UNIVERSITY OF OSLO
Department of Physics

Development of a
full-size low price
Automatic Survey
Vessel (ASV) for
hydroacoustic
work

Bendik S. Sgvegjarto

May 15, 2015

Abstract

This thesis describes a pilot project for the development of an Automatic Survey Vessel (ASV)
platform useful for hydroacoustic work. An inexpensive control unit, suitable for installation in
an arbitrarily selected full-sized boat, has been developed. The control unit includes a motor
control system, communication equipment, and a simple autopilot. This enables an operator to
either remotely control the vessel during a survey or pre-program a route for the vessel to follow.
Pre-programmed routes can be utilized to increase the efficiency of hydroacoustic surveys or to
create complex driving patterns. The autopilot incorporates a GNSS-receiver and a self-developed
tilt-compensated compass. The compass calculates the heading using sensor fusion from a 3-axis
accelerometer, a 3-axis gyroscope and a 3-axis magnetometer. The motor control system, the
compass and the autopilot have all been tested in either controlled- or field environments.

ii

Abstract

Acknowledgements

I would primarily like to thank my supervisor Dr. Helge Balk, who have been highly helpful
and given great guidance while sharing his expertise. Furthermore, I want to express gratitude
towards the following persons.

To my fellow students, Joakim Myrland, Johan Kleiberg Jensen, and Asbjgrn Vinje, PhD
candidates Atle Rustadbakken and Johan L. Tresvig, along with Associate Professor Torfinn
Lindem for discussions, valuable suggestions and help with testing.

To Jan Kubecka and his fellow researchers affiliated with FishEcU, for welcoming me and
helping me with fieldwork in the Czech Republic.

To Stein Lyng Nielsen and his colleagues at the electronics laboratory at UiO, for advise
regarding electronic design.

To my father, Bernhard Sgvegjarto, for financial support and advice regarding mechanical
constructions.

Finally, to my partner, Magdalena Johansen, for helping me with the assembly of multiple
printed circuit boards (PCBs), assisting me in numerous experiments, as well as supporting and
encouraging me through the course of my master thesis.

iii

iv

Acknowledgements

Preface

My master thesis is naturally divided into separate parts, and is therefore written as multiple
papers. The introduction covers the overview of the whole project.
I assume that the reader is familiar with basic concepts regarding electrical engineering,

computer science and hydroacoustics.

vi

Preface

Contents

Abstract

Acknowledgements

Preface

Contents

List of Figures

List of Tables

List of Acronyms

Introduction
Thesis outline e e

1 Construction of a remote controlled work platform for hydroacoustic work

1.1

1.3

Introduction
1.1.1 Motor placement
1.1.2 Motor type
1.1.3 H-bridge e
1.1.4 Communicationo

1.2.1 H-bridge operation Lo
1.2.2 Calculated heat dissipation in MOSFETs
1.2.3 Calculated copper track width
Material and methods L oL
1.3.1 First attempt on H-bridge construction
Analog steering controller
Digital steering controller — proof of concept
Digital steering controller — dual channel
First H-bridge controller and drive-stage
First selection of power transistors
Heatsink
Protection circuitry
Design and production of first H-bridge
Testing and abandonment of first H-bridge

vii

iii

vii

xi

xiii

Xv

R

O 00 00 ~J UL i W w W

viii Contents
1.3.2 Second attempt on H-bridge construction 19
Motor control system stack L oL 19

Second steering- and H-bridge controller 19

Second H-bridge drive modes L. 20

Second H-bridge drive-stage oL 22

Voltage multiplier Lo oL 22

Second H-bridge driver prototype 22

Second selection of power transistors oL 23

Second H-bridge design and production 24

Second H-bridge driver design and production 26
1.3.3 Light version of the final H-bridge construction 27
1.4 Testingand results L L 27
1.4.1 Testat Lysaker 27

1.4.2 Teston Rimov 33

1.4.3 Temperature test L 33

1.5 Discussiono e e 36
1.5.1 Motor control system reliability 0L 36

1.5.2 Motor switching noise oL 36

1.5.3 Discussion of temperature test resultso 36

1.5.4 Stresstest L 38

1.5.5 Power dissipation Lo 38

1.5.6 Cable connections and -thickness 38
1.5.7 Power source 39

1.5.8 Abandonment of HIP4081 39

1.5.9 Jump start problems 39
1.5.10 TVS diode« . . . e 39
1.5.11 Drive-stage pull-up resistors L. 39
1.5.12 Number of power transistors 39
1.5.13 PCB heat and current distribution enhancements 40
1.5.14 Firmware reorganizationo L 40
1.5.15 UART communication 40

1.6 Summary e e e 40
2 Construction of an Attitude and Heading Reference System (AHRS) 41
2.1 Imtroduction L 41
2.2 Theory o e 43
2.2.1 Angle representation o 43

2.3 Material and methods Lo 43
2.3.1 First software attempt — Complimentary filter 44
2.3.2 Second software attempt —DMP oL 46
2.3.3 Third software attempt - MPL and DMP 46
2.3.4 Hardware for HydroAHRS prototype 47
2.3.5 Hardware for HydroAHRS mk.I. 47
2.3.6 Hardware for HydroAHRS mk.JII 49
HydroAHRS mk.JII-PCB 49
HydroAHRS mk.II — First casing revision 49
HydroAHRS mk.IT — Second casing revision 49

2.3.7 Hardware for HydroAHRS mk. 11T 52
2.3.8 Calibration 52

Magnetometer calibration o000 52

Contents ix

Accelerometer calibration Lo Lo 52

Gyroscope calibration 52

Tilt offset calibration 54

Tilt slope calibration 54

2.3.9 Front-end software L 54
Serial terminal emulator oL 54

Windows application L L 54

Python- and web-based front-end oo 54

InvenSense cube 54

2.4 Testingandresults L 54
2.4.1 Fieldwork in Czech Republic 2013 54
2.4.2 HydroAHRS mk.II repeatability test 56
2.4.3 HydroAHRS mk.IT RTC drift test 56
2.4.4 HydroAHRS mk.II indoor test and calibration 56
HydroAHRS mk.IT offset calibration 56
HydroAHRS mk.II slope calibration 58

2.4.5 Fieldwork in Czech Republic 2014 58
2.4.6 Dynamictest 58
2.4.7 HydroAHRS mk.IIT indoor test and calibration 59

2.5 Discussiono e 62
2.5.1 HydroAHRS mk.II tilt test results 62
2.5.2 Comparison test L 62
2.5.3 Mounting orientationo 62
2.5.4 Timestamp drift 62
2.5.5 DMP and MPL documentation, 62
2.5.6 Futureworko 62

2.6 SUIMIATY . .« o v vttt e e e e 63
3 Construction of a primitive autopilot for hydroacoustic work 65
3.1 Introduction e e 65
3.2 Theory o . o e 66
3.2.1 PID-regulator 66

3.2.2 WebSockets 66
3.2.3 High accuracy positioning L oL 66
3.24 Haversine L 66
3.25 Bearing 67

3.3 Material and methodso Lo 67
3.3.1 Selection of GNSS L 67
3.3.2 Selection of compass 69
3.3.3 Selection of MCU 69
3.3.4 Firmware and autopilot algorithm 69
3.3.5 Hardwareand PCB 69
3.3.6 Sub-system communication o000 72
3.3.7 Operator communication 72
338 ASVILand. 73
3.3.9 ASV control panel 73

3.4 Testingandresults L 75
3.4.1 Moving GNSS-receiver test L. 75
3.4.2 Long-term indoor stationary GNSS test 75

3.4.3 Outdoor stationary GNSS test 79

Contents

X
3.4.4 Autopilot testo 79
3.5 Discussion e e 81
3.5.1 Long-term indoor GNSS test 81
3.5.2 Outdoor GNSS test 81
3.5.3 Autopilot test oL 83
3.5.4 Communication enhancements 83
3.5.5 Implement WebSocket in the MCU 84
3.5.6 PID-regulator 84
3.5.7 Approximations 84
3.5.8 Autopilot and motor driver communication bug L. 84
3.5.9 ARM toolchain 84
3.5.10 Truemnorth e 84
3.5.11 GNSSready flag 84
3.5.12 Alternative software 84
3.5.13 Future work 85
3.6 SUMMATY o v v it e e 85
Summary 87
Closing 89
Appendix A Installation of ASV control panel 91
Appendix B PCB production 93
Appendix C Analog steering controller schematics 94
Appendix D MCU code for servo to PWM signal converter 95
Appendix E MCU code for first digital steering controller 97
Appendix F First H-bridge schematics 102
Appendix G MCU code for ASV H-bridge controller 103
Appendix H Second H-bridge schematics 111
Appendix I H-bridge driver schematics 112
Appendix J HydroAHRS mk.I MCU code 113
Appendix K HydroAHRS mk.IT MCU code 132
Appendix L HydroAHRS mk.IIT schematics 163
Appendix M MCU code for ASV autopilot 166
Appendix N Code for ASV control panel 210
Appendix O Autopilot schematics 217
Bibliography 221

