
When Logs Become Big Data

Morten A. Iversen

Master’s Thesis Spring 2015

When Logs Become Big Data

Morten A. Iversen

18th May 2015

ii

Abstract

As we move into the era of Cloud Computing and the Internet of Things,
an increasing amount of devices are connected to our networks and this is
expected to be doubled in the next five years.

This results in large amounts of logs, sensor data and other metrics
that has to be stored and analyzed. In this project three databases are
compared from a log analytics viewpoint. These databases are Cassandra,
Elasticsearch and PostgreSQL.

Experiments are designed and run to test the general performance of the
databases with write and read operations, in addition to some experiments
that are designed to look like normal use cases from log analytics. Some of
the experiments are repeated in an Elasticsearch cluster of varying sizes to
see how this influences the performance.

The results indicate that all the databases get quite similar results in the
general performance tests, but that Cassandra does very poorly in the use
cases that try to simulate log analytics. It is concluded that PostgreSQL and
Elasticsearch are both good options. And the results from the clustering
experiment indicate that Elasticsearch would scale up very well, meaning
that it is well prepared for future needs.

iii

iv

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to all
the students and employees at Oslo and Akershus University College of
Applied Sciences and at the University of Oslo who have supported me
during the thesis work and in the master period in general.

First of all I would like to thank my supervisor, Ismail Hassan, for the
guidance, encouragement and keeping me going in the right direction
during the whole thesis period.

I am also very grateful to Kyrre Begnum, Hårek Haugerud, Geir Skjevling
and Anis Yazidi at Oslo and Akershus University College of Applied
Sciences for spending time sharing their knowledge and ideas with
me.

Thanks to Oslo and Akershus University College of Applied Sciences
and the University of Oslo for giving me the chance to take part in this
master programme and for providing an interesting education of high
quality.

Last, but not least, I would like to thank my family and friends for
their patience, encouragement and cooperation, helping me complete
this project, and for providing a distraction when the work became too
much.

Sincerely,
Morten A. Iversen

v

vi

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Thesis structure . 2

2 Background 5
2.1 Cloud computing . 5

2.1.1 Infrastructure as a Service 5
2.1.2 Openstack . 6
2.1.3 MLN . 7
2.1.4 Alto cloud . 7

2.2 The internet of things . 8
2.3 Big data . 9
2.4 Centralized logs . 9

2.4.1 Collection . 9
2.4.2 Storage . 10
2.4.3 Analysis . 10

2.5 Log analysis . 11
2.6 ELK stack . 11

2.6.1 Elasticsearch . 12
2.6.2 Logstash . 13
2.6.3 Kibana . 13

2.7 NoSQL databases . 14
2.7.1 The CAP theorem . 14
2.7.2 Cassandra . 14
2.7.3 PostgreSQL . 15
2.7.4 Redis . 15

2.8 JMeter . 15
2.8.1 Test plans . 16
2.8.2 Plugins . 16

2.9 YCSB . 17
2.10 Gnuplot . 17
2.11 RStudio . 17

2.11.1 The R programming language 18

vii

2.12 Central Limit Theorem . 18
2.13 Students t-test . 18

2.13.1 Calculation . 19
2.13.2 Limitations and requirements 20
2.13.3 Welch two sample T-test 20

2.14 Relevant research . 20

3 Approach 23
3.1 Test environment . 23

3.1.1 Technical details . 24
3.1.2 Network and machine setup 24
3.1.3 Database setup . 25

3.2 Benchmarking the databases 26
3.2.1 Benchmarking clients 26
3.2.2 Database performance 26
3.2.3 Data format . 26
3.2.4 Cluster size . 27

3.3 Use cases . 27
3.3.1 Use case 1: Historical data 27
3.3.2 Use case 2: Real time data 28

3.4 Experiment design . 28
3.4.1 Testing the benchmarking clients 28
3.4.2 Testing the databases 28
3.4.3 Use case 1: Historical data 29
3.4.4 Use case 2: Real time data 30

3.5 Expected results . 31
3.5.1 Database performance 31
3.5.2 Use case 1: Historical data 31
3.5.3 Use case 2: Real time data 31

3.6 Scripts . 31
3.6.1 Script: runTest.sh . 32
3.6.2 Script: processClose.sh 32
3.6.3 Script: readFiles.py . 32

4 Results and analysis 35
4.1 Single node database . 35

4.1.1 Testing the clients . 35
4.1.2 Write operations . 38
4.1.3 Random read operations 44
4.1.4 Use case 1: Historical data 49
4.1.5 Use case 2: Real time data 54

4.2 Cluster databases . 56
4.2.1 Write operations . 56
4.2.2 Random read operations 57

viii

4.2.3 Use case 1: Historical data 59

5 Discussion 61
5.1 Database performance . 61

5.1.1 Client performance . 61
5.1.2 Write operations - single node 62
5.1.3 Random read operations - single node 63

5.2 Use case performance . 63
5.2.1 Use case 1: Historical data 63
5.2.2 Use case 2: Real time data 64

5.3 Clustering performance . 65
5.3.1 Write operations . 66
5.3.2 Random read operations 66
5.3.3 Use case 1: Historical data 67

5.4 Additional findings . 67
5.4.1 Configuration . 67
5.4.2 Querying languages 68
5.4.3 Data structure . 68

5.5 The research process . 68
5.5.1 Benchmarking tool . 68
5.5.2 Redis . 69

5.6 Alternative approaches and future work 69
5.6.1 Varying data format 70

5.7 Impact . 70

6 Conclusion 71

Bibliography 73

A Appendices 77
A.1 runTest.sh . 77
A.2 processClose.sh . 78
A.3 readFiles.py . 78
A.4 Elasticsearch single node config 80
A.5 PostgreSQL single node config 80
A.6 Cassandra single node config 81
A.7 JMeter sample output . 83

ix

x

List of Figures

2.1 Horizon quotas overview . 7
2.2 Altocloud setup . 8
2.3 Elasticsearch setup . 12
2.4 Lucene index . 13
2.5 Logstash workflow . 13

3.1 Network setup . 24

4.1 Cassandra client performance 36
4.2 Elasticsearch client performance 37
4.3 PostgreSQL client performance 37
4.4 Average write performance 39
4.5 Cassandra write wo/index performance 41
4.6 Cassandra write w/index performance 42
4.7 Elasticsearch write performance 42
4.8 PostgreSQL write performance 43
4.9 Average random read performance 45
4.10 Cassandra random read performance 47
4.11 Elasticsearch random read performance 47
4.12 PostgreSQL random read performance 48
4.13 Cassandra bulk read times . 51
4.14 Elasticsearch bulk read times 52
4.15 PostgreSQL bulk read times 53
4.16 Live search delay . 56
4.17 Write operations in a cluster 57
4.18 Random read operations in a cluster 58
4.19 Historical reads in a cluster 59

xi

xii

List of Tables

3.1 Record data format . 27

4.1 Average write operations . 40
4.2 Write response time percentiles 44
4.3 Average random read operations 46
4.4 Read response time percentiles 49
4.5 Cassandra bulk reads . 50
4.6 Elasticsearch bulk reads . 51
4.7 PostgreSQL bulk reads . 52

xiii

xiv

Chapter 1

Introduction

In recent years cloud computing have become increasingly more popular
[1] and is continuing to grow every year[2]. It is easy to see why businesses
may benefit from moving their services to the cloud, as it is very flexible,
easy to manage and you only pay for what you actually use.

It is a change in infrastructure that urges businesses to scale out rather
than up. Because of this, they no longer need to waste enormous amounts
of hardware to host a service that is only busy a couple of hours a day
[3]. Rather the service can be hosted on small virtual machines and as
the service becomes busy, more virtual machines can be added to a cluster
hosting that service.

Due to this development there are now more machines than we are used
to. As the number of machines increase, the amount of information they
generate increase as well. Both in terms of logfiles and communication
within the clusters. Therefore more data has to be analyzed to monitor the
health of the systems. Failures, anomalies and attacks has to be detected
quickly.

In addition to the extra machines used for hosting services, there are
now more devices connected to the internet as "the internet of things" is
becoming more and more relevant [4]. The internet of things refers to that
more objects are being made with sensors and communication capabilities
in mind. Which means that there are now an increasing amount of devices
logging and reporting sensor data.

This leads to much more logs, sensor data and netflows to look at. All
this data can become overwhelming and very complex and it is necessary
to have a solution that can effectively analyze it quickly. The quicker it
can be analyzed, the more detailed information can be gathered from the
data. This is information that can help keep systems stable, safe and easy
to troubleshoot.

1

There are several different systems that try to solve this problem. These
will be described further in the background chapter, but what they all have
in common is that they are working on distributed systems and that they
are meant to be very scalable. However, the algorithms behind them can
be very different.

This thesis will try to find the most effective solutions for log-storage
and -analysis. Currently there are many different solutions being used
by businesses worldwide. It is quite common to be stuck with a SQL
database. But some businesses are beginning to think of future needs and
are implementing NoSQL databases that can scale horizontally [5]. These
systems are supposedly better prepared for future needs.

1.1 Problem statement

Following is the problem statement that will serve as a guideline for this
thesis.

How efficiently and effectively common approaches process and analyze an
increasing amount of log data.

The efficiently used in the problem statement refers to the speed of which
tasks can be done.

The effectively used in the problem statement refers to the design of the tasks
so that they are performed in a way that is designed to get the best results
with as little work as possible.

The increasing amount used in the problem statement refers to the need to
be prepared for future needs generated by more devices through cloud
computing and the Internet of Things.

The common approaches used in the problem statement refers to approaches
to process and analyze that are commonly done to this type of data.

1.2 Thesis structure

This thesis is organized as follows. There are 6 chapters. Chapter 1 is
the introduction, including the problem domain and problem statement.
Chapter 2 is the background chapter, which contains information relevant
to the problem domain and research, including relevant research and
information about the technologies used. Chapter 3 is the approach which
explains the methodology and approach on how to perform experiments,
gather data and analyze the results. Chapter 4 shows the results of the

2

experiments and an analysis of these results. Chapter 5 is the discussion
part of the thesis and the conclusion is in chapter 6.

After the conclusion follows the bibliography and appendices.

3

4

Chapter 2

Background

2.1 Cloud computing

According to Google Trends[6], the term "cloud computing" was first
gaining traction in 2007, eight years ago today. After this the search
frequency of the term have increased dramatically. The National Institute
of Standards and Technology defines the term "cloud computing" as
follows[7]:

Cloud computing is a model for enabling ubiquitous, conveni-
ent, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interac-
tion.

2.1.1 Infrastructure as a Service

Infrastructure as a Service, or IaaS, refers to that the infrastructure is now
moved from hardware to software. Providing a capability to have all the
processing power, memory and storage pooled together. These resources
are then made available to set up virtual machines, networks, routers and
other elements that is usually part of a physical setup [3]. This is what is
commonly referred to as a cloud.

There are many reasons for why a business may want to move its services
to the cloud. It is easier to manage, setting up a new server can now be
done with a few clicks on a mouse or a short script. It is cost efficient, when
you no longer need the server, you simply terminate it and the billing stops.
But most of all, it is highly scalable. No longer do businesses need to worry

5

about over-provisioning a system that is used less than expected, or the
other way around, under-provisioning a system that gets more traffic than
expected. When a service is hosted in the cloud, its possible to scale systems
to fit the current needs at all times [3].

2.1.2 Openstack

Openstack is an open-source project which develops software to set up
public and private clouds. It is an operating system that is installed in data
centers and normally controls large amounts of processing power, memory
and storage space. It takes all these resources and collects them to form a
cloud. This cloud can then be used to host virtual machines. This makes
the hardware very flexible as the resources can be spread more freely and
machines can be assigned the specifications that they actually need.

When Openstack is installed it can be controlled through an API. Since this
is open-source, one can develop own tools for controlling this, or use one
of the tools that is already made. This includes Nova and Horizon, which
we will go into more detail about below.

Nova

Nova is a command line tool to manage an Openstack environment.
It comes by default when you install Openstack, and includes most
of the options you need to manage your Openstack machines and
networks.

Use "nova –help" or "man nova" on a machine with nova installed to get
more details about the usage.

Horizon

Horizon is a tool to manage Openstack through a web-interface. It does
not have as many options as nova, but it will work for the most common
purposes and it offers a great overview of the projects you have access
to.

Figure 2.1 shows a screenshot of the quota status of a project. Here it is
easy to see how much resources are used and how much that is available
to the project. This is just one example of what the Horizon interface can
help with.

6

Figure 2.1: The figure shows a screen dump of the Horizon quotas
overview.

2.1.3 MLN

MLN is a program that lets you set up many virtual machines with
different options at the same time. It is developed to work with many
different virtual environments, including Openstack and Amazon AWS.
This makes it easy to set up virtual environments even though the
underlying technologies may be very complex.

2.1.4 Alto cloud

The Alto cloud is the name of the Openstack cloud at Oslo and Akershus
University College. It is managed by Professor Kyrre Begnum and is used
to host the machines used in the experiments in this project.

The cloud itself consists of 16 compute nodes, 3 network nodes, 2 block
storage nodes, 4 storage servers, two dedicated 10Gb networks and a 1Gb
management network. This is spread over two racks. See figure 2.2 for
more details.

Each of the 16 compute nodes have 4x AMD Opteron 6366HE processors,
and each of these processors have 64 cores at 1.8GHz in total. Each compute
node have 256GB of RAM at 1.6GHz. Each of the compute nodes are
connected to both 10Gb switches.

There are three network nodes that host 3 different networks. One for
students, one for research and innovation and one is for a service net. All
of these networks are going over one of the 10Gb switches.

The two block storage nodes have a total of 9,5TB of storage each, 4x
3TB disks in RAID5, which means block-level striping with distributed
parity and 2x 500GB disks in RAID1, which means that the disks are
mirrored.

The four storage nodes have 8x 3TB disks each in a RAID10, which is a
combination of RAID0 and RAID1. In addition each node have a 200GB

7

SLC SSD disk for logging and a 400GB MCL SSD which serves as a
cache.

There are two dedicated 10Gb switches with 24 ports each. One is used
for the VM’s and is connected to the three network nodes and the compute
nodes. The other is used for storage and is connected to the compute nodes
and storage nodes.

In addition there is a 1Gb switch with 48 ports, this is used as a
management net and is connected to every piece of equipment in the
setup.

VM net
10Gb/s, 24 ports

Storage net
10Gb/s, 24 ports

Management net
1Gb/s, 48ports

16x compute
nodes

Student net

R&I net

Service net 4x storage
nodes

2x block
storage
nodes

Figure 2.2: The figure shows the physical network setup of Altocloud.

2.2 The internet of things

The internet of things refers to the trend that more objects and devices are
being equipped with sensors and communication capabilities [4].

There are many reasons for why a business or an organization may want
to implement these kinds of features in their devices. And this is a trend
that have already started. For example in cars there are now sensors on
a large portion of the key components to report the health of the vehicle.
This enables the driver to be notified when something is wrong, the data
could be sent to the manufacturer to find weak links in their products
and it can be reported to the mechanic who is responsible for fixing the
problem.

