open("8-120.vec")
lines=f.readlines()

H1pattern = r’’’^(?P<H1>(1\s+))’’’
H2pattern = r’’’^(?P<H2>(724\s+))’’’
H3pattern = r’’’^(?P<H3>(1447\s+))’’’
H4pattern = r’’’^(?P<H4>(2170\s+))’’’
H5pattern = r’’’^(?P<H5>(2893\s+))’’’

H1lines = re.compile(H1pattern, re.VERBOSE)
H2lines = re.compile(H2pattern, re.VERBOSE)
H3lines = re.compile(H3pattern, re.VERBOSE)
H4lines = re.compile(H4pattern, re.VERBOSE)
H5lines = re.compile(H5pattern, re.VERBOSE)

for line in lines:
H1result = H1lines.match(line)
H2result = H2lines.match(line)
H3result = H3lines.match(line)
H4result = H4lines.match(line)
H5result = H5lines.match(line)

if H1result or H2result or H3result or H4result or H5result:
file=open("cc1floodlines.vci","a")
file.write(line)
extractLines()

def extractValues():
f=open("cc1floodlines.vci")

lines=f.readlines()

H1pattern = r’’’^(1\s+\d+\s+(?P<H1time>\d+\.\d+)\s+(?P<H1speed>\d+))’’’
H2pattern = r’’’^(724\s+\d+\s+(?P<H2time>\d+\.\d+)\s+(?P<H2speed>\d+))’’’
H3pattern = r’’’^(1447\s+\d+\s+(?P<H3time>\d+\.\d+)\s+(?P<H3speed>\d+))’’’
H4pattern = r’’’^(2170\s+\d+\s+(?P<H4time>\d+\.\d+)\s+(?P<H4speed>\d+))’’’
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H5pattern = r’’’^(2893\s+\d+\s+(?P<H5time>\d+\.\d+)\s+(?P<H5speed>\d+))’’’

H1values = re.compile(H1pattern, re.VERBOSE)
H2values = re.compile(H2pattern, re.VERBOSE)
H3values = re.compile(H3pattern, re.VERBOSE)
H4values = re.compile(H4pattern, re.VERBOSE)
H5values = re.compile(H5pattern, re.VERBOSE)

gb = 1000000

groupdict={}
valueDict={}
for line in lines:

H1result = H1values.match(line)
H2result = H2values.match(line)
H3result = H3values.match(line)
H4result = H4values.match(line)
H5result = H5values.match(line)

if H1result:
groupdict=H1result.groupdict()
valueDict.setdefault(’H1speed’,[]).append(int(groupdict[’H1speed’])/gb)
valueDict.setdefault(’H1time’,[]).append(float(groupdict[’H1time’]))
elif H2result:

groupdict=H2result.groupdict()
valueDict.setdefault(’H2speed’,[]).append(int(groupdict[’H2speed’])/gb)
#valueDict.setdefault(’H2time’,[]).append(float(groupdict[’H2time’]))

elif H3result:
groupdict=H3result.groupdict()
valueDict.setdefault(’H3speed’,[]).append(int(groupdict[’H3speed’])/gb)

elif H4result:
groupdict=H4result.groupdict()
valueDict.setdefault(’H4speed’,[]).append(int(groupdict[’H4speed’])/gb)

elif H5result:
groupdict=H5result.groupdict()
valueDict.setdefault(’H5speed’,[]).append(int(groupdict[’H5speed’])/gb)

return valueDict
extractValues()

def plotGraph():
values=extractValues()
print values

H1 = values[’H1speed’]
H2 = values[’H2speed’]
H3 = values[’H3speed’]
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H4 = values[’H4speed’]
H5 = values[’H5speed’]

H1time = values[’H1time’]

#Draw Graph
fig, ax = plt.subplots()
x=xrange(len(H1time))
LABELS = H1time

plt.plot(x, H1, color=’b’, linewidth=1.0, label=’H1 to H4’)
plt.plot(x, H2, color=’r’, linewidth=1.0, label=’H2 to H4’)
plt.plot(x, H3, color=’y’, linewidth=1.0, label=’H3 to H4’)

# plt.plot(x, H4, color=’g’, linewidth=1.0, label=’H4’)
plt.plot(x, H5, color=’c’, linewidth=1.0, label=’H5 to H3’)

#plt.xticks(x, LABELS, rotation=45)
plt.xticks(xrange(0, len(LABELS), 100), xrange(0, 5, 1))
ax.set_xlim([0, len(LABELS)-1])

# ax.set_ylim([0,18.0])
plt.xlabel(’Time’)
plt.ylabel(’Bandwidth (MB/s)’)
plt.title(’CC ON - Threshold 8, CCTI_Timer 120’)
plt.legend(loc=’best’, prop={’size’:8})
plt.subplots_adjust(bottom=0.2)
plt.tight_layout()
plt.savefig(’cc1-8-120.pdf’,bbox_inches=’tight’)

plotGraph()
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A.3.2 For the receiver graph

#! /usr/bin/python

import re
import matplotlib
matplotlib.use("Agg")
from matplotlib import pylab as plt

def extractLines():
f=open("10-80.vec")
lines=f.readlines()