List of Figures

1.1 Motor placement options.
1.2 Electric outboard engine from Biltema. o0
1.3 Photographs of RC-communication equipment.
1.4 Tllustration of RC-servo signals.
1.5 Tlustration and table for H-bridge principal operation.
1.6 TIlustration of (two) PWM signals.
1.7 Current through a MOSFET during a switching-transition.
1.8 Voltage over a MOSFET during a switching-transition.
1.9 Power dissipation in a MOSFET during a switching-transition.
1.10 Block schematic of a full motor control system using a pair of the first H-bridges.
1.11 Block schematic of a full motor control system using the second H-bridge.
1.12 Images of the PCB for the analog steering controller.
1.13 Test of the prototype digital steering controller running on ATtiny85.
1.14 PCB layout for the first H-bridge.
1.15 Test setup for the first H-bridge.
1.16 First H-bridge with solder paste and after soldering.
1.17 Heatsink for the first H-bridge. o
1.18 Block schematic over the H-bridge controller program flow.
1.19 Drive signals from the H-bridge driver to the four legs of one of the H-bridges. .
1.20 Photograph of the half-bridge prototype.
1.21 Schematic of the push-pull stage of the H-bridge drive-stage.
1.22 Schematic of the voltage multiplier
1.23 Prototype of H-bridge driver and full motor control system.
1.24 Tllustrations of the LFPAK package.
1.25 Universal Power-SO8 footprint L
1.26 Photographs of assembled PCBs for the second H-bridge and H-bridge driver. . .
1.27 CGI of the PCB for the second H-bridge.
1.28 CGI of the PCB for the H-bridge driver.
1.29 Photograph of finished motor control system stack.
1.30 Assembled and CGI of H-bridge light PCB.
1.31 Photograph of boat, with electric engines and control unit, tested at Lysaker. . .
1.32 Detailed image and image to scale, of the boat used at the Lysaker test.
1.33 Photograph of aluminium boat used on lake Rimov.
1.34 Simrad EK60 GPT with boat and PicoStation.
1.35 Remote controlled survey vessel supervised by operators at the shore.
1.36 Recording from one of the test surveys conducted on lake Rimov.
1.37 Current measured during the temperature test.

xi

xii List of Figures
1.38 Current measurement setup for the temperature test. 35
1.39 Temperature test setup. L L 36
1.40 IR thermography of the 20 A temperature test. 37
1.41 IR thermography of the 5 A temperature test. 37
2.1 Ilustration of tilt, roll and heading angles. 42
2.2 HydroAHRS data format. 45
2.3 Prototype setup for porting the complimentary filter. 48
2.4 TImages of HydroAHRS mk.IPCB. 48
2.5 Enclosures for HydroAHRS mk.I and mk.II. 50
2.6 Images of HydroAHRS mk.JITPCB. 50
2.7 Milled HydroAHRS mk.II (first revision) casing. 51
2.8 Four HydroAHRS mk.IT assembled in their (first revision) casings. 51
2.9 The mounting process for HydroAHRS mk.II, with the second revision casing. . . 51
2.10 Images of HydroAHRS mk IITPCB. 53
2.11 Calibrated raw magnetometer measurements from HydroAHRS mk.II. 53
2.12 Windows-based front-end for HydroAHRS. 55
2.13 Web-based front-end for HydroAHRS. 55
2.14 Photographs of Leica DISTO D5 used for calibration. 57
2.15 HydroAHRS mk.I in use at lake Rfimov in 2013. 57
2.16 Calibration points and linear regression for tilt-meters used at lake Rimov in 2013. 58
2.17 Offset and slope-calibration setup. 59
2.18 Slope calibration measurements taken with HydroAHRS mk.IT 60
2.19 HydroAHRS mk.IT (first casing revision), used in the Czech Republic in 2014. . . 61
2.20 Photograph of the wheel and detector PCB for the dynamic test. 61
2.21 Diagram of the dynamic test. oL 61
3.1 Overview over a PID-regulator. 67
3.2 Block schematic of the complete control unit stack. 68
3.3 Photograph of the complete control unit stack. 68
3.4 Block schematic of the autopilot algorithm and program flow. 70
3.5 Prototype of the autopilot as multiple PCBs. 71
3.6 CGI of the autopilot PCB. 71
3.7 Photograph of assembled autopilot PCB.., 72
3.8 Photograph of land rover.o 74
3.9 Web-based control panel for the ASV. 74
3.10 Carousel used in the moving GNSS-receiver test. 76
3.11 Raw latitude and longitude data of all takes in the GNSS carousel test. 76
3.12 Plot of the distance from the center of the moving GNSS-circle to the mean . . . 77
3.13 Data from the second GNSS carousel take. 77
3.14 The indoor stationary GNSS-receiver test setup. 78
3.15 Histogram of data from the two GNSS-receivers used in the stationary indoor test. 78
3.16 Outdoor stationary GNSS-receiver test setup. 80
3.17 Histogram of data from the four GNSS-receivers used in the outdoor stationary test. 80
3.18 Reference path and path traveled for the land rover autopilot test. 82
3.19 Wanted heading and the measured heading for the land rover autopilot test. . . . 82
3.20 Photographs of the autopilot test setup. 83

List of Tables

1.1
1.2
1.3

2.1
2.2
2.3
24

3.1
3.2
3.3

Steering mechanism. Vessel behavior at various stick combinations.
Example of selected UART steering commands.
Power transistors families compatible with the universal Power-SO8 footprint. . .

Key specifications for the MPU-9150.
HydroAHRS data format field description.
Control commands for HydroAHRS mk.I.
Control commands for HydroAHRS mk.IL.

Rotational speed for the two front motor wipers used in the land rover.

List of takes during carousel GNSS test.
CEP, mean position and standard deviation (o) for the outdoor GNSS test. . . .

xiii

xiv List of Tables

List of Acronyms

AC alternating CUTTENTttt e et et e et e e e 4
AHRS Attitude and Heading Reference System

AP Access POINb . ..o 73
ASCII American Standard Code for Information Interchange

ASV Automatic Survey Vesselo 87
AWeX Advanced Waveform eXtension 19
BJT bipolar junction transisStor........ ... 8
BLDC brushless DC €lectriCo 4
BOOTP Bootstrap Protocol

CEP Circular Error Probable. e 69

CGI computer-generated imagery

CNC computer numerical control

COTS commercial off-the-shelf. e 3
CPU central processing unit

CRC Cyclic Redundancy Checko e 40
CSS Cascading Style Sheets

DAC digital-to-analog COnverterttt 12
DC direct Current 4
DFU Device Firmware Upgrade.oouiiuiiii i 46
DGPS Differential GPS 66
DHCP Dynamic Host Configuration Protocol.......o i 73
DMP Digital Motion Processorouuouiu i 43
EEPROM Electrically Erasable Programmable Read-Only Memory

EGNOS European Geostationary Navigation Overlay Service........................ 66
EMF electromotive force.o 5
EMI electromagnetic interferenceo i 5
ESD electrostatic discharge 49

XV

xvi List of Acronyms

FPU floating-point unit. i 84
FTDI Future Technology Devices International i i i, 49
GCC GNU Compiler Collection.o e 44
GDB GNU DebUGEET . . . o ettt et 69
GNSS Global Navigation Satellite System e 66
GNU GNU’s Not Unix!

GPL General Public LiCense.ot 103
GPS Global Positioning SyStem.ttt 69
GPT General Purpose Transceiverttt 33
HDOP horizontal dilution of precision...........o, 79
HP Hewlett-Packard. e 33
HTML HyperText Markup Language.ot 84
HTTP Hypertext Transfer Protocol e 84
I2C Inter-Integrated CiTCUIt.titn ettt et et 72
IC integrated CIrCUIbottt 43
IETF Internet Engineering Task Force. i 66
IGBT insulated-gate bipolar transistor i 15

IMU Inertial Measurement Unit

IO input/output

IP Internet Protocol 72
TR Infrared 59
ISR interrupt service routine

JTAG Joint Test Action Group

LAN local area network

LED light-emitting diode

LFPAK Loss-Free Package e 23
MAC Media Access Control e 73
MCU microcontroller unit e 69
MEMS microelectromechanical systems........ ... i 42
MOSFET metal-oxide-semiconductor field-effect transistor................ 8
MPL Motion Processing Library....... ... 46
MSB most significant bit 20
NLLS Non-linear least SQUATES.ouuttt i e 56

NMEA National Marine Electronics Association
NTP Network Time Protocol. e 56

xvii

OSI Open Systems Interconnection

OSMC Open Source Motor Control. ... e 15
OS operating SYSTeIML.ttt 43
OpenOCD Open On-Chip Debugger

