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Abstract

Enormous amounts of money and other resources are poured into professional soccer today.

Teams will do anything to get a competitive advantage, including investing heavily in

new technology for player development and analysis. In this thesis, we investigate and

implement an instant analytical system that captures sports notational data and combines

it with high-quality virtual view video from the Bagadus system, removing the manual

labor of traditional video analysis. We present a multi-platform mobile application and

a playback system, which together act as a state-of-the-art analytical tool providing soccer

experts with the means of capturing annotations and immediately play back zoomable and

pannable video on stadium big screens, computers and mobile devices. By controlling

remote playback and drawing on video through the app, sports professionals can provide

instant, video-backed analysis of interesting situations on the pitch to players, analysts

or even spectators. We investigate how to best design, implement and combine these

components into a Instant Replay Analytical Subsystem for the Bagadus project to create an

automated way of viewing and controlling video based on annotations. We describe how

the system is optimized in terms of performance, to achieve real-time video control and

drawing; scalability, by minimizing network data and memory usage; and usability, through

a user-tested interface optimized for accuracy and speed for notational data capture, as

well as user customization based on roles and easy filtering of annotations. The system

has been tested and adapted through real life scenarios at Alfheim Stadium for Tromsø

Idrettslag (TIL) and at Ullevaal Stadion for the Norway national football team.
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Chapter 1

Introduction

1.1 Background

In sports like soccer, the difference between winning and loosing is often dependent on small

margins. Clubs and teams will do anything to gain the extra edge that can put them in an

favorable position. This includes the increasing use of technology, for instance, the head

coach for the Norway national soccer team Per-Mathias Høgmo, said “It’s all about winning

1-2 percent and gain a competitive advantage” [1]. Høgmo calls this the "2%-factor", stating

that technology is not everything, but it can constitute the marginal difference between two

equally strong opponents [2]. When watching a soccer match one can often observe the

coaches standing on the sideline taking notes with pen and paper and then looking at their

watch to note the time. This is to prepare for the half-time speech. Chelsea’s manager Jose

Mourinho explains in an interview with official Chelsea magazine why: “I read the first half,

I take my notes, I prepare my interventions at half-time based on the notes and where I feel

I can help my players. So, I make the notes in order to be ready to make my changes.” [3]

Professional sports clubs worldwide are expanding their tool set with analytic and video

capturing systems - systems used for both match analysis as well as player development [4].

Commercial systems include Interplay-sports, ProZone, STATS SportVY Tracking Technology

and Kiswe, which all provide various analytic platforms typically by either analyzing player

patterns in video-streams or by using global positioning and radio based systems. However,

none of them provide a fully integrated system with support for video, tracking and

notational analysis without significant manual work. Therefore, the Bagadus project was

conceived [5].

Bagadus is a system being developed in collaboration between University of Oslo (UiO),

University of Tromsø (UiT) and Simula Research Laboratory, which aims to fully integrate

existing systems and enable real-time presentation of sport events. This is done by using a

camera array capture system together with the ZXY Sports Tracking system [6] and and a
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system for expert-captured annotations1. Earlier work [5] presents a prototype installed at

Alfheim Stadium (TIL). Another prototype is currently being set up at Ullevaal Stadium -

the home ground of the Norway national football team and Vålerenga Fotball.

Bagadus enables analysts to locate situations in a game that would otherwise require

a lot of manual work by video seeking and editing. Manual annotations allow personnel

to register interesting events during training sessions as well as matches. The annotations

are registered in hindsight - the personnel "create" an event right after the situation they

want to persist happens, and the system immediately generates video footage starting

typically 15 seconds before and up to the timestamp of the registration. This allows the

saved annotations to be available for replay almost instantly after registration. Possible

use cases for this would be video analysis in the locker room during the half-time break,

summary of the match at full-time and instant playback at stadium big screens during

training sessions. Post-game analysis and construction of playlists for players’, personnel’s

or even fans’ consumption are other possible applications.

The first subsystem for expert annotations is called Muithu, a lightweight mobile system

for notational analysis [7]. It was originally implemented as a stand-alone platform before

the initiation of the Bagadus system, and therefore lacks integration with it. The Muithu

system is based around a set of portable GoPro cameras for capturing video, an on-

site computer for transferring video from the cameras, a Windows mobile application for

annotating events, and a cloud service for permanent storage of video snippets tied to these

events. The process of using the Muithu system requires a lot of tedious, manual work with

setting up the cameras, syncing the clock between the cameras and the app, and individually

uploading video from each camera after a session. A full integration is required to reduce

the manual work.

1.2 Problem Definition

A quick and non-disturbing way of capturing notational data is vital during high-intensity

sports sessions like soccer matches. Spending too much time in the process of registering

such data might distract the analyst from the ongoing game, leading to situations where

notational data should have been captured. Muithu provides functionality for rapid data

capture in an intuitive manner. However, the process of combining these annotations with

video requires significant manual labor. Video is not available until recording has stopped

and the cameras have been manually synced to persistent storage, restricting analytical use

to post-session.

Furthermore, the Bagadus system provides high-quality panoramic video in real-time,

1annotations, notational data and registered events are interchangeable terms throughout this thesis.
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which is great for combining with notational data. Coupling registered annotations from an

mobile application with video from the Bagadus system for near-instant playback will allow

analysts to evaluate elapsed situations on the pitch immediately or shortly after they have

happened.

We will examine the possibilities of integrating and expanding the annotation principles

of Muithu with live panoramic video and virtual views from Bagadus. In this thesis, we

will design, implement, test and evaluate a prototype of an instant analytical subsystem for

Bagadus, centered around the Bagadus App and based on the principles of Muithu. User

testing and deployment will be performed in a real life scenario for TIL at Alfheim Stadion

and for the Norway national team at Ullevaal Stadion, where the intended end-users are

able to interact with it. We wish to remove the manual labor associated with the Muithu

system and add functionality for camera selection, zoom and on-frame drawing when using

the Bagadus App for playback. In addition we want to extend the information captured

when an annotation is made, by associating it with a user role. To achieve this, we must

investigate if extending the Muithu App with additional functionality and integrate it with

the Bagadus system is plausible, or if a completely new application should be developed.

Requirements to platform, user interaction, responsiveness, requested functionality from

potential end-users, as well as any necessary supporting components to the application must

be considered.

It is essential that the system must be intuitive and easy to use, as intended end-users

are sports personnel and not IT experts. To make the system responsive, light-weight and

scalable, we aim to minimize the data and memory use while supporting multiple mobile

platforms. We investigate how we can optimize the speed and accuracy in use of the

application, while still offer a intuitive interface that can enable real-time interaction with

the rest of the Bagadus system.

1.3 Limitations

The thesis will not provide a detailed background description of the complete Bagadus

system, as this has thoroughly been done in [5].

In the research done around building the first version of Muithu, it was discovered that

using the app was 15% faster than the traditional pen and paper method. Therefore, we do

not investigate the problem on pen and paper versus a mobile application, but use this as

the standard and try to improve on it.

Because of the long distance to where the prototype is installed at Alfheim Stadion in

Tromsø, as well as a bureaucratic delays in regards to setting up the system at Ullevaal,

we have been forced to implement parts of the system locally and developed mocks-ups of
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inaccessible parts of the system during development and for certain demos.

1.4 Research Method

The research method used in this thesis follow the design paradigm described in Computing

As a Discipline [8]. We design and implement a prototype of the system which is tested and

evaluated in real life scenarios. The implementation is done in a iterative and agile manner

to allow for new features and requests to be implemented after demos and discussions with

the end-users of the system. Results from experiments and user surveys will be the basis for

our design choices.

The prototype is tested by the end-users. This provided us with the ability to confirm

the choices we made, and to make adjustments to better fit the need of the users.

1.5 Main Contributions

In this thesis, we design and implement a new system for instant review and analysis of

soccer sessions and integrated it with the existing Bagadus project.

First, we present the design of an instant analytical subsystem and its functional

requirements. The requirements are inspired by Muithu, requests from the staffs at the

national Norwegian soccer team and TIL as end-users of the system, as well as the available

functionality of the existing Bagadus system.

Next, we construct a new mobile application, the Bagadus App, which addresses the

limitations of Muithu, and fulfills the functional requirements of the instant analytical

subsystem. Through user testing and surveys, we show that a drag-and-drop based interface

for the application is slower and more prove to errors than a click-based interface, which

also is the user-preferred interface of the two.

Finally, we implement a playback system supporting the functionality of the Bagadus

App to achieve a complete implementation of the instant analytical subsystem. The system

will allow users of the app to control playback of the captured video as well as provide user

drawings superimposed on the video, near-instant after registering the notational data. The

video playback is available through a simple and universal web interface.

To evaluate the system, we have performed various experiments. We compare the

WebSocket and HTTP communication protocols, and conduct experiments to find the most

fitting protocol dependent on latency and data exchange frequency. In addition, we present

and evaluate various approaches for mobile application development.
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1.6 Outline

The rest of this thesis is structured in the following way:

Chapter 2 - The Bagadus System We introduce and briefly describe the existing com-

ponents of the Bagadus system, before we address the limitations of the system and

explain the motivation behind our work.

Chapter 3 Design of Instant Replay Analytical Subsystem We propose a new analyt-

ical real-time subsystem for Bagadus. We present a design based on the limitations

introduced in the previous chapter, as well as features suggested by potential end-users.

Chapter 4 - The Bagadus App We introduce and present the design and implementa-

tion of the Bagadus App as part of the Instant Replay Analytical Subsystem, and display

how this solves the limitations of the Muithu. We discuss and evaluate different graphical

user interfaces and communications types for the app through tests and user feedback.

Chapter 5 - The Playback System This chapter details the design and implementation

of Playback System which connects the Bagadus App with the Bagadus video subsystem.

We discuss the requirements of the system, existing components to use and new

components to design and implement.

Chapter 6 - Conclusion Finally, we conclude the thesis and summarize on our findings

as well as discuss future work.
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Chapter 2

The Bagadus System

The current systems for soccer analysis require some manual work for integrating the

different analysis techniques and systems into a complete solution. For instance, in the

Interplay-sports system [9], video footage must be analyzed and annotated manually

through a desktop application. ProZone [10] is another application, which automates some

of the manual video-analysis, specifically in the regards of evaluating movement patterns,

giving statistics about speed, velocity and player positions. Kiswe [11]1 provides a great

video system, but lacks the analytical tools. The common denominator of these systems is

that they, to our knowledge, lack an integration of video, positional and manual notational

data into a complete analytical system. None of these systems have dedicated mobile

applications for registering notational data, making it harder for use by coaches on the

pitch.

Bagadus [5, 12–15] was therefore built to be a sports analysis system that integrates

existing systems and provides real-time representations of sports events, automating the

process of combining the different subsystems. The purpose is to aid players and coaches

in analyzing situations on the pitch during the match, during half-time, post-game or at

training sessions, and minimize the amount of work required to do so.

The Bagadus system has gone through several iterations. In this chapter, we will

describe the latest version of the Bagadus system in its entirety and discuss motivation and

improvements for the analytics subsystem. We will not go into great detail about the tracking

or the video subsystems, as this has been thoroughly done in [5, 12–15] and is generally

out of scope of this thesis.

The Bagadus system consists of three subsystems - video, tracking (sensor) and analytics,

where the latter will be the main focus of this thesis. Figure 2.1 shows an brief overview

and interaction between the different components in the system.

1Previously Camargus.

7



Camera arrayExpert annotations

Video processing pipeline
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Individual virtual views
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Sensors

Figure 2.1: Overall Bagadus architecture

2.1 Video subsystem

The video subsystem is centered around a pipeline that handles all the steps between

capturing video and producing output. The original pipeline [5] supported two separate

methods of producing video: from each camera individually and stitching together the

camera streams into panoramic video covering the entire pitch. The latest version has

removed the individual camera video outputs in favor of a more sophisticated virtual camera

viewer which allows for creating virtual views - a type of view created by zooming and

panning into the panoramic video, acting like a cameraman with a traditional camera would

pan and zoom during a match [16]. The system supports both playing back video stored on

disk as well as real-time video.
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The whole pipeline is subdivided into modules for better separation, so that they can be

executed on different machines. This distributed computing approach allows the pipeline

to provide video in real-time, as well as enabling easy scaling of the system in the future,

e.g., by adding additional cameras [17].

2.1.1 Video capturing

The camera setup consists of an array of five industrial Basler acA2000-50gc cameras

capable of delivering 50 frames per second (FPS) at a maximum resolution of 2048×1088

pixels [18] arranged in a pattern so that the cameras combined cover the full pitch. Two

recording machines read the camera streams frame by frame, insert a Unix timestamp in

the frames’ headers, and transfer the frames to the single processing machine over PCIe

using dedicated Dolphin host adapters. Transfers of these raw video frames require a great

amount of bandwidth. Hence, ordinary Gigabit Ethernet is insufficient. The timestamps

across the machines are synchronized to the same NTP clock synchronization server, as this

is crucial for frame synchronization and later video extraction from the panorama [17].

In order to ensure a smooth transition between stitched frames, each source frame must

be captured at the same time. This is done by using an Arduino device, which sends a

trigger signal to each camera to signal when to grab a frame. In an outdoor setting, lighting

conditions can shift quickly. The cameras can adapt to this by automatically altering the

exposure settings, but each camera will then adjust its own exposure leading to different

lighting levels between each seam in the stitched panorama video. A static exposure setting

is supported, but not acceptable due to possible change in lighting during a recording session

[17]. After exploring different exposure setting possibilities in [19], the pipeline now uses

the approach of having one pilot camera control the exposure setting of all cameras. In

order to tackle variable lighting conditions in the same frame, e.g., when the sun is setting

and the stadium itself casts a shadow over the pitch, a high-dynamic-range imaging (HDR)

mode is also supported. This is achieved by capturing alternating frames with high and

low exposure, and then combining them at a separate processing machine. The rest of the

pipeline will then run at half the frame rate, i.e., 25 FPS, unaware of whether HDR is enabled

or not [17]. Figure 2.2 shows the distributed pipeline and data flow between modules and

machines.

2.1.2 Processing of captured video

The processing machine handles all the remaining modules in the pipeline. Transferred

frames from the recording machines are fed into a Frame Synchronization module. As the

frames may be asynchronously captured, this step is necessary for joining the video frames
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into full sets of frames. Timestamps inserted in the header of each frame by the recording

machine are used to determine which frames belong in a set together. If an individual frame

in a set is missing, the module will drop the current frame set and duplicate the previous

set to assure that the system stays real-time.

Processing machine

Recording machine 2

Recording machine 1

Bayer to YUV422

Image stitcher

HDR

GPU downloader

H.264 encoder

Dolphin consumer
w/integrated frame syncer

System control

Dolphin producer

Dolphin producer

Camera module

Camera module

System control

Dolphin producer

Dolphin producer

Dolphin producer

Camera module

Camera module

Camera module

System control

Module/data flow
on the CPU

Module/data flow
on the GPU

System control
module/data flow Computer

Figure 2.2: Distributed recording pipeline [20]

To maximize performance and stay within the real-time limit, the Bayer Converter, HDR

and Sticher modules are all processed on the GPU. The nVidia CUDA parallell computing

platform [21] is used to allow for easier programming on the GPU. Two separate modules,

the CUDA Uploader and Downloader modules, are responsible for transferring video frames

from CPU memory to GPU memory and vice versa after frame processing is done. Earlier

publications [5, 12, 14] on the Bagadus system have shown the tremendous advantage in

processing efficiency by offloading compute-intensive parts of the pipeline to a dedicated

GPU.

As the cameras capture frames in the Bayer GR-8 format, the Bayer Converter module

is required for converting each input image from the Bayer pixel format into YUV444

interlaced [17, 22]. Given the incompleteness of the raw Bayer pixel format, each pixel

only records either red, green or blue, every image needs to be expanded into full RGB

channels through the process of demosaicing before converting to YUV444 - the color space

used in the rest of the pipeline.
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The HDR module is situated between the Bayer Converter and the Stitcher modules

and combines two frames with contrasting exposure levels into a single HDR image, if

HDR mode is enabled. The preferred solution to creating HDR images is usually to utilize

multiple images with varying exposure levels [17]. However, this is not feasible due to the

maximum frame rate of 50 FPS from the cameras, as every additional frame to be used for

HDR reproducing would halve the number of frames per second. In addition, using multiple

frames for HDR could introduce ghosting artifacts to the image, as players may have moved

noticeably between the captured frames. As such, the module uses two frames per HDR

frame, producing a video with 25 FPS when it is enabled.

The main bulk of processing happens in the Stitcher module, which follows next in the

pipeline. The images in a frame set are rotated, interpolated and projected onto a cylindrical

surface, which is necessary for the virtual viewer system. The Stitcher has undergone

significant changes since the inception of the Bagadus system. Originally, the individual

images were joined with a static seam cut. However, this approach was prone to visual

artifacts along the seam, especially when players cross over it. Therefore, a dynamic seam

stitching process was investigated [23]. By using an implementation of Dijkstra’s algorithm,

the shortest seam route without cutting through any players is found. The algorithm is run

for every frame, although implemented such as to avoid the seam taking a redundant route

[17]. The slight color variations left are then smoothed over by a modest seam blending,

improving the visual quality as shown in figure 2.3.

(a) Stitch without blending (b) Stitch with blending

Figure 2.3: Comparison of the static and dynamic stitchers
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2.1.3 Encoding and exporting video

The final module in the pipeline is the X264 encoder. After the stitching process, the raw,

planar YUV422 panorama frame is transferred back to CPU memory, as the encoder runs

exclusively on the CPU. Encoding of the raw video is mandatory for persistent storing and

distribution over a network. The video dimensions are downsampled according to the

lookup table in the stitching module to fit 4K video, i.e., a maximum, horizontal resolution

of 4096 pixels, as anything higher than this is not usually supported by the most common

media players. This also has the effect of a quicker encoding speed and smaller file size

[17].

