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We present the strongest current cosmological upper limit on the neutrino mass of
P

mν < 0.18 eV
(95% confidence). It is obtained by adding observations of the large-scale matter power spectrum from the
WiggleZ Dark Energy Survey to observations of the cosmic microwave background data from the Planck
surveyor, and measurements of the baryon acoustic oscillation scale. The limit is highly sensitive to the
priors and assumptions about the neutrino scenario. We explore scenarios with neutrino masses close to the
upper limit (degenerate masses), neutrino masses close to the lower limit where the hierarchy plays a role,
and the addition of massive or massless sterile species.
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I. INTRODUCTION

The quest to determine the neutrino mass scale has been
dominated by lower limits from particle physics experi-
ments complemented by upper limits from cosmology.
Recently the allowable mass window was narrowed by the
Planck surveyor’s measurements of the cosmic microwave
background (CMB) providing an upper limit on the sum of
neutrino masses1 of

P
mν < 0.66 eV (all quoted upper

limits are 95% confidence), or
P

mν < 0.23 eV when
combined with baryon acoustic oscillation (BAO) mea-
surements [1]. The BAO measurements tighten the con-
straint by breaking the degeneracies between other
parameters (primarily the matter density and expansion
rate), but do not themselves encode any significant infor-
mation on the neutrino mass [2].
On the other hand, the full shape of the matter power

spectrum of large-scale structure does contain significant
information on the neutrino mass. Massive neutrinos affect
the way large-scale cosmological structures form by slow-
ing the gravitational collapse of halos on scales smaller than
the free-streaming length at the time the neutrinos become
nonrelativistic. This leads to a suppression of the small
scales in the galaxy power spectrum that we observe today,
and consequently we can infer an upper limit on the sum of
neutrino masses [3,4]. The shape of the matter power
spectrum was not used by the Planck team to avoid the
complexities of modelling the nonlinear growth of struc-
ture. They admit that nonlinear effects may be small for
k < 0.2h Mpc−1, but justify their choice with “there is very
little additional information on cosmology once the BAO
features are filtered from the [power]spectrum, and hence
little to be gained by adding this information to Planck” [1].

In this paper we show that adding matter power spectrum
data to Planckþ BAO data does improve the neutrino mass
constraint by 0.05 eV to

P
mν < 0.18 eV. Cosmological

neutrino mass constraints now push so close to the lower
limit of

P
mν > 0.05 eV from neutrino oscillation experi-

ments [5–7] that the ordering of the neutrino masses
(hierarchy) may play a role. In this paper we explore
various hierarchy assumptions including the existence of
extra relativistic species.
We only consider the matter power spectrum at large

scales (k < 0.2h Mpc−1) for which nonlinear corrections
(from structure formation and redshift-space distortions
combined) happen to be small for the blue emission-line
galaxies that we use from the WiggleZ Dark Energy
Survey. These can be calibrated using simulations [8].
The paper is organised as follows. Section II describes

the cosmological scenarios we explore, while Sec. III gives
an overview of the observational data and analysis meth-
ods. In Sec. IV we present the results and discuss how they
are affected by the various neutrino assumptions, before
summarizing our findings in Sec. V.

II. NEUTRINO MODELS

We compute neutrino mass constraints for a number of
different models corresponding to different neutrino
scenarios:

(i) neutrinos close to the upper mass limit where the
masses are effectively degenerate,

(ii) neutrinos close to the lower mass limit where the
hierarchy plays a role, and

(iii) the addition of massive or massless sterile species.
For each scenario (described in more detail below) we fit

the data to a standard flat ΛCDM cosmology with the
following parameters: the physical baryon density (Ωbh2), the
physical dark matter density (Ωcdmh2), the Hubble parameter
at z ¼ 0 (H0), the optical depth to reionization (τ), the
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1PlanckþWMAP polarization dataþ high-l from the South

Pole and Atacama Cosmology Telescopes.
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amplitude of the primordial density fluctuations (As), and the
primordial power spectrum index (ns).
In addition we vary the sum of neutrino masses,Pi¼Nν
i¼0 mν;i, where Nν is the number of massive neutrinos.