The car industry is not the only ones who can benefit from this, and thus,
there are many other examples of this in other industries. As time goes on,

8

there will be even more cases.

In an estimate done in 2011, Cisco predicted that there would 25 billion
devices on the internet by 2015 and 50 billion by 2020[8]. This is a
conservative estimate and indicates a doubling in the next five years.

2.3 Big data

The Oxford English Dictionary defines big data as follows [9]:

Extremely large data sets that may be analyzed computationally
to reveal patterns, trends, and associations, especially relating
to human behaviour and interactions.

However, this is not very specific. What does "extremely large" mean? To
find and develop a more specific definition of the phrase, other sources
would have to be inspected.

The data science blog at UC Berkeley asked more than 40 thought leaders
from different industries how they would define big data [10]. Their
answers vary greatly which just shows that there is no easy way to define
the term.

In this thesis, the definition will be: Data that is too large or too fast for
conventional systems to process and analyze. In this case, conventional systems
refers to normal RDMS databases and simple file storage.

2.4 Centralized logs

Since large scale computing first started in the 1980’s there have been events
to be logged. Back then, these logs were typically stored on local disks
and looked at remotely. However, over the years, these logs have been
centralized.

2.4.1 Collection

Syslog is a protocol to centralize logfiles that was first created by Eric
Allman in the 1980’s [11]. It was originally a part of the Sendmail project,
but have later been used in all kinds of different applications.

During the 1990’s the UDP version of syslog became used widely for
log collection and in 2001 the IETF wrote RFC 3164 "The BSD syslog
protocol" [12] which is a TCP/IP version of the protocol. However, this

9

implementation still had issues with security and in 2009 a new version
with security in mind was created [13].

Not all services use the syslog format and there are other ways to collect
and transport logs to a central location. Depending on how things are
logged, different techniques can be used. Some log collectors use a client on
each machine that tails logfiles, parses them and sends them to a collecting
server. Most of the different collecting servers support a wide range of
different formats.

2.4.2 Storage

We now have a centralized storage of logs and the issue is to figure out
what to do with these logs on the centralized servers. The easiest solution
would be to just store them in files, but this limits the search efficiency and
analyzing possibilities.

What solution to choose, depends on what information one would want
to get from the logs, how long they should be stored and the volume of
incoming logs [14].

If the logs are only to be looked at when something wrong has happened,
just storing files to disk or tapes might be enough. However, if quick,
verbose analytics is wanted, storing the logs in files on disk is not
ideal.

As a result, multiple tools to make this easier have been developed.
Companies started to store the information in SQL databases for easy
search and analytics. But this became troublesome as this requires very
uniform data and it is not a very scalable solution [15].

With the increasing popularity of NoSQL databases, these problems are
being addressed. These databases are typically very scalable and does
not always require uniform data. The logs can now be analyzed more
effectively and on a larger scale than before.

2.4.3 Analysis

Effectively analyzing logs can help sysadmins tremendously. Logs from a
single machine can quickly tell something about that machine’s problems.
However, having the ability to watch many log streams simultaneously can
quickly uncover whether the problem is with one machine or something
else. A failing server may be a symptom rather than the cause.

10

In addition to logs, other elements may be inspected as well, such as sensor
data, netflows and IDS warnings. Good analysis of this information can
give a better picture of what is actually happening, as many threats can be
monitored at once. There will be very large amounts of data arriving at all
times and it will add up to huge data-sets over time.

2.5 Log analysis

There are many different reasons for why a company may want to analyze
their logs. For some it may be interesting to see how things are doing
over a long time. For example looking at trends over the last few years.
While some may only be interested in what is going on right now. Or if a
certain case is being investigated, only data from a set timeframe may be of
importance.

The data to analyze may look very different in different cases. It can vary
from petabytes of data with very few changes, to megabytes of data that
change several times each second. There is not one tool that is perfect for
every case.

In a case where several years’ worth of data is being analyzed, it will most
likely be a very large data-set and not necessarily very much new data.
However if only the last couple of hours are being analyzed, the new data
are of much higher importance which means that a tool which can quickly
store and read data is needed. For the former case however, the highest
priority is to read large amounts of data very quickly, this may need a
different tool.

In addition to varying time periods, there is much variation in what level of
detail is needed from from the data. For logs, some may only be interested
in whether or not services are reporting errors. While some may want to
know much more details about all or or just a few events.

2.6 ELK stack

The ELK stack consists of three elements; Elasticsearch, Logstash, Kibana.
In the ELK stack Logstash is responsible for collecting and transporting the
logs. Elasticsearch is the storage and search engine while Kibana is a GUI
to view the data.

11

2.6.1 Elasticsearch

Elasticsearch is the storage and search engine of the ELK stack, and its main
component. It is built on top of Apache Lucene and could be considered
an Apache Lucene cluster. While Apache Lucene only have one index,
an Elasticsearch index consists of many shards and each shard could be
considered to be an Apache Lucene index.

Elasticsearch

Shard

- Lucene
Index

- Data

Shard

- Lucene
Index

- Data

Shard

- Lucene
Index

- Data

Shard

- Lucene
Index

- Data

Figure 2.3: The figure shows the setup of Elasticsearch, number of shards is
a variable. The node that receives a request is the organizer for that request.

Apache Lucene

Apache Lucene hereafter referred to as Lucene, is the search engine that
Elasticsearch is built on. It is used by some of the largest corporations on
the web. Including Twitter, LinkedIn, IBM and many more [16].

According to the Lucene website [17], Lucene is a "high-performance, full-
featured text search engine library" capable of indexing 150GB of data per
hour with a small footprint.

Lucene’s main component is its reverse index, where words in a document
are stored in a dictionary, and with each word, the documents that contain
this word is stored. When doing searches against this index, the words that
are the most unique, are weighted more.

In figure 2.4 a simple example is shown. Many of the words in the
documents are shared, meaning that these words will be of less importance
when a search query is done.

12

term frequency documents

1. The hills have eyes
2. Dawn of the dead
3. Shaun of the dead
4. Night of the living dead

- dawn
- dead
- eyes
- have
- hills
- living
- night
- of
- shaun
- the

1
3
1
1
1
1
1
3
1
4

2
2,3,4

1
1
1
4
4

2,3,4
3

1,2,3,4

Figure 2.4: The figure shows how the reverse index in Lucene works. The
sentences on the left can be considered records and the right side is how
the resulting index would look like.

2.6.2 Logstash

Logstash is a tool to collect, parse and store logs. It is part of the
Elasticsearch family and is the most common log-collector for Elasticsearch.
By default it knows several different inputs such as syslog, gelf, Twitter
and many others. It can also output to many different formats, including
Elasticsearch, http, file, databases et cetera. A complete list can be found
on the Logstash website [18].

Logstash

Store

syslog

logfiles

twitter

etc.

Collect

Parse

Elasticsearch

Files

Cassandra

etc.

Figure 2.5: The figure shows the workflow of Logstash, it collects from
different sources, parses the information and stores it at a chosen location.

2.6.3 Kibana

Kibana is a GUI to view and analyze data in Elasticsearch. It is created in
Javascript and runs in a normal browser. It allows users to set up custom
dashboards that show the results of certain queries that is chosen by the
user, these dashboards can be shared with a simple URL.

In addition to this, there is a search field so that users can do custom
queries that are not already made into a dashboard. However, this form

13

of querying is not very resource efficient.

2.7 NoSQL databases

NoSQL databases, or "Not Only SQL" databases are something which has
become increasingly more popular over the last few years [19]. Many
different solutions have been, and are, being developed.

Within NoSQL databases there are four different types. Document, key-
value, column and graph stores. These represent different ways that the
records are stored in the database.

2.7.1 The CAP theorem

The CAP theorem states that a distributed service can’t be consistent,
available and partition tolerant at the same time. It can only pick two
of these qualities [20]. The reasoning behind this is that when a system
is partition tolerant, you have to choose what should happen when these
partitions loses contact with each other. The options are that data should
remain consistent and thus it can’t be changed while the partitions are not
communicating. Or that the systems remain available, but in this case, the
partitions may have different information when they reestablish contact,
which means that consistency cannot be guaranteed.

Which qualities to pick in these cases may vary on what data is supposed
to be stored. Sometimes inconsistency may not be a big deal, while other
times it is crucial that the information is 100% correct.

2.7.2 Cassandra

Cassandra is a NoSQL database used by many large companies and
organizations, including eBay, Instagram, Reddit, Netflix and many others
[21]. It provides horizontal scaling and a querying language that is very
similar to SQL called CQL.

Because of the horizontal scaling it is able to handle huge amounts of data,
and according to the Cassandra website, Apple currently has the largest
installation with more than 75 thousand nodes storing more than 10PB of
data [21].

14

2.7.3 PostgreSQL

PostgreSQL, sometimes just referred to as Postgres, is, as the name suggests,
a SQL database. According to DB-Engines.com[22] it is the fourth most
popular relational database today, but the one with the highest gain in
popularity the last year. All three databases that are above PostgreSQL in
the rankings, have decreased in popularity in the same time period.

According to its website it has had more than 15 years of active develop-
ment and is the most advanced open source database[23].

2.7.4 Redis

Redis is an open-source, in-memory key-value store [24]. According to
DB-Engines.com, Redis is by far the most popular key-value store and its
popularity is nearly doubled in the last year [22].

Because Redis stores data in the memory, it is very fast both for write and
read operations. At certain intervals, based on time or number of changes,
it backs up the data to disk. This means that no data is lost during a
reboot.

2.8 JMeter

Apache JMeter is an open-source program written in Java. It is a tool to
benchmark many different technologies. Including databases, web-servers,
FTP-servers and many more.

It can be used to run single operations or millions of them. Included in
the package is a JMeter-server which is a server application that listens for
JMeter test plans, when it receives a test plan, it will perform the test and
report back to the host that sent the request. This makes it possible to run a
test against a server from many client machines at the same time.

The result of the test is collected at a master, these results can be in different
formats, but the most common ones are XML and CSV for large data-sets.
These results can then be analyzed by the JMeter program itself, which can
show you some graphs. These are quite limited in how you can display
the data. However, since the data is in XML or CSV format, there are other
tools that can read the files and generate better analytics or one can develop
own solutions.

15

2.8.1 Test plans

A normal test plan in JMeter consist of at least four elements, a thread
group, a connection, action(s) to perform and a listener.

The thread group is a definition of how many threads and how many
times the action(s) should be run. It is normal to define number of threads
(simulated users), a ramp up period, which is how long it should take to
go from 1 to the selected number of threads and a loop count, which is how
many actions each thread should do.

The connections are connection interfaces to different technologies or
services. The actions are performed over this connection. The actions
can be very complex, but are most often not. They are meant to simulate
what a user normally does. For a web-server, that may be to load a page
or something more advanced which includes log-ins and input. For a
database some normal actions would be to write, update, read and delete
data.

The listeners are how the results from the tests should be displayed. For
small tests, one can use listeners with very high detail, for example a
listener that will display the whole response from a web-server. However
for large tests running millions of operations, this would take too much
resources and space. So there are listeners made to write only the essential
data. Where users themselves choose what should be reported. This can
then be written to file and analyzed later.

This is just the minimum of what a test plan should include, there are
many more elements that can be included for more functionality, more
information can be found in the documentation[25].

2.8.2 Plugins

The JMeter program itself have many different features, but since there will
always be users with special needs the program is easily extensible with
plugins. These plugins can be of different types and provide different func-
tionality. Some examples are plugins that provide interfaces for different
technologies and services, graphs or provide new functionality.

The Cassandra plugin allows users to add connections to Cassandra
clusters in their test plan. This plugin, or a similar one is needed to
benchmark Cassandra, as this functionality is not included in JMeter by
default. This plugin uses the CQL querying language to communicate with
the Cassandra database[26].

16

The PerfMon plugin is a plugin that allows users to record metrics on the
machines being benchmarked by JMeter[27]. This requires a small server
running at the target hosts. When it is set up correctly, this will connect to
the specified servers that are being tested and record certain metrics. What
metrics to record is chosen by the user.

2.9 YCSB

Yahoo! Cloud System Benchmark is an open-source database benchmarking
tool developed by Yahoo! [28]. It is used to generate workloads on a
database and write out reports on the results.

It is module based, meaning that each database it supports has a client
module written in java. The modules contains the usual operations that is
commonly used in a database, such as write, update, read, delete, etc.

In addition to this it ships with different pre-defined workloads that are
there to give a good overview of the performance. However, for very
specific use cases one can create custom workloads that gives a more
realistic image of the actual usage.

2.10 Gnuplot

Gnuplot is a cross platform command line tool that is used for plotting
graphs[29]. The commands it uses can be scripted which makes plotting
many graphs very easy. It takes CSV files as input and can output in many
different formats, including PDF with vector graphics.

2.11 RStudio

RStudio is an open source integrated development environment (IDE)
for the R-programming language. It aims to simplify the develop-
ment by providing syntax highlighting, auto-complete and an interactive
GUI[30].

The program can run locally on a machine or on a server where the
GUI can be accessed through a normal web-browser. Both solutions look
very similar and the most significant difference is where the processing is
done.

17

2.11.1 The R programming language

R is a programming language and environment developed for calculation,
statistical computing and graphics[31]. It provides a large selection of
mathematical functions, statistical tools and graphic plotting.

2.12 Central Limit Theorem

The Central Limit Theorem or CLT for short, states that if you take the
average of a large number of values, the average will be very close to
normally distributed, and this is not dependent on the distribution of the
original values[32].

There are some requirements that needs to be fulfilled when using CLT.
These are that the values have to come from the same distribution and that
they are independent of each other.

The number of values needed before the CLT converges to normal depends
on the distribution of the original values. However, 30 and higher is
generally considered to give a good estimate[33].

2.13 Students t-test

The t-test is an analytic test that can be used on a set of values[34]. It is
most often used to see if a hypothesis is true, for example to see if it is
likely that the true mean of a set of values is zero, or any other value for
that matter.

There are a few different variations of the t-test, these are paired, unpaired
and one-sample. Both unpaired and paired T-tests compare two different
set of values to see find the probability that they are equal. Unpaired is
used when the sets of values come from different populations and paired
is used when the two sets of values are from the same population.

A one-sample t-test is used to see if a set of values have a true mean of a
certain value. An example could be measurements of speed at a certain
stretch of road to see if people are generally following the speed limit of
100km/h.

In the sample below, a one-sample t-test is run on a set of 100 normally
distributed numbers with µ = 110 and a standard deviation of 10. It is
compared to see if it is equal to 100. This test is run with the RStudio
software.

18

Lets pretend these 100 values are the recorded speed of 100 randomly
selected cars during a day and they are compared to the speed limit
of 100km/h to see if people adhere to the law and follow the speed
limit.