Due to the nature of the Hypertext Transfer Protocol (HTTP) protocol, streaming frame

by frame is generally not feasible. For that reason, common streaming protocols like HLS

[24] and MPEG-DASH [25] divide video into small file segments, each segment containing

a small sequence of playback time. Bagadus therefore splits video into three seconds clips

with an associated live manifest to the current recording, allowing for live HTTP streaming.

Each file is named accordingly to the date, the timestamp from the recording machines as

well as a sequence number.

The substantial amount of static imagery, as well as typically minimal movement

compared to the complete picture, makes the H264 encoder efficient at reducing the output

file size by using motion estimation. The encoder finds fitting motion vectors and utilizes

these to reuse pixel information from previous frames instead of saving the complete image

data for each frame. Keyframes, frames that contain the complete image data, are used once

at the start of each three second clip. This is to make video playback available as rapidly as

possible after the client starts streaming, as the decoder needs to find a keyframe to start.

The encoder is the least predictable module in pipeline, in terms of staying within real-

time constraints [17]. Scenery changes can greatly affect the processing time, as the encoder

may have a difficulty finding fitting motion vectors in cases of snow, rain and other effects

that may ruin the static imagery.

2.1.4 The Virtual Viewer

In section 2.1, we briefly introduced the concept virtual view. Virtual view describes the

term of panning and zooming into cylindrical panoramic video (see figure 2.4) generated

from stitching individual camera streams together. By correcting the perspective in real-

time, the system provides a better and more natural zoom and panning compared to using

plain crop [16].

Bagadus supports these views, allowing the user to follow a player or a group of players

by interactively controlling his or her own virtual camera as presented in [16]. Unlike

a conventional single camera stream, the virtual video view allows the user to focus the
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video wherever he or she wishes, creating independent, dynamic video streams according

to each user’s preference. Through a web interface, the user can pan and zoom in the virtual

view using keyboard buttons, the mouse or a gamepad. The client transmits normalized

coordinates back to the virtual view system, which then updates the stream. This user-

controlled stream can then be streamed to thousands of watchers through the same server.

An example of such a view with the associated panorama picture can be viewed in figure 2.4.

Figure 2.4: A virtual view with a thumbnail of the cylindrical panorama it has been
extracted from. Note that the view is not a simple crop of the panorama.

Having continuous, complete control over the camera view may be excessive to a great

deal of users. The interesting field of view is usually around the ball. Automatic virtual

views where the virtual camera follows the ball, a player or a group of players have been

investigated in [17], but not yet integrated.

2.2 Tracking subsystem

Bagadus uses the ZXY Sports Tracking system for tracking players’ positions on the field.

Players are equipped with sensor belts which transmit signals to radio antennas located

around the playing field, capturing their position, foot frequency, heart rate etc. The

positional sensor data is used by the video subsystem to map players unto the image pixels

in the video, enabling the system to track players with an accuracy of about one meter [5].

The captured positional data can also be used to enable the video subsystem to generate

the virtual views described in section 2.1.4. Further, users can utilize the positional data to

query for video, as further described under section 2.2.1.
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2.2.1 Automatic event extraction

The Bagadus system has support for integration with the ZXY Sports Tracking system. The

tracking system is currently only installed at Alfheim Stadion (TIL) and not at Ullevaal

Stadion. It enables automatic extraction of video sequences in offline mode by combining

the positional data from the ZXY database with recorded video from the Bagadus video

subsystem [13]. An example of a query against the database is get "all events where defender

X is in the opposing team’s penalty area during the first half of the game". The system will

then return video sequences of all matching situations, thus automating the time-consuming

process of manually scanning through hours of video footage.

2.3 Analytic subsystem

The analytic subsystem is the part of Bagadus designed to let expert users analyze situation

using the video and sensor data from the video and tracking subsystems. Traditionally,

coaches have used pen and paper to make notes, either during the game or by manually

analyzing hours of video, thus requiring a significant amount of manual work [5]. To capture

video sequences with metadata, the separate system Muithu [7] - excluding its video system

- was decided to be integrated and extended with Bagadus.

2.3.1 Muithu

Muithu is a sports notational analysis system [7], which integrates real-time coach notations

with related video footage. It was developed by UiT in collaboration with the coach-team

at TIL. By using a cellular phone, the coaches can capture notational data during a game

or training session in a lightweight, non-intrusive way. These annotations are then used to

extract video captured with a set of GoPro cameras located around the pitch. The video is

used by the support team and players for post-game or post-session analysis.

Architecture and design

Muithu uses a six-tier layering scheme, as illustrated in figure 2.5, where a deployment is

divided into three specific groups: the components on the sports pitch, the back end modules

and the web-based front end interface [7].

Video capture

A set of GoPro HD HERO2 cameras are positioned around the stadium, covering the entire

pitch from different angles. Each camera captures 170° wide angle footage at 1080p.

The recording equipment must be placed and synced manually before each session, and
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Figure 2.5: Muithu system architecture [7]

recording must be started individually on all cameras before annotations are ready to

be captured, and therefore requires some manual work beforehand to get the system

operational. As the GoPro HD HERO2 camera does not support streaming - although an

accessory enabling it was released after Muithu was developed [26] - it is not possible to

use video before post-session when the cameras have been rigged down and video data

persisted to a permanent storage.

Notational process / mobile application

A specially designed app solely for the Windows Phone 7.5 platform was made for creating

annotations. As the app had to have an intuitive and fast interface [7] to be usable during

a match, input is structured in the form of tiles in a grid. Users provide input by dragging

a player and dropping him unto a specific event type as shown in figure 2.6. The event

types in the second layer appear when the drag action starts. An event is then persisted to

a database as notational data of the player, event type and timestamp.

The notational data capturing in hindsight corresponds to the principle of evaluating

a situation after it has happened. The non-linear nature of association football makes

it challenging to predict an event beforehand. Therefore, the expert user evaluates and

captures the situation in retrospect. The timestamp obtained at the annotation moment

corresponds to a video sequence starting 15 seconds prior, and ending 1 second after, for a

total length of 16 seconds. This was determined by the head coaches to be an appropriate

length in [7]. However, the feedback we have received from both the support team at TIL

and the national team stress that dynamic video sequence lengths are crucial for constructing

an effective analytic report. The nature of event types differ, where for example in a counter-

attack situation it may be beneficial to see the build up, which may not be completely
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covered in 16 seconds. In other situations, such as a corner, a 16 second segment may be

excessive. By being able to individually tune sequence lengths, a lot of uninteresting video

can be pruned. A simple and sufficient method of doing this would be by allowing trimming

and extending of the video when reviewing registered annotations. Muithu supports user-

defined video sequence lengths by using a start and stop button in the app, but then the

user would need to know when to start and stop recording, which can lead to missed

situations and/or too much video. The Muithu on-premise interface used for extracting

video sequences corresponding to registered notational data, does not support video editing

- sequences are extracted from the full video either according to the aforementioned 16

seconds interval or intervals captured with the start and stop button.

(a) Event tagging. (b) Select player. (c) Drag to event.

Figure 2.6: Operation of Muithu during a game (a). Select a player (b) and drag the
image tile to the appropriate event type (c) to register an event. Taken from [5].

The application lacks multi-user functions. Each installation is effectively a user, but the

notational data does not persist any user information. Thus, there is no way of telling which

individual registered an event if such information would be pertinent when analyzing the

data post-session. Event types relevant to the head coach may not be interesting for the

team physiotherapist and vice versa. Event types can be customized by the user in the app,

but if two or more users utilize the same device, though have different wishes in regards to

event types and/or available players for annotating, the settings in the application would

need to be customized every time the device switched users.

As the application is restricted to one platform, additional equipment in the form of

mobile phones running the Windows Phone platform would likely need to be acquired, as

it only has 2.9% of smartphone market share in Q3 2014 [27]. It is beneficial that the users

can use their own device.
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Back end

The mobile application connects to the Windows Azure-deployed cloud storage by a

RESTful HTTP application programming interface (API), where annotations are uploaded

as Extensible Markup Language (XML). Video has to be transferred from the cameras to a

computer for uploading, either done via USB or by inserting the memory cards directly into

the machine. The user is then presented, by using an on-premise interface, the registered

events with associated video sequences from all cameras. The interface allows the user to

select wanted events and discard unnecessary video, for example if a situation is sufficiently

covered by one of the cameras. The selected events with related video are then persisted to

the cloud database.

Social network

Muithu has a social network where coaches and players can share ideas. The video snippets

chosen for persistent storage by the coaching staff post-session are available through this

network. Two main user roles are defined as coaches and players, with a different set of

views and tools. Both players and coaches can search for and view video sequences from

all available angles. Coaches have, in addition, the possibility to tag videos with players as

well as a predefined set of textual tags. A commenting system allows players and coaches

to address each other to reflect over captured situations.

2.4 Summary

Muithu was developed independently of Bagadus, and as such, is not integrated with it.

Bagadus has been using a rudimentary form of capturing expert annotations in real-time

situations, restricted to using a simple web interface.

Muithu is an offline video capturing system, in contrast to Bagadus. Video footage has

to be transferred manually from each camera to storage, where wanted video sequences

are then extracted according to annotations registered with the mobile app. This workflow

requires a lot of manual effort, and video data is not available for use and analysis before the

camera setup has been rigged down, video transferred to a computer and then uploaded to

a database. The offline nature of Muithu thus restricts use cases to analysis after a training

or game session has ended.

As the Bagadus video subsystem supports live streaming and instant playback, notational

data with corresponding video should be available for use as quickly as possible after

capture. This allows the coaches to perform on-site video analysis and make strategic

decisions based on the captured data while a session is still ongoing. The support team for

TIL have voiced their requests to us about using video footage during half-time to analyze
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situations from the first half of the game. The head-coach can give the players feedback

on failed, successful and missed situations using the notational data with video as visual

support. Another application could be to investigate the opposing team’s strategy, such

as pointing out a hole in their defense for the players to exploit. Real-time analysis during

training sessions is another possibility. The head coach should be able to utilize the Bagadus

system while drilling the players on the pitch to give immediate feedback supported by

captured video, e.g., by instant playback on the stadium big screens. This can be done by

allowing the coach to control a virtual view stream from his mobile phone; panning and

zooming via an app, as well as controlling which events to show.

Bagadus in its current state is a fully functional video capturing system, but with no

support for practical use by its intended end-users: the support staff for TIL and the Norway

national football team. We have shown that the current considered analytics subsystem,

Muithu, needs to be redesigned in order to be implemented into the Bagadus system. There

is also a requirement for several new features to be developed to meet the needs of the

sports clubs using the system.

Based on the manual labor required and the Muithu’s limitations, we aim to design and

implement the Bagadus App, including any additional components required, to support the

functionality of the Muithu App and fully integrate the analytical subsystem with the real-

time video subsystem of Bagadus enabling immediate playback of events. This is presented

in the next chapter.
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Chapter 3

Design of an Instant Replay Analytical

Subsystem

In this chapter, we introduce and present an overview of a new analytical subsystem for

Bagadus, focused on instant analysis, i.e., analysis during training or match sessions. This

chapter presents the motivation, design and issues regarding communication between the

components in the system.

3.1 Motivation

The Bagadus system has a state-of-the-art processing pipeline producing video in real-time.

However, the intended analytical subsystem Muithu is not integrated with Bagadus, and is

limited in usability, especially due to its offline nature. The manual work required to set

up the cameras, synchronize camera clocks with a mobile device and manually transfer

of video to persistent storage restricts usage of the system to post-session analysis. By

lacking a proper, intuitive analytical subsystem, the user base of Bagadus is restricted to

consumers with the strong technical proficiency needed to use the system. Without a mobile,

non-intrusive way of registering notational data, expert users are limited to manual video

analysis or event extraction based on positional data from the ZXY Sports Tracking system.

We want our system to provide expert users with a quick method of registering notational

data, and being able to play back associated video of the event immediately to clients. We

have aimed at situations where near real-time analysis is required, such as half-time breaks

in matches and during training sessions.
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3.2 Requirements

Through dialogue with potential end-users, such as soccer coaches and support personnel,

inspiration from Muithu and other sports analysis systems, as well as implemented features

in the Bagadus system ready to use, we composed the following list of requirements that

the new analytical subsystem should fulfill:

3.2.1 Functional requirements

Capture notational data with video The system should provide a mobile, uncompli-

cated way of capturing notational data, using the Bagadus App.

Multi-user The system should be able to distinguish users and enable role-based settings

and annotation.

Play back video based on notational data Notational data should provide associated

video from the Bagadus pipeline. This video should be easily played back to clients

through controlling playback from the Bagadus App.

Create playlists of registered notational data During the half-time break, time is

critical. By filtering, in beforehand through the Bagadus App, the notational data from

the first half down to a few events, the coaches can show the team the most crucial and

interesting situations in the half-time analysis.

Manipulate video playback in real-time The Bagadus system provides a Virtual

Viewer, as described in section 2.1.4, for generating and controlling individual, virtual

views. By controlling virtual views through zooming and panning via the app, analytical

use cases can be extended to, e.g., showing video on the stadium big screens during

practice sessions, in addition to simplifying half-time analysis. Manipulating the source

input should be possible, i.e., pausing, skipping, extending or trimming the length of the

event, changing event etc.

Free-hand drawing on video Drawing is a common visual aid in analyzing video. By

being able use the app to create drawings superimposed on video by free-hand, experts

can provide a clearer analysis to players or other support team members during half-time

breaks or practice sessions.

3.2.2 Non-functional requirements

Available The system should support multiple platforms and provide the same func-

tionality independent of the operating system.
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Low latency and memory The system should have low communication latency and

minimize memory usage to provide a fast and active experience for the user.

Responsive The system should be adaptive and scalable to different screen sizes and

resolutions.

Non-intrusive and intuitive The graphical user interface (GUI) should be intuitive and

facilitate an efficient and accurate user experience without interrupting normal tasks,

e.g., when managing the team from the touch-line during a match.

3.2.3 System design

The real-time analytical subsystem is centered around the Bagadus App. In order to meet

the requirements for the system, we have also implemented a supporting system dubbed the

Playback System. It utilizes existing components of the Bagadus system, such as the Virtual

Viewer. This provides the app with necessary back-end functionality, as well as serving

clients with a web application for viewing video streams controlled by the app.

The following is a short description of the design of the subsystem:

Bagadus App A mobile application for expert users and other support personnel to reg-

ister annotations during sport sessions, with functionality for controlling, manipulating

and drawing on the video associated with the annotations via the Playback System.

Playback System A system for providing users of the Bagadus App with a way to control

and stream video connected to registered annotations to other devices, such as a TV

monitor in the dressing room. The users of the Bagadus App can use the app as a remote

controller for controlling video on the Playback System and draw on paused video frames

via the app.

Figure 3.1 shows a simple overview of the Instant Replay Analytical Subsystem. Expert

analysts use the Bagadus App to register notational data. Through the Playback System,

analysts, players, other sports personnel or even fans can view video from the Bagadus

system controlled through the app. Implementation and further details of the Bagadus App

and the Playback System are covered in chapter 4 and chapter 5, respectively.
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Bagadus App
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Bagadus System
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Expert analysts

Instant Analytical Subsystem

Support personnel Fans

Figure 3.1: Overview of the Instant Replay Analytical Subsystem

3.3 Communication

A critical element in the system is how to handle communication between the components.

A lot of the functionality will be relatively useless without a near real-time latency, e.g.,

manipulating video playback. In this section, we discuss different possible high-level

protocols and techniques for use in the Instant Replay Analytical Subsystem.

Traditional communications over the HTTP consist of a client sending a request and a

host acknowledging the request by sending a response back before closing the connection.

For each request/response pair, a Transmission Control Protocol (TCP) 3-Way-Handshake

must be negotiated, making a simple HTTP connection inefficient and prone to increased

latency where many requests are sent in short period of time. Several mechanisms have

been introduced to the HTTP protocol to reuse a connection for more than one request,

such as keep-alive and long-polling.

As illustrated in 3.2b, HTTP keep-alive is a mechanism for keeping an TCP connection
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open, but idle. This can speed up the process of making new requests by reusing the same

connection, but every request is still independent. It is enabled by default in HTTP 1.1 [28].

Long polling is a technique for leaving the request active for a period of time to see if

any new data is available, eliminating the need to send multiple requests to get updated

data. By keeping a request active, this techniques allows for emulating a push mechanism

from the server to the client. If no new information is available, the host sends a response

to terminate the connection. The server must repeatedly check if there is new information

available, which can be expensive regarding network and CPU usage.

WebSocket is an application layer protocol that allows a two-way communication

between a client and remote host in full duplex; communication in both directions over

a single TCP connection simultaneously, as illustrated in figure 3.2a. WebSocket is a TCP-

based protocol with no ties to HTTP other than the initial handshake, that is interpreted as

an Upgrade request by web servers [29].

WebSocket offers a technology that is useful for real-time applications where bidirec-

tional communication is needed, such as games and chat rooms. It can offer a great discount

in the latency and amount of data by reducing the overhead of the HTTP headers needed

in every HTTP message [30].

Figure 3.2b illustrates the differences between HTTP and WebSocket. Traditional HTTP

establishes and closes a new TCP connection for every message, while WebSocket only does

this once, reducing the latency for new messages [31]. WebSocket allows for a more TCP

socket-like type of communication. When HTTP requests are made rapidly, HTTP keep-alive

reuses the same connection.

Handshake (HTTP Upgrade)

Bidirectional Messages

One side closes channel

connection opened

open and persistent connection

connection closed

Client Server

(a) Flow of a WebSocket connection.
Multiple messages are possible over a

persistent connection.

HTTP Request (open)

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response (close)

Client Server

(b) Flow of HTTP messages. Connection kept
alive for some time.

Figure 3.2: WebSocket and HTTP protocols
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Based on the functional requirements of the analytical subsystem, we have identified

two situations where low-latency communication is crucial: controlling video playback and

drawing on video - both actions that are done from the Bagadus App and emitted through

the Playback System to clients. When controlling video, it is desirable that requests reach

clients as quickly as possible. If pausing playback takes more than a few milliseconds to

happen, the result could be widely inaccurate, e.g., if the video pauses after a goal when

the coach wanted playback to pause right before said goal. Low latency is not as crucial for

drawing on video as for controlling playback, but still necessary for a responsive experience.