The total energy density of neutrino-like species is para-
metrized as ρν ¼ NeffT4

ν7π
2=120 where Neff is the effective

number of species Neff ¼ Nν þ ΔN. When considering
standard ΛCDM the neutrino parameters are fixed toP

mν ¼ 0.06 eV and Neff ¼ 3.046, where the 0.046
accounts for the increased neutrino energy densities due
to the residual heating provided by the eþe− annihilations
because the neutrinos do not decouple instantaneously
and the high-energy tail remains coupled to the cosmic
plasma [9–11].
There is no evidence from cosmological data thatΛCDM

requires a nonzero neutrino mass to provide a better fit [12],
but the prior knowledge from particle physics justifies, and
indeed requires, the inclusion of mass as an extra parameter.
We know that at least two neutrinos have nonzero masses
because oscillation experiments using solar, atmospheric,
and reactor neutrinos have measured mass differences
between the three standard model species to be Δm2

32 ¼
jð2.43þ0.12

−0.08Þ × 10−3j eV2 and Δm2
21 ¼ ð7.50� 0.20Þ ×

10−5 eV2 [5,6]. The Heidelberg-Moscow experiment has
limited the mass of the electron neutrino to be less than
0.35 eV (90% confidence level) for Majorana neutrinos
using neutrinoless double β decay [13], but does not require
the neutrinos to be massive. The general bound from tritium
β decay requires that the mass of the electron neutrino is
less than 2 eV [14]. No current experiment has sufficient
sensitivity to measure the absolute neutrino mass.
The current knowledge of the neutrino mass distribution

is summarized in Fig. 1 for the three normal/active
neutrinos (νe; νμ; ντ) [5,6,15]. If the value of Δm (the mass
of the lightest neutrino) is large, the mass differences are
much smaller than the neutrino masses, and it is reasonable
to assume the neutrinos have identical masses. We often
refer to this as degenerate neutrinos and denote the scenario
by ΛCDM3ν in the forthcoming analysis.
If Δm is close to zero, the hierarchy will play

a significant role. For the normal hierarchy there will
be one neutrino with a mass close to the largest mass
difference and two almost massless neutrinos. We call this
model with one massive and two massless neutrinos
ΛCDM1þ2ν. For the inverted hierarchy there will instead
be one massless and two massive species which we
denote ΛCDM2þ1ν.
For all of the above scenarios we keep the effective

number of relativistic neutrinos, Neff , fixed at 3.046.
However, Planck allows for extra radiation density at early
times that can be parametrized as an increase in Neff . We
have varied Neff for the ΛCDM3ν and ΛCDM1þ2ν cases
allowing for extra massless species (or any other dark
radiation effect). These scenarios are called ΛCDM3ν þ
Neff and ΛCDM1þ2ν þ Neff .

Short baseline oscillation experiments have hinted at the
existence of one or more sterile neutrino species with
masses of the order of 1 eV [16–19]. Even though such
large masses are ruled out by structure formation if the
neutrinos are thermalized [20–25], those constraints can be
circumvented by nonstandard physics mechanisms
[26–28]. We have analyzed one such short baseline-
inspired scenario called ΛCDM3þ1ν. ΛCDM3þ1ν is para-
metrized as one massive species with m3 ¼ 0.06 eV plus
two massless neutrinos and one additional massive sterile
neutrino for which we vary the mass (similar to
Refs. [29,30]). Neff can take any value, i.e. the sterile
neutrino is not required to decouple at the same time
as the active neutrinos. An earlier decoupling will lead to
ΔNeff < 1 while later decoupling will lead to ΔNeff > 1.

III. DATA AND METHOD

A. Data

The CMB forms the basis of all precision cosmological
parameter analyses, which we combine with other probes.
In detail, we use the following data sets:
Planck: The CMB as observed by Planck from the 1-year

data release2 [1]. We use the low-l and high-l CMB
temperature power spectrum data from Planck with the
low-lWMAP polarization data (PlanckþWP in Ref. [1]).

FIG. 1 (color online). The current knowledge of neutrino
masses and mixing between the interaction eigenstates as
obtained from neutrino oscillation experiments [5,6] for the three
normal/active neutrinos (νe; νμ; ντ). If the value of Δm is large,
the mass differences are much smaller than the neutrino masses,
and the differences can be safely neglected. If Δm is small, the
ordering becomes important. Figure adapted from Ref. [15].