PCB printed circuit board 89
PCM pulse-code modulation. 7
PHY physical

POE Power-over-Ethernet i 52
PPM pulse-position modulationo i 7
PPP Precise Point Positioning......... ..o i 67
PWM pulse-width modulation

QFN Quad Flat No-leads uonui e 47
RADAR RAdio Detection And Ranging

RC radio control. 72

RF radio frequency
RMS root mean square

ROV remote operated vehicle

RPM revolutions per minute e 73
RTC real-time clockt 44
RTOS real-time operating SyStemm. e 72
SBAS satellite-based augmentation systemo 66
SBC single board cOmpPUter.t 44
SD Secure Digital.o e 75

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TT Texas INStrumentso e e e 69
TVS transient-voltage-suppPressionttt et e 26
TWI Two Wire Interfaceo i e 132
UART universal asynchronous receiver/transmitter

UDP User Datagram Protocol........ ... e 73
USB Universal Serial Bus. i 75
US United States of AMETiCattt e e e 93
UUT unit under test

WAAS Wide Area Augmentation SyStemt 66

WLAN wireless LAN . ..o e e 81

xviii List of Acronyms

Introduction

There is a growing need to study fish and water quality in lakes. This is reflected in political
programs such as the EU Water Framework Directive [1]. Norway is through this directive obliged
to examine the condition of all lakes over a certain size. This will not be economically feasible
with the vast number of lakes matching this criteria and the available survey methods. These are
largely based on the use of boats equipped with echosounders and other measuring equipment.

Hydroacoustic surveying on lakes is different from oceanic surveying because of the size of
the lake, accessibility, ecology and economy. One must primarily use small boats and do the
recordings at night. A small boat requires the driver to sit quietly to avoid reducing the quality of
the recordings. Night work is also impractical, demanding, expensive and complicated to conduct
in the dark because one must follow certain driving patterns for proper collection statistics. The
echosounder will only see a limited portion of the water, since the sound beam is formed like the
cone from a flashlight. At shallow lakes one can increase the coverage by doing longer surveys or
use more boats. Another option is to direct the sound beam horizontally. Horizontal driving is
however subjected by a number of problems related to reflection, refraction, determination of the
orientation of the fish in the water and converting echo strength to fish size.

Many of these issues could be solved with a larger number of affordable automatic and self-
steering survey vessels. Several boats can be launched at night and retrieved in the morning. We
get greater coverage per task force and researchers will be able to analyze data by day instead of
driving around the lakes at night. Much research remains on horizontal use of echosounders before
this method can provide usable results. An automatic boat will make a significant contribution
to this research in terms of providing a stable quiet platform with possible pre-programmed or
dynamic driving patterns that is difficult to emulate with manned boats.

The main task in this project is the development of such a vessel. There already exists a few
such boats, but they are either developed for oceanic use, with a size and price [2] which makes
them totally unsuitable for lake research, or they are small model boats [3] unable to carry the
necessary research equipment and energy to conduct a longer survey.

We therefore want to develop an Automatic Survey Vessel (ASV) platform. We will in practice
accomplish this by developing a control unit. It should be possible to install this control unit in
an arbitrarily selected boat, powered by two arbitrarily selected electric outboard motors. This
will enable research institutions to choose boats and motors they already have available, and
which are adapted to the actual lake.

The control unit in this project will include a motor control system, communication equipment
and a simple autopilot. The autopilot uses a Global Navigation Satellite System (GNSS)-receiver
and a self-developed compass for navigation.

2 Introduction

Thesis outline

The development of the motor control system with simple communication is covered by the paper
«Construction of a remote controlled work platform for hydroacoustic work» on page 3. The
development of the compass is covered by the paper «Construction of an Attitude and Heading
Reference System (AHRS)» on page 41. The development of the simple autopilot is covered by
the paper «Construction of a primitive autopilot for hydroacoustic work» on page 65.

Paper 1

Construction of a remote
controlled work platform for
hydroacoustic work

Abstract

This paper presents the construction and implementation of the steering mechanism and
motor control of a remote controlled work platform for hydroacoustic work. Multiple high
current brushed DC-motor controllers, based on H-bridge circuits, have been developed. After
a disappointing attempt with a commercially available H-bridge driver, a custom H-bridge
driver has shown good results. The final system has, at multiple occasions, proved it can
remote-control full-sized boats. The driver can also be extended for further automation.

Keywords: H-bridge, ROV, motor control

1.1 Introduction

Mobile hydroacoustic surveys in small boats
requires the crew to sit quietly to avoid reducing
the quality of the recordings. By using a remote
controlled vessel, an operator can move freely on
shore while conducting the survey at a distance.

Further development can extend the remote
control functionality, and let the vessel fol-
low pre-programmed patterns, making it even
more useful for researchers. Finally a fully
autonomous system can be built, based on the
foundation developed in this project.

This paper will present the development of
a motor control system with remote-control
functionality. One of the cornerstones of the
project was to build our system using only

commercial off-the-shelf (COTS) parts. This
later enables us to build a fleet of survey vessels,
and makes it inexpensive for other institutions
to adopt. The system will also build upon boats
and motors the user already may have available.

Similar remote-controlled systems have al-
ready been created, but they are too small [4]
to carry the necessary research equipment or
too expensive [2].

1.1.1 Motor placement

There are multiple possible setups that can be
used to steer a boat, and it was especially two
different setups we were considering.

The first alternative is to control the throttle
of a rear mounted outboard motor, together
with a steering mechanism. The steering mech-
anism could be the turning of a rudder, turning
of the whole motor or the throttle of a thruster!

LA thruster is a propulsion device mounted across the bow or stern of a boat to increase its maneuverability

Construction of a remote controlled work platform for hydroacoustic work

<IIII»

i <im— >

‘\‘>

J

(a) Motor placement using a rear mounted engine,

together with a thruster or a rudder.

Figure 1.1: Motor

mounted across the boat at the bow. This
configuration is shown in figure 1.1a.

The second alternative is to control the
throttle of two outboard motors. With one
mounted at the port side and one mounted at
the starboard side, as shown in figure 1.1b.

The first alternative would either have re-
quired the use of a servo motor to turn the
rudder or the engine, or an expensive thruster.
The second alternative, on the other hand,
can be accomplished without any moving parts
(besides the movement of the propeller). The
second motor placement alternative will also
make it possible to «turn 360 ° on-the-spot».

1.1.2 Motor type

The main motors needs to be powerful enough to
drive the boat, while being easy to control. We
were considering the use of either a fuel/petrol
engine or an electric engine.

Electric engines are often less complicated to
control compared to a fuel/petrol engine. This
is because it is possible to control the thrust by

«un
i

(b) Motor placement using two engines, one mounted
on each side.

placement options.

simply controlling the electric current running
through them. A brushed direct current (DC)-
motor can also with ease be used to drive a boat
in reverse. Switching the polarity of the current
will result in the movement direction of the
propeller to be switched as well. A fuel/petrol
engine requires mechanics to achieve this ability.
On the other hand, an electric engine usually
provides less thrust than a fuel/petrol engine.
Since the vessel will only move at slow speed,
and in low (water-)current environments, we
still believe an electric motor is sufficient for our
requirements.

Other possible electric motor types besides
brushed DC-motors, are alternating current
(AC) and brushless DC electric (BLDC) motors.
AC motors were not considered because of the
lack of an AC source in the vessel. BLDC
motors were considered as they have multiple
good features.

BLDC motors do not have any mechan-
ical connection between the stator and the
rotor. They rely on multiple stator coils

Introduction

being alternatively magnetized at the correct
rotor angle to drive the shaft. These motors
require less maintenance because of the lack
of brushes, gives high torque regardless of
speed, and overall higher efficiency. Brushed
DC motors have arcing by their brushes which
generates electromagnetic interference (EMI),
while BLDC do not. Unfortunately they require
an advanced motor controller, as the timing of
when the coils should be driven must be exact
and depends on the rotor angle. The angle of
the rotor can be found using hall effect sensors,
or sensing the back-electromotive force (EMF)
from the undriven coils.

Despite some of the good characteristics
with a BLDC motor, we chose to use brushed
DC motors. The reason being high availability
of inexpensive brushed DC outboard engines
and the requirement of a much simpler motor
controller. Fuel/petrol engines were taken out
of consideration, because they are more complex
to control, and we did not need the high thrust
they can deliver.

We also selected the second motor placement
alternative, with one engine mounted on each
side of the boat. Together with electric engines,
this combination requires no movable parts
(except for the propeller).

We found two inexpensive 12V electric
outboard engines with a pulling force of 15.4 kg,
shown in figure 1.2a. The engines had a
purchase price of about 1500 NOK each, and
are available from Biltema (product nr. 25235).
Any 12V brushed DC engine the user already
may have available should be suitable (as long
as the current draw is limited). We were also
considering Endura C2 from Minnkota, but
chose the one from Biltema because it was easier
for us to source. Our engines are rated to draw
up to 32 A of electric current, but the motor
control system is designed to handle 40 A.