In addition, continuous drawing requires sending tens, if not hundreds, of messages with

coordinates if the drawing should update contiuously at the client. An alternative way

would be to send the drawing in chunks or wait until the drawing is complete. However,

using a WebSocket implementation, continuous drawing to clients should be trivial, due to

the constant connection. This is further investigated in section 4.5.

3.4 Summary

In this chapter, we have presented an overview of the new, real-time analytical subsystem of

Bagadus. We began the chapter by discussing the motivation behind the system, outlining

the missing aspects of the current analytical subsystem, Muithu. We then presented a list of

functional requirements for the system based on features of Muithu and additional requests

from potential end-users. Next, we described the overall design of the system based on these

requirements. Lastly, we discussed the aspect of communication between the components

in the system and presented possible protocols to use. In the next chapter, we introduce the

Bagadus App - the main component of the real-time analysis subsystem - and its design and

implementation.
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Chapter 4

The Bagadus App

4.1 Motivation

In chapter 2, we discussed the features and limitations of the Muithu system, and the need

for an updated analytical subsystem for the intended end-users to be able to use the Bagadus

system for notational analysis. Further development and adaptation of the Muithu app

would be a possibility. However, given the restrictions to one platform, as well as the

simplistic nature of the app, we concluded that designing and developing a completely

new app would be the most efficient solution. In accord with the requirements of the

system listed in section 3.2, through evaluation of the Muithu app, as well as discussing

new requirements and functionality with potential users, we propose the following set of

criteria for the new app:

Notations Users should be able to capture notations with minimal effort. The

annotation should have information about the user assosiated with it, such as roles.

Captured notations from the same session should be available for view in the app.

User specific The app should be able to distinguishes users, and the users should be

able to customize the default settings, and user roles.

Control video Playback of video clips on other clients should be controlled via the

mobile device. Users should be able to filter out irrelevant events in the app before

playing them. Users should be able to manipulate event video sequences by adjusting

the length of the event. The camera stream’s field of view should also be possible to

adjust from the app to center on areas of interest in the video.

Drawing as a visual aid When controlling video through the app, drawing on the video

should be possible for analytical purposes.
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Multi-platform The app should be available for a majority of mobile devices by

supporting as many platforms as feasible.

Portability The app should be portable, i.e. it should adapt to network changes, caching

events if instant upload is not possible.

Intuitive Soccer coaches are not IT professionals, and the app should take this into

account. The GUI should be intuitive to use immediately without extended usage

courses.

Precise Users must be able to annotate events as quick as possible and with great

accuracy.

4.2 Mobile application development platforms

Mobile application (app) development has exploded over the last few years, correlating with

the sharp increase in the number of smartphones sold [32]. The two biggest smartphone

operating systems are Google’s Android and Apple’s iOS, with marked shares of 47.06% and

43.86% respectively as of September 2014 [27]. A common challenge, applicable for our use

case, in mobile app development is deciding which platforms to support. The expected user

group must be taken into account as well as development costs for the platform and future

support. Fortunately, the major platforms provide similar functionality, e.g., interfaces

towards GPU, camera, GPS etc., meeting the needs for most types of apps. The Muithu app

exclusively supported Windows Phone - a platform with a marginal market share of 2.38%

as shown in 4.1. We want a broad as possible support for the Bagadus App to minimize extra

equipment needed to use the system. By supporting Android and iOS, our app can reach

90.92% of mobile and tablet users. Therefore we focus on these two platforms due their

high market share and dominating position in the smartphone and tablet operating system

market. As such, all references to mobile platforms in the following chapter will include only

the iOS and Android platforms unless stated otherwise.

Both mobile platforms have their own development environment with restrictions to

programming language, integrated development environment (IDE) and methods of app

distribution. The iPhone Software development kit (SDK) is only available on the Intel-

based Mac computers. A developer licence is also required. The Android SDK, on the other

hand, is open source, based on Java, C and C++ and available on Linux, OS X and Windows.

There are various ways of approaching multi-platform support for mobile applications.

Factors such as resources, time, features to support, app distribution and hardware required

must be taken into account. Both mobile platforms evolve rapidly, leading to support for

older devices being dropped and new features being supported. Ideally, there should be a
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Android [47.06%]

iOS [43.86%]

Windows Phone [2.38%]

Other [6.71%]

Figure 4.1: Market share of smartphone operating systems in September 2014 [27]

consistent experience for users independent of devices and platforms. However, this is not

always possible, as the great deal of devices available - especially for the Android platform

- differ in hardware features and software support. Compromises may have to be done in

order to keep a broad device support and consistency. The mobile app environment today

consist of three types of apps: native apps, Web apps and hybrid apps.

4.2.1 Native apps

A common practice is to develop native mobile applications - apps developed specifically

to a certain hardware and operating system. The developer programs using the platform

language and SDKs directly. This gives the advantage of complete access to the platform API,

to common user interface elements leading to a more consistent user experience conforming

to the platforms design principles1, as well as generally better performance due to compiled

languages and less abstraction, especially for resource demanding apps such as 3D games

or image processors [34]. One disadvantage to the native app approach is the time and

resources needed to develop the same app for different platforms. Native iOS apps can only

be distributed through the App Store, which is further described in section 4.2.4.

A possibility is to port an app from one platform to another, e.g., Android to iOS.

However, this essentially requires a complete re-development to a new programming

1Apple takes into account design principles when reviewing apps submitted to the App Store [33].
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language and platform. Tools for converting from one programming language to another

exist, such as Java to Objective-C [35]. These tools might be helpful in limited cases, but

there are still a great deal of environment variables and platform-specific APIs to automate

such a conversion process. The Java Native Interface (JNI) [36] provides a framework that

allows native applications and libraries written in C and C++ to call Java code running in

a Java Virtual Machine (JVM) and vice versa. In this regard, we could write a wrapper

and provide an interface from iOS to the JNI functions through callbacks, but adapting the

application to the platform framework would still be necessary. Another option is to write

the base application in C/C++ and natively compile it for each platform to be supported,

and then create interfaces between the application core and the different platform APIs.

Third-party development platforms using this approach are further investigated under

section 4.2.3.

4.2.2 Web apps

Web browsing is a central part in the smartphone experience. A mobile version of Google

Chrome is available for both iOS and Android, running on forks of the same layout engine,

the same JavaScript (V8) engine and supporting the same features as its equivalent desktop

application. As such, all Web applications running on desktop computers are supported

on these mobile platforms. A Web app is implemented as a Web site optimized for mobile

applications, i.e., adopting a mobile first philosophy by taking into account screen size, touch

gestures and network restrictions. However, the extra abstraction of running everything in

the context of a Web browser, i.e., creating a user interface through a software rendering

engine using interpreted languages like HTML, CSS and JavaScript instead of painting

pixels directly through the GPU using the platform APIs in compiled code, makes non-trivial

Web apps more resource-intensive than an equivalent native app [34]. Nonetheless, the

constantly evolving browser ecosystem as well as rapidly improving hardware and software

capabilities in smartphones are leading to Web rendering engines operating more efficiently

on smartphones. For instance, the WebKit engine allows for hardware acceleration of CSS

transforms, leading to smoother running animations and transitions between view states.

The Blink rendering engine, a fork of the WebCore component of WebKit, used by the

Chrome browser from version 28, and Android’s built-in browser from Android 4.4 utilizes

the concept of GPU accelerated composition for even better performance [37].

Apple initially embraced the concept of Web apps; Web apps were the only approach

to developing apps for iPhone until the iOS SDK was released and the App Store launched

in 2008 [38]. Tooling for such applications were provided through their Dashcode project.

This project contained templates and libraries for making Web apps in nature with the iOS

platform’s native design. Between May and June 2013, as evident by the Wayback Machine
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[39], Apple removed the Web apps directory - http://apple.com/webapps - from their

website. It now redirects to http://apple.com/iphone, signaling their intention to halt

supporting Web apps. This is also evident by the ostensibly discontinued Dashcode project,

which has not been updated since mid-2012.

Web apps circumvent the distribution platforms completely, thus avoiding any approval

process. On the other hand, a Web app has restricted access to the platforms APIs. Certain

features such as access to the device microphone and geolocation are available through

HTML5, but e.g., permanent storage is only available through HTML5 localStorage, which

is deleted when clearing browser data. Thus, this type of storage is prone to accidental

deletion. It is also limited to saving simple key-value pairs, so metadata without extra

measures will be lost and any objects with behavior will have to be rebuilt when retrieving

the data. Bagadus App should be able to save settings and cache annotations, so this is a

possible issue. A constant Internet connection is also required, as the app is stored on a Web

server.

4.2.3 Hybrid apps

Hybrid apps is another approach to cross-platform development. The term hybrid app

usually includes two different approaches:

• Wrap a Web app inside a native container utilizing the device’s embedded browser

control for displaying content. A hybrid app framework like Apache Cordova [40] does

this by compiling a native app consisting of a borderless browser view serving Web

files from the device’s storage. This circumvents the need for a Internet connection. If

convincingly designed, i.e. not using default HTML/CSS graphics, a user should not be

able to tell such an hybrid app apart from a native app. Cordova provides a plugin API

to create interfaces between JavaScript and the native APIs. This allows developers

access to far more mobile device features than a pure Web app, e.g., push notifications

and device storage. Several frameworks, such as Ionic [41], jQuery Mobile [42] and

Sensa Touch [43] help easen the process of designing Web technology based hybrid

apps by providing mobile optimized visual components and touch optimization.

• Use a software development platform like Xamarin [44] to write an app in one

language and compile it to native apps for each supported mobile platform. In

Xamarin’s case, this is achieved through several layers of abstraction, where the base

app logic is shared among all platforms with individual platform-specific code on top.

An advantage of this approach is native apps with less code-writing, but the developer

must be vary to specific environment knowledge to avoid problems, such as data

structures and generics working in different ways than with the native programming

29

http://apple.com/webapps
http://apple.com/iphone


languages and APIs [45, 46].

4.2.4 Distributing mobile apps

Android and iOS have their own platforms for distributing mobile apps to users: Google

Play2 and App Store3 respectively. Both services have a screening process for applications:

Google Play uses an automated system, Google Bouncer, which scans apps submitted to

the store for malware and other issues related to malicious activity, while Apple’s App

Review, whose technical details have not been disclosed, employs mostly static analysis

in combination with some manual analysis e.g. to insure the app meets design criteria etc.

4.2.5 Selecting platform

There are three mobile app environments today: native, web and hybrid. Table 4.1 shows

some of the advantages and disadvantages of these different types of mobile applications.

Type Advantages Disadvantages

Web application - Single codebase
- Limited access to device APIs
- Needs a Internet connection

Hybid application
- Access to many of the device APIs
- Single codebase

- Abstraction layers can
prevent native-like performance

Native application
- Full access to device APIs
- Optimal hardware utilization
for better performance

- Platform specific codebase

Table 4.1: Advantages and disadvantages of different application types

With the Bagadus App, we want a broader support of devices than the Windows Phone-

exclusive Muithu App. Developing multiple native apps would be too time-consuming to

both develop, debug and update. Maintaining a consistent design between the platforms

could also prove to be challenge as well, if using the native graphical interface elements

of each platform. The extra processing power a native app provides is not necessary in

the context of the Bagadus App because none of the planned features require really high

processing power. Some features like drawing, that do require some power, is supported

through the HTML5 canvas. Through a plugin interface, native API features such as

hardware acceleration are accessible. If needed, this can speed up an app by running

intensive tasks on the GPU or both CPU and GPU. Thus, the approach of converting a native

app deemed too complex and unnecessary for the Bagadus App’s criteria.

A pure Web app would need to support multiple browsers, or we would have to dictate

the user’s browser use, as there exists several third-party browsers for Android and iOS.

2https://play.google.com/store
3https://itunes.apple.com/us/app/apple-store/id375380948?mt=8
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A hybrid app uses the platform’s native browser, and thus minimizes the need for cross-

browser testing. Figure 4.2 shows that the time spent surfing through a mobile browser

is decreasing, giving the impression that mobile users prefer dedicated apps for Internet

services. In [47], it was established that users find native or hybrid apps to be more

responsive as they provide one-click access, unlike a Web app where a user at minimum

must open a Web browser and click a bookmark or enter an URL.
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Figure 4.2: Percentage of time spent using apps and surfing in a mobile Web browser [48]

As such, we chose the hybrid approach using the Apache Cordova mobile development

framework. By developing a single app that is supported across multiple platforms, we

minimize the amount of redundant development and updating needed. In addition, the

Bagadus App does not have resource-intensive requirements justifying the native approach.

Using Xamarin could provide a more native-feeling app, but it is a commercial and non-free

alternative. The development platform is also only available for Windows and OS X. By

using free and/or open-sourced alternatives, we hope to encourage future development of

the system.

The Bagadus App should be available through the respective app stores, so users can

easily install the app. Only authenticated users can use the app, as it requires logging in.

Cordova only provides means to package the Web page into an app as well as interfaces

to platform APIs, giving no specific support to designing the app. Thus we decided to use

the mobile Web framework Ionic. It is both a CSS framework and a JavaScript library for

building an optimized mobile hybrid app, aiding in mundane tasks such as ensuring the user

interface scales properly on devices with different display resolutions. The design structure

of Ionic is similar to iOS, which is convenient for our app to pass Apple’s App Review.
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4.3 User interaction

A soccer match is usually highly intensive, giving coaches limited time to capture notational

data. Therefore, we wanted an intuitive, responsive and quick user interface to minimize

the time used in this process. We set a time limit for annotating an event to a very maximum

of 5 seconds - the same as for the Muithu app [7]. While a notation is done either by clicking

on a tile or holding the same tile down for more options in the Muithu, we saw this as a

possible time-consuming element that could be improved.

4.3.1 Feel and responsiveness

A challenge we identified with hybrid apps is capturing the native look-and-feel of the

different platforms, as well as performance issues compared to native apps [49].

When developing hybrid apps it is necessary to test the application on all the platforms

you want to support, as they may behave variously as they use different browsers. This can

be avoided by bundling a browser with the app and force it to be used across platforms,

although this will increase the size of the app. Android 4.4 and newer versions use a default

browser built upon Chromium - the same project Google Chrome is based on - iOS Safari is

powered by the WebKit engine, while Google Chrome uses the Blink engine, which is a fork

of the WebKit project [50–52]. This means that Google Chrome is a well-suited and free

candidate to use in the development for hybrid apps.

As such, we used Google Chrome for the development of the Bagadus App to avoid

having to compile and build it for all the platforms every time a change was made to see

if any unexpected results were produced. The browser also provides the ability to emulate

mobile devices by simulating touch-based events using Chrome Developer Tools. Therefore,

we could focus on developing the app for one browser and reduce the need to constantly

build and test it for different platforms. Although choosing to use hybrid technologies gave

us the opportunity to support more platforms with the same code base, relying mainly

on testing done in Google Chrome proved more difficult than first anticipated. This was

particularly evident in small adjustments that had to be done in order to get the desired

functionality and behaviour on the iOS platform. E.g., with incoming WebSocket messages

including information that may take a moment to load, such as an image, the data may

still be loading when the incoming-message-callback is invoked. If injecting the image data

object into an HTML <img> tag, the Document Object Model (DOM) must be notified when

the image is completely loaded. We found that in Chrome and on Android, the browser does

this automatically. For iOS, we must manually check if the image is ready before injecting.

As such, we discovered that hybrid apps cannot be considered "one-size-fits-all", just as a

web developer must take into account supporting different browsers.
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4.3.2 Accuracy in use

We wanted to make the GUI of the Bagadus App as similar to Muithu as possible, for a

smooth and convenient transition for existing users of the analytics system at TIL. Therefore,

a tile setup was decided to closely resemble the original system shown in figure 2.6 under

section 2.3.1. We also utilized some of the same design principles, such as large tile sizes to

minimize user errors [53].

If a user initiates the action of annotating, but is distracted and looks away from the

mobile device, it should be clear what the user’s intention was when resuming the action.

This includes being able to complete the action or easily cancel it.

The user interface should be easy to learn and intuitive to use, as well as fast and readily

accessible. To provide an interface that enables the user to perform a task as fast as possible,

we followed the three-click rule, stating that the user should be able to reach their intended

destination of the app within three clicks [54]. We also wanted to examine if a drag-and-

drop interface is the most suited gesture for an application that require fast and accurate

actions.

In the early implementation stage of the app, we quickly discovered some of the look-

and-feel disadvantages of an hybrid app. Cordova provides access to some hardware APIs

through a native wrapper, but drag-and-drop is not among them [55]. Therefore, a drag-

and-drop solution to annotating events would be processed by the device’s browser engine,

and on older devices, this would result in a different feel and smoothness than the user

expects. However, we came up with an alternative solution, utilizing a simple two-screen

interface, where the user is presented with a screen of possible registrants, and then is routed

to a new screen with events to register on the selected registrant. We discovered that simple

clicking is not as prone to differences in feel between platforms as drag-and-drop. We also

found that a drag-and-drop interface can be slower in use and be more prone for mistakes,

such as dropping in the wrong area or accidentally letting go while in the middle of the

drag action [56, 57]. As one of the most important aspects of the Bagadus App is speed and

accuracy, we set up a test for evaluating what interface we should base the Bagadus App

on: drag-and-drop or click.

4.3.3 Drag-and-drop vs. click

To test user preference, speed and accuracy when annotating, a test app was made to

simulate the two different solutions. For simplicity in distribution, we made a Web app

instead of a hybrid app. The users used their own mobile device so the test was carried out

on multiple different devices, but was instructed to use the device built-in browser, i.e. the

same browser as a Cordova hybrid app would use. This provided the same basis as a hybrid

app.
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(a) Drag-and-drop:
Initial view of a test

(b) Drag-and-drop:
Dragging a box from

A3 to 4
(c) Click: Initial view

of a test

(d) Click: A3 is
clicked, 4 should be

clicked next

Figure 4.3: An example of a drag-and-drop test and a click test with the same parameters.