2http://pla.esac.esa.int/pla/aio/planckProducts.html.
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We marginalize over the nuisance parameters that model
the unresolved foregrounds with wide priors, as described
in Ref. [31]. We do not include the Planck lensing data
because they deteriorate the fit as described in Ref. [1],
implying some tension between the data sets, which will
hopefully be resolved in future data releases.
BAO: Both the matter power spectra and BAO are

measured from the distribution of galaxies in galaxy-
redshift surveys, and therefore one must be careful not
to double count the information. Thanks to the dedicated
work of several survey teams we can choose from multiple
data sets, and only use either the power spectrum or the
BAO from any single survey. For the BAO scale we use the
measurements from the Six Degree Field Galaxy Survey
[6dFGS, rs=DVðz ¼ 0.106Þ ¼ 0.336� 0.015] [32], the
reconstructed value from Sloan Digital Sky Survey
(SDSS) Luminous Red Galaxies [rs=DVðz ¼ 0.35Þ ¼
0.1126� 0.0022] [33], and from the Baryon Oscillation
Spectroscopic Survey [BOSS, rs=DVðz ¼ 0.57Þ ¼
0.0732� 0.0012] [34].
WiggleZ: For the full power spectrum information, we

use the WiggleZ Dark Energy Survey3 power spectrum [8]
measured from spectroscopic redshifts of 170,352 blue
emission-line galaxies with z < 1 in a volume of 1 Gpc3

[35], and covariance matrices computed as in Ref. [36]. The
main systematic uncertainty is the modelling of the non-
linear matter power spectrum and the galaxy bias as
discussed in Sec. III D. We restrict the analysis to k <
0.2h Mpc−1 and marginalize over a linear galaxy bias for
each of the four redshift bins in the survey.
Hubble Space Telescope (HST): We also investigate

the addition of a Gaussian prior of H0 ¼ 73.8�
2.4 km s−1Mpc−1 on the Hubble parameter value today
obtained from distance-ladder measurements [37]. Based
on recalibration of the Cepheids Freedman et al. [38]
found H0 ¼ 74.3� 2.1 km s−1Mpc−1, and a different
analysis by Riess et al. [37] found H0 ¼ 74.3�
2.1 km s−1Mpc−1, which was subsequently lowered to
72.5� 2.5 km s−1 Mpc−1 [39] when the maser distances
were recalibrated [40]. Although slightly deviating, all the
values remains consistent with the one adopted here.

B. Parameter sampling

We sample the parameter space defined in Sec. II using
the publicly available Markov Chain Monte Carlo
(MCMC) sampler MontePython4 [41] with the power
spectra generated by CLASS [42]. The Planck likelihoods
are calculated by the code provided with the Planck Legacy
Archive.5 The WiggleZ likelihood is calculated as
described in Ref. [8] but conservatively excluding the most

nonlinear part of the power spectrum by cutting at kmax ¼
0.2h Mpc−1 (see Sec. III E).
For a few scenarios we compared the MontePython

samples to those of the publicly available COSMOMC6 [43]
with the power spectrum generator CAMB.7 The results are
very similar.
For random Gaussian data the χ2 per degree of freedom

can be used to quantify the agreement between independent
data sets. However, the Planck data likelihood is not
Gaussian, and instead we compare the relative probability
of the combined data to Planck alone,

Δχ2=Δd:o:f:≡ 2
logLcomb − logLPlanck

dofcomb − dofPlanck
; (1)

for the parameter likelihoods, L, of a given model. We
interpret this as a relative probability between Planck only
and Planck+extra. If the increase in χ2 per extra degree of
freedom is larger than 1, the relative probability of the two
data sets is small (assuming they have been drawn from the
same distribution), which implies a tension between the
data sets. Such a difference can originate from systematics
in the data, inadequate modelling of the data, or an incorrect
cosmological model. IfΔχ2=Δd:o:f:≲ 1 the data sets are in
statistical agreement.

C. Priors

We apply uniform probability priors on all parameters
with a minimum of hard limits (given in Table I). The limits
that could be explored by the MCMC exploration were
either set to be unbound in MontePython, or chosen to be
very much wider than any expected posterior width in
COSMOMC. All noncosmological parameters introduced in

TABLE I. The parameters’ uniform probability priors for the
MCMC sampling. In MontePython the prior edges were set to be
unbound unless otherwise specified. The parameters are the
baryon density (Ωbh2), dark matter density (Ωcdmh2), Hubble
parameter (H0), optical depth to reionisation (τ), amplitude of the
primordial density fluctuations (As), power spectrum index (ns),
sum of neutrino masses (

P
mν ¼ Nνmν), and effective number of

neutrinos (Neff ).