1 > t . t e s t (speed , mu=100 , conf . l e v e l = 0 . 9 5)
2 One Sample t−t e s t
3 data : speed
4 t = 1 1 . 1 4 2 5 , df = 99 , p−value < 2 . 2 e−16
5 a l t e r n a t i v e hypothesis : t rue mean i s not equal to 100
6 95 percent conf idence i n t e r v a l :
7 108 .2723 111 .8569
8 sample e s t i m a t e s :
9 mean of x

10 110 .0646

The output above show that the normal speed at the road is significantly
higher than the speed limit of 100km/h. This can be seen in two ways, one
is that the p-value is 2.2e-16 which is much smaller than 0.05, meaning that
there is less than 5% chance that the true mean is 100km/h. The other way
this can be seen is that the 95% confidence interval is from 108 to 112, this
number does not include 100 and it states that there is a 95% chance that
the true mean of the set is within this range.

2.13.1 Calculation

The p-value which is what is used to see if a difference is significant or
not, is calculated using values from the student-t distribution and the t-
value.

In a one-sample t-test the formula to calculate the t-value is the follow-
ing:

t =
x̄− ∆

s√
N

In the formula above x̄ is the sample mean, ∆ is the value to test against,
s is the sample standard deviation and N is the number of values in the
sample.

The sample standard deviation is calculated as follows:

s =

√√√√ 1
N − 1

N

∑
i=1

(xi − x̄)2

In the formula above N is the total number of values, x̄ is the sample mean
and xi is each individual value.

19

2.13.2 Limitations and requirements

There are some limitations and requirements that needs to be fulfilled for
the results of a t-test to be trustworthy.

• The values of in the set(s) compared should be or very close to
normally distributed.

• Each set should have roughly the same number of values.

• Values should be independent and not influenced by each other.

• The data sets should have roughly the same standard deviation.

2.13.3 Welch two sample T-test

Welch’s two-sample t-test is a variation of the t-test that is very similar
to the normal t-test, but it has slightly less limitations in that it does not
require the data sets to have the same standard deviation and it will give an
estimate of the difference between the data sets that it compares[35].

In the example below two data sets, A and B, are compared, both of which
have 100 samples and µ = 100. Set A has a standard deviation of 10 while
set B has a standard deviation of 20.

1 > t . t e s t (A, B , conf . l e v e l = 0 . 9 5)
2 Welch Two Sample t−t e s t
3 data : A and B
4 t = 1 . 3 0 4 1 , df = 1 3 4 . 0 2 , p−value = 0 .1945
5 a l t e r n a t i v e hypothesis : t rue d i f f e r e n c e in means i s not equal to 0
6 95 percent conf idence i n t e r v a l :
7 −1.626818 7 .924095
8 sample e s t i m a t e s :
9 mean of x mean of y

10 100 .35255 97 .20391

The output above shows that the two data sets ended up with quite
different averages, but the p-value shows that the difference is not
significant, because it is higher than 0,05. And the 95% confidence interval
tells us that the true difference in the sets are between -1.63 and 7.92.
This range includes zero, and thus, a significant difference cannot be
proven.

2.14 Relevant research

There are some projects that are working on log analysis. The NATO
Cooperative Cyber Defence Center of Excellence published an article in

20

2013 where they look at different log management solutions[15]. In the
article they mostly focus on the performance of log-collection tools. These
are rsyslog, syslog-ng and nxlog. In addition they look at tools to visualize
log data, namely Logstash, Graylog2 and Kibana.

The same project published another article in 2014[36] where they look at
the metrics that could be pulled from logs, sensor data and netflows. Here
the focus is the methods used for analyzing logs and they request more
research in the field.

While the aforementioned articles focus on different aspects of log analysis,
they are both dependent on the database at hand.

Researchers from UC Berkely have published the paper "Analyzing log
analysis: An empirical study of user log mining"[37] where they take a
deep look into queries done with Splunk, which is a proprietary data-
analytics system often compared to the ELK stack. This study looks at the
most common queries done in Splunk and aims to find the most effective
querying mechanisms.

When it comes to databases there are plenty of research done that compares
traditional relational databases to NoSQL databases and NoSQL databases
to other NoSQL databases. Some examples of this are the Univeristy of
Waterloo which in 2014 published the article "Mining Modern Repositories
with Elasticsearch"[5] which compares the functionality of Elasticsearch
versus SQL databases.

Another example comes from UC Berkeley in the article "Evaluation of
NoSQL and Array Databases for Scientific Applications"[38] published
in 2013 that compares the NoSQL databases Cassandra, HBase and
MongoDB. YCSB is used to set up different workloads and to test all three
databases with varying cluster sizes.

Most of these related works were created for slightly different scenarios. A
few compared some of the same databases, but not with the same type of
use cases as in this thesis. And some of the papers look at other parts of log
analysis. This thesis focuses on the storage and analysis part of the process,
while others look at the collection and transport.

21

22

Chapter 3

Approach

In this chapter the process and experiment designs will be explained.

The fundamental idea for the experiments in this thesis is to try to measure
how well the different solutions perform common use cases and why they
perform as they do. To try to measure this, there will be a series of different
experiments. Some of the experiments will be directed mostly at the storage
medium in itself. While other experiments will try to be as close to the real
use cases as possible.

Selection of technologies

The three databases are selected as they are all among the most popular
databases used today and they are all rising in popularity[22]. The
three databases that will be looked at are Cassandra, Elasticsearch and
PostgreSQL.

This is three quite different databases. Cassandra and Elasticsearch are
NoSQL databases, while PostgreSQL is a traditional SQL database. This
means that Cassandra and Elasticsearch are partition tolerant and that
PostgreSQL have stronger guarantees for consistency.

3.1 Test environment

The test environment will be in the Alto cloud at HiOA. Therefore all
machines are virtual machines in an Openstack environment. The network
will be virtual as well, due to this the performance may vary depending
on how well the machines are distributed on the physical hardware, other
users of the cloud and the time of day.

23

3.1.1 Technical details

The machines participating in experiments, meaning the database and
benchmarking nodes, will have the following specifications.

Database Benchmarking
Instance type Large Small
Virtual CPUs 4 1
Memory 8GB 2GB
Disk space 80GB 20GB
Operating system Ubuntu 14.04 Ubuntu 14.04

The reason the benchmarking machines only have one core is that JMeter
will only utilize one processor. It would be wasteful to give these machines
more processing power than they could use.

3.1.2 Network and machine setup

The machines participating in the tests will be on a private network in the
Alto cloud. There are two gateways that are connected to the internet and
the private network, called Master and Haproxy. The network topology
and setup is shown in figure 3.1.

HaproxyInternet

Private network - 192.168.128.0/23

Master

Benchmark clients

Database cluster

1. Sends test plan

2. Perform

test

3. C
ollect

result

4. Collect aggregate
results

Figure 3.1: The figure shows how the network is set up. There are 20
benchmarking clients and the database cluster will have up to six nodes.

The two gateway nodes both have capabilities to manage other machines

24

through Nova or MLN. The Haproxy machine is in control of the
benchmarking cluster in addition to being able to run benchmarks itself.
However, the Haproxy node is not used in the distributed testing, it is only
used to see if the test plans work as expected.

Benchmarking cluster

The benchmarking cluster consists of 20 nodes that are controlled by the
Haproxy machine. These run a JMeter-server that listens on a specified
port for test-setup files sent by the Haproxy machine. When a test-setup
file is received, the nodes will perform the test and report the results of the
tests back to the Haproxy machine.

Monitoring

The database cluster machines run a Perfmon server which lets JMeter
collect metrics about them while tests are running. This makes it possible
to see the target servers’ resource usage and may help in identifying
bottlenecks. The metrics that are collected are CPU usage, memory, disk
I/O and network I/O.

3.1.3 Database setup

The databases used are Cassandra 2.1.4 with CQL 3.2.0, Elasticsearch 1.5.1
and PostgreSQL 9.3.

Each of the databases are configured close to their default configuration.
However, there are some changes done.

In Cassandra the "cluster_name" is set to "cluster1", "listen_address" and
"rpc_address" have been changed from localhost to the IP address of
the interface in the 192.168.128.0/23 network. This enables access to the
database from the entire network.

In the Elasticsearch configuration the "cluster.name" parameter was set to
"cluster1", this is simply set to allow cluster members to find each other.
In addition the "index.number_of_shards" was changed, this however will
be changed depending on the cluster size. Lastly, "http.cors.enabled" was
set to true to allow access to the database from remote machines. However
this is limited to machines within the 192.168.128.0/23 network as this is
behind a firewall.

In PostgreSQL the "listen_addresses" parameter have been set to allow
connections both from localhost and the 192.168.128.0/23 network. This

25

was done to allow remote hosts to communicate with the database. In
addition the "max_connections" parameter was changed from 100 to 1000
to allow for more concurrent connections.

The complete configuration files, excluding the comments, can be found in
the appendices.

3.2 Benchmarking the databases

To get an understanding of the different technologies at hand, the first step
will be to measure the performance of the underlying databases. This is
done to try to find how the technologies work in this environment and will
be important information to have during the analysis.

3.2.1 Benchmarking clients

First the benchmarking clients themselves will be tested by doing write
operations on the databases. This is done to see how much load each
client can handle and make sure they are not the bottlenecks in further
testing.

3.2.2 Database performance

Next up is to test the database performance by having 20 clients doing write
and read operations as fast as possible. 20 clients should be more than
enough to make sure that the database itself has the bottleneck. This test
will tell something about how fast one can write to the different databases
and how fast a simple read can be done.

3.2.3 Data format

To get as accurate results as possible, the data written to the database will
be formatted as close to a log message as possible. There will be five fields
in each record. A timestamp, a machine name, a service, a severity level
and a message field.

26

Timestamp Integer, 10 digits
Machine Varchar, 30 letters
Service Varchar, 30 letters
Severity Integer, 1 digit
Message Varchar, 255 letters

Table 3.1: The table shows the format of the records that will be added to
the database.

This is the most common format for service logs. However, in other cases,
for example sensor network output or netflows the data may look different.
For example in a netflow, the message, or the content of the flow itself may
be much larger than 255 letters. However the other fields should be very
much alike, as there will still be a timestamp, a host storing the netflow and
a service that the netflow is connected to.

The search queries done in this thesis will focus on the first four fields in
the table above, and the message field is only there to make the log message
have a realistic payload.

3.2.4 Cluster size

A test will be done to see the performance of different cluster sizes. Here
cluster sizes of 1, 2, 3 and 6 machines will be used to test how the
performance varies depending on the size of the cluster.

This test is only possible to do on the NoSQL databases as relational
databases does not support clustering. Therefore the results of this
test can not be compared to a SQL alternative. The test will be
performed on one of the NoSQL databases. Whether to do this test on
a Cassandra or Elasticsearch cluster will depend on the results in the
previous experiments.

3.3 Use cases

Here follows two use cases that will be used as inspiration to the
experiments themselves.

3.3.1 Use case 1: Historical data

Looking at historical data is a common task to do in log analysis. This can
be done for many reasons. For example to look for trends, to investigate

27

incidents or simply to troubleshoot a problem. In this use case there will be
a large data set to search for details.

It is important to be able to perform searches quickly so that as much details
as possible can be gathered. Because of this the test in this scenario will try
to measure how fast analysis can be done on the data when doing queries
that are common in these types of scenarios.

3.3.2 Use case 2: Real time data

With real time data, the use cases are very different and there are other
qualities that is measured than with historical data. A normal case may be
to monitor the activity in the last seconds or minutes. This means that data
should be read and analyzed as it is written.

In such a scenario, there are several things they may cause delay in the
system. Can data be written fast enough, is it indexed immediately and
how fast can it be read?

3.4 Experiment design

In this section, the details on how each experiment will be done is
described.

3.4.1 Testing the benchmarking clients

This test will be done by testing how many write operations a client can do
with a varying number of active threads.

The client starts with 1 thread and starts another 99 threads over a time
period of 40 seconds. Each thread will do 4.000 write operations which
means that there are 400.000 write operations done in total.

3.4.2 Testing the databases

To test the performance of the databases there will be 20 client machines
generating load on the database or database cluster.

First the clients will do 50.000 writes each, one million in total. This will be
done on each database and repeated 30 times. Meaning that when the tests
are completed, each database will have 30 million records. The records will
follow the format shown in table 3.1.

28

The random read test will be performed on a database with one million
records that are formatted as shown in table 3.1. Each read will fetch all
fields from a record with a random ID of 1 to 1.000.000. This read operation
is repeated 500.000 times for each database. The test is then repeated 30
times. Meaning that each database will have been queried a total of 15
million times.

3.4.3 Use case 1: Historical data

In this test, data will be written into the databases in a way that makes sure
all the different databases contain exactly the same information.

This is done by using data set files in JMeter. These are files that contain
values to use when writing data into the databases. These are read line for
line until the end of the file, it then starts back at the top. So as long as the
operations and files when writing data are the same for each database, they
will end up containing exactly the same data.

Writing data

The fields that will be investigated during this test is the timestamp,
machine name, service and severity. The values to use in these fields when
writing the test data will be put into four different files. Each file contains
a prime number amount of lines to get a least common multiple that is as
high as possible, meaning that the same information will be repeated as
few times as possible.

In this experiment the timestamp will have 1009 unique values, the
machine names will have 23 unique values, the services will have 17 unique
values and the severity will have 19 values between 0 and 7, where 0 and 1
is only repeated once.

LCM(17, 19, 23, 1009) = 7495861

These numbers are all primes and have a LCM of 7.495.861. Therefore this
number of records can be written before a record with severity of 0 or 1,
have identical records with the same timestamp, machine and service. Each
database will contain these 7.495.861 records.

Running queries

The data will then be queried with queries that are common when doing
log analytics. Data will be aggregated based on their fields. To make sure

29

the queries are the same on all databases and that the same queries are not
repeated, CSV files will be used when querying as well.

An example of an aggregated query could be:

SELECT COUNT(*) FROM example WHERE field1="foo";

The query above is an SQL query which would return the count of records
in the example table where field1 has a value of "foo".

3.4.4 Use case 2: Real time data

In this test, the goal is to see how long time it takes from data is written
to the database, until its searchable. To do this, 10.000 documents will be
written into the database, and the documents will then be searched every
0.1 second after it is written. It is successful when all 10.000 documents are
found.

This is done to see if the data written, is immediately indexed and
searchable, or if there is some delay before the data can be searched.

Writing data

The data will be written at roughly 2.000 records per second. This is set
this low to make sure all three databases can handle it. This will then
run until all 10.000 documents are written, which should take roughly five
seconds.

The format of the data will be the same as in the other tests, meaning that
the data looks like logs. However, in this experiment, the timestamp will
be the same for all 10.000 records.

Searching data

Immediately after the last record is written, the data is searched. Then there
is a 0.1 second delay between the next searches. The search will be repeated
20 times. Meaning that it will search every 0.1 second for 2 seconds after
the data is written.

The search will be done on the timestamp field, and each search should find
all the 10.000 newly written records. When all 10.000 records are found by
the search, it is seen as a success.