If two different engines are used, their differ-
ence in thrust can be compensated in software.
This is, however, currently not implemented.

The inside of the Biltema outboard engine is
shown in figure 1.2b. The engine has a control
mechanism in the handle where multiple speeds
can be selected. The handle can also set the
engine in reverse. We considered bypassing

this control mechanism, connecting straight
to the motor. After reverse-engineering the
connections inside the control system, however,
we found that we have a direct connection to
the motor when the maximum speed is selected.
Our motor control system can therefore connect
to the battery terminals of the engine, without
modifying or breaking the warranty of the
device.

To control the direction and thrust of the
engines, we were in need of a high current
brushed DC-motor controller.

1.1.3 H-bridge

With the requirement of running the electric
engine both forward and backward, we chose
to use an H-bridge. This will also make it
possible to adjust the thrust of the engine. An
H-bridge solves these challenges by directing
the current to run through the motor in the
wanted direction. We can control (pulse-width
modulate) the amount of power the motor
receives by turning this current rapidly «on»
and «off».

The principal operation of an H-bridge is
covered by section «H-bridge operation» on
page 8. The implemented operation of our H-
bridge is covered by section «Second H-bridge
drive modes» on page 20.

We considered buying a commercial H-
bridge motor control system, but chose to
develop our own. The reason being lower cost
and full control of the whole system. Our
motor control system consists of an H-bridge
controller, an H-bridge drive-stage and an H-
bridge. In order to form a complete remote
controlled motor control system, a radio control
(RC)-receiver and a steering unit is included
as well. Two attempts have been conducted;
the first described in section «First attempt
on H-bridge construction» on page 12 and the
second in section «Second attempt on H-bridge
construction» on page 19.

6 Construction of a remote controlled work platform for hydroacoustic work

(a) Complete view of the electric outboard (b) Inside view of the handle and motor.
engine used.

Figure 1.2: Electric outboard engine from Biltema.

(a) Turnigy 9X RC-transmitter. (b) RC-receiver.

Figure 1.3: Photographs of RC-communication equipment.

Introduction

1.1.4 Communication

We need a way for the operator to send wireless
commands to the boat. For the remote control
operation described in this paper, the commands
will be simple control signals to propel and
steer the vessel. We considered different radio
communication systems, such as IEEE 802.11
wireless LAN (WLAN) or hobby-radio control
(RC) with pulse-position modulation (PPM) or
pulse-code modulation (PCM) encoding.

It became apparent that using a standard
RC-servo control signal, commonly used by
hobby enthusiasts, would be a good choice. This
system is widely used, simple to implement and
would fulfill our requirements of long range,
low price and sufficient bandwidth for sending
simple control signals. It does not include
any form for encryption or authentication, but
security regarding control over the vessel is
currently not vital as the vessel will be strictly
operated under human supervision.

Further development, such as the implemen-
tation of an autopilot (paper 3), may use another
radio communication system with encryption
and higher bandwidth. The RC-control signal
could still be used as a redundant communica-
tion channel, to override any automatic steering
system and regain manual control over the
vessel.

We chose a 9-channel 2.4Ghz RC-
transmitter named Turnigy 9X, with a matching
8-channel receiver? .

This RC-transmitter was chosen because it
a) is inexpensive; b) is reliable (less interfer-
ence, compared to a 27 MHz system); ¢) em-
ploys frequency hopping; d) has good range;
e) is easily available (under multiple brand
names); and f) has alternative firmware. The
transmitter contains an Atmel ATmega64 8-bit
microcontroller unit (MCU), two sticks, three
potentiometers, seven switches and a 128x64 dot
display. Several developers have created custom
and free® firmwares for this unit, e.g. er9x [5]
and th9x [6]. Since the stock firmware already
loaded into the transmitter fulfilled our needs,

2Also sold under other brand names, such as Eurgle, FlySky and Imax.

we did not use any of these custom firmwares.
One of the alternative firmwares may, however,
be customized for the project in the future.
For instance to show information about how
to use and/or setup the vessel on the display,
or manage the switches and potentiometers to
give additional control possibilities. The RC-
transmitter is shown in figure 1.3a.

Each of the 9-channels is connected to an
output on the receiver, and may have different
purposes depending on the setup of the trans-
mitter. The setup of our transmitter sends the
position of the left stick to the first channel and
the position of the right stick to the second.
None of the other channels were used. The
RC-receiver is shown in figure 1.3b.

The output of the RC-receiver is a standard
servo control signal with a constant frequency
of 50 Hz, but varying pulse-width depending
on the position of the stick on the transmitter.
A pulse-width of 1.5 ms corresponds to a stick
in its center position, while 1ms and 2ms
corresponds to minimum and maximum stick
position respectively. These pulse-widths are
shown in figure 1.4.

The user may use any RC-system he or she
has available, as long as it is outputting these
de facto standard servo signals.

U
0 I
0 I N
i N

Figure 1.4: Illustration of RC-servo signals.
Different pulse-widths corresponds to different
stick positions.

Generic RC-signal
Minimum stick position
Center stick position

Maximum stick position

Available from HobbyKing at

about 50 EUR, http://www.hobbyking.com/hobbyking/store/__8991__Turnigy_9X_9Ch_Transmitter_w_Module_

8ch_Receiver_Mode_1_v2_Firmware_.html
3as in free speech

http://www.hobbyking.com/hobbyking/store/__8991__Turnigy_9X_9Ch_Transmitter_w_Module_8ch_Receiver_Mode_1_v2_Firmware_.html
http://www.hobbyking.com/hobbyking/store/__8991__Turnigy_9X_9Ch_Transmitter_w_Module_8ch_Receiver_Mode_1_v2_Firmware_.html

8 Construction of a remote controlled work platform for hydroacoustic work

(b) H-bridge operating states.

H-bridge state AH AL BH BL
S1 Motor runs cw on off off on
S2 Motor runs ccw off on on off
S3 Motor runs free off off off off
S4 Motor brakes of on off on
S5 Motor brakes on off on off
S6 Shoot-through on on off off
S7 Shoot-through off off on on
S8 Shoot-through on on on on

Figure 1.5: Illustration and table for H-bridge principal operation.

+12V

AH / |¢ 35 ! E / BH

8 m? =

~

-.““‘\\Q

s\\\\“"
AL / 582 S1 / BL
(a) Drawing of H-bridge with currents.
1.2 Theory

1.2.1 H-bridge operation

An H-bridge is a circuit topology where four
switches and a load are connected in the shape of
an «H», as shown in figure 1.5a. These switches
can either be mechanical or electronic, and can
turn each leg of the H-bridge «on» or «off».
An H-bridge is operated in different states,
by setting its switches in different configurations
(table in figure 1.5b). By turning the switches
AH and BL «on», while AL and BH are «off»,
a current is flowing through the motor as
indicated by the green arrow in figure 1.5a. This
makes the motor shaft turn clockwise, as shown
in table 1.5b. Subsequently AL/BH may be
«on», while AH/BL are «off», to make the motor
shaft turn counter-clockwise? (red arrow). If all

the switches are «off», the motor will run free.

If the top (or bottom) switches are «on», the
motor will brake (gray arrow).

Some configurations will result in a short
circuit between the power rail and ground, and
must be avoided by all means. This is called
a shoot-through, and happens if two switches

on the same side are «on» simultaneously. To
prevent this, the H-bridge controller must make
sure there is a time delay between turning two
transistor on the same side «on».

Transistors are often used as the electronic
switches in an H-bridge, such as two pairs
of NPN and PNP bipolar junction transis-
tors (BJTs) or two pairs of P- and N-channel
metal-oxide—semiconductor field-effect transis-
tors (MOSFETs). Since these are comple-
mentary, they will turn «on» and «off» in-
versely of each other. Alternately, just N-
channel MOSFETSs may be used, as P-channel
MOSFETSs have much higher Ry, , lower cur-
rent rating and higher price. This requires,
however, a drive-stage which can supply a
voltage higher than the motor’s power supply
to turn the N-channel MOSFETSs «on». For a
N-channel MOSFET to turn «on», it must have
a high potential on its gate with respect to its
source.

The states listed in table 1.5b shows how the
H-bridge is controlled during static operation.
E.g. when all the current is flowing continuously
in the wanted direction and the motor is running

4What direction the motor is turning (cw/ccw) is of course depending on which way its wires are connected.

Theory

at full speed. To change the speed of the motor,
the drive voltage can be altered, as the speed of
the motor is proportional to the drive voltage.
A higher voltage will make the motor draw a
larger current and consume more power, and
vice versa.