Parameter Starting value Prior range

Ωbh2 0.02207 None → None
Ωcdmh2 0.1198 None → None
H0 [km s−1 Mpc−1] 67.3 None → None
As [10−9] 2.2177 0 → None
ns 0.9585 0 → None
τ 0.091 0 → NoneP

mν [eV] 0.3 0.00 or 0.04 → None
Neff 3.046 Fixed or 0 → 7

3http://www.smp.uq.edu.au/wigglez‑data.
4http://www.montepython.net.
5http://pla.esac.esa.int/pla/aio/planckProducts.html.

6http://www.cosmologist.info/cosmomc.
7http://www.camb.info.
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the data likelihood codes are marginalized over. In par-
ticular we find that for neutrino masses close to the lower
limit, the quoted value is very sensitive to the use of a lower
prior, and the literature is inconsistent on this point (e.g.
Refs. [1,2,8,12,20–23,25,29,30,44–48]). Consequently in
Table II, we quote the limits obtained with and without the
lower prior.

D. WiggleZ power spectrum modelling

Modelling the power spectrum on small scales where the
linear theory for structure formation breaks down, is
notoriously difficult. We model the WiggleZ power spec-
trum following the prescription in Ref. [8]. There it was
demonstrated that the model that best recovers the input
parameters when fitted to a simulated power spectrum, was
one in which Halofit is used for most of the nonlinear
effects, but additional small corrections were taken from the
GiggleZ simulation [49]. We use WiggleZ-like halos from
the simulation to tune the nonlinear modelling of the power

spectrum. In brief, the model power spectrum for each
cosmology is given by

Ptrial
gal ðkÞ ¼ b2Ptrial

hf ðkÞP
fid
polyðkÞ
Pfid
hf ðkÞ

; (2)

where b2 is the linear scaling related to galaxy bias, Pfid
hf ðkÞ

is the Halofit power spectrum for the GiggleZ cosmology,
and Pfid

polyðkÞ is a fifth-order polynomial fit to the simulated
GiggleZ power spectrum. The halos were selected from the
GiggleZ simulation to match the WiggleZ galaxies in mass,
selection function, and clustering amplitude.
Comparing the power spectrum of the GiggleZ halos

with the observed WiggleZ power spectra (in the four
redshift bins), reveals less than a 1% difference between the
halo power spectrum and the galaxy one on scales up to
(at least) k ≈ 0.5h Mpc−1. This gives us confidence that
a scale-independent bias factor (b2) is sufficient when
modelling WiggleZ galaxies [49].

TABLE II. The best-fit likelihood values and neutrino mass constraints for different assumptions about the hierarchy. We quantify the
change in the best-fit likelihood when adding data to Planck alone by Eq. (1). The additional degrees of freedom are d:o:f:WiggleZ ¼ 556,
d:o:f:BAO ¼ 3, and d:o:f:H0 ¼ 1. The sampling uncertainty, Δ

P
mν, is determined by Eq. (4). In most cases it is smaller than the

difference between the models. Notice how the
P

mν constraints tighten with the exclusion of the lower prior.

With lower prior of
P

mν > 0.04 eV No lower prior

Data combination - logL Δχ2=Δd:o:f
P

mνð95%C.L.Þ Δ
P

mν - logL
P

mνð95%C.L.Þ
[eV] [eV] [eV]

ΛCDM3ν

Plancka 4902.6 � � � 0.98 0.006 4902.6 1.10
Planckþ BAOa 4903.0 0.23 0.35 0.006 4904.2 0.27
PlanckþWiggleZ 5129.5 0.82 0.39 0.008 5129.6 0.35
Planckþ BAOþWiggleZ 5130.4 0.81 0.25 0.008 5130.8 0.18
Planckþ BAO þWiggleZ ð0.1h Mpc−1Þ 5003.7 0.72 0.23 0.009 � � � � � �
Planckþ BAO þ HSTþWiggleZ 5134.0 0.82 0.19 0.020 5132.9 0.13b

ΛCDM2þ1ν

Planckþ BAOþWiggleZ 5130.8 � � � 0.22 0.015 5130.5 0.16
Planckþ BAO þ HSTþWiggleZ 5134.0 � � � 0.17 0.009 5133.6 0.13b

ΛCDM1þ2ν

Plancka 4902.9 � � � 0.72 0.007 4902.4 0.73
Planckþ BAO 4903.4 0.39 0.30 0.010 4903.1 0.28
PlanckþWiggleZ 5129.4 0.82 0.35 0.008 5129.4 0.18
Planckþ BAOþWiggleZ 5130.2 0.81 0.21 0.010 5129.8 0.16
Planckþ BAO þWiggleZ ð0.1h Mpc−1Þ 5003.7 0.72 0.23 0.011 � � � � � �
Planckþ BAO þ HSTþWiggleZ 5133.4 0.82 0.17 0.009 5133.2 0.12b