30

Cleaning up

When the test is complete, the data is deleted in preparation for the next
run.

3.5 Expected results

In this section, the expected results of the experiments described above is
presented.

3.5.1 Database performance

When it comes to the database performance, no specific results are
expected. Both in writes and random reads the results should be pretty
similar as each database should have to do very similar work for each
operation.

3.5.2 Use case 1: Historical data

In this experiment, it is the effectiveness of the indexes in each database that
will be tested. Here it is expected that Elasticsearch will do very good, as
it is developed with log analysis in mind, and the searches done are based
on searches that would be normal in log analytics.

3.5.3 Use case 2: Real time data

In this experiment it is expected that Cassandra and PostgreSQL will find
all 10.000 records with their first search, but the response time may be
high.

Elasticsearch by default updates its index once every second. Which means
that it is not expected that the search will find all documents on the first
search, but somewhere between the first and the tenth and average at the
fifth.

3.6 Scripts

In this section the scripts used to perform experiments and read the results
will be commented, the scripts themselves can be found in the appendices
chapter.

31

3.6.1 Script: runTest.sh

This is a simple shell script that runs a test-plan against the databases.
First it has a few configuration parameters which are set to tell the script
which test plan to use. Then there is an output file where output is written
to.

The "runTest.sh" script then runs a loop 30 times. In each loop it runs a
set test plan for each of the three databases. The command it runs for each
database is the following.

1 ./ jmeter −n −r −t /mnt/sync/backupsync/ t e s t s / e l a s t i c s e a r c h−
$OPERATION−$ID . jmx − j /mnt/sync/backupsync/experiments/
e l a s t i c s e a r c h /$OPERATION . $ i . jmeter . csv −J out putF i l e=
$OPERATION . $ i . csv | t e e $OUTPUTFILE

It starts JMeter, the "-n" means that its in non-GUI mode, the "-r" means
it starts the test on all remote nodes, the "-t" is the test-plan file, "-j" is
the logfile and "-J" is an input variable that is used in the test-plan itself.
This is used to set a name to the file with the actual results. Finally "tee
$OUTPUTFILE" enables writing the output both to screen and file.

3.6.2 Script: processClose.sh

This script is needed because one of the tests being run in "runTest.sh" does
not exit correctly, and when it gives an error at the end this script reads the
output file and kills the JMeter process.

The script runs an endless loop that reads the output from the "runTest.sh"
script. It looks for the phrase "The JVM should have exited but did
not." which is an error message that occurs when the test-plan against the
PostgreSQL database finishes. When it finds this phrase in the output file, it
kills the JMeter process and erases the content of the output file. This allows
the "runTest.sh" script to continue even when it gets this error.

3.6.3 Script: readFiles.py

This is a Python script that reads the output files from JMeter. The script
is slightly modified depending on what data to pull out of the JMeter file.
The example shown in the appendix is used to generate a CSV file that can
be read by Gnuplot to plot the graphs for a single host.

First the variables are defined. Then the script opens the output file and
reads it line for line. It creates a new dict, timestamp, where all the unique

32

timestamps are used as the key. The operation count, total latency, total
errors and total threads are stored for each timestamp (second).

The output file is where the script writes its own output. It does this by
reading the "timestamp" dict in a sorted fashion, while doing this it also
calculates the average latency per second and average threads per second
and writes all fields to a CSV file.

Below is a sample of how the output this script generates.

1 timestamp , count , la tency , a l lThreads , er rors , avgThreads , avgLat
2 1429048651 ,1 ,222 ,1 ,0 ,1 ,222
3 1429048652 ,1689 ,1818 ,5125 ,0 ,3 ,1
4 1429048653 ,4719 ,5157 ,27400 ,0 ,5 ,1
5 1429048654 ,6706 ,8267 ,60493 ,0 ,9 ,1
6 1429048655 ,6936 ,11600 ,86163 ,0 ,12 ,1
7 1429048656 ,8347 ,14730 ,130778 ,0 ,15 ,1

This file continues for the whole duration of the test. Each line represents
one second. The file can then be read by Gnuplot to create graphs.

33

34

Chapter 4

Results and analysis

In this chapter the results of the experiments described in the approach
section will be presented.

As the results in these tests output millions of lines, the data will mostly be
shown with graphs, averages and confidence intervals. Sometimes other
methods will be used if that is deemed necessary. A sample of the output
is shown in the appendices.

Results will be compared with each other by using Welsh’s two-sample t-
test. This is a test that tells if there is a significant difference between the
data sets. The confidence level is set to 95%.

4.1 Single node database

In this section the test results from the experiments performed on a single
node database will be presented. The amount of client nodes will depend
on the experiment, but it will either be 1 client or 20. This depends on the
experiment and in cases where a very high load is needed, 20 clients will be
used. However, if the results of the queries need to be looked at in detail, a
single node will be used.

4.1.1 Testing the clients

In this section the results of the performance test on each client node will be
presented. This was done to get an idea about how much load each client
was able to generate. This is important information to have, so that when
the servers are tested, the limitations of the clients are known.

35

Each client was tested by slowly increasing the number of active threads
from 1 to 100 and each thread ran 4.000 operations to the database.

In figure 4.1, 4.2 and 4.3 the number of operations are displayed on the left
Y-axis, the number of threads and the average latency is shown on the right
Y-axis.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45 50
 0

 20

 40

 60

 80

 100

O
p

e
ra

ti
o
n
s

p
e
r

se
co

n
d

#
 o

f
T
h
re

a
d

s
/

A
v
g

.
La

te
n
cy

 (
m

s)

Time

Cassandra single host

Threads
Operations

Avg. latency

Figure 4.1: The figure shows the performance of a single Cassandra client
with a varying number of active threads.

In figure 4.1 one can see that the Cassandra client never reaches 100 threads,
this is because some threads have finished their work before others have
started. In addition we can see that the operations per second reaches its
peak of roughly 8.000 at 20 client threads and that additional threads only
cause the response time to go up, which slows down each client thread,
causing the operations per second to stay the same.

36

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60 70 80 90
 0

 20

 40

 60

 80

 100

O
p

e
ra

ti
o
n
s

p
e
r

se
co

n
d

#
 o

f
T
h
re

a
d

s
/

A
v
g

.
La

te
n
cy

 (
m

s)

Time

Elasticsearch single host

Threads
Operations

Avg. latency

Figure 4.2: The figure shows the performance of a single Elasticsearch client
with a varying number of active threads.

In figure 4.2 one can see that 100 threads is not reached here either, for
the same reason as with Cassandra. However, here it is apparent that the
client reach its peak of roughly 5.000 operations per second with less than
10 threads. After this, the only effect of increasing the number of threads is
that the response time goes up.

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400
 0

 50

 100

 150

 200

 250

 300

 350

 400

O
p

e
ra

ti
o
n
s

p
e
r

se
co

n
d

#
 o

f
T
h
re

a
d

s
/

A
v
g

.
La

te
n
cy

 (
m

s)

Time

PostgreSQL single host

Threads
Operations

Avg. latency

Figure 4.3: The figure shows the performance of a single PostgreSQL client
with a varying number of active threads.

Figure 4.3 shows that 100 client threads is reached, this is because each
thread is so slow, that the first ones to start are still running when the

37

last one starts. However, we can see the same trend here as we did with
Cassandra and Elasticsearch. The operations per second peak at roughly
1.100 with less than 10 threads and additional threads are only causing the
response time to go up.

Analysis

The results show that all single clients max out operations per second
before they reach 100 threads. The Elasticsearch and PostgreSQL clients
reach their saturation point at roughly 10 threads while the Cassandra
client reaches it at roughly 20 threads.

After the clients reach their saturation point, the only effect of adding more
threads is that the latency rises, which in turn means that each thread gets
less operations per second and that the total operations per second stay the
same.

From the results we can see that each Cassandra client reaches an average
of 8.000 operations per second, the Elasticsearch client reaches an average
of 5.000 operations per second and finally, the PostgreSQL client reaches
an average of 1.100 operations per second.

4.1.2 Write operations

This test was done on the servers to see how fast they could store incoming
data.

For each database, one million records were written. The test was repeated
30 times. Meaning that there were 30 million records written to each
database. The test was run a round-robin fashion, therefore all tests were
done in the same time period.

For Cassandra the test was run twice, once without indexing, meaning that
searches can only be done on the ID field and once where the timestamp,
machine, service and severity field was indexed.

Operations per second

Figure 4.4 shows boxplots of the average write operations per second for
each database. Table 4.1 shows the numbers this boxplot is based on.

38

 4000

 6000

 8000

 10000

 12000

 14000

A B C D

30x Average of 1M write operations

A = Cassandra wo/index
B = Cassandra w/index

C = Elasticsearch
D = PostgreSQL

Figure 4.4: The figure shows boxplots of the average write operations per
second for each database. This is when doing one million writes to a
database.

The boxplot in figure 4.4 shows that Cassandra without indexing is nearly
twice as fast as the other databases. Furthermore, when indexing is
added to Cassandra, the performance is much closer to Elasticsearch and
PostgreSQL.

Database Average 95% Confidence Interval
Cassandra without index: 12272.28 12174.17 - 12370.39
Cassandra with index 7163.833 7096.542 - 7231.125
Elasticsearch 4930.497 4731.489 - 5129.504
PostgreSQL 6407.817 6140.328 - 6675.306

In the table above, the averages and confidence intervals are shown. From
this it appears that Cassandra is the fastest, even with indexing, then
PostgreSQL and then Elasticsearch, but to get a good estimate of the true
differences, Welch’s t-test is performed on the results.

The tests indicate that the true difference between Cassandra with and
without indexing is 4991 to 5225 operations per second (ops.). Cassandra
with indexing is 481 to 1030 ops. faster than PostgreSQL, and finally,
PostgreSQL is 1150 to 1804 ops. faster than Elasticsearch. All of this is
calculated with a 95% confidence interval.

39

Cassandra
wo/index

Cassandra
w/index

Elasticsearch PostgreSQL

1 12285.9 6913.3 6394.8 6870
2 12439.7 7062.5 5375.3 7038.5
3 12348.7 7173.7 5132.2 6502.8
4 12141.8 7273.1 5476.5 6520.3
5 12350.6 7194 4803.5 6381.4
6 12381.9 7215.9 4782.9 7052.4
7 12850.3 7193 5313.5 6947.3
8 12217.6 7266.6 5279.4 5986.8
9 12300.7 7409.9 4747.1 7106.5
10 12749.6 7503.6 4673.8 7089.3
11 12163.5 7294.9 4713 6827.3
12 12167.2 6973 4837.2 5844.2
13 12758.4 7133.3 3872.4 7067.4
14 11549.6 7041.5 4021.2 5246.4
15 12192.6 7332.9 4462.4 6117
16 12130.3 7085.1 4592 7219.3
17 12326.2 6906.3 4539.2 5536.6
18 12466.7 7095.7 4910 6994.7
19 12760 6877.6 5054.3 5893.3
20 12225.5 6943.6 5177.2 6509.4
21 12109.5 7280.2 4631.9 6668.2
22 12009.7 7327.5 4938.2 6980.8
23 12143.3 7632 5292.2 6722.4
24 12048 7242 5365.2 4987.7
25 12092.6 7071.4 3789.5 5917.8
26 12326.8 7132.3 5279.9 6839.7
27 12225.4 6961.3 5528.9 4792.1
28 12205.8 7247.4 5481.9 6553.6
29 12013.7 6971.9 4676 7041.8
30 12186.8 7159.5 4773.3 4979.5

Table 4.1: The table shows the average write operations per second with
the different setups. There are 30 different experiments for each setup. For
Cassandra, the test was done with and without indexing.

Response time

The speed of the write operations is limited by the response time of
each database. Higher response time means that each thread, or client,
works slower, which in turn causes the overall operations per seconds to
drop.

40

Shown below is the results of all 30 million write operations done to each
database shown in a histogram. This is based on the response time of each
operation. The X axis shows the response time and the Y-axis shows the
count of operations. The most extreme outliers are not included in the
graphs, as the X-axis stops at 100 milliseconds.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

 0 20 40 60 80 100

C
o
u
n
t

Response time

Cassandra 30x 1million inserts

Figure 4.5: The figure shows the response time of the Cassandra server
when doing write operations when there is no indexing. The histogram is
based on all 30 million writes.

Cassandra without indexing have an average response time of 5.22 and a
median of 3.

41

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

 0 20 40 60 80 100

C
o
u
n
t

Response time

Cassandra 30x 1m insert with index

Figure 4.6: The figure shows the response time of the Cassandra server
when doing write operations when there is indexing on the timestamp,
machine, service and severity field. The histogram is based on all 30 million
writes.

Cassandra with indexing have an average response time of 15.86 and a
median of 7.

0

200000

400000

600000

800000

1000000

1200000

 0 20 40 60 80 100

C
o
u
n
t

Response time

Elasticsearch 30x 1million inserts

Figure 4.7: The figure shows the response time of the Elasticsearch server
when doing write operations. The histogram is based on all 30 million
writes.

Elasticsearch have an average response time of 28.89 and a median of
27.

42

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

 0 20 40 60 80 100

C
o
u
n
t

Response time

PostgreSQL 30x 1million inserts

Figure 4.8: The figure shows the response time of the PostgreSQL server
when doing write operations. The histogram is based on all 30 million
writes.

PostgreSQL have an average response time of 20.94 and a median of
14.

Analysis

When looking at figures 4.5, 4.6, 4.7 and 4.8 one can see the response time of
each database setup. These, in combination with the average, median and
percentiles in table 4.2 one can see that Cassandra, both with and without
indexing, and PostgreSQL have mostly quite low response time, but that a
few very high response times raise the average by quite a bit.

Elasticsearch on the other hand have a more evenly distributed response
times, however, with a long tail. Still, in total it has the highest average
which means it gets the fewest operations per second of the four different
setups that were tested.

43

Percentile 25% 50% 75% 90% 95% 99% 99,9% 100%
Cassandra
wo/index

2 3 5 9 15 42 131 4028

Cassandra
w/index

3 7 12 27 48 152 845 3506

Elasticsearch 19 27 35 46 55 83 315 3707
PostgreSQL 10 14 20 29 44 134 390 20014

Table 4.2: The table shows the different percentiles of the response time
when doing one million write operations.

The results above, show that Cassandra without indexing is by far the
fastest option, but without indexing the data cannot be searched effectively.
When the indexes were added to Cassandra, the performance were closer
to Elasticsearch and PostgreSQL, but Cassandra was still the fastest.

Elasticsearch, which has the least operations per second have the most
evenly spread response times. Here the average and median are very close,
and when looking at the percentiles, it has the lowest result at the 99% and
99.9% percentile. This shows that the other databases have a less stable
response time and that the averages are influenced a lot by a few very high
numbers.

4.1.3 Random read operations

This test was done on the servers to see how fast they could read specific
records from disk.

For each database, 500.000 random reads were done in a database with one
million records. This test was repeated 30 times. This totals up to 15 million
random reads per database.