The users were given a total of 12 tasks. First, 6 using the drag and drop interface shown

in figure 4.3a and figure 4.3b, and then 6 using the click interface shown in figure 4.3c and

figure 4.3d. All the sub tasks were given in random order, so that no user could anticipate

what the next task in the click part would be, based on the order of tasks given in the

drag-and-drop part of the test.

The tasks are simple and intuitive. We managed to get 26 willing participants to do the

test. The partakers were a mix of men and women with age ranging from 18 to over 40

years old. A short, textual introduction was included to make sure no test subjects had any

trouble understanding the assignment.

The test was structured like this:

1. The user is given 6 drag-and-drop tests presented as a grid of tiles.

2. For each test, the user is given instructions in the form "A1 → 3”, corresponding to

indexes in the tile-grid, on where to drag-and-drop.

3. The user is given 6 click tests presented as a grid of tiles.

4. For each test, the user is given instructions equal to the those in (2), but with clicking

instead of drag-and-drop.

5. The user is prompted to select their preference: drag-and-drop or clicking.
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The app recorded the length of the time spent in each test, i.e., the time frame from

when a user started dragging an object until it was dropped for the drag-and-drop tests, and

correspondingly the time frame between clicks in the click tests. We also noted accuracy

of each test, i.e., the number of tasks that were performed correctly. This information was

not given to the user, making sure that they would not just try to race through the tasks,

or focus too much on just getting everything right. At the end of the test, each user was

asked which of the two interfaces they preferred. The results showed an overwhelming

preference for the click solution, as shown in figure 4.5, where all the participants said that

they preferred the click interface over drag-and-drop. In addition, the click interface scored

highest in terms of accuracy, as shown in figure 4.4.

20% 40% 60% 80% 100%

click

drag and drop

98%

92%

Correctness

Figure 4.4: Accuracy: click versus drag-and-drop

20% 40% 60% 80% 100%

click

drag and drop

100%

0%

Preference

Figure 4.5: Preference: click versus drag-and-drop

Figure 4.6 shows the time spent on each task and if the task was performed correctly.

The average time spent on one task was just over 0.7 seconds for the click interface. This is

an improvement of about 442% faster than the average time of the Muithu interface found

in a similar experiment [53]. Although the paper covering the Muithu test describes the

test as very similar in nature to ours, we assume that the circumstances must have been

different, as the results are very dissimilar for two essentially identical experiments.

The average for the drag-and-drop interface was just over 1.2 seconds. The results also

show that the lowest time value of a single task was from a drag-and-drop test, but further

investigation showed that this task was performed incorrectly and is therefore considered

invalid. Likely the user accidentally dropped the box right after starting dragging. The

lowest value for a task that was performed correctly belonged to the click interface with

235 milliseconds, while the lowest valid value for drag-and-drop was 312 milliseconds.

The largest value for drag-and-drop was nearly twice the size of the largest for click: 4425

milliseconds and 2276 milliseconds, respectively.
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Figure 4.6: Time: click versus drag-and-drop. Note the different scales of the y-axis
between the two figures.

Some factors that can contribute to the fact that drag-and-drop is slower and less

accurate is that, once you start dragging, you will have to hold your finger down and not let

go until you have dragged it to the desired area. Some may start the dragging process before

they have identified where it should be dropped and therefore having to hold their finger

down for a long time or accidentally letting go too soon. If the dragging distance is large,

e.g., from the bottom left corner to the upper right, and you start the drag with your thumb,

the movement may become awkward and difficult to do effectively, as it is challenging to

reach the upper right corner without repositioning your hand, while still keeping the thumb

pressed down to avoid a drop in the wrong area. As such, you will probably end up using

both hands to complete the task correctly.

Even though the drag-and-drop interface is a fun and popular way to interact with

various applications, our tests, as well as other research papers [56, 57], show that it is

prone to errors, worse annotation accuracy and slower speed. Click provides a more efficient

interface that requires less effort. The click interface was preferred by all the participants

in our test and produced the best results in regards to accuracy and speed. We therefore

decided to base our annotation interface on clicking.
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4.3.4 Architectural overview of interface

Figure 4.7: State machine representation of interface

Figure 4.7 shows a state representation of the interface with the tabs state as root. All

the states that are direct children of the root state are accessible from any other state,

except from the draw state, this is because we wanted to make the drawing area as large

as possible by hiding the navigation bar. This makes the only possible navigating from the

draw state, back to the remote controller state. States are preserved when switching, to

ensure consistency for the user. The states that are direct children of the root state also

provide a overview of the core functionality of the Bagadus App.

The following is a short description of the different states:

Register Register annotation on player or group

Player List of players. Select player.

Event List of events. Select event to register on player.

Group event List of group events. Select a combination of group and event to

register.
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Playback List of registered events. If a registered event is marked as relevant for the

playback playlist, clicking it will lead to the remote controller. If not, the interface

transitions to the event info state.

Event info Shows three frames grabbed from the registered event video. Allows the

user to see a visual of the registered event and mark it as relevant for the playback

playlist.

Remote controller Illustrates a remote controller with buttons for manipulating

playback of video.

Draw Shows a picture of the current, paused playback which can be drawn on.

Buttons allow for changing draw color and redo/undo draw actions.

Settings A list of settings pages.

Choose players A list of all players for selecting which players show up in the

"Register" tab. Players can be selected from the list, or by the group buttons:

"Defenders", "Midfielders" and "Defenders"

Choose role Select a role for annotation. The selected role is included when

registering events, allowing for, e.g., better easier filtering during post-analysis.

Details regarding the different states and their functionality is elaborated in the rest of

this chapter.

4.4 Annotating events

When annotating an event, the user have initially two options i.e., to register an event on a

specific player, or register a general event on the whole squad or group.

When registering on a specific player, the user is presented with a grid of players, as

shown in figure 4.8a. When pressing on a player-tile, the user is then presented with the

different types of events that can be registered on the selected registrant - i.e., the player -

as shown in figure 4.8b. A tile of the same size as the events-tiles are reserved for a picture

of the player. Clicking on the player tile, will take the user back to overview of players,

aborting any registration. Clicking on an event tile will register an event on said player.

This is designed to be used when the user wants a more specific event. It can be used as a

tool in player development during training sessions, or otherwise where the user wants to

capture a player-specific situation.

The user can also register an event on the whole squad, by only specifying the type of

event or category, such as defending or attack. This is illustrated in figure 4.9. This is done

by selecting the group tab in the upper right corner. Here the user is presented with tiles
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(a) Annotation: Choose player (b) Annotation: Player event

Figure 4.8: An example of a annotation on player

Figure 4.9: Annotation: Group event

containing a descriptive text about the group or event type. Annotation is done simply by

clicking on the desired event tile. The interface state remains the same after registration.

This is to provide a efficient and rapid way of annotating general events, designed to be
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used in a live game situation.

In early development of the Bagadus App, we added the functionality of scheduling and

starting the recording via the application. This feature was later removed, and the cameras

are now set to constantly run in periods when the stadium is used for the sake of simplicity.

Having to make sure the recording was running before annotating is something one easily

can forget, creating frustrating incidents with possibly missed annotations. Therefore the

video pipeline is always running, saving video up to one year - a convenient approach for

the end-user.

It is also possible to choose which players you wish to be available to register annotations

on by going into the setting tab shown in figure 4.10a. This can be beneficial in live game

situations when you have a starting squad of 11 players. The players on the bench or those

not in the squad for that particular game will take up unnecessary space in the interface,

and make it more challenging to do accurate, fast registrations, e.g., if the user has to scroll

to find the correct player.

Certain event types may be more relevant to certain users than others. As such, it is

possible to select a role through the settings tab shown in figure 4.10b. The role filters the

type of events to match that selected role. The role is also included in the notational data

when registering events, allowing for additional filtering in post-analysis.

(a) Setting: Player select (b) Settings: Roles

Figure 4.10: Setting: lineup and roles

The Bagadus App posts information about events to the Web API where the notational

data is registered and corresponding video connected to the event. Processing of the data

and video is detailed in chapter 5.
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In section 3.3 we discussed different web communication protocol. As we identified

the WebSocket protocol to, in theory, be a more suitable choice for high-frequency traffic,

we wanted to investigate if we should use WebSocket for posting annotations as well.

The WebSocket protocol is intended to be used when you need low latency, bi-directional

communication between client and host. Additionally, why not use it for posting events, if

it is, as suggested, faster and produce less data traffic?

When developing applications for hand held devices, there are some considerations that

one needs to address, such as screen size and limited battery capacity. It is also worth noting

the amount of data traffic, as the device might have limited mobile network coverage and

bandwidth. In the following subsection, we conduct two experiments to see if there is a

significant difference in data usage and battery life when using the WebSocket protocol

versus the more traditional HTTP protocol.

4.4.1 Socket.IO and HTTP data usage

To test the data usage, we created two web applications: one using WebSocket and one using

HTTP POST with two servers that the web applications could send data to, respectively.

To implement the WebSocket protocol we used the Socket.IO library for JavaScript, which

uses WebSocket when it is supported by the device and browser. Socket.IO never assumes

that WebSocket will work, it establish a HTTP connection right away, and then tries to

upgrade it to a WebSocket connection [58]. We chose Socket.IO because it provides easy

implementation, reconnection logic and the support of namespaces. This choice and why

this functionality is important to the Instant Replay Analytical Subsystem is detailed in

chapter 5.

Other than the different protocols for sending data, the two web applications and servers

were identical. We used Wireshark [59], a tool for capturing and analyzing network traffic

to inspect the data. Wireshark can be used to inspect various protocols and can be set to

only capture data from or to a specific host, or from a specific protocol such as HTTP. As

such, we configured Wireshark to only capture data from and to the server. For the first

experiment, two single, identical messages were sent - one over WebSocket and one over

HTTP. The results are shown in table 4.2.

HTTP POST Socket.io
Number of packets 10 36
Total size 2233 bytes 5557 bytes

Table 4.2: HTTP POST vs Socket.IO data usage 1 post

The statement that using WebSocket produces less data traffic than HTTP seems to be

inaccurate in this case. This is because our Socket.IO application uses several packets
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to establish the WebSocket connection by first establishing a HTTP connection, and then

gradually upgrading by checking and testing what the host is supporting, before it switces

to the WebSocket protocol [60]. As shown in 4.11 the actual data is not ready to be sent via

WebSocket before line 7.

Line 1 Check support for Polling.

Line 2 Test polling.

Line 3 Use polling.

Line 4 Check support for WebSocket.

Line 5 Test WebSocket

Line 6 Use WebSocket

Line 7 WebSocket up and running

Figure 4.11: Socket.IO: Upgrade

Socket.IO is designed to immediately connect with HTTP, check if an upgrade is sup-

ported, test the upgrade, and then switch. This is repeated until it has established a Web-

Socket connection, if WebSockets is supported. With a raw WebSocket implementation4,

this would be done in one step, i.e., it would have sent a request to upgrade to WebSocket

immediately.

The HTTP application requires less additional requests to initiate a connection, and

performs the post immediately after the initial handshake, reducing the total size of data

sent and received.

We investigated how much data was produced by sending the actual application payload,

ignoring all other data sent and received. Listing 4.1 shows the test payload, which consist

of just 31 bytes.

4One that is purely RFC-6455 compliant
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1 {
2 "id": 1,
3 "type":2,
4 "time": 123123
5 }

Listing 4.1: Data sent in JSON format

This resulted in a total data size of 186 bytes when using the WebSocket protocol, as

illustrated in figure 4.12. The same data sent with HTTP produced a total of 945 bytes, as

shown in figure 4.13. Again, just by looking at the actual message for the test payload. In

this example, the JavaScript Object Notation (JSON) data in the request consist of 31 bytes,

the HTTP request in total is 554 bytes and response is 391 bytes, making the total size of

the message 945 bytes. As such, the actual JSON data is about 3.3% of the whole message.

Doing the same calculations on the WebSocket message show that JSON data is about 16%

of the whole message.

Figure 4.12: One post Socket.IO

Figure 4.13: One post HTTP: filter HTTP

HTTP produced an increase of over 400% in total data sent and received compared to

WebSocket, and show the extra overhead associated with the HTTP protocol e.g., metadata

about the request and responce: accept types, information about the user agent, encoding,

instructions about caching, etc. Note that the JSON data is compressed when sent i.e., all

whitespace is removed. We suspected that if we increased the size of application data sent,

the ratio between the protocols would even out, as the overhead will be relatively constant.

To see if this was true, we used a JSON data file of 6.5 kilobytes and one of 15 kilobytes.

The results confirmed our predictions - the amount of overhead evened out between the

two protocols.
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• Application data size : 6500 bytes

– WebSocket: 7337 bytes

– HTTP: 8272 bytes

– HTTP: 12% larger than WebSocket

• Application data size : 15000 bytes

– WebSocket: 16787 bytes

– HTTP: 17743 bytes

– HTTP: 5.7% larger than WebSocket

When sending the initial JSON data of 31 bytes, HTTP produced results that was 400%

bigger than the results with WebSocket. When the data sent was increased, this ratio was

lowered to just over 5%. This shows that when sending large data, HTTP and WebSocket

produce similar results in regard to data size, while WebSocket will produce better result if

the data sent is small.

So far, we had only looked at the result for performing one post. We wanted to

investigate further to efficiency of WebSocket when sending multiple messages. Next, we

conducted the same experiment, but this time with ten posts. To ensure an equal basis

between the tests, we wrote a Protractor [61] script that did this automatically. Protractor

is a JavaScript framework for testing. The script sent one message every minute for ten

minutes on both applications. As visualized in table 4.3, the application using HTTP POST

generates more data traffic.

HTTP POST Socket.io
Number of packets 67 144
Total size 20432 bytes 13548 bytes

Table 4.3: HTTP POST vs Socket.IO data usage 10 posts

Thereafter, three more experiments with the same setup were conducted: one performed

1 post every 5 minutes for 50 minutes, one with a single post every 5 seconds for 1 minute,

and finally, 1 post with an interval of 100 milliseconds until 500 posts were concluded. The

results are shown in table 4.4

As the results illustrate, when the frequency of sent messages is low, i.e., 1 every 5

minutes, our HTTP implementation yields better results in regard to data usage, about 77%

less than Socket.io, but when the posting frequency increases, the Socket.IO implementation

gives the best results, about 416% less than the HTTP application. One reason is that the

WebSocket connection uses a heartbeat message to check if the client still is connected. The

heartbeat interval is set to 25 seconds by default [62]. We observed through Wireshark that
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HTTP POST Socket.io
Number of packets 113 380

1 post every 5 minutes for 50 minutes
Total size 16822 bytes 29873 bytes

Number of packets 43 66
1 post every 5 seconds for 1 minute

Total size 12602 bytes 8272 bytes

Number of packets 1559 1052
1 post every 100 milliseconds, for 50 seconds

Total size 516519 bytes 100080 bytes

Table 4.4: HTTP POST vs Socket.IO data usage

each heartbeat produced 211 bytes. The heartbeat is not issued if the server has received a

message from the client within the interval. Posting every 5 minutes gives rise to 11 such

heartbeats, as the one post replace one heartbeat. Doing this for 50 minutes totals 110

heartbeats, with a total size of 23210 bytes. If we subtract the combined heartbeat data

from the total test data size of 29873 bytes, the result is 6663 bytes - less than 1/4 of the

total test data for the WebSocket connection.

The heartbeat is used to keep the WebSocket connection open, but this highlights how

much extra data the heartbeats contribute when the message frequency is low. Thus,

WebSocket communications may not be the most efficient choice in such a case. The two

other tests show that the Socket.IO implementation produces less data usage, as the posting

frequency is lower than the heartbeat interval. Therefore, the connection does not need to

issue heartbeats, reducing a significant amount of unnecessary data sent. Despite of the

HTTP test using keep-alive, so that all requests are sent over the same underlying TCP

connection, the WebSocket test is more efficient in terms of data usage.

4.4.2 Socket.IO and HTTP battery life

A potential problem with using WebSocket is the reportedly excessive battery consumption

on mobile devices [63]. For handheld devices, this is something one would wish to avoid as

they have limited battery life before needing to be charged. As the main field of application

for the Bagadus App on the sports pitch, where charging the device may be impossible or

at the very least inconvenient, the battery usage of the app is an important element for its

usability. As suggested in [64], a WebSocket connection can produce unacceptable battery

life for mobile devices. We wanted to test this statement with our implementation.

For the experiment, we built two separate apps which connected to two separate servers.

The sole functionality of the two apps was to post the same amount of data to their respective

servers. Each pair of app and host would solely use HTTP or WebSocket to communicate.

Apart from the communication protocols, the two apps were identical, as to eliminate any

other potential disturbances that could affect the battery life.
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The test were carried out on two devices: Ipad 4, Samsung Galaxy S4. All devices

were charged to 100%, and then instructed to send two HTTP POST messages to the server

every 5 minutes for 50 minutes, which is about the amount playtime in one half of a soccer

game with additional overtime. The amount of power left was then measured, and the

device recharged to 100%. The test was then repeated with the app using the Socket.IO

implementation of WebSocket.

We also monitored the connection with Wireshark by setting up a computer as a WiFi

hotspot to ensure the packets were delivered and the WebSocket connection held open. The

screen on the devices were kept alive during the tests, to stop the devices from sleeping or

otherwise affect the tests. Results in table 4.5 shows the percentage left after 50 minutes of

posting two times with an interval of 5 minutes.

HTTP POST Socket.io
Samsung Galaxy S4 81% 83%
IPad 4 99% 100%

Table 4.5: Battery charge remaining after 50 minutes

There is a marginal difference between the two applications, and based on these results

we can conclude that using WebSocket has no negative effect on the battery usage in our

implementation. If anything, it extended the battery life of both systems contra HTTP.

Furthermore, as suggested in [64], the heartbeat interval of the WebSocket connection, i.e.

the amount of time between a heartbeat message is sent to see if the client still is connected,

can have an impact on the power consumption. This is set to be 25 seconds by default5 [62]

and increasing this value can reduce the power consumption. We did not test this as we

found that having a WebSocket connection did not produce any higher power consumption.