ΛCDM3þ1ν

Planckþ BAOþWiggleZ � � � � � � � � � � � � 5130.9 1.51c

ΛCDM3ν þ Neff
Planckþ BAOþWiggleZ 5130.6 � � � 0.37 0.012 � � � � � �
Planckþ BAO þ HSTþWiggleZ 5131.7 � � � 0.41 0.014 5131.7 0.40
ΛCDM1þ2ν þ Neff
Planckþ BAOþWiggleZ 5130.9 � � � 0.29 0.014 � � � � � �

aResults from COSMOMC.
bThe inclusion of the HST prior may artificially enhance the constraint due to tensions between the data sets. In the ΛCDM1þ2ν case

Δχ2=Δd:o:f: ¼ 5.83 for Planckþ HST compared to 0.23 and 0.82 for Planckþ BAO and PlanckþWiggleZ, respectively. The values
for ΛCDM3ν are very similar.

cMass of the sterile species for which we set no lower prior.
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Independently of whether the bias is linear or not, the
ratio Pfid

polyðkÞ=Pfid
hf ðkÞ does have a scale dependence. It

mainly affects the small scales where the GiggleZ power
spectrum cancel some of the enhanced small-scale structure
from Halofit.
Parkinson et al. [8] also considered common physically

motivated power spectrum models from the literature,
but demonstrated that none of them accounted for the
nonlinear effects at the level required to recover the input
parameters when fitted to the simulated power spectra from
GiggleZ beyond k of 0.15h Mpc−1. On large scales
(k < 0.15h Mpc−1) the effect of both Halofit and the
GiggleZ calibration are negligible and the model is in
agreement with linear modelling.

E. Power spectrum range

To determine which kmax cutoff provides the most robust
constraints we analyzed the PlanckþWiggleZ data com-
bination for ΛCDM cosmology, varying kmax between
0.10 h Mpc−1 and 0.30 h Mpc−1. The resulting parameter
contours are shown in Fig. 2.
There is an excellent agreement between Planck and

PlanckþWiggleZ for all values of kmax. The agreement
between fits with kmax ¼ 0.1 and 0.2h Mpc−1 is good, but
there is a small offset for kmax ¼ 0.3h Mpc−1. The

Δχ2=Δd:o:f: ¼ ½0.72; 0.81; 0.97�, respectively, indicate a
slight decrease in fit quality with kmax. The decrease is
worse for kmax increasing from 0.2 to 0.3h Mpc−1 than for
0.1 to 0.2h Mpc−1 but all values are acceptable.
For all further analyses we fix kmax ¼ 0.2h Mpc−1. This

throws out a lot of the power spectrum, which has
measurements out to k ¼ 0.5h Mpc−1, but minimizes the
uncertainties in nonlinear modelling.
For a conservative neutrino mass constraint, that is

almost entirely independent of the nonlinear modelling
uncertainties, we also provide results for kmax ¼
0.1h Mpc−1. Nevertheless, we should not shy away from
the effort of modelling smaller scales, even though it is
difficult, since those are the scales on which the neutrinos
have the largest effect, and we have data in hand.
The best-fit models of fits to PlanckþWiggleZ to

kmax ¼ 0.2h Mpc−1 and 0.3h Mpc−1 are shown in
Fig. 3. For k < 0.2h Mpc−1 the observed power spectrum
fluctuates around both models, but for 0.2h Mpc−1 < k <
0.3h Mpc−1 the model undershoots the data even when the
range is included in the fit.

F. Uncertainties of upper limits

To check whether the differences between the models are
real and not due to statistical sampling, we determine the

FIG. 2 (color online). ΛCDM fitted to PlanckþWiggleZ as a
function of kmax. There is an excellent agreement between Planck
and PlanckþWiggleZ for all values of kmax.