The tests were done in a round-robin fashion. Meaning that there is a break
between each run on a database while it tests the other databases and it
means that all the tests were done in the same time period.

Operations per second

Figure 4.9 displays boxplots of the average random read operations per
second for each database. Table 4.3 shows the numbers this boxplot it based
on.

44

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

A B C

30x Average of 500.000 read operations

A = Cassandra
B = Elasticsearch

C = PostgreSQL

Figure 4.9: The figure shows boxplots of the average random read
operations per second for each database. This is when doing 500.000
random reads from a database with one million records.

Figure 4.9 indicates that Cassandra is quite a bit slower than Elasticsearch
and PostgreSQL in this experiment.

Database Average 95% Confidence Interval
Cassandra 8727.997 8579.339 - 8876.655
Elasticsearch 13962.05 13357.88 - 14566.22
PostgreSQL 13865.69 13627.83 - 14103.56

In the table above, the average operations per second and the confidence
intervals can be seen. These show that on average Elasticsearch is the
fastest of the three, but it does not seem to be a significant difference
compared to PostgreSQL.

When running Welch’s t-test on the numbers, it is found that the true
difference between Cassandra and PostgreSQL is between 4862 and 5413
operations per second in PostgreSQL’s favour. The difference between
PostgreSQL and Elasticsearch is between -546 and 739. This range includes
zero, which indicates that there is no significant difference. Both of these
ranges were calculated with a 95% confidence interval.

45

Cassandra Elasticsearch PostgreSQL
1 7605.5 14074.2 11786.1
2 8581.6 15128.1 13939.2
3 8081.9 12524.7 13922.1
4 8332.2 9644.5 14092.8
5 8436.5 14468.4 14220.7
6 8635.4 14831.5 13911.3
7 8826.3 14619.5 14247.4
8 8838.5 14260.9 13949.7
9 8721.3 14664 13819.8
10 9222 14813.1 13897.8
11 8800.8 15079.3 13912.5
12 9314.1 14523.1 14118.7
13 9221 14237.3 14099.6
14 9096.7 14192 13893.9
15 8580.5 14415.9 14235.7
16 9035.1 13980.5 14339.8
17 8860.5 15115.8 14173.1
18 8990.1 14420.4 13630.3
19 8382.1 10740.7 13950.5
20 8987.3 14786.3 14092.4
21 8571.3 14936.1 13980.9
22 9161 9387 14017
23 8538 15092.5 13795.8
24 7966.7 14187.2 14043.8
25 8436.3 11007.9 14158.3
26 8607.3 15509.6 11435.6
27 9109.6 14001.3 13726.5
28 9054.9 14803 14228
29 8857.1 14238.9 14189.2
30 8988.3 15177.7 14162.3

Table 4.3: The table shows the average random read operations per second
with the different setups. There are 30 different experiments for each setup.

Response time

The factor that limits the random read operations are the response times.
In the graphs below the response times for each database are shown in
histograms to indicate the distribution of the response times. Each graph is
based on the 15 million operations done to each database.

The X-axis on the graph represents the response time and the Y-axis is the
count of operations that had the specific response time. The most extreme

46

outliers are not included as the X-axis stops at 100 milliseconds. However,
these outliers are better shown in table 4.4, which shows the different
percentiles.

0

100000

200000

300000

400000

500000

600000

700000

800000

 0 20 40 60 80 100

C
o
u
n
t

Response time

Cassandra 30x 500.000 random select

Figure 4.10: The figure shows the response time of the Cassandra server
when doing random read operations.

Cassandra have an average response time of 17.9 and a median of 12 when
doing random reads.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

 0 20 40 60 80 100

C
o
u
n
t

Response time

Elasticsearch 30x 500.000 random select

Figure 4.11: The figure shows the response time of the Elasticsearch server
when doing random read operations.

Elasticsearch have an average response time of 7.01 and a median of 7 when

47

doing random reads.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

 0 20 40 60 80 100

C
o
u
n
t

Response time

PostgreSQL 30x 500.000 random select

Figure 4.12: The figure shows the response time of the PostgreSQL server
when doing random read operations.

PostgreSQL have an average response time of 9.13 and a median of 4 when
doing random reads.

Analysis

Figure 4.10, 4.11 and 4.12 shows histograms of the response times of each
database. These, combined with the table 4.4 below and the average and
medians show that Elasticsearch has the most evenly spread response times
while Cassandra and PostgreSQL have some very high values that have a
large impact on the average.

This is most easily seen by looking at the 99% and higher percentiles.
While 99% of the response times in Elasticsearch was at or below 24
milliseconds, it was 108 milliseconds for Cassandra and 82 milliseconds
for PostgreSQL.

The percentiles of the response times (in milliseconds) can be seen in the
table below.

48

Percentile 25% 50% 75% 90% 95% 99% 99,9% 100%
Cassandra 6 12 22 37 56 108 185 1045
Elasticsearch 3 7 10 13 16 24 41 167
PostgreSQL 1 4 10 20 32 82 226 3298

Table 4.4: The table shows the different percentiles of the response time
when doing 500.000 random read operations.

Overall we can see that Elasticsearch and PostgreSQL are faster than
Cassandra in this test. Furthermore, the difference between those two is
not significant.

As we can see from the results above, the databases perform quite
differently from the write operations, where Cassandra was the fastest by
far. Here PostgreSQL seems to be the fastest, however it does have quite a
few outliers and Elasticsearch may be the fastest overall.

4.1.4 Use case 1: Historical data

In figure 4.13, 4.14 and 4.15, A, B, C, D stands for different query types.
Query A is querying the timestamp field, which searches for the count of
records added at a certain time. B is querying the timestamp and machine
field, which searches for a the count of records added by a certain machine
in a certain timestamp. C is querying the timestamp, service and severity
field, which searches for the count of records with a certain timestamp and
service with a certain severity. D is the total of A, B, and C.

Because the data in the database is not random, and mostly unique, it is
possible to know how many results each query will find.

The data was inserted with 1.009 unique timestamp values, 23 unique
machine values, 17 unique services and 19 severity values. The numbers
have a least common multiplier of 7.495.861. However, the severity values
only range from 0 to 7, which leads to some duplicates. 0 and 1 is not
duplicated, 2, 6 and 7 is repeated twice, 4 is repeated three times and 3 and
5 is repeated 4 times.

Due to this, there is a (8/19) ∗ 100 = 42.1% chance of selecting a severity
which is repeated 4 times, (3/19) ∗ 100 = 15.79% chance of selecting a
severity that is repeated three times, (6/19) ∗ 100 = 31.58% chance of
selecting a severity that is repeated twice and a (2/19) ∗ 100 = 10.53%
chance of selecting a unique severity level.

The result is that when doing a search for a specific timestamp, as in query
A, it will return 7495861/1009 = 7429 results. When doing a search for

49

a specific timestamp and a certain machine, as in query B, it will return
7495861/1009/23 = 323 results. And when doing a search for a specific
timestamp, a certain service and a specific severity level, as in query C,
it will return 7495861/1009/17/19 = 23, 23 ∗ 2 = 46, 23 ∗ 3 = 69 or
23 ∗ 4 = 92 results.

Each query was run 23 times in each experiment. And the experiment was
repeated 30 times. This means that query A, B and C was run a total of 690
times each, and 2.070 queries were run in total. The results are shown in
the boxplots below.

The tables below show the average and 95% confidence intervals of each
query. This is based on the 30 tests. This gives us 30 averages for each
query, but each of these averages is an average of only 23 values, which is
less than 30, this is something that has to be kept in mind when reading the
results.

Cassandra

In table 4.5 and figure 4.13, the results of use case 1 performed on the
Cassandra database is presented.

Query Average 95% Confidence Interval
A 1484.895 1481.819 - 1487.971
B 1452.999 1449.687 - 1456.311
C 1446.449 1443.833 - 1449.066
D 1461.448 1458.702 - 1464.194

Table 4.5: The table shows the average read response time and 95%
confidence interval of Cassandra when doing bulk searches.

In the table above and in figure 4.13 one can see that Cassandra got better
results when doing query B and C than it did doing query A.

50

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

A B C D

Cassandra bulk read response time

Figure 4.13: The figure shows boxplots of the bulk read response times of
Cassandra. A, B and C is based on 690 samples each, while D is the total of
these.

Elasticsearch

In table 4.6 and figure 4.14, the results of use case 1 performed on the
Elasticsearch database is presented.

Query Average 95% Confidence Interval
A 5.621739 4.989266 - 6.254211
B 9.997101 9.19177 - 10.80243
C 13.69565 12.50048 - 14.89082
D 9.771502 9.001273 - 10.541731

Table 4.6: The table shows the average read response time and 95%
confidence interval of Elasticsearch when doing bulk searches.

Table 4.6 and figure 4.14 indicates that query A is faster than B, and that
query B is slightly faster than C.

51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A B C D

Elasticsearch bulk read response time

Figure 4.14: The figure shows boxplots of the bulk read response times of
Elasticsearch. A, B and C is based on 690 samples each, while D is the total
of these.

PostgreSQL

In table 4.7 and figure 4.15, the results of use case 1 performed on the
PostgreSQL database is presented.

Query Average 95% Confidence Interval
A 67.52753 66.57327 - 68.48179
B 149.2624 148.3296 - 150.1952
C 175.5203 174.8326 - 176.2080
D 130.7702 130.0728 - 131.4676

Table 4.7: The table shows the average read response time and 95%
confidence interval of PostgreSQL when doing bulk searches.

Table 4.7 and figure 4.15 suggests that query A is the fastest and that query
B is slightly faster than C. The differences are quite significant, and query
A got an average of less than half of what query B and C achieved.

52

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

A B C D

PostgreSQL bulk read response time

Figure 4.15: The figure shows boxplots of the bulk read response times of
PostgreSQL. A, B and C is based on 690 samples each, while D is the total
of these.

Analysis

When looking at figure 4.13, 4.14 and 4.15 one can see that they behave
quite differently.

To compare the results a Welch t-test is done. This compares the results
from the different queries and databases to see if there is a significant
difference between them. The confidence level is set to 95%. The results
are shown in the table below.

The left column of the tables, show which data sets that were compared.
The second column shows the P-value, a P-value smaller than 0.05, or 5%,
means that there is a significant difference between the two data sets. The
third column is the 95% confidence interval, which gives an estimate of
how large the true difference between the data sets are.

Data sets P-value 95% Confidence Interval
Cassandra A vs B 2.2e-16 29.24232 - 34.54898
Cassandra A vs C 2.2e-16 35.85628 - 41.03358
Cassandra B vs C 1.035e-07 4.147375 - 8.951176

In the table above we can see that there is a significant difference between
the three queries done on the Cassandra database. All the P-values are
smaller than 0.05. The confidence intervals shows that query A is slower

53

than query B by 29.2 to 34.5 milliseconds, and slower than query C by 35.9
to 41 milliseconds. Query B is slower than C by 4.1 to 9 milliseconds.

Data sets P-value 95% Confidence Interval
Elasticsearch A vs B 2.2e-16 -5.040477 - -3.710248
Elasticsearch A vs C 2.2e-16 -8.833021 - -7.314805
Elasticsearch B vs C 2.2e-16 -4.508527 - -2.888575

In the table above we can see that there is a significant difference between
the three queries done on the Elasticsearch database as well. All the P-
values are smaller than 0.05. The confidence intervals show that query A is
faster than query B by 3.7 to 5 milliseconds, and faster than query C by 7.3
to 8.8 milliseconds. Query B is faster than C by 2.9 to 4.5 milliseconds.

Data sets P-value 95% Confidence Interval
PostgreSQL A vs B 2.2e-16 -82.83251 - -80.63705
PostgreSQL A vs C 2.2e-16 -109.2483 - -106.7372
PostgreSQL B vs C 2.2e-16 -27.42680 - -25.08914

In the table above we can see that there is a significant difference between
the three queries done on the PostgreSQL database as well. All the P-
values are smaller than 0.05. The confidence intervals show that query A
is faster than query B by 80.6 to 82.8 milliseconds, and faster than query
C by 106.7 to 109.2 milliseconds. Query B is faster than C by 25 to 27.4
milliseconds.

In the table below, the totals are compared with the other databases

Data sets P-value 95% Confidence Interval
Cassandra vs Elasticsearch 2.2e-16 1450.365 - 1452.987
Cassandra vs PostgreSQL 2.2e-16 1328.276 - 1333.078
Elasticsearch vs PostgreSQL 2.2e-16 -123.0659 - -118.9312

In the table above we can see that there is a significant difference between
all three databases. All the P-values are smaller than 0.05. The confidence
intervals show that Cassandra is slower than Elasticsearch by 1.450 to 1.453
milliseconds, and slower than PostgreSQL by 1.328 to 1.333 milliseconds.
Elasticsearch is faster than PostgreSQL by 119 to 123 milliseconds.

4.1.5 Use case 2: Real time data

In this section, the results from the real time data test will be presen-
ted.

54

The test was done to see if the data added to the databases were
immediately indexed and searchable. To do this data was added at a
rate of 2.000 records per second until 10.000 records were added, meaning
that the total duration of the write operations were roughly five seconds.
Immediately after this all records were searched to see if all 10.000 records
were found.

The search was then repeated every 0.1 second in case not all records were
found in the first search. Thus, if all records were found in the first search,
the delay time will just be the response time of the first search. However,
if it was not found in the first search, the delay will be responsetime +
((search# ∗ 100)− 100). For example if all 10.000 records are found on the
fifth search and the response of that search was 50 milliseconds, the result
would be 50 + ((5 ∗ 100)− 100) = 450 milliseconds.

The test was run 30 times on each database. The results are shown in the
tables and figures below.

First the data is checked to see if data was written at the correct rate.

Database Average 95% Confidence Interval
Cassandra 2024.75 1998.561 - 2050.938
Elasticsearch 1996.595 1977.299 - 2015.891
PostgreSQL 1993.026 1985.191 - 2000.861

From the table above, it is apparent that the data was added at roughly the
desired value of 2.000 records per second for all three databases. However,
some variation can be seen.

In the table below, the response time will be looked at. This is simply
the time spent doing a search, and does not take into account if all 10.000
records were found or not.

Database Average 95% Confidence Interval
Cassandra 366.7333 355.1459 - 378.3207
Elasticsearch 4.5 3.675177 - 5.324823
PostgreSQL 17.8 15.68224 - 19.91776

In the following table, the result of the query is taken into account, and
it shows the time from the writes were completed, until the search query
found all 10.000 records.

Database Average 95% Confidence Interval
Cassandra 366.7333 355.1459 - 378.3207
Elasticsearch 514.5 428.2439 - 600.7561
PostgreSQL 17.8 15.68224 - 19.91776

55

As can be seen in the table above, Elasticsearch is the only database that
got a different result here than it did with just the response time. This is
because both Cassandra and PostgreSQL found all 10.000 records with the
first search every time. However, Elasticsearch used at most 9 searches to
find all 10.000 records, meaning a delay of 900 milliseconds.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

C1 C2 E1 E2 P1 P2

Live search delay

Figure 4.16: The figure shows boxplots of the response times and delay
when searching live data. The letters represent the different databases,
where C is Cassandra, E is Elasticsearch and P is PostgreSQL. The numbers
represent the values, where 1 is response time and 2 is total delay.