Another solution is to turn the motor rapidly
«on» and «offy. It is easier to turn the drive
current «on» and «off», than to change the drive
voltage, since we already have the necessary
switches in place. The ratio between the «on»
and «off» time of the drive current will set the
speed, as the motor receives different amounts
of energy. To control the ratio, the switches
are driven with a pulse-width modulated PWM
signal. A PWM signal has constant frequency,
but varying pulse-width®, effectively changing
the ratio between «on» and «off», as shown
in figure 1.6. The motor is then duty-cycle
controlled.

Further discussion about how the H-bridge
drive modes is actually implemented is covered
by section «Second H-bridge drive modes» on
page 20. A more detailed analysis about H-
bridge operation is covered by a series of articles
beginning with [7].

20% _[| [[~
0% _J L L[

Figure 1.6: Tllustration of (two) PWM signals.
Top signal has a pulse-width (and thus ratio) of
20 %, while the bottom signal has a pulse-width
of 80 %.

1.2.2 Calculated heat dissipation
in MOSFETs

The current flowing through the MOSFETSs in
the H-bridge will dissipate heat in two ways.
When they are in their saturated region
(completely turned on), their resistance between
drain and source (Rg4s) will lead to a constant
power consumption depending on the current
running through them. This power is given by

Ohm’s law (1.2) and the electric power equation
(1.3), which yields equation (1.1).

2
Pon = Ras X I i

(1.1)

where P is electric power, R is resistance and I
is current.

Ohm’s law is given as

U=RxI (1.2)
where U is the voltage, R is the resistance and
I is the current.

When the MOSFETS are changing between
their «on»- and «off»-state on the other hand,
they dissipate power during the switching-
transition. We want to find an expression of
this dissipated power. To disregard the power
consumed while the MOSFETs are saturated,
we look at a MOSFET with R;s = 0. The
current through the MOSFET while switching
is shown in figure 1.7 and the voltage over it is
shown in figure 1.8. By using the electric power
equation (1.3) we get the power shown in figure
1.9.

Electric power is given as

P=UxI (1.3)
where P is electric power, U is voltage and [is
current.

Figure 1.9 shows us the power dissipated as
heat in one switching-transition. We can sum
this power by solving the integral of the power
over time, and get the energy lost as heat by
each switching-transition. The length of each
switching-transition is denoted by the time At.

Energy lost during a switching-transition is
thus given as

At
E=[P@t)dt
0

(1.4)

where F is energy, P is electric power and t is
time.

This energy is converted to heat twice in
each period. First on the rising edge and then
on the falling edge. We can now determine how
many times a second this energy is converted
to heat. This is where the switching frequency

5The RC-signal described in section 1.1.4 is thus also a PWM signal.

10

Construction of a remote controlled work platform for hydroacoustic work

gets involved. The energy from two switching-
transitions can be multiplied with the frequency,
and will then give the time-averaged energy per
second. This is the definition of power and we
have thus found an expression for the dissipated
heat caused by the switching.

Average power lost in heat due to all

switching-transitions is therefore given as
P=fx2F (1.5)

where P is electric power, f is the switching
frequency and F is energy.

Imax

Figure 1.7: Current through a MOSFET during

a switching-transition.

Figure 1.8: Voltage over a MOSFET during a
switching-transition.

‘/EC X Imax

A

At

Figure 1.9: Power dissipation in a MOSFET
during a switching-transition.

We can find the heat loss if we apply a
linear approximation for the current and voltage
during the switching-transition (as shown in
figure 1.7 and 1.8).

The current during the switching-transition
can be described as

IIII‘(ZLX

At

which can be seen directly from figure 1.7.
Similarly, the voltage can be described as

I(t) = Inmax —

t (1.6)

At 2At

Yee originates from the total voltage (Vi)

being divided amongst the two MOSFETs.
By combining equation (1.6) and (1.7) with
equation (1.3) we get equation (1.8).

_ 28t (0 s,
- max At

Vee
The energy lost during one switching-
transition (F) is, as earlier discussed, the power
(P) lost over the time At, expressed in equation
(1.9).

At
2At
E= / t (Imax -
o Ve

After solving the integral in equation (1.9)
we get equation (1.10).

P(t) (1.8)

Imax
N t) at (1.9)

Lnax At?
3Vee

Using equation (1.5), the average power lost
in heat due to all switching-transitions is then
given by equation (1.11).

E = (1.10)

C2f X Ipax At

P
3Vee

(1.11)

These calculations show that the switching
loss increases with the switching frequency
(f), current (Iax) and transition time (At).
The current is governed by the load, and the
transition time is determined by the choice of
MOSFETSs and driver. The switching frequency
can be adjusted, and should be kept low to
minimize switching losses.

There is also switching loss involved with the
charge and discharge of parasitic capacitances
within the MOSFET. Another new MOSFET
model for estimating switching loss is presented
in [8].

Material and methods

11

1.2.3 Calculated copper track
width

When routing printed circuit boards (PCBs) for
the H-bridges, a suitable width for the tracks
conducting the drive current to the motors must
be found. If the track are too narrow, the
copper laminate will get too hot and burn. By
setting a limit on dissipated power (e.g. 1.5 W)
for a given length (50 mm), we can calculate
the needed track width. The dissipated power
will increase with the track length, so the
width needed to keep a constant temperature
is usually independent of track length. The
allowed dissipated power is dependent on the
ambient temperature, allowed temperature rise,
and thermal resistance between the track and
the environment. IPC-2221 [9] can be used to
find these factors.

The resistance R of a wire with cross sec-
tional area A, length [and resistivity p is given
by Pouillet’s law

l
R=p 1 (1.12)
Cross sectional area A is given as the width
w of the track multiplied with its height h
(thickness). We can then solve Pouillet’s law
(1.12) for w and get an expression for the width
w needed to have a resistance R. We can
use equation (1.1) to get an expression for the
allowed resistance R to not exceed the power
P. By combining Pouillet’s law (1.12) with
equation (1.1) we get equation (1.13).

pI?l
hP
where w is track width, h is track thickness, [
is track length, P is allowed dissipated power,
p is resistivity and [is current.

The resistivity p of copper is 17nQm [10,
p. 658]. The thickness h of the outer copper
sheets of a standard PCB is 35 um. With a
current of 40 A, and a track length of 50 mm,
we need a minimum width of 25.9 mm to have
a power dissipation below 1.5W. A power
dissipation of 1.5 W over 50 mm with this width
corresponds to a temperature rise of about 25°
(very high) for external layers in air and an
ambient temperature of 25° [9].

w =

(1.13)

An interesting result of Pouillet’s law is that
(when the thickness is fixed) the resistance of any
square (width = length) will be equal, regardless
of its size. A 1mm x 1 mm square has the same
resistance as a 1 m x 1 m square. The resistance
will only change when the length-to-width ratio
is altered.

1.3 Material and methods

Two attempts have been made to create a
full motor control system. Both motor con-
trol systems would have incorporated a) one
RC-receiver for communication; b) one or two
steering controller(s); ¢) one or two H-bridge
controller(s); d) two H-bridge drive-stages; and
e) two H-bridges.

The RC-receiver is responsible for receiving
the stick position of the remote control unit
used by the operator. The steering controller
is responsible for translating the stick posi-
tion to driving commands suitable for the H-
bridge controller. The H-bridge controller is
responsible for controlling the H-bridge drive-
stage, so the correct transistors are turned
«on» and «off», and without creating a shoot-
through condition. The H-bridge drive-stage
is responsible for driving the gate of every
transistor in each leg of the H-bridge, with
the correct voltage and with enough current
to minimize the transition time (At). The H-
bridge is responsible for conducting the drive
current to one of the motors in the wanted
direction. H-bridge driver is the name for the
H-bridge controller and H-bridge drive-stage
combined.

The first attempt was designed around the
HIP4081 integrated circuit (IC) which is both an
H-bridge controller and a drive-stage. This IC
was placed on a PCB together with an H-bridge.
The steering controller was first made using
only analog components. The full motor control
system, using these components is shown in
figure 1.10a. Two analog control signal decoders
are used as steering controllers. Both are needed
to control the boat, with each connected to
an H-bridge (with controller and drive-stage).
Each H-bridge will then drive one of the electric

12

Construction of a remote controlled work platform for hydroacoustic work

engines. The left stick on the RC-transmitter
controls the left engine, while the right stick
controls the right engine.

Since the analog steering controller was
troublesome (described later), a new digital
control signal decoder was developed. By
using the new digital control signal decoder as
the steering controller, both sticks on the RC-
transmitter can be combined to create a more
sophisticated steering mechanism (described in
section 1.3.1). A block schematic of the new
motor control system (still using the first H-
bridge) is shown in figure 1.10b.

After problems with the first H-bridge so-
lution were encountered (described in section
1.3.1), a new H-bridge drive-stage was con-
structed together with a new H-bridge. This
new systems is based on the previous digital
steering controller, but incorporates the H-
bridge controller as well. The new motor control
system is shown in figure 1.11.