The simple nature of this experiment makes it highly inaccurate., as we cannot accurately

control the system processes on the device or precisely measure the battery. However, it

produces an indication of the battery consumption between the two implementations.

4.4.3 Choosing communication protocol

Based on the different experiments and tests, we decided to use Socket.IO only where real

time and rapid data sending is needed, such as for drawing and controlling playback of video

from the app. In [7], the annotation frequency during training sessions was around once

every 4 minutes. The average was 16 for a full 90 minutes match. The average frequency

was not presented, but if equally distributed throughout the match, this would approximate

to once every 5 and a half minutes. As such, for posting notational data we use the HTTP

5We found this to be true in practice through Wireshark
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protocol, as a WebSocket connection through Socket.IO did not prove to be a more efficient

solution when the posting frequency was that low.

The research done in [63, 64] indicated that using the WebSocket protocol in mobile

applications can cause higher battery consumption. Our simple battery tests showed the

contrary. We suspect this is due to newer and better WebSocket implementations in the

latest versions of Android and iOS.

4.4.4 Caching data

The biggest soccer stadiums in the world have capacities of close to 100 000 spectators.

Although the largest in Norway, Ullevaal Stadium, in comparison, can accommodate only

27 200 people, there is still a significant possible amount of active cell phones in the arena

during a match. 9 580 soccer fans attended the match between Norway and Estonia on 12th

of November 2014. We performed tests by registering notational data during the match to

test for contingency on the 4G mobile network of Telenor. The measured times are the

network latency from the request is sent from the mobile device until it reaches the server,

i.e., the one-way trip time.
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Figure 4.14: Two box plots illustrating the latency of registering events during the Norway
vs Estonia soccer match on 12th of November 2014.

The results were stable during game time. However, during the half-time break, one

request timed out. If a request timed out, the application would repeat the request, with

the initial timestamp from the first request try, until a successful response was received. This

outlying value had an extreme response time of 180 seconds, and is included in figure 4.14a.

Figure 4.14b shows the data without the outlying value. Here the values from the match

and the break are much more contiguous, but the extra latency on the network is clearly

visible by the over double mean time, 369ms vs 804ms, for registering events during half-

time.
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To combat situations with unstable network and unnecessary data usage, we opted

for caching as much data as possible. This includes players, events as well as registered

notational data. When a request to register an event fails due to a network error, the data

is cached on the device. This cache is persistent, and will not be cleared unless the app

successfully syncs with the Web API, the app is uninstalled, or the user manually clears the

data.

(a) Pop-up box when registered events are
successfully uploaded. (b) All registered events are synchronized.

(c) Pop-up box when an error has occurred
during synchronization.

(d) There are registered events cached that
have not been uploaded. The spinner icon is
clickable, and will force a synchronization

attempt.

Figure 4.15: The figures depict the various synchronization statuses between the app and
the Web API for registering events.

If the device is offline, events are saved to cache immediately, making the device possible

to use if network connection should drop. However, for the initial launch of the app, a

mobile or WiFi connection must be available in order to synchronize time and fetch player,

event and registered events data from the Web API. The players, events and registered events

are cached for as long as the app is running. The user is able to manually upload the

collection of cached registered events by pressing the spinner icon shown in figure 4.15c

Figure 4.15 shows all the different synchronization statuses and messages.
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4.4.5 Speech annotation

An interesting alternative to the click approach of annotating is to use speech recognition.

By using speech, the process of registering notational data could be even more effective, as

the coaches could keep their attention focused on the pitch even while registering.

Speech recognition systems are computationally intensive, likely too intensive for

mobile devices with limited computational power [65], but this restriction can be

circumvented through distributed computing by splitting the processing into client-based

feature extraction and server-side recognition. As such, we investigated if this was possible

to implement as an alternative method of annotating in the Bagadus App.

We identified two possible ways to achieve speech recognition in hybrid apps: by

using the Web Speech API [66] or through plug-ins to native platform speech recognition

SDKs. Android provides an official platform API for recognizing speech, while only third-

party frameworks are available on iOS. The Web Speech API is not supported by Android

browsers. One approach to provide consistent results between platforms, would be to

transmit recorded voice messages to the Playback Server, which could perform the speech

recognition or contact a third-party service like Google Speech. Extra machine learning

could be done on the Playback Server based on the current user of the app for more precise

recognition.

To test the plausibility of using voice recognition for annotating, we opted for using the

Android SpeechRecognizer through the Cordova Plugin API for a simple proof-of-concept,

as this was straightforward to setup without being too time-consuming. This service uses

Google’s vast cloud processing power and dictionary for processing speech and recognizing

words. As the detailed operation behind the speech recognition service is only known to

Google, we treat it as a black box by simply feed it with voice recordings and looking at

the results. For the test, we used real event types specified by TIL: angrep mellomrom

(AMe), angrep bakrom (AB), angrep korridor (AK), angrep bak spisser (ABS), angrep mål

(AMå), forsvar mellomrom (FM), forsvar bakrom (FB), forsvar korridor (FK), forsvar mål

(FMå), offensiv dødball (OD), defensiv dødball (DD), as well as three generic categories in

English for added variety: attack (A), defense (D) and midfield (M).

The tests were performed with a Samsung Galaxy S4 mobile phone under three different

settings: in a completely quiet room using the phone’s microphone, in a conference room

at Simula Research Laboratory with several speakers blaring out a sound clip of stadium

noise6 using the phone’s microphone, and another with stadium noise, but this time using a

hands-free set. The mobile device was held approximately 15 cm from the speaker’s mouth

when using the phone’s microphone. The hands-free set microphone was roughly 7 cm

from the speaker’s mouth. Each event type was tested 10 times per event type per setting

6http://www.mediafire.com/listen/ni75bfkb9uy5hx0/small+football+crowd+by+FNC.mp3
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by 2 different users. Both speaker’s have a typical bokmål dialect and American English

pronunciation.

AMe AB AK ABS AMå FMe FB FK FMå OD DD A D M
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Figure 4.16: Test showing the percentage of correctly recognized event types with
Google’s speech recognition engine.

Figure 4.16 shows the results of the test. The test yielded a 51% correctness for the quiet

setting, 2% correctness for the stadium noisy setting and 35% correctness for the stadium

noise hands-free setting. This amounts to 29% of all tests correctly recognized. It is evident

of the extremely bad score for the stadium noisy setting that the speech recognition service

has trouble parsing voice commands with a lot of background noise. Using a hands-free set

improved the results somewhat, but the background noise was still interfering.

Certain words were consistently misinterpreted as e.g., dødball and korridor. This may be

due to the unusual word combination7, which the search engine may interpret as a spelling

mistake. Having a soccer specific dictionary or having the recognition service correct to

the nearest valid event type through the use of edit distance or other metrics would likely

improve the results. Another factor to consider is the considerable amount of background

noise at a soccer stadium. The sound level in the two noisy tests were set at what we

perceived from experience to be the approximate amount of background noise at a soccer

game. As such, these settings are not completely accurate when compared to a live setting

in a soccer stadium, but gives an indication of how well voice can be recognized in an loud

environment. A study showed that the vuvuzela, famous from the 2010 FIFA World Cup,

produces 113 dB(A) at 2 metres [67] - a considerable sound pressure level likely to interfere

with speech recognition. We also observed that a clear diction with a focus on separating

words when speaking improved the results, although this was mainly evident in the quiet

7 "angrep korridor" yields three results on Google Search.
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setting, as the mobile phone struggled to even separate the speech from the noise in the

other settings.

Using speech recognition for annotating events was thus deemed as unfeasible for our

implementation without further research. However, we assume that with some tweaking

and more testing, speech recognition may be usable at training sessions, where the noise

level is considerably lower than during matches, as the quiet setting produced 51% correct

results and was often very close to the right words. Perhaps using special, easy recognizable

trigger words instead of the event type name may make this more feasible. Investigating

the performance of other speech recognition services may also yield better results. This

simple test shows that annotation through speech is a possibility, but further research must

be conducted.

4.5 Remote controller

The Bagadus App app can be used as a remote controller for the Playback System, which

clients can connect to in order to view video. This makes viewing video connected to

notational data easy and accessible without any manual work. The user can annotate and

view the video of the annotation, all from the same app, and near instantly after annotating.

All commands from the remote controller is sent to the Playback Server, which is a part of the

Playback System. How these are handled and connected to video is detailed in chapter 5. All

communication with the Playback Server is done over a Socket.IO WebSocket connection.

When navigating to the playback tab in the app, the user is presented with a list of

registered events, as shown in figure 4.17a. By clicking on an event, the interface is routed

to a view containing pictures of the registered event, as shown in figure 4.17b. These are

extracted from the annotation video, and provide a glimpse of the start, middle and end

of the situation. This can quickly illustrate the event for the user without having to watch

video.

4.5.1 Filter events

After reviewing the annotation, the user can choose to mark the event as relevant through

a button at bottom of the screen. When pressed, the interface is routed back to the

list of registered events. An annotation can also be marked or unmarked as relevant

by long-pressing on it in list until a context menu appears, and then selecting it as

relevant/irrelevant. This action is illustrated in figure 4.18a. Marking an event will make

the event item green, as shown in figure 4.18b, to indicate it as relevant. The user can mark

multiple events as relevant and thus creating a playlist of events. All events are irrelevant

by default.

51



(a) List of registered events (b) Pictures of the event

Figure 4.17: Playback: list of events and pictures of event

Filtering annotations into a playlist is useful in a live match setting, where the user may

have tagged many events during the first half. Coaches have limited time to prepare for, as

well as conduct, the half-time analysis. As such, providing a means of quickly narrowing

down the list of annotations to the most important ones is crucial. By either filtering

events during play-time, or in the first few minutes of the half-time break, the coaches can

have a compact playlist of registered events to cover in the locker room with the players.

TIL requested additional filtering, where registered events are grouped into defensive or

offensive. This feature is highly personalized to TILs group events, as the filtering is based

on regular expressions of their event type names. As such, this additional filtering is only

present for TIL users of the app.

When a registered event has been marked as relevant, clicking it will route the app to the

remote controller interface, as shown in figure 4.18c, while sending a command to Playback

Server to start video playback. In this screen, the user can control playback of video of the

registered event by sending commands to the Playback Server. The buttons represent the

available actions: pan and zoom the camera, pause, extend or trim the video. The next and

previous buttons will play the next or previous event in the playlist that the user has made

by marking events as relevant. The fast-forward and fast-backward buttons will make the

video skip 3 seconds forward or backwards.
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(a) Dialog for marking event as relevant (b) Event marked as relevant

(c) Remote controller for marked event

Figure 4.18: Long-pressing a registered event brings up a dialog, which allows the user to
mark the event as relevant. When selecting a marked event in the list, the user is routed to

the remote controller view for the selected event.

4.5.2 Camera angle

The camera control arrows allow for adjust the angle of the camera, i.e., panning in virtual

views, to three predefined views. The middle one is centered on the pitch, the left is

centered on the left goal area, and the right on the right goal real. The slider beneath
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allows for zooming. Initially when using the zoom slider, commands were sent for every

value change reported. This lead to hundreds of commands sent when using the slider,

which felt excessive and unnecessary. Thus, we implemented a throttling function for the

zoom slider listener, so that it would, at a maximum, only emit zoom commands every 0.2

seconds. The three predefined views combined with the ability to zoom, covers the whole

playing field.

4.5.3 Trimming and extending video

The trim video buttons allow the user to trim and extend each video clip - both at the start

and at the end. Often, the default video segment length, 15 seconds, may be excessive

or insufficient. By individually tuning each clip length, users can minimize the amount of

unnecessary video.

4.5.4 Drawing

During a demo of the Instant Replay Analytical Subsystem at the Norwegian Centre of

Football Excellence, the Head of Performance Analysis voiced a request for the ability to

draw on paused video via the app. When pressing the draw button, a command to pause

video and a request for a still image of the current playback frame is sent to the Playback

Server. The app changes to the draw interface, where the user is presented with a loading

screen before the picture appears, as in figure 4.19. This state is further detailed under

section 4.6.
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Figure 4.19: Drawing state

4.5.5 Latency

Using the app as a remote controller, with the ability to draw on remote video, requires

the response time to be as quick as possible. A high latency can make for a frustrating and

inaccurate experience for the user. If a command to, e.g., pause video, takes too long to

execute, video will pause at a later point than the user intended. Furthermore, the time

available for half-time analysis is limited, so every second counts. As such, we investigated

both the approach of using HTTP and WebSocket through Socket.IO for this purpose as well,

to find which protocol was most efficient. We configured the app to post notational data to

the Playback Server using HTTP POST or WebSocket. The elapsed time between the button

press event in the app, until the message was received at the server, was then captured.

4.5.6 Socket.IO and HTTP POST response time

Using HTTP POST and Socket.IO, we simulated the situation of playing back a video clip 100

times by sending the same amount of data corresponding to the ID of the clip we wanted to

show. Considering that we are interested in predictable and stable communications to the

Playback Server, we calculated the variance and standard deviation of the 100 trails. The

results are given in table 4.6, and visualized in figure 4.20.

The results present a small difference in average latency, but by observing the variance

and standard deviation, it is reasonable to say that the Socket.IO implementation is more
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Figure 4.20: HTTP POST vs Socket.IO for 100 posts

HTTP POST Socket.io
Lowest value 29.315 ms 26.856 ms
Largest value 112.672 ms 53.026 ms
Mean 39.373 ms 32.485 ms
Variance 170.420 ms 17.625 ms
Standard deviation 13.054 ms 4.198 ms

Table 4.6: Results Socket.IO vs. HTTP POST 100 times

reliant in terms of consistent latency. The largest value using HTTP POST is over twice the

size of the largest using Socket.IO.

To achieve an even statistical analysis, we performed the same experiment with 1000

messages instead of 100. As this was a tedious task to do manually, we wrote a script using

Protractor. The example code in listing 4.2 shows a script generating 1000 requests with

1 request every 100 milliseconds to the Playback Server installed on a server located in

Amsterdam, while serving the application from localhost.
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1 describe('Post event', function (){
2 ptor = protractor.getInstance ();
3 browser.get('http:// localhost:8100 /#/tab/post');
4 it('Should post 1000 posts ', function (){
5 var x = 0;
6 var btn = element(by.id('post'));
7 while(x <= 1000){
8 btn.click ();
9 x = x+1;

10 ptor.sleep (100);
11 }
12 expect(true).toBe(true);
13 } ,50000000);
14
15 } ,50000000);

Listing 4.2: Code for performing 1000 posts

The script posted a play command to the playback server 1000 times. Results are shown

in table 4.7 and visualized in figure 4.21

HTTP POST Socket.io
Lowest value 29.495 ms 8.504 ms
Largest value 389.909 ms 98.298 ms
Mean 41.962 ms 35.925 ms
Variance 579.989 ms 49.068 ms
Standard deviation 24.083 ms 7.005 ms

Table 4.7: Results Socket.IO vs. HTTP POST 1000 times
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Figure 4.21: HTTP POST vs Socket.IO for 1000 posts

The results tell the same story. However, we noticed that the response time for an HTTP

POST request was slower when given a certain timeout between tests. This was due to
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HTTP keep-alive making the connection stay open for a certain amount of time, and the

script continuously making requests at 100 ms apart, and therefore taking advantage of

HTTP keep-alive. Although this is default behaviour, the timeout is usually set to a low

value, this is useful when multiple request are made rapidly, for example when loading a

new web page with many resources. Making requests at this rate from the remote controller

in a live setting is unlikely. Thus, to provide a more realistic test, we disabled the keep-alive

setting by forcing the server to close the connection between each request.

As shown in table 4.8 and in figure 4.22, it is clear that the HTTP test is outperformed

by the Socket.IO test. The largest latency value of an HTTP message is over eight times

larger than the slowest Socket.IO message, which is just over 100 milliseconds, and the

Socket.IO results are more consistent. With no keep-alive header, the HTTP POST approach

got very unstable results, as accentuated by the nearly doubled mean and standard deviation

values compared to with keep-alive enabled. The standard deviation is over 560% larger

than standard deviation of the Socket.io implementation. This is the consequence of HTTP

having to establish a new connection for each request, while Socket.IO only does this once,

keeping a single WebSocket connection open for the duration of the test.

HTTP POST Socket.io
Lowest value 34.132 ms 18.182 ms
Largest value 819.943 ms 100.995 ms
Mean 81.251 ms 38.094 ms
Variance 1925.459 ms 43.045 ms
Standard deviation 43.880 ms 6.560 ms

Table 4.8: Results Socket.IO vs. HTTP POST 1000 times without keep-alive
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Figure 4.22: HTTP POST vs Socket.IO for 1000 posts without keep-alive

For the purpose of using the app as a remote controller for video playback where low

latency and reliability is important, a WebSocket connection is the best choice, especially

58



considering actions with a high frequency message exchange, such as zooming8. However,

keeping a WebSocket connection constantly open requires some data due to heartbeat

signals between the client and server. When annotating events, e.g., during a match, keeping

a WebSocket connection to the Playback Server open is unnecessary. As such, the WebSocket

connection will only be established when the user enters the playback tab. Nonetheless, the

user should be able to mark events even though the connection the the Playback Server is

offline, as this action is only dependant on the Web API. As such, the registered events view

in the playback tab, as well as the show event info view is available, but the user is notified

of a missing connection to the Playback Server through an icon, as shown in figure 4.23.

(a) Socket connection online (b) Socket connection offline

Figure 4.23: Status of socket connection to Playback Server

There may be possible situations where the user moves from the playback tab to the

register tab or other parts of the application and then back again in a short span of time.

In these cases, we made some calculations whether the WebSocket connection should be

terminated when leaving the playback tab or kept open for a period of time before closing.

For the Socket.IO WebSocket implementation, the heartbeat interval is 25 seconds, where

each heartbeat uses 211 bytes. This amounts to 506 bytes per minute in heartbeat data.

Opening and closing a Socket.IO WebSocket connection costs 4637 bytes and 687 bytes,

respectively, for a total of 5324 bytes. Thus, keeping the WebSocket connection open for 10

and half minutes costs as much in network data as opening and closing a new connection.