4.2 Cluster databases

In this section the results of the clustering tests will be presented. The tests
performed on the clusters are the same as the write and read operations
performed on a single node database.

The cluster sizes will be 1, 2, 3 and 6 nodes. For the single node cluster, the
results from the previous experiments will be used. For the other cluster
sizes, the same tests have been repeated.

4.2.1 Write operations

In this experiment, 1.000.000 records were written to the database 30 times.
The results below are based on the average of each test, meaning that they
are based on 30 averages.

56

Cluster size Average 95% Confidence Interval
1 node 4930.497 4731.489 - 5129.504
2 nodes 5957.093 5771.327 - 6142.860
3 nodes 8849.013 8578.180 - 9119.846
6 nodes 11311.17 11089.57 - 11532.78

The table above and figure 4.17 shows that when increasing the cluster size
the write performance improves.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

1 2 3 6

Write ops - cluster

Figure 4.17: The figure shows boxplots of the operations per second when
doing write operations to a cluster. The number of nodes in the cluster is
displayed on the X axis.

To get a picture of how large the true difference between the results are,
the results are compared with Welsh’s two-sample t-test. The results show
that two nodes is between 760 and 1.293 operations per second faster than
a single node. Three nodes is between 2.569 and 3.214 operations per
second faster than two nodes. Finally, six nodes is between 2.119 and 2.805
operations per second faster than three nodes.

4.2.2 Random read operations

In this experiment, 500.000 random reads were done on a database with
one million records 30 times. The results below are based on the average
of each test. Meaning that the average shown below is the average of 30
averages.

57

Cluster size Average 95% Confidence Interval
1 node 13962.05 13357.88 - 14566.22
2 nodes 14902.14 14248.49 - 15555.78
3 nodes 16678.23 15691.30 - 17665.15
6 nodes 17016.88 16327.56 - 17706.19

In the table above and in figure 4.18 we can see that the read operations per
second increases when more nodes are added to the cluster. We can also see
that there are some outliers below each 75% percentile and that in the test
done with 3 nodes in the cluster, the spread below the median, meaning
the lowest 50% of the results, is much larger than in the other tests.

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

1 2 3 6

Random read ops - cluster

Figure 4.18: The figure shows boxplots of the operations per second when
doing random read operations to a cluster. The number of nodes in the
cluster is on the X axis.

From the boxplot above we can see that there is a general trend that more
nodes equals more operations per second. To find if there is any significant
differences a Welch t-test is performed on the numbers. It shows that the
difference between 1 node and 2 nodes is between 69 and 1.811 operations
per second, with 2 and 3 nodes the difference is between 614 and 2.938
and with 6 versus 3 nodes the difference is between 843 in the 3 node
clusters favour and 1.520 in the 6 node clusters favour. Thus, no significant
difference can be proven between 3 and 6 nodes.

58

4.2.3 Use case 1: Historical data

In this experiment, the results are based on 69 read queries that were
performed 30 times. The averages below are based on the average of the 69
queries. Meaning that the numbers below are based on 30 averages.

Cluster size Average 95% Confidence Interval
1 node 9.3 8.526931 - 10.073069
2 nodes 8.133333 7.470180 - 8.796487
3 nodes 8.5 7.646529 - 9.353471
6 nodes 6.166667 5.785824 - 6.547510

In figure 4.19 and in the table above, we can see that the response time
seems to go down when adding more nodes to a cluster.

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 6

Historical data reads - cluster

Figure 4.19: The figure shows boxplots of the response time when doing
read operations like in use case 1.

When doing a Welch t-test on these numbers, it shows that the difference
between 1 and 2 nodes is between 0,17 and 2,16 milliseconds. The
difference between 2 and 3 nodes is between 1,42 milliseconds in the 2
node setup’s favour and 0,69 milliseconds in the 3 node setup’s favour, this
range includes zero, and thus no significant difference can be proven. The
difference between 3 nodes and 6 nodes is the most obvious one. The Welch
t-test tells us that the difference is between 1,4 and 3,26 milliseconds.

59

60

Chapter 5

Discussion

In this chapter, the results will be compared and discussed.

5.1 Database performance

This section will be focused on the database performance when doing
write and random read operations on single node databases. The use
case scenarios and clustering results will be discussed in their own
sections.

5.1.1 Client performance

The first results presented in the results chapter is the test of the clients.
This information was needed to know the limitations of the clients when
performing the other experiments.

However, the results in this test says very little about the database
performance as the clients may work differently and are not necessarily
optimized very well. And in addition, from looking at the results from this
test alone, it is not certain that the clients are the actual bottleneck in this
test.

This is why the results from this test was simply used to see whether or not
the clients could be the bottlenecks in the other experiments. This was not
the case.

61

5.1.2 Write operations - single node

This experiment was done to get an idea about how fast data could be
written to the database. This was done with one write operation per
transaction to simulate how normal logs are stored. The data added was
very similar in format as a common log message.

In this test we can see that Cassandra without indexing was nearly twice
as fast as the others. However, this is not a fair comparison as this data
would not be searchable in the same fashion as the other options. When
adding an index to the timestamp, machine, service and severity field in
Cassandra it is closer to Elasticsearch and PostgreSQL in performance. The
latter alternatives index by default.

The fact that indexes have to be added manually in Cassandra can be both
a good and a bad thing. In most cases you would want indexes to make the
data easily searchable and when these indexes are added automatically, it
makes the system easier to configure. In other cases, it may be important
to just store as much information as fast as possible and its not meant to
be searched immediately. In the latter case it may be desirable to simply
add all the information without indexing and indexes can be added later if
deemed necessary.

Another case where adding indexes manually may be beneficial is if the
data is formatted in such a fashion that it has many unique fields, but where
only some of these fields should actually be searchable.

When comparing the results with indexing enabled the results we obtained
indicate that the performance is quite even for all three databases.
However, it is apparent that Cassandra is the fastest of the three,
PostgreSQL is in a close second, while Elasticsearch is quite a bit slower
here.

When looking at the results of the Welch t-test, which gives the difference
in a 95% confidence interval. The difference between Cassandra and Post-
greSQL is 481 to 1030 operations per second in Cassandras favour. This in-
dicates that Cassandra is roughly 7.5 to 16% faster than PostgreSQL.

The difference between PostgreSQL and Elasticsearch came out with a
95% confidence interval between 1150 and 1804 operations per second in
Postgres’ favour. This is roughly 23.3 to 36.6%.

In total this indicates that Cassandra is the fastest here, but not by a
huge margin. Especially PostgreSQL is very close in performance and
Elasticsearch is a bit further behind.

62

5.1.3 Random read operations - single node

This experiment was done to get an idea about the read speed of each
database. The experiment reads a single record from the database selected
by the primary key. This is as simple as a read operation can be. It should be
noted that the search was done on a Cassandra database without indexing.
However, as the search is done on the primary key, it should not matter as
this is indexed automatically in Cassandra as well.

The results show that Cassandra, which was the fastest at write operations,
is the slowest at reading. This can be observed easily by looking at figure
4.9. We observe that Elasticsearch and PostgreSQL gets quite similar results
and average at around 14.000 operations per second. Elasticsearch does
have a larger spread and more outliers than PostgreSQL.

Cassandra has an average of roughly 9.000 operations per second. But there
is almost no spread at all. The most extreme outlier is at roughly 7.500
operations per second.

When looking at the Welch t-test to see if there is significant differences
it shows that PostgreSQL is roughly 55.7 to 62% faster than Cassandra.
However it does not show a significant difference between PostgreSQL and
Elasticsearch, as the range it gives includes zero.

In total, PostgreSQL is the database that performed best in these experi-
ments overall, as it was very close to the fastest in both writing and ran-
dom reads. While Cassandra and Elasticsearch did quite a bit worse on the
random read and write experiment respectively.

5.2 Use case performance

In this section the results of the use case scenarios on a single node will be
discussed.

5.2.1 Use case 1: Historical data

This experiment was done to see how well the databases performed
while doing searches on the data that is common when analyzing. There
were three different searches on a database with nearly eight million
records.

The three different searches were all of the type that would count the
amount of elements that match the search, but how many elements that
would be matched was dependent on the search.

63

In the figures and tables the searches are split up in A, B and C while D
is the total of all searches. All searches look for records with a specific
timestamp, search B looks at the machine field as well, while search C looks
at the service and severity. Because of the way the data was written, the
amount of results each search, or query, is known. It is 7.429 results for A,
323 results for B and 23, 46, 69 or 92 results for query C.

The results from these experiments indicate that Cassandra perform very
poorly compared to Elasticsearch and PostgreSQL. The average response
time of all searches was 1.461 milliseconds and the 95% confidence interval
was between 1.460 and 1.462. The difference in the response times of each
search was not very big, but from figure 4.13 it is clear that search A was
slightly slower than B and C.

Elasticsearch performed the best in this experiment and the average re-
sponse time of all searches were 9,8 milliseconds while the 95% confidence
interval was between 9,4 and 10,1 milliseconds. When looking at the box-
plots in figure 4.14 it shows a different trend than Cassandra, here query
A is the fastest, then query B and query C is the slowest. This may be an
indication as to why Cassandra did so poorly.

PostgreSQL landed somewhere in between the other two. The average
response time for all queries were 130,7 milliseconds. The 95% confidence
interval was between 128,7 and 132,8 milliseconds. In figure 4.15 the same
trend as with Elasticsearch can be seen. Query A was the fastest, then B
and query C was the slowest. However, the difference between the three is
significantly larger than it was with Elasticsearch.

In total this shows that Elasticsearch was the clear winner here, the
differences was so large that it would be difficult to visualize. However
when looking at the results of the Welch t-test it can be seen that the
true difference between Elasticsearch and Cassandra is roughly 1.450
milliseconds, or 1,45 seconds. The difference between Elasticsearch
and PostgreSQL is roughly 120 milliseconds. Both in Elasticsearch’s
favour.

5.2.2 Use case 2: Real time data

This experiment was done to see whether or not the data that was added
to the databases was immediately searchable.

The results here show that all three databases got very good results.
However Elasticsearch got very varying results. The differences can best
be seen in figure 4.16 where the results are shown in a boxplot.

PostgreSQL is clearly the fastest and finds all the written records within an

64

average of 17.8 milliseconds. It is found on the first search every time. Then
its Cassandra which also finds the all records with the first search, however,
it uses an average of 366,7 milliseconds. Elasticsearch is the slowest here
with an average of 514,5 milliseconds and it is the only database that does
not find all records with the first search.

This can be explained by the fact that Elasticsearch updates its indexes in
bulk, by default every second. This means that if a record is written shortly
after one of these updates, it will take one second before that record is
searchable. This is also why the results are so spread with Elasticsearch.
It is very dependent on how long it was since the last index update when
that last record was written. However all records were never found with
the first search. It should be noted that the searches themselves have a very
small response time of an average of 4,5 milliseconds.

For Cassandra on the other hand it can be observed that the high response
times are most likely due to its poor search performance, which could be
observed in the previous experiment as well.

Overall the results indicate that Cassandra is not very suitable for this type
of data and analysis as the queries done in use case one is simply too slow,
doing many queries like this would take too much time and require too
much resources.

Elasticsearch seems to be the best in these cases, as it is the fastest by
quite a bit in use case one. In use case two it is significantly slower than
PostgreSQL, but it does not use much resources, it is simply a short delay
before records are indexed and searchable. The queries themselves take
very little time and thus very little effort.

5.3 Clustering performance

In this chapter, the results of the clustering experiment will be discussed.
Here it was decided to look at the performance of Elasticsearch as
Cassandra had so poor results in use case one with a single node.

The tests that were run on the cluster was the same as the tests done on
the single node database. However real time data was not tested here as
it will likely be very close to the same results as with a single node. As it
is the configuration of the Elasticsearch database that caused most of the
delay.

65

5.3.1 Write operations

Figure 4.17 shows a clear trend that more nodes means that data can be
written faster. However the difference does not seem to be linear as two
nodes are between 15,4% and 26,2% faster than one node. While three
nodes are between 43,1% and 53,9% faster than two nodes and finally six
nodes are between 23,9% and 31,7% faster than three nodes.

The reason the change is so varying may be due to many different factors.
One factor may be the number of shards on a single node. For all tests
done on the cluster the database had a total of 6 shards and no replication.
This means that when the database had 2 nodes there were 3 shards on
each node, when it had three nodes there were 2 shards on each node and
when the cluster had six nodes it was one shard per node. It may be that
2 shards is somewhat the sweet spot for each node, as the biggest increase
was between two and three nodes in the cluster.

Another explanation as to why there was so little increase in performance
between a six node cluster and the three node, when the number of nodes
is doubled, could be that the node working as a load balancer was the
bottleneck. Even though there should be very little processing done by the
load balancer for each request sent to other nodes, there is still some work
and it may have become too much for it to handle in addition to being a
data node itself.

All in all there is a clear trend that adding nodes to the cluster increases the
write performance drastically.

5.3.2 Random read operations

From the results of this test it is apparent that adding more nodes to the
cluster does seem to improve the random read speed by as much as it
improved the write speed.

The average operations per second went from 13.962 with one node to
17.016 with six nodes. The Welch t-test did show that there was significant
differences between the different setups. It showed that when going from 1
to 2 nodes the operations per second increase by 0.5-13%, when going from
2 nodes to 3 the performance increased by 4,1-19,7%, but when going from 3
nodes to 6 it could not prove a significant difference with a 95% confidence
interval. It showed that the difference was that the 6 node cluster did
between 5% worse and 9,1% better than the 3 node cluster.

All in all, the trend is that the read performance does go up when increasing
the number of nodes in the cluster. However here it would be interesting to

66

see how the performance is dependent on the database size. When the one
million records are split between many shards, each shard has to search
less records. However, the results have to be sent through network and
collected at the master node. It would be interesting to see if one could find
the best possible setup of records per shard. However, this is something
that would vary depending on hardware and many other factors.

5.3.3 Use case 1: Historical data

The results from this experiment shows that adding more nodes again have
a positive effect. It is not a large difference, but that would be difficult as
the response time was very low already with one node. But it still shows a
trend that adding more nodes means better performance.

Overall, from the three experiments done on the varying cluster sizes, it
appears that adding more nodes to the cluster will increase its performance.
The most drastic performance change is noticed when writing to the
database. Here a performance increase of more than 100% could be seen
when going from a 1 node cluster to a 6 nodes, this may have been even
larger if the application(s) writing to the database could write to different
master machines, this would mean that there is no single point where all
the data have to pass through.

In the random read experiment and the historical data searches, the results
improved less when increasing the size of the cluster. However, it would be
interesting to see how these results would look when the amount of stored
data rises. Another thing that would be interesting to see is how it would
look if the data per node was the same in all tests. Meaning that there was
6 times more data searched in the cluster with 6 nodes compared to the
single node.