1.3.1 First attempt on H-bridge
construction

The first attempt on an H-bridge construction
started by creating an analog control signal de-
coder, which constitutes the steering controller
(link between the RC-receiver and the H-bridge).

Analog steering controller

To get the stick position of the RC-transmitter,
the pulse-width from the RC-receiver needs to
be measured. This should in turn drive the
H-bridge accordingly.

My first attempt was to accomplish this
using only analog components. I used the circuit
listed in appendix C based on a circuit from [11],
and created the PCB shown in figure 1.12. This
board would connect the RC-receiver to an H-
bridge, by converting the servo-signal to two
PWM pulses needed to drive the H-bridge. One
to drive the motor forward, and one to drive it
backward.

The circuit works by charging capacitor
C2 and C3 with a buffered servo-signal. The
charged voltage is sampled when the pulse ends.
This sampled voltage is compared with U2A

and U2C, against a triangle wave generated by
U2D. This results in two PWM pulses which
can drive the H-bridge. One is output when the
stick is positioned forward and the other when
the stick is positioned backward.

Digital steering controller — proof of
concept

The analog steering controller has a non-linear
relation between the pulse-width and the voltage
to the comparator. It was also difficult to adjust
the timing so the analog switches opened and
closed when they should. For these reasons, I
began looking for another way to measure the
pulse-width.

Multiple options were considered. One
solution was to integrate the pulse with an
operational amplifier and a capacitor to cre-
ate a voltage proportional to the pulse-width.
Another solution was to let a counter run for as
long as the pulse is high and send this digital
output to a digital-to-analog converter (DAC).
A circuit with many analog components often
requires a lot ICs, which takes a lot of time to
build and give many sources of error. I realized
that the problem of reading the servo signal and
output it to the H-bridge is straightforward to
accomplish using a MCU. Everything can be
done in the same IC — measuring the pulse-width
with an internal counter, possibly communicate
with another MCU, and generating a PWM
drive signal along with a direction bit.

I used an MCU named ATtiny85 by Atmel
which I had by hand, to create a proof of concept
for this solution. This MCU has a counter and
PWM output capabilities. I wrote the program
listed in appendix D. The program receives an
interrupt on the edges of the servo signal, and
resets the counter if it is rising or reads the
counter if it is falling. Depending on the value
of the counter, a PWM signal will be output
along with a direction indicator. The system
was tested as shown in figure 1.13, and gave
promising results, as it could successfully dim
a LED depending on the stick position of the
RC-transmitter.

Material and methods

13

RC-receiver

RC-receiver

1 Left | 1 Right |

1 steering 1 1 steering : Steering

' controller J ' controller J controller
H-bridge H-bridge H-bridge H-bridge
controller controller controller controller
H-bridge H-bridge H-bridge H-bridge

H-bridge

H-bridge

drive-stage

drive-stage

H-bridge

H-bridge

| |
| |
| |
| |
| |
| |
! drive-stage ! drive-stage
| |
| |
| |
{ {

eft
(b) Using the digital steering controller.

(a) Using the analog steering controller.

Right motor

Figure 1.10: Block schematic of a full motor control system using a pair of the first H-bridges,
with either analog or digital steering controller. Dashed boxes indicates self-made PCBs.

RC-receiver

Steering
controller

controller

H-bridge
drive-stage

Figure 1.11: Block schematic of a full motor control system using the second H-bridge. Dashed
boxes indicates self-made PCBs.

Al

|
M
O
Ay
-
o
Z
g
. o
H-bridge o
o0
e
-
<
=

|

[

|

|

|

7

14

Construction of a remote controlled work platform for hydroacoustic work

Sarve to PHM
2912-85-25 Rev. R+
]
E_ -]
(EXLLT] i’r:m

i

\iiiiiiﬂtiiiiiif

(a) Photograph of an assembled PCB of the analog (b) CGI of the analog steering controller PCB.

steering controller.

Figure 1.12: Images of the PCB for the analog steering controller.

£
e
L

Figure 1.13: Test of the prototype digital steering controller running on ATtiny85.

Digital steering controller — dual
channel

Some of Atmel’s other MCUs supports a special
interrupt called Input Capture. This interrupt
have the ability to timestamp events, and can
give out information such as frequency or pulse-
width directly. ATtiny10 has Input Capture and
was considered for the job. With its one Input
Capture channel it could have done the same
job as the analog control signal detector. In the
end an ATxmegal28A1 was chosen because it
has multiple Input Capture channels, making

it easier to create a system which incorporates
two control sticks.

Development of the ATxmegal28A1 code
was originally done on a breakout board con-
taining an ATxmegal28A1 MCU, a crystal, and
other necessary components. The breakout
board can be seen in the middle of figure
1.15. The code was initially developed in
Atmel Studio, but Atmel Studio was eventually
replaced by a stand alone compiler (GNU Com-
piler Collection (GCC)), build utility (make),
flasher /programmer (avrdude) and a text editor
(vim), for a more transparent workflow. I wrote
the program shown in appendix E. This program

Material and methods

15

uses Input Capture interrupts to find the pulse-
width of each channel. This pulse-width is
scaled and modified with a dead band (around
center) to find the stick position.

The program then calculates the thrust to
each engine by combining the stick position of
both sticks. The total thrust of both engines
is controlled by the left stick. The difference
between the thrust to each engine is controlled
with the right stick. In other words, the left
stick sets the speed of the boat, while the right
stick sets the direction. The steering mechanism
is presented in table 1.1.

It is also possible to choose a more primitive
steering mechanism, by the flip of a switch.
Each stick would then control the thrust of one
motor, and give the same behavior as using two
single steering controllers.

Finally it creates four PWM signals. Two
for the left motor (forward and backward), and
two for the right motor.

The switching (PWM) frequency was set to
1kHz as this is high enough for the motor to run
smoothly, while low enough to avoid excessive
switching losses (as described in section 1.2.2).
The chosen switching frequency lies in the
audible spectrum for humans, but we do not
consider this a problem since the vessel will
usually be located away from people. It may
be necessary to change the switching frequency,
to stop its harmonics from interfering with (the
frequency of) the echosounder used during a
survey. The switching frequency can easily be
altered in software.

First H-bridge controller and drive-stage

After researching different H-bridge construc-
tions, multiple options were found. It is possible
to buy all assembled H-bridge-motor drivers as
modules or as monolithic ICs with H-bridge
controller, drive-stage and power transistors all
embedded. ICs with just the controller and
drive-stage are also available.

As described in 1.1.3, we chose not to
buy an all assembled H-bridge-motor driver
module (assembled PCB with enclosure). ICs
with everything included were then considered.
The SN754410 is an all-in-one H-bridge and

can drive up to 36V at 1A continuous output
current, but this is far from enough for our
application. NCV7729 is a similar IC from ON
semiconductor that can withstand up to 8 A,
but this is still is not enough.

Due to the high current required, it was
decided that discrete power transistors were
necessary. A drive-stage for these transistors, as
well as an H-bridge controller were still needed.

Multiple pre-made H-bridge driver ICs were
found, e.g. LT1162 and HIP4081. They have
embedded logic for driving top and bottom
transistors, protection against shoot-through
conditions and generation of the high volt-
age needed to turn «on» the top N-channel
MOSFETs. The HIP4081 from Intersil was
finally chosen because it is widely used and
have showed good results in the Open Source
Motor Control (OSMC)-project [12].

First selection of power transistors

We needed a minimum of four power transistors
which each should handle the high currents
needed to drive the electric engines. The
possible transistor types were BJT, MOSFET
or insulated-gate bipolar transistor (IGBT).

An IGBT is a kind of cross between a
MOSFET and a BJT, as it is voltage controlled
like a MOSFET, but has the power driving
capabilities of a BJT. It can typically withstand
much higher voltages (> 1000 V), has lower Rop
and less stray capacitances than a MOSFET.

BJTs were not considered because of their
poor switching performance, such as longer turn-
on and turn-off times. We chose MOSFETSs over
IGBTsS, because we do not need the (very) high
voltage and (very) high power capabilities of
the IGBTs. MOSFETSs will then have a larger
selection at our specifications of 12V and about
40 A.

The FDP3651U, a 100 V 80 A N-channel
MOSFET, was considered among others, but
was finally rejected in favor of IRF1404z.
IRF1404z has a lower Rgs,, of only 3.7mf2,
compared to 18 m() for FDP3651U. IRF1404z
can withstand a continues current of 75 A at 10
V and pulsed currents up to 750 A. Maximum

16

Construction of a remote controlled work platform for hydroacoustic work

Table 1.1: Steering mechanism. Vessel behavior at various stick combinations.