FIG. 3 (color online). WiggleZ power spectrum averaged (for
visualization only) over the seven survey regions and four redshift
bins (black bars) shown with the best-fit ΛCDM models for
kmax ¼ 0.2h Mpc−1 (red/light solid) and kmax ¼ 0.3h Mpc−1

(blue/dark solid) as well as the linear CLASS models for the
same parameters (dotted, same colors). In the lower panel the
models are compared after normalization by the data values.
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uncertainty on the upper limit. The variance of the variance
of a sample is given by8

Varðσ2Þ ¼ 1

n

�
μ4 −

n − 3

n − 1
σ4
�
; (3)

where n is the independent sample size, σ is the sample
variance, and μ4 is the central fourth momentum of the
underlying distribution (the kurtosis). For n we use the
number of independent lines in the MCMC chains as an
estimate provided by “GetDist” [50]. Since we quote 2σ
(95% confidence level) limits, we multiply by 2,

Δ
X

mνð95%Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

�
μ4

�X
mν

�
−
n − 3

n − 1
σ

�X
mν

�
4
�s
: (4)

The uncertainties on the
P

mν 95% confidence limits are
quoted in Table II. In most cases the difference between the
models (∼0.02 eV) are larger than the uncertainties
(≲0.01 eV). Consequently the differences cannot be attrib-
uted to sampling effects alone.

IV. RESULTS AND DISCUSSION

We list the fitted models and their best-fit likelihoods in
Table II, as well as Δχ2=Δd:o:f. and neutrino mass
constraints with and without the low prior.

A. Results: ΛCDM3ν

The left panel of Fig. 4 shows the one-dimensional
parameter likelihoods for fitting ΛCDM3ν to various data
combinations. The major differences occur for Ωcdm, H0

and
P

mν (top row). For Ωcdm and H0 the constraints
tighten relative to Planck alone. For

P
mν Planckþ

WiggleZ is better than Planck but worse than
Planckþ BAO. Adding WiggleZ to Planckþ BAO only
tightens the constraint slightly, but more importantly it does
not introduce any tension like the one seen for other low-
redshift probes, such as cluster counts and lensing
data [1,29,30].
The Planck collaboration pointed out a tension between

the Planckþ BAO and local H0 measurements [1]. This
tension remains with the addition of WiggleZ and the
obtained upper limit on

P
mν may be artificially enhanced.

If we disregard the information from particle physics
and set the lower prior to zero, there is no sign of a
preferred nonzero mass. However, the upper limit
changes significantly from 0.25 eV to 0.18 eV for
Planckþ BAOþWiggleZ, and all the way down toP

mν < 0.13 eV for Planckþ BAOþWiggleZþ HST.
The probabilities are very similar to those without a lower
prior, but the 95% confidence upper limit shifts downwards
due to the area between 0 and 0.04 eV.

FIG. 4 (color online). One-dimensional parameter likelihoods for fitting ΛCDM3ν (left) and ΛCDM1þ2ν (right) to various data
combinations: Planck (dashed purple), Planckþ BAO (dotted black), PlanckþWiggleZ (dot-dashed green), Planckþ BAOþ
WiggleZ (thick solid red), and Planckþ BAO þ HSTþWiggleZ (thin solid blue). The main effect of adding other observations to
Planck is a tightening of the constraints on Ωcdm, H0 and

P
mν (top row). The improvement of adding WiggleZ is more significant for

ΛCDM1þ2ν than for ΛCDM3ν indicating that the fit is sensitive to the power spectrum shape.

8http://www.mathworld.wolfram.com/SampleVariance
Distribution.html.
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B. Results: ΛCDM1þ2ν

ΛCDM1þ2ν is the standard model neutrino scenario that
differs most from ΛCDM3ν, since all the neutrino mass is in
one species rather than split over three. The right panel of
Fig. 4 shows the one-dimensional parameter probabilities
of fitting ΛCDM1þ2ν to various data combinations.
Qualitatively the effect of WiggleZ is similar to the
ΛCDM3ν case but more pronounced. The Planckþ
WiggleZ constraint on

P
mν is almost as good as the

Planckþ BAO constraint. Adding WiggleZ to the former
significantly improves the constraint to

P
mν < 0.21 eV.

The fact that WiggleZ performs differently for ΛCDM1þ2ν

and ΛCDM3ν indicates a sensitivity to the power
spectrum shape. Three degenerate neutrinos will have a
smaller effect smeared over a larger range of scales than one
neutrino carrying the entire mass. At this stage we do not
strongly constrain the hierarchy, as the ΛCDM1þ2ν scenario
is only valid for ½Δm21 ≈ 0.009 eV� ≪ ½Δm32 ≈ 0.05 eV�≈
½Pmν�, where one can safely model the neutrinos as one
massive and two massless species (normal hierarchy
model). However, currently our upper limit

P
mν ≲

0.2 eV is significantly higher than the largest mass differ-
ence (Δm32). Nevertheless, the fact that we are now seeing
differences in constraints due to the different hierarchies
reveals the potential of near-future galaxy surveys.