5.4 Additional findings

While doing these tests and experiments on the different databases, there
are quite a few things learned that is noteworthy.

5.4.1 Configuration

The configuration of the databases were remarkably straight forward for
all three. The defaults were sensible and they all would work very well
straight out of the box.

67

Some changes had to be made, but this was no problem as they all had very
good documentation which made it very clear what should be changed and
what these changes would do.

5.4.2 Querying languages

The three different systems use three different querying languages, SQL,
CQL and a RESTful API. Of these, only SQL was familiar before this project.
The other two, CQL and the RESTful API used to communicate with
Elasticsearch was both fairly easy to become familiar with. CQL is very
similar to SQL, and in most cases the queries are exactly the same.

Elasticsearch’s RESTful API is something completely different. It uses
HTTP requests and JSON to communicate. It was somewhat challenging
in the early stages of the testing, but after some time it proved to be very
innovative and flexible.

5.4.3 Data structure

The data structure in the three systems are quite different. In PostgreSQL
and Cassandra, each data field needs a column in the table they are stored
in. In Elasticsearch however, the data is stored as JSON, and one record
does not need to have a set number of fields. Thus, two similar records
may have different fields. However, a Lucene index will be created per
field, so very many unique fields will create many smaller indexes. This
is something that gives very much flexibility of the data stored in the
Elasticsearch database.

5.5 The research process

For the most part, the research process went surprisingly well and the time
schedule that was set during the early part of the process was never too far
off. However, there are some things that did take more time than expected,
while other things sometimes were easier and less time consuming than
expected.

5.5.1 Benchmarking tool

One of the issues were with the benchmarking tool. In the early stages of
the project, a lot of time and energy were invested in the benchmarking
tool YCSB. This is a tool that is designed to benchmark databases and was

68

the selected tool to perform the write and random read tests on the selected
databases.

After quite some time it was found that there were some issues with this
tool. The problem was not apparent before a test on an Elasticsearch
database cluster was attempted, when the module used to communicate
with Elasticsearch did not work as expected. The reasons why this didn’t
work is not obvious, but it may be because of bad configuration or that it
did not work with the current version of Elasticsearch as the modules last
update was more than one year ago.

However, this proved to be somewhat a blessing in disguise. When YCSB
caused troubles, an alternative was needed and JMeter was found. JMeter
worked very well for all the databases with different setups. It also had
much more options for generating detailed workloads which made the
next part of the experiments, the use case specific ones, much easier. The
original plan was to develop own programs to perform these experiments,
but this was no longer needed as JMeter had the functionality.

Even though this problem proved to be a blessing as well, it would be better
if it was decided to use JMeter at an earlier point. This probably could have
been avoided if testing of all database setups were tried at an earlier point
in the process.

5.5.2 Redis

Originally Redis was supposed to be one of the databases that would be
tested, however it did take longer than expected for version 3.0 of Redis to
become stable. This is the version of Redis that made clustering possible,
which was necessary for it to be of interest in this project. It should be noted
that this is now available.

This did not cause a lot of difficulty as it was always unclear whether
it would be ready. However it could have provided some interesting
results.

5.6 Alternative approaches and future work

In this thesis the goal was to find how to deal with the ever increasing
amount of data that has to be saved and analyzed. The approach in this
thesis was designed to answer this as good as possible within the time and
resource constraints that was set.

69

Due to this it was not feasible to do experiments on data so large that a SQL
database performance would get proper issues. To do this many terabytes
of data would be needed, and to even generate this data would take several
day per database. But if this is practically doable, or if the data is already
there it would be interesting to try to measure the breaking point of an SQL
database and see how different NoSQL databases could try to solve this
with different hardware and cluster setups.

5.6.1 Varying data format

In the experiments performed in this project, all the data was very uniform.
It was all very similar to how a log message from a service would look like.
In many real case scenarios this would not be the case. The same database
may deal with logs, netflows, sensor data and all sorts of different data
from different applications. It would be interesting to see how this would
alter the results.

In some cases the same database may be used for many different
applications, and a specialized database is probably not the best option if
the data and queries are very diverse.

5.7 Impact

This thesis will be the most useful to those who are in the planning stage of
setting up a log analysis solution or those who are changing an existing one.
Here it may give indications about how large to scale and what solutions
to look into, in addition to information about how to test possible systems
themselves.

Other users that may benefit from these results are developers and system
administrators that are working with data similar to logs. The most
defining characteristics of a log other than its format is that it is very rarely
updated. Once its written, it will only be read. The format itself may look
very much like a message from a user on a bulletin board, news article,
blog or similar. These messages are also very rarely updated, and mostly
written once then read several times.

70

Chapter 6

Conclusion

This project focused on log analytics and how to deal with the ever
increasing volume of data that will have to be stored and read effectively.
Two very different NoSQL databases and a SQL database were compared
to see how they handle this problem.

It is found that all three databases perform quite evenly when writing and
doing reads based on the primary key. The true difference is shown in
the other experiments, where PostgreSQL and especially Elasticsearch do
much better than Cassandra.

It is also found that NoSQL have an advantage over SQL in the form of
partitioning. When the data becomes too large for a single machine to
handle, NoSQL databases can split the database over more machines, this
is not only an effective way to slowly scale up as more space is needed, but
the results show that both write and read operations are done faster when
the data is partitioned.

This shows us that NoSQL itself is not the solution, but that there are some
NoSQL databases that can help with solving the problem.

These databases can make the increasing amount of data easier to handle,
as one can simply add more nodes to a cluster when the issue arise. This
should provide a good foundation to provide for future needs, both in
terms of additional write performance needed to handle the increasing
load generated by the increasing number of machines, and additional read
performance needed to quickly analyze this data.

71

72

Bibliography

[1] Brian F Cooper et al. ‘Benchmarking cloud serving systems with
YCSB’. In: Proceedings of the 1st ACM symposium on Cloud computing.
ACM. 2010, pp. 143–154.

[2] RightScale. Cloud Computing Trends: 2015 State of the Cloud Survey.
URL: http://www.rightscale.com/blog/cloud- industry- insights/cloud-
computing-trends-2015-state-cloud-survey.

[3] Michael Armbrust et al. ‘A view of cloud computing’. In: Communic-
ations of the ACM 53.4 (2010), pp. 50–58.

[4] Michael Chui, Markus Löffler and Roger Roberts. ‘The internet of
things’. In: McKinsey Quarterly 2.2010 (2010), pp. 1–9.

[5] Oleksii Kononenko et al. ‘Mining modern repositories with elastic-
search’. In: Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories. ACM. 2014, pp. 328–331.

[6] Google. Google Trends. URL: http://www.google.com/trends/.
[7] Peter Mell and Tim Grance. ‘The NIST definition of cloud comput-

ing’. In: (2011).
[8] Dave Evans. ‘The internet of things’. In: How the Next Evolution of

the Internet is Changing Everything, Whitepaper, Cisco Internet Business
Solutions Group (IBSG) (2011).

[9] Oxford English Dictionary. URL: http ://www.oxforddictionaries . com/
definition/english/ (visited on 29/03/2015).

[10] Datascience@Berkeley. URL: http://datascience.berkeley.edu/what-is-big-
data/ (visited on 29/03/2015).

[11] Eric Allman. Homepage for Eric Allman. URL: http ://www.neophilic .
com/~eric/ (visited on 13/02/2015).

[12] Chris Lonvick. ‘The BSD syslog protocol’. In: (2001).
[13] Rainer Gerhards. ‘The syslog protocol’. In: (2009).
[14] Jason Wilder. Centralized Logging Architecture. July 2013. URL: http :

//jasonwilder.com/blog/2013/07/16/centralized- logging-architecture/
(visited on 20/01/2015).

[15] Risto Vaarandi and Paweł Niziński. ‘Comparative Analysis of Open-
Source Log Management Solutions for Security Monitoring and

73

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2015-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2015-state-cloud-survey
http://www.google.com/trends/
http://www.oxforddictionaries.com/definition/english/
http://www.oxforddictionaries.com/definition/english/
http://datascience.berkeley.edu/what-is-big-data/
http://datascience.berkeley.edu/what-is-big-data/
http://www.neophilic.com/~eric/
http://www.neophilic.com/~eric/
http://jasonwilder.com/blog/2013/07/16/centralized-logging-architecture/
http://jasonwilder.com/blog/2013/07/16/centralized-logging-architecture/

Network Forensics’. In: Proceedings of the 2013 European Conference on
Information Warfare and Security. 2013, pp. 278–287.

[16] Apache. PoweredBy - Lucene. URL: http : / /wiki . apache . org / lucene -
java/PoweredBy (visited on 05/02/2015).

[17] Apache. Apache Lucene. URL: https://lucene.apache.org/core/ (visited
on 05/02/2015).

[18] Logstash. logstash - open source log management. URL: http://logstash.
net/ (visited on 05/03/2015).

[19] Jan Sipke van der Veen, Bram van der Waaij and Robert J Meijer.
‘Sensor data storage performance: Sql or nosql, physical or virtual’.
In: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference
on. IEEE. 2012, pp. 431–438.

[20] V Manoj. ‘Comparative Study of NoSQL Document, Column Store
Databases and Evaluation of Cassandra’. In: International Journal of
Database Management Systems (IJDMS) Vol 6 (2014).

[21] The Apache Cassandra Project. URL: http : / / cassandra . apache . org/
(visited on 13/03/2015).

[22] DB-Engines. URL: http://db-engines.com/ (visited on 25/03/2015).
[23] PostgreSQL: The world’s most advanced open source database. URL: http:

//www.postgresql.org/ (visited on 25/03/2015).
[24] Redis. URL: http://redis.io/ (visited on 25/03/2015).
[25] Apache JMeter. URL: http : / / jmeter . apache . org/ (visited on

03/04/2015).
[26] Mishail/CqlJmeter. URL: https://github.com/Mishail/CqlJmeter (visited

on 23/04/2015).
[27] Documentation :: JMeter-Plugins.org. URL: http://jmeter- plugins .org/

wiki/PerfMon/ (visited on 23/04/2015).
[28] YCSB Wiki. URL: https : / / github . com/brianfrankcooper /YCSB/wiki

(visited on 13/03/2015).
[29] gnuplot homepage. URL: http : / / www . gnuplot . info/ (visited on

23/04/2015).
[30] RStudio - RStudio. URL: http ://www. rstudio . com/products/ rstudio/

(visited on 01/05/2015).
[31] R: The R Project for Statistical Computing. URL: http://www.r-project.

org/ (visited on 01/05/2015).
[32] Allen B. Downey. Think Stats: Probability and Statistics for Program-

mers. O’Reilly Media, 2011.
[33] Jed Campbell. Why is 30 the “Magic Number” for Sample Size? URL:

http://www.jedcampbell.com/?p=262.
[34] All About Student’s t-test. URL: http://projectile.sv.cmu.edu/research/

public/talks/t-test.htm (visited on 08/05/2015).
[35] Welch’s t-Test. URL: http://msemac.redwoods.edu/~darnold/math15/

spring2013/R/Activities/WelchTTest.html (visited on 08/05/2015).

74

http://wiki.apache.org/lucene-java/PoweredBy
http://wiki.apache.org/lucene-java/PoweredBy
https://lucene.apache.org/core/
http://logstash.net/
http://logstash.net/
http://cassandra.apache.org/
http://db-engines.com/
http://www.postgresql.org/
http://www.postgresql.org/
http://redis.io/
http://jmeter.apache.org/
https://github.com/Mishail/CqlJmeter
http://jmeter-plugins.org/wiki/PerfMon/
http://jmeter-plugins.org/wiki/PerfMon/
https://github.com/brianfrankcooper/YCSB/wiki
http://www.gnuplot.info/
http://www.rstudio.com/products/rstudio/
http://www.r-project.org/
http://www.r-project.org/
http://www.jedcampbell.com/?p=262
http://projectile.sv.cmu.edu/research/public/talks/t-test.htm
http://projectile.sv.cmu.edu/research/public/talks/t-test.htm
http://msemac.redwoods.edu/~darnold/math15/spring2013/R/Activities/WelchTTest.html
http://msemac.redwoods.edu/~darnold/math15/spring2013/R/Activities/WelchTTest.html

[36] Risto Vaarandi and Mauno Pihelgas. ‘Using Security Logs for Col-
lecting and Reporting Technical Security Metrics’. In: Military Com-
munications Conference (MILCOM), 2014 IEEE. IEEE. 2014, pp. 294–
299.

[37] Sara Alspaugh et al. ‘Analyzing log analysis: An empirical study
of user log mining’. In: Conference on Large Installation System
Administration (LISA). 2014.

[38] Lavanya Ramakrishnan et al. ‘Evaluation of NoSQL and Array
Databases for Scientific Applications’. In: DataCloud Workshop. 2013.