Left stick

Right stick <+ Vessel behavior

Forward Center
Forward Left
Forward Right
Backward Center
Backward Left
Backward Right
Center Center
Center Left
Center Right

Drive straight forward

Drive forward, while turning left
Drive forward, while turning right
Drive straight backward

Drive backward, while turning left
Drive backward, while turning right
Stand still

Turn counter-clockwise on the spot
Turn clockwise on the spot

Vs is 40 V. We chose to use a TO-220 through-
hole package for easy attachment to a heatsink.

Heatsink

To cool the discrete transistors, we initially
thought that a heatsink was required. I chose
SK 61/100 SA from Fischer Elektronik, because
it has mounting brackets and room for the PCB
in the middle, as shown in figure 1.17a.

Protection circuitry

Extra flyback diodes are connected in addition
to the internal suppression diodes. These diodes
protects the transistor from the sudden voltage
spike the inductive load (motor) induces when
its current is suddenly removed. They provide
a path for the energy stored in the motor to
escape back to the power supply, if no other
path is available.

An RC-snubber circuit (consisting of a resis-
tor and capacitor in series) connected in parallel
with the load, was considered to be incorporated
as well to help suppress voltage transients. In
the end, this was not found to be required.

Design and production of first H-bridge

A PCB based on the HIP4081 was designed
and manufactured. The schematic is shown in
appendix F, the PCB in figure 1.14 and the
assembled PCB in figure 1.16 and figure 1.17b
(with heatsink).

SElectroless immersion tinning system

The PCB was designed using Zuken Cadstar,
and etched in-house at the electronics laboratory.
After etching, a thin coat of SUR-TIN® was
applied to help soldering, as visible in figure
1.16. A lot of solder paste was applied to make
the tracks thicker, before it was soldered in a
vapor oven.

ICI_ELAE
sERTCOE BRrsics

Figure 1.14: PCB layout for the first H-bridge.

Material and methods

17

RC-transmitter

Figure 1.15: Test setup for the first H-bridge.

The PCB incorporates eight MOSFETS,
with two connected in parallel for each leg in the
H-bridge. This was done to lower the effective
Ry, , and distribute the heat.

Gate discharge diodes were connected in
parallel to the gate resistors, to empty the gate
faster, and thus decrease the turn-off time. Two
LEDs are connected in parallel to the load to
give a visual indicator of the polarity and the
(effective) potential of the voltage applied to the
load.

The traces conducting the drive current to
the motors were carefully placed, to keep them

short and utilize most the available board area.

Together with quite wide and thick (because
of the solder applied) traces we achieved low
resistance between the transistor and the load.

It was difficult to find suitable connectors
for the load and power supply, due to the high
currents involved. Our solution was to use a
nut and bolt for each connection.

Testing and abandonment of first
H-bridge

The first H-bridge functioned well when tested
with a light bulb as load or when driving an
electric engine with slow changes in speed. It
died multiple times, however, when the speed
was changed rapidly. We first suspected that the
power transistors had died, but after changing
them, it was apparent that it was the HIP4081
driver that had stopped working. The test setup
is shown in figure 1.15.

We believe it was large transients across
the motor that killed the driver. The HIP4081
driver is in fact connected directly to the
motor terminals as it is using the switching
frequency of the PWM-signal to generate the
high voltage needed to turn «on» the top N-
channel MOSFETs.

18 Construction of a remote controlled work platform for hydroacoustic work

Figure 1.16: First H-bridge with solder paste and after soldering.

%
PCB >
od
Ay
(a) Side view of the heatsink SK 61/100 SA from (b) First H-bridge mounted in heatsink.

Fischer Elektronik.

Figure 1.17: Heatsink for the first H-bridge.

Material and methods

19

1.3.2 Second attempt on
H-bridge construction

Due to the low robustness of the first H-bridge,
we set out to build a new version with our own
controller and drive-stage. In this way we would
have total control over the whole system, and we
could distance the driver from the high voltage
spikes from the motor.

The second motor control system incor-
porates one steering controller, one H-bridge
controller, two H-bridge drive-stages and two H-
bridges. The steering- and H-bridge controller,
along with two H-bridge drive-stages are com-
bined into one (H-bridge driver) PCB. Each
of the H-bridges uses their own separate PCB.
Three PCBs are thus needed for a full motor
control system.

Motor control system stack

To interconnect the full motor control system,
two solutions were considered; a) connecting the
PCBs to a backplane; or b) stacking the PCBs.
Even though a backplane construction gives
easier access to each card, stacking the PCBs
was chosen. The reason being the requirement of
bulky and hard to source connectors needed to
conduct the large currents through a backplane
connection. This was chosen because the large
currents involved would have required bulky
and hard to source connectors for a backplane
connection. The stack lets the current be
distributed by bolts.

The stack also allows for multiple H-bridges
to be connected in parallel. This makes it theo-
retical possible to control even higher currents
than one H-bridge could handle. The H-bridge
drive-stage limits how many transistors that can
be driven at once, however.

The motor control system stack (with the
prototype driver) is shown in figure 1.23b and
(with finished driver) in figure 1.29.

An assembled stack is occasionally referred
to as a «control unit».

Second steering- and H-bridge controller

The new steering controller is based on the
previous digital dual channel steering controller.
Since we used a multipurpose MCU, it can
also be programmed to behave like an H-bridge
controller.

Originally the same MCU breakout board
containing an ATxmegal28A1 was used, as
shown in figure 1.23a. Later on, a custom
PCB was designed (described in section 1.3.2)
containing a smaller and newer version of the
ATxmegal28A1, namely the ATxmega32A4U
(cost; ~3USD each at a quantity of 100). In
the new version (marked with a trailing «U»
character), the manufacturer has corrected
many of the silicon errors previously present and
added Universal Serial Bus (USB)-functionality.
These MCUs were chosen because of their motor
driving capabilities, as well as the Input Capture
interrupts described in section 1.3.1. They have
specialized hardware for controlling half-bridges,
as an extension of their PWM functionality.
The extension is called Advanced Waveform
eXtension (AWeX) and gives the ability to insert
a dead-time and invert one of the outputs, so
the top and bottom transistors never are turned
«on» at the same time. Shoot-through conditions
should not be possible if this is set up correctly.

The firmware for the MCU is avail-
able at https://github.com/epsiro/ASV_
H-bridge_controller and is listed in appendix
G. Git" is used for version control of the software.
The firmware reads the pulse-widths, finds the
stick position, calculates the appropriate motor
thrust and creates eight (high and low side)
PWDM-signals with dead time. It will skip the
first commands (pulse-widths) received from the
RC-receiver, to wait for the RC-transmitter and
-receiver to initialize. If the connection with the
RC system is lost, a timeout will automatically
stop the motors within a short amount of time.

7Git is a free (as in free speech) distributed revision control system

https://github.com/epsiro/ASV_H-bridge_controller
https://github.com/epsiro/ASV_H-bridge_controller

20

Construction of a remote controlled work platform for hydroacoustic work

A block schematic of the program flow is
shown in figure 1.18. Some of the blocks
are outlined with pseudo-code in the following
listings.

Listing 1.1: normalize_ stick_ position

1 center pulse—width around 1.5 ms

2 insert dead band

3 scale to —127..127

4 round up 125..127 to 127

Listing 1.2: combo_ sticks

5 if (left_stick == 0 && \

6 right__stick != 0)

7 turn on the spot

8 motor__thrust_left = right_stick;

9 motor__thrust_right = —right__stick;

10 else

11 normal drive

12 motor__thrust_left = left_stick +
right__stick;

13 motor__thrust_right = left__stick —
right__stick;

14

15 remove overflows

16

17 drive left motor through a low pass
filter (drive_motor_lp)

18 drive right motor through a low pass
filter (drive motor_ lp)

Listing 1.3: drive_ motor_lp

19 calculate moving average
20 drive motor (drive_motor)

Listing 1.4: drive_ motor

21 scale the pwm—value
22 if (motor_thrust > 0)

23 drive forward // set timer reg.
24 else
25 drive backward // set timer reg.

The firmware can also receive steering com-
mands over UART. This can be used to
communicate with another control system, e.g.
an autopilot. The steering commands consist of
one byte, where the most significant bits (MSBs)
indicate which motor to control, the second
MSB indicates the direction and the remaining
6 bits sets the speed (in 64 steps), as shown
in table 1.2. Each motor will run at the given
speed until a new command is received or a
timeout is encountered (after missing 20 UART
commands). The timeout will stop the motors.
This simple binary format was found to be
sufficient, and was chosen for simplicity over
a more complicated ASCII or multi-byte binary
format.

Second H-bridge drive modes

Static operation of an H-bridge is described in
section «H-bridge operation» on page 8. The
following section will describe how the second H-
bridge controller adjusts the speed and direction
of the motors.