Therefore, it is more efficient to keep a WebSocket connection open if we expect the user

to submit a new command during this interval. The expected use case of the remote

controller is during half-time breaks and instant analysis during training sessions. Thus,

the remote controller usage is likely concentrated in a short period of time, e.g., 10-15

minutes during the half-time break, and in sporadic 10 minute segments during a training

session. Therefore, to be well within the expected use interval, but limit unnecessary data

usage, the WebSocket connection will terminate after 15 minutes of idling, i.e., the time

elapsed since the user last issued a playback command.

8A message is sent every 200 ms if the user is continuously moving the zoom slider
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4.6 Drawing

With the standardization of HTML5, two new exciting features have been introduced: the

support of <video> as an element, eliminating the need for third-party browser video players

like those based on Adobe Flash or Microsoft Silverlight, and the <canvas> element that can

be used to draw graphics [68–70].

Drawing as a teaching tool is used in many situations and can help to demonstrate and

illustrate important points. In soccer it can be used to explain tactical and strategic goals

that can aid players and personnel to gain a better understanding of a situation.

With the Bagadus App, this can be done on the training field or in the dressing room

during the half-time break by having one or more devices streaming video through Playback

System, and the app controlling that video. By pressing the draw button in the remote

controller section, the user is presented with the current frame of video playback. In this

view, the user has the ability to draw on the image using touch, and having it appear in

real-time at clients streaming through the Playback System. To get the largest drawing area

as possible we force the app to go into landscape mode, and hiding the menu bar at the

bottom, this makes it easier to draw with precision and accuracy. The process of capturing

the current video frame, scaling it and sending to the Bagadus App, as well as forwarding

drawing instructions from the app to clients streaming video is discussed in chapter 5.

In the previous section, we concluded that a WebSocket connection is the best choice

for situations where low latency and reliability is important, with the zoom action used

as an example. The action of drawing is very much alike in terms of message frequency.

When drawing, touch events are continuously fired. For each, the app emits 4 drawing

coordinates, i.e., x and y for the start and stop points, since the last touch event. These

coordinates are relative to the canvas they are drawn on, and must be scaled for correct

display at clients. This is discussed in section 5.7.2.

The draw functionality utilizes two canvases, one that displays the captured image,

as shown in figure 4.24a, and one that displays the actual drawing with a transparent

background, as shown in figure 4.24b. The drawing canvas is superimposed on the image

canvas, as shown in figure 4.24c. Using two canvases, allows us store states efficiently, by

only storing the drawing data, and not the actual image data, as shown in figure 4.24.

The separation of the two canvases enables us to minimize the memory usage associated

with the drawing feature. To support functionality for undo and redo, we have to

continuously save the states of the drawing as the drawing progresses. Our initial

implementation only used one canvas, which held both captured screenshot and the

drawing, this was later replaced with the two canvas solution because of poor performance.

To keep track of the current, and previous states of the drawing, we save each state as

base64 encoded string of the image. The size of the string increases with the complexity of
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the drawing.

To illustrate, the encoded string of the image shown in figure 4.24c has a size of 526

kilobytes, while the encoded string only containing the drawing shown in figure 4.24b is

about 20 kilobytes. Storing big strings in memory and having to quickly swap between large

images when undoing or redoing, can produce unnecessary latency and slow behaviour on

mobile devices with limited memory.

(a) Canvas containing the screenshot (b) Canvas containing drawing

(c) Drawing canvas superimposed on screenshot canvas

Figure 4.24: Drawing and screenshot canvas

We define a draw state as the moment the user stops drawing, i.e., the touch-end event

fires. On the next touch-start event, the current state is saved to an undo array. At the

same moment, a save_draw_state message is sent to the Playback Server, which forwards

it to clients streaming video, who store the states in the same way. Section 5.7.2 further

elaborates drawing for playback clients. This provides the app user with functionality for

undo and redo actions. When undoing a draw state, the current state saved to a redo array,

an image is popped off the undo array and inserted into the canvas. When redoing a draw
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state, the current state is saved to the undo array and an image popped off the redo array and

inserted into the canvas. This functionality is useful for, e.g., when a coach wants to switch

between draw states to explain something different, or made a mistake while drawing.

By having the Bagadus App and the clients streaming video individually storing states,

we reduce the amount of redundant data that would have to be sent if the app should emit

the complete draw state information.

4.7 Synchronizing device time

A synchronized time across the system is crucial when capturing notational data. The

Bagadus App must be synchronized with the video subsystem for the latter to retrieve

accurate video segments, as these are based on the timestamp included with the notational

data from the app.

When launching the application, a timestamp tc is captured from the mobile device’s

internal clock. A request is then sent to the server to get an equivalent system timestamp ts.

We make the assumption that the route is fairly symmetrical, i.e., that the request uses the

same time to reach the client as the time the response takes to get back. The network time

offset is thus calculated by dividing the round trip time RT T by RT T
2 = OW T T to get an

estimated one-way time from client to server. The delta value is calculated by subtracting

the server time and the one-way trip time from the mobile client time.

Fluctuating round trip times are a problem, something we particularly experienced at

the Norway vs Bulgaria match at Ullevaal Stadium 13.10.2014 with over 14 000 spectators

in the arena clogging the mobile network. As such, the client makes several requests until

a good enough round trip is found. The lower the round-trip time, the more accurate the

clock offset will be, as the network latency is the most uncertain element and would thus

impact the network-latency-adjusted clock offset the most. We put the accepted round trip

time at 500ms, which gives an error margin of up to almost half a second (if the round trip

was significantly asymmetrical, the request could use 450ms one way, and 50ms the other),

which should be acceptable for registered events. In a worst case scenario, the end-user

would need to extend or trim the event after tagging.

In situations where no round trip time faster than 500ms is found, we use a simple

algorithm to calculate an average round trip time and average clock offset between mobile

client and server. Equation (4.1) shows this algorithm. The delta time between the current

value and the previous value is calculated, and then multiplied with a constant weighting

factor δ and the result added to the current value. 10 round trips are made, where the

algorithm is applied every iteration for the round trip time and the clock offset - calculating

an average of both. The result every iteration, Test , is carried on into the next iteration as,
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Tprev, creating an average.

∆T = Tprev − Tcur r

Test = Tcur r +(δ×∆T )
(4.1)

A value δ close to 1 makes the weighted average immune to single, long round trips.

We chose a value of δ = 0.8, as we do not want single, long round trips to affect the result

considerably.

The resulting round trip time, found by either being shorter than 500ms or by calculating

the average, is then divided by two to get the assumed one-way trip time RT T
2 = OW T T .

This network time offset is added to the clock offset to get the network-latency-adjusted

clock offset between the mobile client and the server, which is then saved on the mobile

client, and added to timestamps when registering events. The calculated offset is valid for

one session, i.e., while the app is running, and is recalculated through this synchronization

operation each time the app is relaunched.

4.8 Authentication

Traditionally, services that require authentication enforce strong password policies, such

as having a length of at least 8 characters, a mix of uppercase and lowercase letters and

symbols to protect passwords against brute-forcing. Such passwords may be difficult to type

on mobile devices. In addition, prompting the user to enter a username and password every

time an app is opened is time-consuming and may limit usability. As such, mobile operating

systems provide services for storing user data on the device, e.g., iOS Keychain [71] and

Android AccountManager [72]. These act as centralized registries of a mobile user’s online

accounts. They allow for functionality such as sharing data across applications, letting the

OS decide when to synchronize data, e.g., uploading app data when a network connection

becomes available, and storing authentication information. However, these services are only

available through native APIs. As such, plug-ins are needed for hybrid apps to communicate

with them. Furthermore, the extra functionality is not deemed necessary for the Bagadus

App, as we only wish to store authentication data. Therefore, we use a simpler method of

storing user authentication in the app.

Conventional web authentication uses cookies to store authentication for a session or

long-term. We experienced difficulty using persistent cookies in Bagadus App, as they were

cleared when closing the app, acting as session cookies. As such, we investigated saving

the cookie information manually. When a domain responds with a Set-Cookie HTTP header

after a successful authentication request, the cookie key and value can be saved in the device

browser’s localStorage, a type of web browser storage introduced with HTML5. However,
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due to security concerns, browsers do not allow setting cookies for different domains than

the current domain. As an hybrid app is served from a file:// URI, setting a cookie’s

domain to, e.g., https://alfheim.bagadus.no is not allowed. Thus, the cookie cannot be

stored longer than a session, i.e., while the app is running.

To circumvent this restriction, we use a token-based authentication scheme. This

is identical to authenticating with a cookie, except for using custom headers and thus

bypassing cookie-header restrictions. The Web API accepts a username and a SHA-256

hashed password, and returns a token to the client. This token is then stored in the app,

and subsequently used for every request to the Web API.

Any data stored on the client cannot be guaranteed to be kept secret, as the phone e.g.,

could be stolen or the user could sell their phone without clearing wiping data. The token

could be encrypted, but any encryption key would be available through the app’s JavaScript

files. As such, the tokens have an expire date for added security. Once it expires, the user

will have to authenticate with their username and password again to receive a new token.

4.9 Evaluation

Some of the available data is currently not utilized in the Bagadus App, but can provide

information that is useful for future development of the system, and is therefore purposely

left in. For example, the player objects of which you register an event on, contain their

default player position. This can be used for automatic positional-based retrieval of

registered events e.g., all events that is registered on the midfielders.

The plausibility of using speech recognition for annotating events was briefly investi-

gated, but we conclude that more extensive research must be done in order for it to be a

feasible and practical solution for the end-user. The various, possible ways of approaching

this feature was deemed too broad and time-consuming to investigate in this thesis.

In this chapter, the frameworks and protocol implementations tested, such as Socket.IO,

have been used as-is. Further tweaking of parameters, such as heartbeat interval length and

HTTP headers, is possible, and may lead to different results.

Because the Bagadus App can be used in training sessions, as well as in match situations,

one feature that can be implemented is the ability to set the app in "match mode" or "training

mode". When used in a training session, the user typically wants to show the players

something immediately, eliminating the need to prioritize and filter out events. Having

the training mode on could remove the need to mark an event as relevant before playing

it.
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4.10 Summary

In this chapter, we presented and evaluated different aspects of development in web

applications, native applications and hybrid applications in regards to platforms and

performance. We concluded that a hybrid application is the most suited approach for the

Bagadus App, although this approach can have some disadvantages in the responsiveness of

certain graphical user interfaces. Further, we found that a drag-and-drop interface require

more process power than a click based interface. Drag-and-drop is also slower and more

prone to errors than a click based interface. We found through user testing, that a click

based interface is the preferred way to carry out simple tasks similar to the annotation

process in the Bagadus App where the average time for one annotation was 0.7 seconds,

well within our maximum limit of 5 seconds. We also investigated the possibility of using

speech recognition for capturing annotations, but found that additional research must be

conducted in order for it to be a feasible solution.

When the frequency of messages sent and received is high, we found that a WebSocket

implementation yields better results then HTTP in regards to data use. And the that the

results are reversed when the frequency is low. We suggested that when posting larger

data, the total data size sent and received by HTTP and WebSocket converge, while posting

small data files result in better results using WebSocket.

The WebSocket protocol provides the most stable results concerning the response time,

and do not affect the battery life in any notable way. We have described how drawing can

be achieved in a way that minimize the amount of memory usage by using two canvases,

and how we synchronize time across the system. Finally, we evaluated the Bagadus

App and discussed some features that could improve the usability. With our design and

implementation of the Bagadus App, as described in this chapter, we have introduced a way

for the application to be fast, cost effective, intuitive and available for the end-user.

In the next chapter, we will see how we enable instant playback of our annotated events

from the app, through the Playback System. We will discuss the technology and motivation,

and present an overview of existing components and how these are connected to our main

contributions: the Bagadus App, the Playback Server and the playback client.
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Chapter 5

The Playback System

The Playback System is what ties the Bagadus App together with the video subsystem of

Bagadus, as described in section 2.1. It allows users to stream virtual view video connected

to annotated events through a simple front-end web client, and provides an interface for

the Bagadus App to control the video streams in terms of manipulating the video source

and changing the virtual view perspectives. It also allows the app to perform additional

analytical techniques, such as drawing on video.

In the following chapter, we will explain the structure of the Playback System, it’s

features and discuss design and implementation details. We will first discuss the motivation

behind the system, existing components the Playback System depends on and interacts with,

and then go into detail on our main contribution - the Playback Server and the web playback

client - and evaluate the presented work.

5.1 Motivation

We quickly realized that the Bagadus App needed a back-end layer to efficiently integrate it

with the rest of the Bagadus system, and for it to provide the functionality we wanted.

For a pure annotation approach, as with the Muithu app, the Web API to the Bagadus

database would be sufficient. However, for features such as controlling playback of events

and drawing on video, additional infrastructure supporting the app was needed.

Direct streaming from the virtual viewer via an application such as VLC would be

possible, but we wanted a more dynamic streaming experience with the possibility of

selecting different streams to watch based on who was controlling a stream from the

Bagadus App. By using the streaming engine optimized for streaming HTTP, which was

developed by Martin Alexander Wilhelmsen in his thesis [73], using a web browser for

playback is a great fit. A web application for viewing playback makes for an easy approach

to watching streams from all kinds of devices.
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Figure 5.1: Overview of the playback system and surrounding components

5.2 Overview

The Playback System consists of several interacting components. Some are existing parts

of Bagadus that we use unchanged, and some are created or adapted to our scenario. In

particular, the Playback Server and the playback client components have been developed by

us, while the Web API and the Video Source Manager have been developed and adjusted

in accordance with our requirements with help from members of the Bagadus project.

Figure 5.1 shows an overview of the components and their interactions.

The following is a list of components in the Playback System:

Bagadussii database The database containing all information regarding events, players

and video.

Web API The web API towards the Bagadussii database which allows the app to query

for and post notational data.
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Virtual Viewer The virtual viewer described in [17, 73], which provides virtual views

that are controllable through a WebSocket.

Video Source Manager A wrapper around the virtual viewer connecting event data

from the database to the viewer as well as extending the viewer by providing

functionality to alter the input source.

Playback Server A server that allows video control from the app as well as handling

playback of video to web clients.

Web playback client The front-end web app controlled by the Playback server allowing

clients to watch a virtual viewer stream.

5.3 Data layer

For retrieving video produced by the video subsystem of Bagadus, the Playback System

connects to the Bagadussii database through the Web API. These are the same components

the Bagadus App is dependant on for getting player and event data as well as registering

notational data.

5.3.1 The Bagadussii database

The data storage of the Bagadus system is a PostgreSQL database, which handles persistent

storage of players, event types, coaches etc. as well as video. While running, the video

pipeline continuously outputs three-second segment long video clips. The paths to these

files are saved to the database. When a registered event is inserted into the database, the

database generates a view by pairing video segments with the timestamp from the registered

events. Figure 5.2 shows an example of such a view, where event_id is the registered event,

key is the ID for each video sequence and file_uri the path to the file. This is how the

Bagadussii database connects notational data with the video subsystem.

Figure 5.2: A view from the database showing the connection between registered events
and video from the Bagadus pipeline.
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The database provides access control depending on the user logged in, such that, e.g.,

the head coach of TIL’s user only has access to information regarding his team, like players,

registered events and video. This is done by generating database views based on the

requesting user’s unique key.

5.3.2 Web API

In order for the Bagadus App to communicate with the data layer of the system, a web

interface to the Bagadussii database is needed. The Web API is a Representational State

Transfer (REST) API built with Python, with endpoints after our specification. The Web API

is responsible for authenticating users of the Bagadus App, as detailed in section 4.8, and

providing the app with data.

The API queries the Bagadussii database for information using the token that the client

provides. The token authenticates the user to the database, and only relevant information to

that user is returned. All information is returned in JSON format, which is easily parsed on

the app, due to it being developed in JavaScript. Information is exchanged through HTTP

GET and HTTP POST verbs. All communications to the API is encrypted with Transport

Layer Security (TLS), to avoid send the sensitive authentication information in clear text.

The Web API has the following communication endpoints for serving clients:

/ Authenticate a user. Being authenticated is needed for all other endpoints.

/players Returns a list of players.

/events Returns a list of event types to register annotations of. This endpoint also

supports POSTing new event types for saving to.

/register-player-event Register a player event, i.e. a combination of an event, a player

and a timestamp.

/register-group-event Register a group event, i.e., a combination of an event, a group

and a timestamp.

/registered-events Returns a list of registered events, i.e., a combination of a player or

group, an event, a timestamp and other metadata such as thumbnail images of the event

subtracted from panorama video of the event.

/registered-event-mark Marks a registered event as relevant for playback.

/registered-event-unmark Unmarks a registered event as relevant for playback.

/time Returns a Unix epoch timestamp.
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5.4 Virtual Viewer

In section 2.1.4, we briefly introduced the Virtual Viewer. It allows for generating

personalized, virtual views from a stitched panorama. The raw video files of the entire

4450x2000 panorama capture from a full 90 minutes soccer match requires more than 6GB

compressed H.264 video, and must therefore be further compressed to be able to stream

over an Internet connection without buffering delays. In addition, a high-end CPU or GPU

is required to decode the large stream. It may as well be more productive for analysts

to be able to focus on specific areas of interest instead of being restricted to a panoramic

overview of the entire pitch. Thus, a solution is to execute the delivery pipeline server-side,

streaming highly custom views to the client by pairing a streaming engine with the virtual

view generator [19] as presented in [17, 73]. The video delivery system is designed to take

OpenGL input from a source application and stream it via HTTP to clients, while sending

user input back to the source application with minimal latency. The pipeline is shown in

figure 5.3.

Figure 5.3: Block diagram of the delivery pipeline

In our use case, the Virtual Viewer acts as the source application, passing on OpenGL

output to the delivery pipeline, which converts the output to YUV, encodes it using NVENC -

Nvidia’s H.264 hardware-accelerated GPU video encoder - muxes it into the MKV multimedia
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format and streams it to the client over HTTP. At the same time, the delivery system also

forwards commands to the viewer from a client. The Virtual Viewer provides an HTML

web interface for streaming and controlling the video. The client streaming video and the

client controlling the virtual view does not necessarily have to be the same, as we show in

section 5.6.