75

76

Chapter A

Appendices

A.1 runTest.sh

1 # !/ bin/bash
2

3 # Config
4 OUTPUTFILE=n a t t a . t x t
5 OPERATION= s e l e c t
6 ID=3
7 touch $OUTPUTFILE
8 screen −dm ./ processClose . sh $OUTPUTFILE
9

10 for i in { 0 1 . . 3 0 }
11 do
12 # Runs prosgres t e s t
13 ./ jmeter −n −r −t /mnt/sync/backupsync/ t e s t s /postgres−

$OPERATION−$ID . jmx − j /mnt/sync/backupsync/experiments
/postgres/$OPERATION . $ i . jmeter . csv −J out putF i l e=
$OPERATION . $ i . csv | t e e $OUTPUTFILE

14

15 # Runs cassandra t e s t
16 ./ jmeter −n −r −t /mnt/sync/backupsync/ t e s t s /cassandra−

$OPERATION−$ID . jmx − j /mnt/sync/backupsync/experiments
/cassandra/$OPERATION . $ i . jmeter . csv −J out putF i l e=
$OPERATION . $ i . csv | t e e $OUTPUTFILE

17

18 # Runs e l a s t i c s e a r c h t e s t
19 ./ jmeter −n −r −t /mnt/sync/backupsync/ t e s t s / e l a s t i c s e a r c h

−$OPERATION−$ID . jmx − j /mnt/sync/backupsync/
experiments/ e l a s t i c s e a r c h /$OPERATION . $ i . jmeter . csv −J
ou tput F i l e=$OPERATION . $ i . csv | t e e $OUTPUTFILE

20

21 done
22

23 # K i l l s the c l o s e s c r i p t
24 p k i l l processClose

77

A.2 processClose.sh

1 # !/ bin/bash
2

3

4 ## S c r i p t t h a t c l o s e s jmeter when t e s t s are complete .
5 FILE=$ {1:− " unset " }
6 TIMER=10
7

8 ## P r i n t s e r r o r message i f f i l e isn ’ t s e t
9 i f [[$FILE = " unset "]]

10 then
11 echo " Usage : "
12 echo " ./ processClose . sh [f i l e to read] "
13 e x i t 0
14 f i
15

16 while true
17 do
18 # Gets the l i n e from f i l e
19 ENDED=$ (c a t $FILE | grep " The JVM should have e x i t t e d but

did not . " | wc − l)
20

21 i f [$ENDED = 0]
22 then
23 echo " Process running "
24 e l i f [$ENDED = 1]
25 then
26 echo " Process has ended "
27 echo $ENDED
28

29 # K i l l processes
30 p k i l l jmeter
31 p k i l l j ava
32

33 # Overwrite f i l e
34 echo " Contents of f i l e dele ted "
35 echo " " > $FILE
36 e lse
37 echo " Something unexpected has happened "
38 echo $ENDED
39 f i
40

41 s leep $TIMER
42 done

A.3 readFiles.py

1 # !/ usr/bin/python
2

78

3 # Imports
4 import csv
5 from c o l l e c t i o n s import d e f a u l t d i c t
6

7 # Var iab les
8 l i n e s = 0
9 reader = d e f a u l t d i c t ()

10 timestamp = { }
11 f i l e = ’ postgres−s ing le−host−2−copy . csv ’
12

13 # Reads l i n e in f i l e
14 with open (f i l e , " r ") as r f :
15 reader = csv . DictReader (r f)
16 for row in reader :
17 time = i n t (row [’ timeStamp ’] [0 : 1 0])
18 elapsed = i n t (row [’ elapsed ’])
19 e r r o r s = i n t (row [’ ErrorCount ’])
20 threads = i n t (row [’ a l lThreads ’])
21

22 i f not time in timestamp . keys () :
23 timestamp [time] = { }
24 timestamp [time] [’ count ’] = 0
25 timestamp [time] [’ l a t e n c y ’] = 0
26 timestamp [time] [’ e r r o r s ’] = 0
27 timestamp [time] [’ a l lThreads ’] = 0
28 timestamp [time] [’ avgLat ’] = 0 # Set

outs ide loop
29 timestamp [time] [’ avgThreads ’] = 0 # Set

outs ide loop
30

31

32 i f timestamp [time] :
33 timestamp [time] [’ count ’] += 1
34 timestamp [time] [’ l a t e n c y ’] += elapsed
35 timestamp [time] [’ e r r o r s ’] += e r r o r s
36 timestamp [time] [’ a l lThreads ’] += threads
37

38 l i n e s +=1
39

40 o u t p u t f i l e = " graph/ r e s u l t−" + f i l e
41

42 with open (o u t p u t f i l e , "w+") as wf :
43 f ieldnames = [’ timestamp ’ , ’ count ’ , ’ l a t e n c y ’ , ’ a l lThreads ’

, ’ e r r o r s ’ , ’ avgThreads ’ , ’ avgLat ’]
44 w ri t e r = csv . Dic tWri ter (wf , f ieldnames=fieldnames)
45 w ri t e r . writeheader ()
46

47 for key , value in timestamp . i t e r i t e m s () :
48 # Get averages
49 count = value [’ count ’]
50 t o t L a t = value [’ l a t e n c y ’]
51 totThreads = value [’ a l lThreads ’]
52 value [’ avgLat ’] = t o t L a t /count

79

53 value [’ avgThreads ’] = totThreads/count
54

55 # P r i n t to screen
56 print key , value
57

58 # Write to f i l e
59 w ri t e r . writerow ({ ’ timestamp ’ : key , ’ count ’ : value [

’ count ’] , ’ l a t e n c y ’ : value [’ l a t e n c y ’] , ’
a l lThreads ’ : value [’ a l lThreads ’] , ’ e r r o r s ’ :
value [’ e r r o r s ’] , ’ avgThreads ’ : value [’
avgThreads ’] , ’ avgLat ’ : value [’ avgLat ’] })

60

61 print l i n e s

A.4 Elasticsearch single node config

1 c l u s t e r . name : c l u s t e r 1
2 index . number_of_shards : 1
3 index . number_of_replicas : 0
4 http . cors . enabled : t rue

A.5 PostgreSQL single node config

1 d a t a _ d i r e c t o r y = ’/ var/ l i b /p o s t g r e s q l /9.3/main ’ # use data
in another d i r e c t o r y

2 h b a _ f i l e = ’/ e t c /p o s t g r e s q l /9.3/main/pg_hba . conf ’ # host−
based a u t h e n t i c a t i o n f i l e

3 i d e n t _ f i l e = ’/ e t c /p o s t g r e s q l /9.3/main/pg_ident . conf ’ # ident
c o n f i g u r a t i o n f i l e

4 e x t e r n a l _ p i d _ f i l e = ’/ var/run/p o s t g r e s q l /9.3−main . pid ’
wri te an e x t r a PID f i l e

5 l i s t e n _ a d d r e s s e s = ’ db1 , l o c a l h o s t ’ # what IP address (es) to
l i s t e n on ;

6 port = 5432 # (change r e q u i r e s r e s t a r t
)

7 max_connections = 1000 # (change r e q u i r e s r e s t a r t
)

8 u n i x _ s o c k e t _ d i r e c t o r i e s = ’/ var/run/postgresql ’ # comma−separated
l i s t of d i r e c t o r i e s

9 s s l = t rue # (change r e q u i r e s r e s t a r t
)

10 s s l _ c e r t _ f i l e = ’/ e t c / s s l / c e r t s / s s l−c e r t−s na k eo i l . pem’ #
(change r e q u i r e s r e s t a r t)

11 s s l _ k e y _ f i l e = ’/ e t c / s s l / p r i v a t e / s s l−c e r t−s na k eo i l . key ’ #
(change r e q u i r e s r e s t a r t)

12 shared_buf fers = 128MB # min 128kB
13 l o g _ l i n e _ p r e f i x = ’% t ’ # s p e c i a l values :
14 log_timezone = ’UTC’

80

15 d a t e s t y l e = ’ iso , mdy’
16 timezone = ’UTC’
17 lc_messages = ’ en_US . UTF−8’ # l o c a l e f o r

system e r r o r message
18 lc_monetary = ’ en_US . UTF−8’ # l o c a l e f o r

monetary formatt ing
19 lc_numeric = ’ en_US . UTF−8’ # l o c a l e f o r

number formatt ing
20 l c_ t ime = ’ en_US . UTF−8’ # l o c a l e f o r time

formatt ing
21 d e f a u l t _ t e x t _ s e a r c h _ c o n f i g = ’ pg_catalog . engl ish ’

A.6 Cassandra single node config

1 cluster_name : ’ c l u s t e r 1 ’
2 num_tokens : 256
3 hinted_handoff_enabled : t rue
4 max_hint_window_in_ms : 10800000 # 3 hours
5 h i n t e d _ h a n d o f f _ t h r o t t l e _ i n _ k b : 1024
6 max_hints_del ivery_threads : 2
7 b a t c h l o g _ r e p l a y _ t h r o t t l e _ i n _ k b : 1024
8 a u t h e n t i c a t o r : AllowAllAuthenticator
9 a ut h o r i z e r : AllowAllAuthorizer

10 permiss ions_val id i ty_ in_ms : 2000
11 p a r t i t i o n e r : org . apache . cassandra . dht . Murmur3Partitioner
12 d a t a _ f i l e _ d i r e c t o r i e s :
13 − /var/ l i b /cassandra/data
14 commitlog_directory : /var/ l i b /cassandra/commitlog
15 d i s k _ f a i l u r e _ p o l i c y : stop
16 commit_fa i lure_pol icy : stop
17 key_cache_size_in_mb :
18 key_cache_save_period : 14400
19 row_cache_size_in_mb : 0
20 row_cache_save_period : 0
21 counter_cache_size_in_mb :
22 counter_cache_save_period : 7200
23 saved_caches_direc tory : /var/ l i b /cassandra/saved_caches
24 commitlog_sync : p e r i o d i c
25 commitlog_sync_period_in_ms : 10000
26 commitlog_segment_size_in_mb : 32
27 seed_provider :
28 − class_name : org . apache . cassandra . l o c a t o r . SimpleSeedProvider
29 parameters :
30 − seeds : " 1 2 7 . 0 . 0 . 1 "
31 concurrent_reads : 32
32 concurrent_wri tes : 32
33 concurrent_counter_wri tes : 32
34 memtable_al locat ion_type : heap_buffers
35 index_summary_capacity_in_mb :
36 index_summary_resize_interval_in_minutes : 60
37 t r i c k l e _ f s y n c : f a l s e

81

38 t r i c k l e _ f s y n c _ i n t e r v a l _ i n _ k b : 10240
39 s torage_por t : 7000
40 s s l _ s t o r a g e _ p o r t : 7001
41 l i s t e n _ a d d r e s s : 1 9 2 . 1 6 8 . 1 2 8 . 1 7 7
42 s t a r t _ n a t i v e _ t r a n s p o r t : t rue
43 n a t i v e _ t r a n s p o r t _ p o r t : 9042
44 s t a r t _ r p c : t rue
45 rpc_address : 1 9 2 . 1 6 8 . 1 2 8 . 1 7 7
46 rpc_port : 9160
47 rpc_keepal ive : t rue
48 rpc_server_type : sync
49 thr i f t_ f ramed_t ranspor t_s ize_ in_mb : 15
50 incremental_backups : f a l s e
51 snapshot_before_compaction : f a l s e
52 auto_snapshot : t rue
53 tombstone_warn_threshold : 1000
54 tombstone_fa i lure_ threshold : 100000
55 column_index_size_in_kb : 64
56 batch_size_warn_threshold_in_kb : 5
57 compaction_throughput_mb_per_sec : 16
58 sstable_preemptive_open_interval_in_mb : 50
59 read_request_timeout_in_ms : 5000
60 range_request_timeout_in_ms : 10000
61 write_request_t imeout_in_ms : 2000
62 counter_write_request_t imeout_in_ms : 5000
63 cas_contention_t imeout_in_ms : 1000
64 t runcate_request_t imeout_in_ms : 60000
65 request_timeout_in_ms : 10000
66 cross_node_timeout : f a l s e
67 endpoint_sni tch : SimpleSnitch
68 dynamic_snitch_update_interval_in_ms : 100
69 dynamic_sni tch_rese t_ interva l_ in_ms : 600000
70 dynamic_snitch_badness_threshold : 0 . 1
71 request_scheduler : org . apache . cassandra . scheduler . NoScheduler
72 server_encrypt ion_opt ions :
73 internode_encrypt ion : none
74 keystore : conf /. keystore
75 keystore_password : cassandra
76 t r u s t s t o r e : conf /. t r u s t s t o r e
77 t rusts tore_password : cassandra
78 c l i e n t _ e n c r y p t i o n _ o p t i o n s :
79 enabled : f a l s e
80 keystore : conf /. keystore
81 keystore_password : cassandra
82 internode_compression : a l l
83 in ter_dc_tcp_nodelay : f a l s e

82

A.7 JMeter sample output

The following is a sample of a JMeter output file. This is the ten first lines
out of one million. This output shows the results of the write operations in
Elasticsearch.

1 timeStamp , elapsed , l a b e l , responseCode , responseMessage , dataType ,
success , bytes , grpThreads , a l lThreads , Latency , SampleCount ,
ErrorCount , Hostname

2 1430408283800 ,215 ,HTTP Request PUT, 2 0 1 , Created , t ex t , true
, 1 9 9 , 1 , 1 , 2 1 5 , 1 , 0 ,bm2

3 1430408283914 ,206 ,HTTP Request PUT, 2 0 1 , Created , t ex t , true
, 1 9 9 , 1 , 1 , 2 0 6 , 1 , 0 , bm10

4 1430408266169 ,90 ,HTTP Request PUT, 2 0 1 , Created , te x t , true
, 1 9 9 , 1 , 1 , 9 0 , 1 , 0 ,bm3

5 1430408284211 ,23 ,HTTP Request PUT, 2 0 1 , Created , te x t , true
, 1 9 9 , 1 , 1 , 2 3 , 1 , 0 ,bm6

6 1430408299105 ,19 ,HTTP Request PUT, 2 0 1 , Created , te x t , true
, 1 9 9 , 1 , 1 , 1 9 , 1 , 0 , bm20

7 1430408293312 ,17 ,HTTP Request PUT, 2 0 1 , Created , te x t , true
, 1 9 9 , 1 , 1 , 1 7 , 1 , 0 ,bm1

8 1430408284621 ,17 ,HTTP Request PUT, 2 0 1 , Created , te x t , true
, 1 9 9 , 1 , 1 , 1 7 , 1 , 0 , bm14

9 1430408267242 ,17 ,HTTP Request PUT, 2 0 1 , Created , te x t , true
, 1 9 9 , 1 , 1 , 1 7 , 1 , 0 ,bm7

10 1430408299627 ,17 ,HTTP Request PUT, 2 0 1 , Created , te x t , true
, 1 9 9 , 1 , 1 , 1 7 , 1 , 0 , bm18

83

	Introduction
	Problem statement
	Thesis structure

	Background
	Cloud computing
	Infrastructure as a Service
	Openstack
	MLN
	Alto cloud

	The internet of things
	Big data
	Centralized logs
	Collection
	Storage
	Analysis

	Log analysis
	ELK stack
	Elasticsearch
	Logstash
	Kibana

	NoSQL databases
	The CAP theorem
	Cassandra
	PostgreSQL
	Redis

	JMeter
	Test plans
	Plugins

	YCSB
	Gnuplot
	RStudio
	The R programming language

	Central Limit Theorem
	Students t-test
	Calculation
	Limitations and requirements
	Welch two sample T-test

	Relevant research

	Approach
	Test environment
	Technical details
	Network and machine setup
	Database setup

	Benchmarking the databases
	Benchmarking clients
	Database performance
	Data format
	Cluster size

	Use cases
	Use case 1: Historical data
	Use case 2: Real time data

	Experiment design
	Testing the benchmarking clients
	Testing the databases
	Use case 1: Historical data
	Use case 2: Real time data

	Expected results
	Database performance
	Use case 1: Historical data
	Use case 2: Real time data

	Scripts
	Script: runTest.sh
	Script: processClose.sh
	Script: readFiles.py

	Results and analysis
	Single node database
	Testing the clients
	Write operations
	Random read operations
	Use case 1: Historical data
	Use case 2: Real time data

	Cluster databases
	Write operations
	Random read operations
	Use case 1: Historical data

	Discussion
	Database performance
	Client performance
	Write operations - single node
	Random read operations - single node

	Use case performance
	Use case 1: Historical data
	Use case 2: Real time data

	Clustering performance
	Write operations
	Random read operations
	Use case 1: Historical data

	Additional findings
	Configuration
	Querying languages
	Data structure

	The research process
	Benchmarking tool
	Redis

	Alternative approaches and future work
	Varying data format

	Impact

	Conclusion
	Bibliography
	Appendices
	runTest.sh
	processClose.sh
	readFiles.py
	Elasticsearch single node config
	PostgreSQL single node config
	Cassandra single node config
	JMeter sample output