C. Results: ΛCDM2þ1ν

Figure 5 shows the one-dimensional parameter proba-
bilities comparing ΛCDM1þ2ν, ΛCDM2þ1ν, and ΛCDM3ν

fits to Planckþ BAOþWiggleZ. There is no apparent
change in the preferred parameter values between the

models. The only significant difference is the tightness
of the

P
mν constraints. For ΛCDM3ν Planckþ BAO is

slightly stronger than Planckþ BAOþWiggleZ, whereas
the opposite is true for ΛCDM1þ2ν. Somewhat surprisingly
ΛCDM2þ1ν is almost identical to ΛCDM1þ2ν and does not
fall in the middle between ΛCDM1þ2ν and ΛCDM3ν.

D. Results: ΛCDM3þ1ν

References [29,30] found that the tension between
Planck and lensing or clusters can be relieved by the
addition of a massive sterile neutrino. We investigated this
scenario and as it provides a fit that is equally as good as
ΛCDM3ν, the conclusion is that BAOþ PlanckþWiggleZ
still allows the existence of such a massive sterile neutrino,
but does not add to the evidence of its possible existence.

E. Results: ΛCDM3ν þ Neff and ΛCDM1þ2ν þ Neff

Before Planck, the addition of the effective number of
relativistic degrees of freedom as a free parameter led to a
significant weakening of the neutrino mass constraints
[2,25,45–47,51]. Now, with the inclusion of higher multi-
poles, the Planck data suffers only mildly from this effect,
and therefore it is less important to simultaneously fit for
Neff when fitting for

P
mν. Nevertheless, the Planck results

did leave space for extra species, and it remains interesting
to fit forNeff. Doing so, we findNeff ¼ 3.28þ0.42

−0.26 (95% con-
fidence), and a weaker upper limit of

P
mν < 0.37 eV for

Planckþ BAOþWiggleZ (with the lower prior).
Although the Planck results alone gave no strong support
for extra species, they still sat atNeff ¼ 3.36þ0.68

−0.64 for Planck
alone9 or Neff ¼ 3.52þ0.48

−0.45 when combined with BAO and
H0, approximately 2σ above the standard Neff ¼ 3.046.
Combining with large-scale structure measurements, as

we have done here, now prefers extra species at the 1σ level
(3.28þ0.42

−0.26 ), and 2σ when including HST (Neff ¼ 3.40þ0.44
−0.35 ;

both values are 95% confidence levels). The preferred value
of Neff is identical for ΛCDM3ν and ΛCDM1þ2ν.
Allowing for extra neutrino species alleviates the tension

between Planckþ BAO and HST (as also noted in
Ref. [1]), and also with the low-redshift probes, like galaxy
cluster counts and gravitational lensing [29,30]. This
remains true with the addition of WiggleZ, but at the cost
of Neff above the standard value. As mentioned in Ref. [41]
the preference for a high Neff might simply originate in the
lack of understanding of late-time physics.

F. Nonlinear scales

On the quasilinear scales up to kmax ¼ 0.2h Mpc−1 the
bias of the blue emission-line galaxies in WiggleZ is linear
to within 1% [49]. Adding a different shape-dependent
parametrization will degrade the

P
mν constraints

FIG. 5 (color online). One-dimensional parameter probabilities
comparing ΛCDM1þ2ν (red), ΛCDM2þ1ν (blue), and ΛCDM3ν

(black) fits to BAOþ PlanckþWiggleZ (solid) and Planckþ
BAO (dashed). None of the preferred parameters shift signifi-
cantly between the different scenarios; only the

P
mν limit

changes.

9Including the high-l data from South Pole Telescope [52,53]
and Atacama Cosmology Telescope [54].
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significantly. It is out of the scope of this paper to model
additional nonlinear effects, but we notice that for
ΛCDM3ν, reducing the fitting range of WiggleZ to kmax ¼
0.1h Mpc−1 causes the constraint to change from 0.25 eV
to 0.26 eV for the low-prior fit to Planckþ BAOþ
WiggleZ (compared to

P
mν < 0.35 for Planckþ

BAO alone).