〈message〉 ::= 〈command〉

〈command〉 ::= 〈coord〉 (‘=’ | ‘>’ | ‘<’) 〈value〉 ;*

〈coord〉 ::= 〈xcoord〉 | 〈ycoord〉 | 〈fcoord〉

〈xcoord〉 ::= x

〈ycoord〉 ::= y

〈fcoord〉 ::= f

〈value〉 ::= [0-100]

Figure 5.4: Grammar for controlling stream through a WebSocket

Client commands are handled through a WebSocket connection and parameters passed

from a client when opening a new stream. The client, e.g., a browser, performs an

HTTP GET request to the system, passing along a unique ID it generates itself, as well as

parameters for bit rate, resolution and the size of the preview thumbnail in the stream, e.g.,

/stream/4e06703610ab0a59?width=1920?height=1080?rate=5500. The delivery system

then returns a continuous stream matching the client’s specifications, which the browser

progressively downloads and plays through a HTML5 <video> tag. The WebSocket

connection to the delivery system is used for controlling the virtual view, i.e., panning and

zooming in the video. Figure 5.4 shows the grammar for the available actions. All coordinate

values are normalized from 0 to 100, where x is the horizontal value, y is the vertical value

and f is the zoom value. Setting the x value to 0, will pan the view to the far left, and setting

it to 100, will pan the view to the far right. As shown in figure 5.5a, having the x and y

value both set to 50, will center the view.

Each stream from the Virtual Viewer is independent, meaning each virtual camera view

can be controlled separately from any other view. This is done by having a dedicated stream

socket - i.e., a WebSocket connection - for every video stream. Figure 5.5 shows an example
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of this, with two views simultaneously generated from the same panorama video source,

but with different view coordinates.

(a) x=50, y=50, f=0 (b) x=80, y=20, f=30

Figure 5.5: Two different virtual views generated from the same panorama video source.
The preview thumbnails in the lower left corner of the images show the virtual views in

the context of the panorama.

5.5 Video Source Manager

The Video Source Manager is a manager for the Virtual Viewer. This component is

responsible for providing source input to the Virtual Viewer, i.e., stitched panoramic video,

as well as starting the viewer, and thus acting as a wrapper. As the viewer simply takes

continuous panoramic video to generate virtual views of and pass on to clients, there is no

functionality for modifying the source input.

For the end-user of the Bagadus App to be able to manipulate video playback, a source

manager for the viewer is needed. The Video Source Manager implements functionality for

this by providing an API through a WebSocket connection, so that a client can control and

manipulate the source input to the Virtual Viewer.

As described in section 2.1, stitched panoramic video from the video subsystem pipeline

is saved to disk continuously in three-second, raw H.264 video segments while the camera

rig is recording. Paths to the stored video is saved in Bagadussii database. The Video Source

Manager fetches video files from the database, based on what registered events to play, and

feeds these to the viewer as source input. The Video Source Manager loops the input until

a new command is received. Figure 5.6 illustrates the flow of such an operation.

The following is a description of functionality the wrapper provides.

Go to event Play video associated with an event. See figure 5.6 for details on the

operation.

Pause/unpause/toggle pause Pause, unpause the video playback. When pausing,

the manager feeds the same frame continuously to the viewer. When unpausing, the
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manager will continue playback of an event.

Rewind event Skip to the beginning of the current event.

Skip forwards/backwards Skip two seconds forward or backward in the current event.

Playback can be paused or playing.

Next/previous event Skip to the next/previous event in the playlist. A playlist contains

events that have had a special flag set. This feature is discussed under section 4.5.

More/less head or tail Trim or extend an event by three second segments. This is

due to the video pipeline outputting video in segments of this length, as described in

section 2.1. Head represents the start of the event and tail the end. For example, an

extend_head command will prepend the event length with three extra seconds of video.

Virtual 
viewer

Video source 
manager

Bagadussii 
database

Set event

Get video
for event Return video

Feed video 
in loop

Figure 5.6: Command to wrapper to set event to play. The manager retrieves video from
the database and pipes the video in a loop to the viewer.

An instance of the Video Source Manager and an instance of the Virtual Viewer runs in the

same context, as the manager executes the viewer as a sub-process and provides video to

it. As such, all virtual views are generated from the same panorama video, and any change

in the source input will propagate through all clients streaming from the Virtual Viewer.

To stream from multiple video sources concurrently, additional manager/viewer instances

must be started. Each instance requires two successive ports - the first for the Virtual Viewer

and the second for the Video Source Manager.
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5.6 Playback Server

In this section, we will explain the Playback Server and it’s role in the Playback System. An

overview of the Playback Server the components it interacts with is shown in figure 5.7.

The server acts as a layer between the Bagadus App, the Video Source Manager and the

Virtual Viewer, as well as serving HTML/CSS/JavaScript files to the playback web clients.

The app works as a controller of streams and video source data, deciding on what the Virtual

Viewer should serve in terms of video streams from registered events, panning and zooming

in virtual views, as well as drawing on top of video streams. Client instances of Bagadus

App will be for clarity’s sake referred to in this chapter as controller clients, and similarly,

client instances of the playback web client are referred to as playback clients.

Virtual 
viewer

Video 
source 

manager

Bagadus 
App

Playback web clients

Playback server

Figure 5.7: Overview of playback server and the components it interacts with

To connect the different components in the Playback System with the Bagadus App, we

needed a unified API for it to interact with. A mobile device can be limited in terms of

network stability, as our tests in chapter 4 showed. If the app were to connect directly to

the Playback System components, without the Playback Server, several connections from

the app would need to be established and kept open. This leaves much of the Playback

System’s functionality prone to failure, as the mobile device is the least reliable component
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in the system. The app could crash due to a device failure, the device could lose its network

connection, run out of battery etc., losing the current state of the system. A safer and more

stable alternative is to have an intermediate interface, in the form of the Playback Server,

between the Bagadus App and the rest of the Playback System. By having the Playback

Server maintaining the current state of clients and components, we minimize the risk of

incorrect states between the Playback System components and clients, as well as the amount

of connections the app must keep open, and thus the amount of data transmitted through

a possibly unstable mobile network connection.

As such, the app keeps one WebSocket connection open to the Playback Server and makes

direct requests to the Web API as needed. We investigated proxying Web API requests from

the app through the Playback Server as well, to eliminate all other network connections

needed, but concluded with it being unnecessary, as the Web API is a REST API and thus

stateless. Direct contact with the Web API also allows the app to register notational data

even if the Playback Server is down.

The following is a list of needed features and criteria for the Playback Server in order to

achieve the requirements of the Instant Replay Analytical Subsystem:

Controlling playback clients The server should provide a means for clients to stream

video, controlled by the app, from the Virtual Viewer.

Playback of registered events The server should provide the app with the needed

functionality for playing back video from notational data to clients via the Video Source

Manager.

Create and manipulate virtual views The server should keep the current state of

playback clients and streams, as well as provide an interface for the app to manipulate

virtual views, e.g., by panning or zooming.

Draw on virtual views The server should accept draw commands from the app, which

it should relay to the appropriate playback clients. The playback clients should

superimpose the drawing on a virtual view video.

Near real-time Response time should be as close to real-time as possible when using the

app as a remote controller for virtual views. This includes actions such as changing video

source (i.e., switch event), changing a virtual view perspective or drawing on video. A

major delay in these actions would make response and efficient analysis more difficult -

especially in time critical situations such as half-time analysis.
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5.6.1 Selected technology

The server is built upon the Node.js1 platform with the ExpressJS2 framework. Node.js

was chosen for being open-source, cross-platform, as well as being based on JavaScript.

By using JavaScript, the code base of the server and the Bagadus App are thus based on

the same language, making for easier and more consistent development between the two

components. ExpressJS is a web application framework simplifying the process of building

web APIs, handling client requests and serving static HTML files for the playback clients.

All communication with Bagadus App and with playback clients happens over a WebSocket

connection working underneath the Socket.IO library. We chose Socket.IO instead of a

simple WebSocket implementation for it’s extended functionality for separating connected

clients into namespaces, unification between client and server side APIs as well as included

reconnection logic, leading to a less error-prone and time-consuming implementation of the

WebSocket protocol than using a more naive and manual approach.

As Socket.IO is a custom implementation of the WebSocket protocol, it cannot

communicate to clients running standard WebSocket implementations that purely supports

the RFC 6455 specification [29]. The Virtual Viewer and the Video Source Manager

uses a standard WebSocket implementation, and thus we use the ws [74] WebSocket

implementation library for Node.js for communication between the Playback Server and

these components. We chose the ws library as it conforms to the IETF specification and

benchmarks very well in terms of speed [75].

The Playback Server acts as a communications hub, directing commands from the

Bagadus App to other components in the Playback System, as well as providing callbacks

to the app. All connections to and from the Playback Server are handled over WebSocket

connections. The event-driven nature of Node.js couples nicely with the also event-driven

WebSocket protocol, making for a more consistent implementation. By listening to incoming

events and emitting events to clients over persistent sockets, the Playback Server keeps the

real-time nature of the Bagadus system intact, as well as accurately maintaining client’s

states.

5.6.2 Handling clients and state

The Playback Server keeps an updated list of all clients, both controller and playback clients,

connected to the server. Connections to controller and playback clients are managed using

the Socket.IO WebSocket implementation, allowing for bidirectional communication.

When the Bagadus App successfully connects to the server, it passes its credentials, i.e.,

ID, name and resolution, to the server which stores the socket connection and credentials

1https://nodejs.org/
2http://expressjs.com/
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in an in-memory data layer. The server then notifies playback clients of the connected

controller client. The credentials are used by the server and the playback clients to identify

the controller client. The resolution of the mobile device is needed for generating a

screenshot for the drawing action described under section 4.6 and section 5.6.4.

The Playback Server serves the HTML files for the playback clients. When a client

is done loading the interface, it connects to the server, where likewise as the controller

clients, the socket connection and credentials are saved as objects in-memory. The playback

client can select a controller to follow, i.e., listen to a controller’s commands, by sending

a join_controller message and including a controller ID in the payload. The server then

registers the client to the specified controller’s namespace.

5.6.3 Video playback

In the initial implementation of the Playback Server, video playback was based on static,

rendered video. Annotations registered by the Bagadus App through the Web API returned

16 second video clips in three angles: the full panorama, the home team’s penalty area and

the away team’s penalty area. Playback clients would stream video directly from the Web

API, by progressively downloading the video clips and playing them. The downside to this

approach is the restrictions in manipulating the video. To change the view angle, the client

would need to download a new clip, and wait until it is finally downloaded before seeking

everywhere in the video is possible.

One of the functional requirements for the system were that manipulation of video

should be possible, e.g., pause, skip, extend and trim video. With the initial approach of

serving exported video clips to clients, this would be a challenging task. If a user would want

to, e.g., extend the video clip with three more seconds of footage at the end, a completely

new video clip would need to be exported and served to clients. Instead, we opted to use

the Virtual Viewer described in section 5.4, to enable this functionality, and generally give

a better control over video playback.

Using the Virtual Viewer for controlling video streams

To use the Virtual Viewer to generate streams, we need a means to handle multiple streams

controlled from the Bagadus App. In the Virtual Viewer implementation described under

section 5.4, the web interface is both the receiving part of the stream, as well as the one

controlling the virtual camera movement of the stream. For the Instant Replay Analytical

Subsystem, these two connections are handled separately, where the playback client is a

simple web client streaming video, and the app acts as a the controller of the virtual view.

This is done by having the Playback Server maintaining the state of video streams.

Figure 5.8 shows the flow when initiating streaming:
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Initiate streaming
/websocket/1d45636e9d9ecd5d

Set st
ream 1d45636e9d9ecd5d

GET /stream/1d45636e9d9ecd5d

Bagadus App Playback
server

Virtual 
viewer

Playback client

#1 #2

#3
#4

Figure 5.8: Start streaming command with one controller client and one playback client
following that controller

1. A command to start streaming is sent to the server from the app.

2. The server generates an unique stream ID for the playback client that is following

that controller and opens a stream socket, i.e., a WebSocket connection, to the Virtual

Viewer to control it.

3. When the socket connection is established, the server notifies the playback client that

it can open a stream to the viewer with the included stream ID.

4. The playback client requests it’s own individual stream from the Virtual Viewer when

it receives the stream ID from the playback server. This allows each playback client to

select the bit rate and resolution for the stream based on the client’s own configuration.

For example, streaming on a mobile device over a 3G connection would need a smaller

resolution and bit rate than a Full HD monitor.

Playback clients are grouped in namespaces by controller client ID. This allows the

server to separate playback clients by what controller client they are following, and reduce

unnecessary data traffic by not having to notify all connected clients. A playback client

can easily swap which controller client to follow as it is always served an updated list

of available controllers. Figure 5.9 illustrates multiple controlling clients with multiple

playback clients following their namespace. It is also possible for a client to always listen to a

specific controller ID, even though the controller client is inactive. This has the advantage of

79



Virtual viewer Playback server

Bagadus App Bagadus App
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Namespace Namespace WebSocket Video stream

Figure 5.9: Multiple mobile devices controlling their own namespace of playback clients
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permanently locking a playback client to a specific controller device, e.g., having a playback

client in the locker room always listen for controlling from the head coach’s mobile phone.

How this is achieved is further described under section 5.7.

A command from the app centered towards controlling the virtual camera view, e.g.,

zooming in, is parsed, cached on the server, and forwarded to all playback clients following

that controller device. Other connected playback clients are unaffected. When the controller

sends a stop stream request, the server kills all stream socket connections to the viewer and

notifies all playback clients currently streaming that streaming should cease.

Controlling video source input

To change or modify source input to the viewer, commands must be sent to the Video Source

Manager running in the same context as that viewer. A single connection is maintained

through the control socket - a standard WebSocket connection. It should always be open as

long as the playback server is running. If the connection is lost, the playback server will

repeatedly try to reconnect until a new WebSocket connection to the Video Source Manager

is established. Controller clients are denied managing of video playback when a control

socket connection is missing, as the video controlling is fairly useless without being able to

manipulate video input.

Commands from a controller client is parsed and translated into valid messages, as

described in section 5.5, for the Video Source Manager and then sent over the control socket.

Video input to the viewer thus changes, which is propagated through to all playback clients

streaming from that virtual viewer context.

5.6.4 Drawing on video

A functional requirement of the Instant Replay Analytical Subsystem is to be able to draw

on video. We investigated different approaches to handling this. The choices regarding the

Bagadus App were limited and thus the choice was simple; hybrid apps are created with

HTML and the best approach to drawing with HTML is the canvas element, as discussed

in section 4.6. Drawing on video can be achieved through several means: e.g., directly

manipulating video, i.e. draw pixels on the video, or superimpose the drawings on the video

through other means. However, it is dependant on the implementation of the playback

client, i.e., if the client should be able to support drawing on top of video in some way

or if the drawing must be done directly by altering pixel data in the video. As we designed

and implemented a browser-based playback client, we achieved this with an HTML <canvas>

element - the same technology used for capturing drawing from the app. The design choices

of the playback client are further discussed under section 5.7.
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For a convenient draw operation, users should be able to see a frame of the view they

are drawing on. To achieve this, the Playback Server provides the app with a frame of the

current streaming video for display in the app. Upon first connecting to the server, the

app sends its display resolution, which is then cached on the server. When the app sends

an initiate_drawing command, the Playback Server sends a pause_stream command to the

Video Source Manager to ensure playback is paused, and performs a HTTP GET request to

the Virtual Viewer with the resolution of the controller client as an argument. The Virtual

Viewer returns a video stream matching the resolution. As playback is paused, the video

stream consists of the same frame continuously looped. When a virtual view is opened,

view coordinates for that view are defaulted to x=50, y=50, f=50 (see section 5.4). If the

controller client has changed this perspective before initiating the draw action, this virtual

view will have the wrong perspective in comparison to playback clients also streaming.

Thus, when opening a stream for grabbing a single frame for drawing, the server must also

open a stream socket connection to send the current perspective coordinates.

To extract a frame from the video stream, we use ffmpeg [76]. ffmpeg is a command

line tool for transcoding multimedia files, with support for HTTP streams. The video stream

is piped to the an instance of ffmpeg as a child process of the server, which grabs the first

frame of the stream and saves it to a temporary Portable Network Graphics (PNG) file. When

the process is done, a callback is invoked. The resulting file is then read into a buffer and

transmitted over the WebSocket connection to the controller client as a base64 encoded

image.

This solution is not optimal, and introduces unnecessary overhead. Both opening a

video stream and a corresponding stream socket, as well as running ffmpeg is needed to just

extract a single video frame. To avoid a possible pipe deadlock when piping both stdin and

stdout from the ffmpeg subprocess to the server process, the image is temporarily saved to

disk as well. Figure 5.10 illustrates the considerable latency induced for capturing a frame.

Note that the time measured is just the server time, and does not take into consideration any

possible additional latency between the app and the Playback Server. As such, the estimated

time for when a user requests the image until the app has received it is at minimum 6,5

seconds.

The Playback Server accepts draw commands from the controller clients, and pass these

on to playback clients. The state of a drawing, i.e., its possible undo and redo actions, are

handled by app and the web clients themselves. Thus, all that is required from the Playback

Server, is that it relays draw commands from the controller client to the playback clients

listening to that controller.
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Figure 5.10: Latency induced when capturing frame for drawing from app. 30 tests were
performed.

5.6.5 Time and performance

The Playback Server is designed to be hosted on the same network as the rest of the Playback

System, making network latency between local components negligible. All data storage is

handled in memory, eliminating common latency-inducing actions such as I/O to a database.

A possible bottleneck could a high amount of concurrent WebSocket connections, e.g.,

many playback clients following a controller client. As controlling playback should be as

responsive as possible, we have tested how much latency the Playback Server contributes

to the command flow for opening virtual views streams to playback clients. The latency

measured is from when the server receives an incoming request to initiate streams, until all

necessary video stream objects have been instantiated and the process of opening individual

WebSocket connections to each client is started. Note that this is the processing time on the

server, and does not include any network latency.