H1pattern = r’’’^(?P<H1>(4\s+))’’’
H2pattern = r’’’^(?P<H2>(727\s+))’’’
H3pattern = r’’’^(?P<H3>(1450\s+))’’’
H4pattern = r’’’^(?P<H4>(2173\s+))’’’
H5pattern = r’’’^(?P<H5>(2896\s+))’’’

H1lines = re.compile(H1pattern, re.VERBOSE)
H2lines = re.compile(H2pattern, re.VERBOSE)
H3lines = re.compile(H3pattern, re.VERBOSE)
H4lines = re.compile(H4pattern, re.VERBOSE)
H5lines = re.compile(H5pattern, re.VERBOSE)

for line in lines:
H1result = H1lines.match(line)
H2result = H2lines.match(line)
H3result = H3lines.match(line)
H4result = H4lines.match(line)
H5result = H5lines.match(line)

if H1result or H2result or H3result or H4result or H5result:
file=open("sink-cc1floodlines.vci","a")
file.write(line)
extractLines()

def extractValues():
f=open("sink-cc1floodlines.vci")

lines=f.readlines()

H1pattern = r’’’^(4\s+\d+\s+(?P<H1time>\d+\.\d+)\s+(?P<H1speed>\d+))’’’
H2pattern = r’’’^(727\s+\d+\s+(?P<H2time>\d+\.\d+)\s+(?P<H2speed>\d+))’’’
H3pattern = r’’’^(1450\s+\d+\s+(?P<H3time>\d+\.\d+)\s+(?P<H3speed>\d+))’’’
H4pattern = r’’’^(2173\s+\d+\s+(?P<H4time>\d+\.\d+)\s+(?P<H4speed>\d+))’’’
H5pattern = r’’’^(2896\s+\d+\s+(?P<H5time>\d+\.\d+)\s+(?P<H5speed>\d+))’’’
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H1values = re.compile(H1pattern, re.VERBOSE)
H2values = re.compile(H2pattern, re.VERBOSE)
H3values = re.compile(H3pattern, re.VERBOSE)
H4values = re.compile(H4pattern, re.VERBOSE)
H5values = re.compile(H5pattern, re.VERBOSE)

gb = 1000000
ten = 1

groupdict={}
valueDict={}
for line in lines:

H1result = H1values.match(line)
H2result = H2values.match(line)
H3result = H3values.match(line)
H4result = H4values.match(line)
H5result = H5values.match(line)

if H1result:
groupdict=H1result.groupdict()
valueDict.setdefault(’H1speed’,[]).append(int(groupdict[’H1speed’])/gb)
valueDict.setdefault(’H1time’,[]).append(float(groupdict[’H1time’])*ten)
elif H2result:

groupdict=H2result.groupdict()
valueDict.setdefault(’H2speed’,[]).append(int(groupdict[’H2speed’])/gb)
valueDict.setdefault(’H2time’,[]).append(float(groupdict[’H2time’])*ten)

elif H3result:
groupdict=H3result.groupdict()
valueDict.setdefault(’H3speed’,[]).append(int(groupdict[’H3speed’])/gb)

valueDict.setdefault(’H3time’,[]).append(float(groupdict[’H3time’])*ten)
elif H4result:

groupdict=H4result.groupdict()
valueDict.setdefault(’H4speed’,[]).append(int(groupdict[’H4speed’])/gb)

valueDict.setdefault(’H4time’,[]).append(float(groupdict[’H4time’])*ten)
elif H5result:

groupdict=H5result.groupdict()
valueDict.setdefault(’H5speed’,[]).append(int(groupdict[’H5speed’])/gb)

valueDict.setdefault(’H5time’,[]).append(float(groupdict[’H5time’])*ten)

return valueDict
extractValues()

def plotGraph():
values=extractValues()
print values
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H1 = values[’H1speed’]
H2 = values[’H2speed’]
H3 = values[’H3speed’]
H4 = values[’H4speed’]
H5 = values[’H5speed’]

H1time = values[’H1time’]
H2time = values[’H2time’]

H3time = values[’H3time’]
H4time = values[’H4time’]
H5time = values[’H5time’]

#Draw Graph
fig, ax = plt.subplots()
x=xrange(len(H1time))

x1=xrange(len(H2time))
x2=xrange(len(H3time))

x3=xrange(len(H4time))
x4=xrange(len(H5time))

LABELS = H1time

plt.plot(H1time, H1, color=’b’, linewidth=1.0, label=’H3’)
plt.plot(H2time, H2, color=’r’, linewidth=1.0, label=’H4’)
plt.plot(x, H3, color=’y’, linewidth=1.0, label=’H3’)
plt.plot(x, H4, color=’g’, linewidth=1.0, label=’H4’)
plt.plot(x, H5, color=’c’, linewidth=1.0, label=’H5’)

#plt.xticks(x, LABELS, rotation=45)
plt.xticks(xrange(0, len(LABELS), 100), xrange(0, 5, 1))

# ax.set_xlim([0, len(LABELS)-1])
# ax.set_ylim([0,18.0])

plt.xlabel(’Time’)
plt.ylabel(’Bandwidth (MB/s)’)
plt.title(’Receivers CC ON - Threshold 10, CCTI_Timer 80’)
plt.legend(loc=’best’, prop={’size’:8})
plt.subplots_adjust(bottom=0.2)
plt.tight_layout()
plt.savefig(’sink-10-80.pdf’,bbox_inches=’tight’)

plotGraph()
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