G. Measuring hierarchy

To investigate the possibility of measuring the hierarchy,
we have compared the theoretical matter power spectra for
the different scenarios to the uncertainty of the present day
state-of-the-art observations. Figure 6 shows the ratio of the
matter and CMB power spectra relative to ΛCDM3ν. For a
fixed cosmology (solid lines) the difference in the CMB
power spectrum is negligible, but the matter power spectra
differ by a few percent for

P
mν ¼ 0.15 eV. The effect is

mainly apparent on large scales, and can consequently be
measured from the linear power spectrum alone. The dotted
lines show the individual best fits to Planckþ BAOþ
WiggleZ (also normalized to ΛCDM3ν). The degeneracies
between neutrino mass and Ωcdm and H0 lead to three very
similar curves. It will be impossible to distinguish the
hierarchies from the CMB alone even when adding CMB
lensing data [55], and neither do we expect any significant
effect of the hierarchy on HðzÞ or BAO measurements, but
the addition of large-scale structure information can poten-
tially distinguish between hierarchies based on linear scales
alone. This is more promising than predictions for e.g. the
Square Kilometer Array using the nonlinear scales [56]. As

inferred from the different neutrino mass limits obtained for
the different scenarios, the combined analysis is already
sensitive to the difference, but there is not enough differ-
ence in the likelihoods, yet, to determine the hierarchy. The
effect is of the order of 1% but affects both the overall shape
and the peak amplitudes, which may be enough to disen-
tangle it from a possible < 1% scale dependence of the
galaxy bias.

V. SUMMARY AND CONCLUSIONS

We draw the following conclusions:
(i) There is good agreement between Planck and

WiggleZ data, when using the value of kmax ¼
0.2h Mpc−1 for WiggleZ (Fig. 2).

(ii) We have presented the strongest cosmological upper
limit on the neutrino mass from galaxy clustering yet
published,

P
mν < 0.18 eV for a ΛCDM model

with
P

mν as a free parameter.
(iii) WiggleZ makes a larger difference for ΛCDM1þ2ν

than for ΛCDM3ν. This may indicate sensitivity to
the power spectrum shape (Fig. 5) as putting all the
neutrino mass in one species will suppress the power
spectrum more than the case where it is equally
distributed over three species (for the same to-
tal mass).

(iv) The uncertainties on the 95% C.L. upper limits onP
mν are smaller than the actual differences be-

tween the models, so the differences cannot be
explained by sampling alone, but originate in the
different models and priors.

FIG. 6 (color online). The ratio of power spectra for three different hierarchy scenarios relative to ΛCDM3ν. The left panel shows the
matter power spectra, while the right is the CMB power spectra. The solid lines illustrate the magnitude of the hierarchy effect; these
models all have the same cosmological parameters (Planck best-fit values and

P
mν ¼ 0.15 eV), and differ only in the type of neutrino

hierarchy assumed. The difference in the CMB power spectrum is negligible, but the matter power spectra differ by a few percent. The
dotted lines show the best-fit models for Planckþ BAOþWiggleZ. The different hierarchies lead to best-fit power spectra that are very
similar, due to the degeneracy between the preferred values of Ωcdm, H0, and

P
mν.
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(v) There is no effect on the contours from the lower
prior on

P
mν (Fig. 5), but the 95% C.L. limit

changes (due to the area between 0 and 0.04 eV).
The improvement from adding WiggleZ to BAOþ

Planck and the sensitivity to the power spectrum shape
bodes very well for potential constraints from future large-
scale structure surveys [48,57–59]. Given the lower limit
from particle physics, the allowable range for the sum of
neutrino masses is 0.05 eV <

P
mν < 0.25 eV. In the

inverted hierarchy (two heavy and one light neutrino)
the neutrino oscillation results require

P
mν > 0.1 eV.

If the next generation of large-scale structure surveys push
the mass limit below

P
mν < 0.1 eV, the inverted hier-

archy can be excluded (under the assumption that ΛCDM is
the correct description of the Universe).
The issue of high Neff remains an open question. The

combination of Planckþ BAOþWiggleZ data prefers
more than three neutrino species at 1σ, and at the 2σ level
when including HST data as well.
Neutrino mass constraints are important goals of current

and future galaxy surveys [48] such as the Baryon

Oscillation Spectroscopic Survey [57], Dark Energy
Survey [58], and Euclid [59]. Even stronger constraints
on both

P
mν andNeff would be achievable if we were able

to use the whole observed matter power spectrum in the
nonlinear regime. Currently we are not data-limited, but
rather theory-limited in this area. Improved theoretical
models and simulations of the nonlinear structure formation
and redshift-space distortions are crucial not only for future
data sets, but also if we are to fully utilize the large-scale
structure data we already have in hand.
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