The tests were performed on a machine with an Intel i7-4820K processor running at

3.7GHz and 16GB of memory. The Virtual Viewer and Bagadussii database are running on

the same machine. The results, as presented in figure 5.11, shows that the server induces

a small latency to the command flow when initiating streams. This is likely due to the

number of video stream WebSocket connections that need to be instantiated and opened at

the same time. In a possible future setting with thousands of concurrent playback clients,

e.g., with sport fans streaming from home, some additional optimization may need to be

introduced, but for the current implementation directed at internal analytical use with

likely considerably fewer than 100 clients, we found the added latency to be negligible.

Furthermore, the latency is the maximum delay added to the flow, i.e., the elapsed time

before every WebSocket connection request has been instantiated, and connecting has

started. Many WebSocket connection requests, depending on the network latency, may
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Figure 5.11: Server latency on initiate stream command

have been opened by the end of the test.

5.7 Web Playback Client

In order to present video playback, we created a HTML based web application optimized

for Google Chrome. The Virtual Viewer provides H.264 encoded video over HTTP. Any

software with support for HTTP streaming and decoding this format is possible to use, e.g.,

VLC. However, using a browser allows for easier handling of playback, i.e. changing stream

source, as well as communicating with the Playback Server. Google Chrome produced the

best results [73] for streaming via the delivery pipeline that the Virtual Viewer uses, and is

thus the reason for our browser choice.

5.7.1 Design

The user interface of the playback client is designed to be minimal and simple to use. The

only user interaction needed is to select what controller to follow. It is also possible to

lock the client to one specific controller. This can be beneficial for clients that will always

be listening to the same controller device, e.g., a client using the stadium big screen as a

monitor can be set to permanently listen to commands from the Bagadus App on the head

coach’s mobile device.

The playback client files are served from the Playback Server. When a browser connects

to the web page and the files are loaded, a WebSocket connection through Socket.IO is
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(a) A list of available controllers to
follow

(b) Following a controller - not
streaming video

(c) Following a controller - video is streaming

Figure 5.12: The three available views for a playback client. The browser is running in
full-screen mode for the cinematic effect.

established between the server and the client. The server is notified that a playback client

is connected, and passes back a list of available controllers to follow. This list is presented

to the user, as shown in figure 5.12a. The list displays the user name of the controllers. By

clicking on a user name, the user is redirected to that controller’s stream page, as displayed

in figure 5.12b. When the page is loaded, the client sends a notification to the server over

the WebSocket connection that the user is now following said controller. If the controller

is currently controlling video playback, the Playback Server generates a stream ID, opens

a WebSocket stream to the Virtual Viewer, sends the current virtual view perspective, and
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notifies the playback client that it should connect to the Virtual Viewer with the generated

ID. The client performs a HTTP GET request to the viewer, injects the response stream into

an HTML <video> element and starts playback. Figure 5.12c shows the playback client when

streaming video.

5.7.2 Drawing

When a user is drawing from the app, the Playback Server forwards the draw coordinates to

the playback clients. These coordinates are relative to the display resolution of the source

mobile device, and must thus be scaled to fit the display resolution of the playback client.

When the Bagadus App enters the draw state, it notifies the Playback Server, which in

turn emits the app’s display resolution to playback clients listening to that controller. Each

playback client then calculates the scale factors Cw and Ch between its own, individual

resolution wp and hp and the app’s resolution wa and ha as shown in equation (5.1). The

scale factors are saved in the browser’s memory for the rest of the session.

Cw =
wp

wa

Ch =
hp

ha

(5.1)

When the playback client receives a draw coordinates, it multiplies the scale factors with

the start and end coordinates, to get new, scaled coordinates that fits its display resolution.

As the <canvas> element does not support scaling drawn graphics when resizing the browser

window - the canvas information is simply erased - we have implemented functionality for

this for added robustness. A listener fires an event when the browser window is resized,

and calls a function that saves the current canvas as a PNG image, scales it according to the

new canvas size, and draws it back to the canvas. However, if downscaling, the draw lines

can become very thin and imperceptible. Thus, a simple algorithm calculates a line width

to 2 thousandths of the width and height of the canvas combined and applies it. The line

width is set to a minimum of 1 pixel as to be discernible.

Section 4.6 describes how the Bagadus App saves the drawing state in order to enable

undo and redo actions. Each time the app saves the current state, it emits a save_draw_state

message to the Playback Server, which forwards these to playback clients. Just as the app,

the client keeps two last-in-first-out arrays for saving the drawing state: undo array and

redo array. When the playback client receives this message, it saves the current drawing as

a base64-encoded PNG image to the undo array in the browser’s memory. When the app

performs a redo or undo action, a message is emitted to the clients through the server. For,

e.g., an undo action, the client saves the current state to the redo array, pops the top image

off the undo array and inserts it in the <canvas> element.
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5.8 Evaluation

During the design phase of the Playback System, we focused on eliminating additional

network routes and keeping the playback client as simple as possible. Thus, we moved the

responsibility of controlling video sockets from the playback clients to the Playback Server

as shown in figure 5.13a. In the original front-end implementation for the Virtual Viewer,

a client streaming video also controlled the video socket. During testing of the Playback

System, we discovered the benefit of this. The Virtual Viewer keeps a buffer of ready frames

to stream to clients. The bigger the buffer gets, the further behind in streaming the client is.

By pinging the Virtual Viewer through the video socket, the Virtual Viewer responds with the

latency the client is behind real-time in streaming. The client can then adjust the playback

rate of the video to catch up buffered frames, and thus be closer to real-time streaming. In

our implementation, this functionality is not as feasible anymore, as the Playback Server

opens and controls the video sockets. Thus, the playback clients have no way of catching

up to real-time if the stream falls behind.

/websocket/1d45636e9d9ecd5d

Set st
ream 1d45636e9d9ecd5d

GET /stream/1d45636e9d9ecd5d

Playback
server

Virtual 
viewer

Playback client

#1

#2
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(a) The current implementation
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(b) An alternative implementation

Figure 5.13: The current way of controlling the video socket through the Playback Server,
compared to an alternative way where the video socket is controlled by the playback client.

A possible change is to have the Playback Server constantly notifying the playback clients

to increase or decrease the playback rate based on the amount of buffered frames, but this

puts quite a bit of extra load on the Playback System if many playback clients are streaming.

A better solution might be to move the control of video sockets back to the playback clients

as shown in figure 5.13b, and route all video control commands from the app, i.e., panning,

tilting and zooming, through the playback clients to the Virtual Viewer instead of directly

from the Playback Server to the Virtual Viewer. This will add an extra network step,

but seeing as playback clients must have a reasonably good network connection, as video
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streaming is bandwidth demanding, it might not matter much.

By performing a test, we showed that the Playback Server can handle hundreds of

concurrently connected playback clients and simultaneously instantiate and open stream

sockets for these when streaming should commence. Furthermore, we displayed that the

server can handle this with minimal latency introduced. This shows that even though the

current implementation of the system will presumably be used with one controller client and

at maximum a few playback clients concurrently, it can handle hundreds of simultaneous

playback clients and multiple controlling clients.

In our implementation, there is only one context of the Virtual Viewer and Video

Source Manager running concurrently. In effect, this means that all controller clients

are manipulating the same video source at once, which may lead to confusing situations

if several simultaneous clients are, e.g., changing events and skipping in video at once.

For the current use of the system, i.e., for half-time breaks and during practice sessions,

this was deemed to not be an issue, as there will likely only be one controlling client

manipulating video at any time. However, with additional adjustments, the Playback Server

could easily handle communicating with multiple contexts by connecting each context with

a controller client namespace. For smooth operation of several simultaneous instances of

the Virtual Viewer and the Video Source Manager, distributing to additional computers may

be necessary.

The current process of generating an image for the app to draw on is slow and inefficient.

Opening a video stream, a stream socket, emitting the current virtual view perspective

coordinates to the stream socket, saving the image to disk and then read it from disk for

transmitting to the app is a costly process. A likely much more efficient solution would be to

extend the virtual viewer to extract and return a single frame through a HTTP request with

the client’s specifications. As the virtual viewer is designed for efficient video processing

and can handle hundreds of individual virtual views at once, we expect that generating

a single virtual view frame from panoramic video already in memory will be a rapid and

non-disruptive process.

Figure 5.14 shows the Instant Replay Analytical Subsystem in use during a test in the

dressing room at Alfheim, where a laptop connected to the TV monitor shows the playback

client and an iPad where the Bagadus App is installed is used for as a remote controller.

The users were thrilled about the prospect of using the system in the future as it provided

an easy and efficient way to preform analysis. Installation and tests of the system is also

planned to take place at Ullevaal for the national team, in June, 2015.
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(a) Playback client idle

(b) Playback client streaming

Figure 5.14: The Playback System in use in the dressing room at Alfheim
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5.9 Summary

In this chapter, we have presented the Playback System as a part of the Instant Replay

Analytical Subsystem for Bagadus. First, we presented the motivation for the system,

detailing how it is necessary for supporting the functional requirements of the Instant Replay

Analytical Subsystem. We then introduced an overview of the system, briefly outlining the

components. The system utilizes existing components from the Bagadus system as well as

components implemented by other participants in the project during this thesis. We then

presented our main contribution to the Playback System: a playback server and client web

interface for linking the modules in the system together. We showed that the Playback Server

is necessary for tying the system together, minimize failures by moving state management

from the Bagadus App to server and reduce the number of connections the app must keep

open over a possible unstable mobile network connection. The playback client provides an

easy and convenient manner for users to view streams controlled from the app. Finally,

we evaluated our solution and discussed what could have been done differently to further

improve the system.
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Chapter 6

Conclusion

In this chapter, we summarize the work that has been presented in this thesis. We list our

main contributions, and present possibilities and ideas for future work that can be done,

before we make our final remarks.

6.1 Summary

In this thesis, we have implemented an instant analytical subsystem for Bagadus. The system

is used for capturing sports notational analysis data and visualizing the data with video from

the Bagadus pipeline.

In chapter 2, we presented an overview of the existing Bagadus system, and its different

subsystems: video, tracking (sensor) and analytical. The video subsystem produces

panorama video of five cameras by combining the individual feeds through a video

processing pipeline. Another component, the Virtual Viewer, can produce virtual views

from the panorama video. The tracking system captures accurate positional data of players

on the pitch. The intended analytical subsystem, Muithu, supports registering notational

data, but lacks integration with the Bagadus project. It uses its own camera setup, that

requires a lot of manual labor to operate and to connect video with notational data. We

discussed this and other limitations of using the Muithu system as the analytical subsystem

for Bagadus.

Next, in chapter 3, we presented a design of a new instant analytical subsystem for

Bagadus. The system is built around a mobile application, Bagadus App, and the Playback

System. The former gives the user the possibility of registering notational data during a

sports session, as well as controlling playback of virtual view video streams to clients through

the latter. We discussed the functional requirements for the system, as well as introduced

communication strategies for the components in the system.

In chapter 4, we detailed the design and implementation of the Bagadus App. We
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discussed the different approaches to mobile application development, and concluded with

a hybrid path being the most fitting for our purpose. An intuitive and easy user interface is

crucial for the effectiveness of the app in use. Therefore, we performed a user test, which

concluded with a click-based interface being the most efficient, as well as preferred, way to

registering notational data. We also investigated the approach of using speech recognition

to capture notational data, but concluded that more extensive research must be conducted

in order for it to be a feasible solution. Other tests, regarding data usage, determined us to

use the HTTP protocol for registering notational data, and the custom WebSocket protocol

implementation Socket.IO for controlling playback of virtual views. In order to combat

challenging network conditions, we implemented a caching functionality for the app. To

achieve accurate timestamps for registered annotations, two approaches to synchronizing

the mobile device time with the Bagadus system time were implemented.

Chapter 5 describes the Playback System - a system which bridges the gap between

the Bagadus App and the Bagadus video subsystem. The need for this system was

quickly identified, as a scalable, multi-user and direct approach between the app and

the video subsystem was deemed unfeasible. We first described different components of

the Bagadus system that the Playback System interacts and integrates with. To achieve

the requirements of the Instant Replay Analytical Subsystem, the Playback Server was

designed and implemented based on these. Combined with the Virtual Viewer and the

Video Source Manager, it enables controlling of playback and manipulating of virtual views

to multiple clients by multiple users of the Bagadus App. The Playback Server was found to

be introducing minimal extra latency to the system.

6.2 Main Contributions

In this thesis, we have designed and implemented a new system for instant review and

analysis of soccer sessions. We have shown how hybrid mobile development can be used

for supporting multiple platforms with the same code base, but also identified some of its

limitations in functionality, feel and responsiveness. Inspired by the principles of Muithu,

we have constructed a new system consisting of the Bagadus App and the Playback System,

which removes the manual labor of Muithu and enables near-instant playback with extended

functionality.

The user now has the ability to annotate an event, and within seconds play back the

associated video on the big screen at the stadium, in the dressing room, or at any other

monitor, with full video control and drawing as an analytical aid - all though the Bagadus

App.

Through user testing and surveys, we have shown that a drag-and-drop based interface is
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slower and more prone to errors than a click-based interface for the purposes of the Bagadus

App. The average speed of performing a task with the drag-and-drop interface was about

1.2 seconds, with a total correctness of 92%. The average speed using the click interface

was 0.7 seconds, which is well within the maximum time limit we set at 5 seconds, and with

a total correctness of 98%. A click-based interface was also preferred over a drag-and-drop

interface by all the users who participated in our tests. By using a click based interface for

the Bagadus App, we have provided a fast and accurate method for annotation.

We have compared the WebSocket and HTTP communication protocols, and conducted

experiments by building two applications and two servers, one pair that used WebSocket for

communication, and one pair that used HTTP. The results showed that our HTTP application

produced less data traffic than the WebSocket application when the frequency of message

exchange was low. In the test where the applications were configured to perform 1 posts

every 5 minutes for 50 minutes, the WebSocket application produced 77% more data

traffic than the HTTP application. While the application using WebSocket produced less

data traffic when the message frequency was low, the HTTP application produced over

400% more data traffic than the WebSocket application in the high-frequency message test.

Furthermore, we found that the application using WebSocket gave more stable results than

the one using HTTP. In the test where we disabled HTTP keep-alive, the HTTP applications

yielded a standard deviation of about 560% larger than the WebSocket application. In

addition, we discovered that with a small message payload, the HTTP application was

especially expensive in terms of payload size versus total size of data produced compared

to the WebSocket application, and that as the size of a message payload increased, the two

applications produced more equal results in regards to data traffic. We also observed that

a WebSocket connection does not influence the battery life of mobile devices considerably.

By using a WebSocket connection for the remote controller of the app, we have limited the

latency and data usage, as well as provided a stable solution for controlling video.

With the Bagadus App, we have provided easy, fast and lightweight methods for

performing sports analysis on multiple platforms. By combining the app with the new

Playback System, we have delivered a scalable analysis platform for allowing multiple

clients to stream video controlled by a mobile device. With the possibility of controlling

and fine-tuning video sequences from the app, as well as enabling drawing for maximizing

video analysis, we have made the Bagadus system available for easy consumption for the

intended end-users. The system have been tested in use at Alfheim Stadium, where the users

were more than pleased with the new opportunities that the new Instant Replay Analytical

Subsystem provided.
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6.3 Future Work

In chapter 4, we mention that the Bagadus App should be available through the respective

app stores of each platform. Currently, the Bagadus App is not published due to delays in

implementing the authentication on the Web API. We expect it to pass the Apple App Store

review process, as we have followed their mandatory user interface principles.

There is currently no simple way of creating new event types or analyze notational data

in detail outside of the app. A website using the Web API to present data and statistical

analysis of notational data could be beneficial for both coaches and players. Players

could review video from annotations registered on themselves and others. Social media

functionality could allow a sports club to comment on and analyze notational data and

video together. An admin user, such as a coach, could use the website to update event type

information, player information and other data in the Bagadussii database.

Expanding the system to fan consumption is another possibility. Fans can act as playback

clients following a controller, much as watching a TV broadcast. A more exciting possibility

would be to release the app to fans, and allow them to make their own annotations -

for academic reasons or simply for entertainment, adding a new dimension to consuming

live sports. Through the aforementioned possible website, fans could view video of their

annotations and export and share the video clips to other services such as YouTube.

The system is designed to be used to analyze and evaluate situations in soccer, but can

also be used in other sports or, e.g., when choreographing a dance performance. Principles

of the Bagadus system can also be a useful tool in other areas when you want to capture

situations of value such as video surveillance, or in instructive or academic arenas such as

surgery.

The Playback System currently only utilizes one running context of the Virtual Viewer

and the Video Source Manager, as this was deemed sufficient for the current intended use,

i.e., during training sessions and half-time breaks. However, the functionality of having

multiple contexts controlled by the Playback Server is possible with some adjustments,

e.g., by having a dedicated context for each controller client namespace. This can allow

concurrent users of the Bagadus App to control video source individually without sharing

the same instance of the Video Source Manager with other controllers, i.e., manipulating

the same video source. Running multiple of these contexts may require distribution across

additional computers.

6.4 Final Remarks

We developed the system mainly for the sports personnel at TIL, but we later also began

discussions with the head coach of the Norway national soccer team, who had a different
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vision of how he wanted to utilize the Bagadus App. While TIL mainly wanted to use the app

in game situations for half-time evaluation and analysis, the sports personnel at Ullevaal saw

it as a opportunity for use in player development during training sessions. TIL also came to

this realization after a presentation at Alfheim demonstrating the functionality ordered by

the staff at Ullevaal. The staff at Alfheim were really thrilled with the possibilities of the new

system, stating that the "all-in-one" solution provided them with an easy and efficient way

of doing game analysis. They also stated that it is crucial to be on the bleeding technological

edge in soccer. In an interview featured in Norwegian Broadcasting Corporations television

program, Schrödingers Katt [77], the director of sport at TIL said that he hoped Bagadus

could help the team maintain their position in the top division of Norwegian soccer - and

so do we.
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Appendix A

Accessing the source code

Access to the source code can be given upon request.
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