As described earlier, the H-bridge are con-
trolled by multiple PWM signals, where their
pulse-width set the speed of the motor. These
PWM signals are generated by the MCU on
the H-bridge driver PCB and amplified by
the H-bridge drive-stage’s push-pull circuit.
The signals generated by the H-bridge driver
(connected to one of the H-bridges) is shown in
figure 1.19. By comparing this figure with table
1.5b on page 8, we can see which H-bridge states
we are using. We are alternating between the
state «motor runs cw» (S1) and «motor brakes»
(S5), when we drive forward, and «motor runs
ccwy (S2) and «motor brakes» (S5), when we
drive backward. The reason why we «brake» in
between each cycle is described in the following
paragraph.

Since our load is inductive, energy will be
present even after the switches are turned «off»
and the current have stopped. To release this
energy the inductive load drives a current back
(back-EMF). We need to provide a path for
this current to flow. If we do not provide
this path, the inductive load will increase the
voltage across itself, as the energy it harvests
has nowhere else to go. This will result in a
high voltage that is harmful to the switching
transistors. To provide this path, we turn
both the top transistors «on» so the energy
can escape back to the power supply. Large
capacitors, which can consume this sudden
backward current, are connected in parallel with
the supply rail to protect the power supply.

By turning both top transistors «on» we
risk entering a shoot-through state, since one of
the bottom transistors was already «on» when
the motor was actively driven. To prevent two
transistors on one side from being «on» at the
same time, the MCU inserts a time delay after
the bottom transistors have been turned «off,
and before the top transistor is turned «ony.
This delay is called a dead-time. The dead-time

21

Material and methods

¥

ISR:
TCDO_OVF

Parse UART
command

Set global variable

N alize
((I)rzlrd;{z)e es Check RC
. : 7
stick position and L_ART
cmds timeout

Calculate
motor thrust res)
by combining E

sticks

controlled
thrust

variable

Read UART '
|

Figure 1.18: Block schematic over the H-bridge controller program flow. The ISR TCC1__CCA

and TCC1__CCB is triggered every time a RC-control pulse is received. The ISR TCD0__OVF is
triggered every time a timer overflows (100 Hz). The ISR USARTDO0_RXC is triggered every

time a byte is received over UART.

22

Construction of a remote controlled work platform for hydroacoustic work

Table 1.2: Example of selected UART steering commands.

Motor Direction Speed Behaviour
Ob 0 0 000000 Left motor 0% forward (stop)
0b 0 1 111111 Left motor 100 % backward
0b 1 0 011111 Right motor ~49 % forward
Ob 1 1 001111 Right motor ~24 % backward

is long enough to last through the turn-on and
turn-off time of both transistors, along with an
added safety margin. We insert a dead-time of
30 us.

The flyback diodes provide the necessary
path back to the power supply during the dead-
time (when both transistors are «off»). They
are however not capable of handling the back-
current for a long time, as they would overheat®.

Second H-bridge drive-stage

To minimize the time it takes to turn the
MOSFETs in the H-bridge «on» and «off»,
their gates needs to be quickly charged and
discharged. This is accomplished by using a
BJT push-pull stage to drive the MOSFETS, as
shown in figure 1.21. The push-pull drive-stage
is again driven by a singe BJT, to amplify the
drive signal from the MCU, as the MCU only
can source a few milliamperes itself. This inverts
the drive signal which must be compensated for
in the MCU, either in software or by inverting
the IO-pins.

The push-pull drive-stage was prototyped on
a wooden plank to drive a half-bridge using the
IRF1404z power transistors, as seen in figure
1.20. A half-bridge is a set of just one top and
bottom transistor, simply half of the H-bridge,
with the other side of the load always connected
to ground. This setup could successfully change
the brightness of a lamp or the speed of an
electric engine quickly without dying. Since
this was only a half-bridge, it could not change
the direction of the current.

Voltage multiplier

To turn «on» the high N-channel MOSFETSs in
the H-bridge, a high voltage source is needed. A
voltage multiplier is used to create this voltage.

It consists of an oscillator (astable multivi-
brator) and a diode/capacitor-ladder. From
figure 1.22 you can see the 12V input flow
through diode D1 and charge capacitor C3.
When the oscillator goes high, the voltage below
C3 goes up to 12V. Since C3 still has a voltage
of almost 12V across itself, the voltage after D1
is lifted up to almost 24 V. This high voltage
can now go through the second diode D2, and
charge capacitor C2.

We now get almost twice the input voltage
out, minus the two diode drops. Although
the effective voltage can be much lower, as
the voltage doubler only can source a limited
current. Multiple ladders can be cascaded
to further multiply the voltage, however the
current sourcing capability will be even lower.

Second H-bridge driver prototype

After the push-pull drive-stage was shown to
successfully drive a half-bridge and the voltage
multiplier was designed, a complete driver for
two H-bridges was prototyped on a veroboard.
The prototype is shown in figure 1.23a. A full
motor control system using this prototype, is
shown in figure 1.23b.

8Since their constant voltage drop multiplied with the current results in a high power dissipation

Voltage [V]

18
12

18
12

18
12

18
12

Material and methods 23
. AH . BH
A-side AL B-side BL

L L ——e e L RU\ .

| | |

-15 -10 -05 00 05 1.0 15

Time [ms]

-15 -1.0 -05 00 05 1.0 15

Time [ms]

Figure 1.19: Drive signals from the H-bridge driver to the four legs of one of the H-bridges. AH,
AL, BH, BL denotes the drive signal for the A- and B-side high (top) and low leg. The two top
rows shows the signals used to drive the motor forward at two different speeds. Likewise, the two
bottom rows shows backward driving. Forward and backward-driving is clearly very similar, with

just the A- and B-side switched.

Second selection of power transistors

Since the transistors and the heatsink of the
first H-bridge never got noticeable warm while
driving the electric engine, I decided to replace
them with surface mounted transistors and use
the PCB itself as the heatsink. This would
make manufacturing considerable easier, and
lower the cost as the external heatsink is no
longer needed.

I chose PSMN2R6-40YS from NXP, because
it a) has a low Rgs, of only 2.8m (at
Ves =10V, Ip =25A and T;° = 25° C); b) is
built in a package with a high power dissipation
(~130W at 25° C); ¢) has a low gate charge;
d) can withstand a continuous current of 100 A

9Tj is the junction temperature

(peak ~650 A); e) is inexpensive (~0.9 USD each
at a quantity of 100); f) has a drain-source volt-
age of 40 V; and g¢) has embedded flyback diodes.
The package used by this transistor is the Loss-
Free Package (LFPAK) (figure 1.24), a type
of Power-SO8. LFPAK eliminates the bonding
wire commonly used in Power-SO8 packages, by
soldering a copper clip directly to the silicon
die, to connect the source and the gate with
very low resistance. This allegedly results in
superior electrical and thermal performance as
well as higher reliability [13], according to the
manufacturer. The bottom of the silicon die is
soldered to a drain tab to provide a low thermal
resistance path down to the PCB.

20 %
Forward

80 %
Forward

20 %
Backward

80 %
Backward

24

Construction of a remote controlled work platform for hydroacoustic work

Figure 1.20: Photograph of the half-bridge prototype.

Table 1.3: Power transistors families compatible
with the universal Power-SO8 footprint.

Manufacturer Device Family

NXP LFPAK (SOT669/SOT1023)
Infineon PG-TDSON-8

Fairchild Power 56

Vishay PowerPAK SO-8

NEC 8-pin HVSON

ON Semi SO-8 FL.

STM PowerFLAT (6x5)

Renesas LFPAK

I have used the recommended universal
Power-SO8 and LFPAK footprint which accord-
ing to [13] allows all the device families listed
in table 1.3 to be soldered. If another transistor
is found to be better suited, it should thus be
possible to solder it to the same PCB. The
footprint is shown in figure 1.25.

Some of the later H-bridge PCBs has used
the 60V drain-source version (PSMN7R0-60YS),
since PSMN2R6-40YS was temporarily out of

stock. PSMN7RO0-60YS has a Rgs,, of 6.4m
(at Vgs =10V, Ip =15A and T; = 25° C).

Second H-bridge design and production

After the push-pull drive-stage was successfully
prototyped with a half-bridge, I wanted a bare
H-bridge PCB to continue development. I
designed the PCB shown in figure 1.27, which
only contains the power transistors and no
driver. This was done to maximize the copper
usage of the PCB, as the copper planes serve as
the heatsink for the power transistors. I used
four power transistor in each leg of the H-bridge,
to distribute the heat and current.

Four transistors in parallel gives an effective
Rys,,, of only 0.9m (even with a high junction
temperature)!® and with a current of 40A
equation (1.1) yields a static power dissipation
of about 1.5 W.

As suggested by the application note [14], I
placed a lot of copper around each transistor,
maximized the distance between them, and used
multiple layers with thermal vias to transfer

10Rdson at Vgs =10V, Ip =25A and T; = 100° C. Although a higher current of 40 A does not influence the

Rgs,,, » when the Vg is as high as 10 V.

Material and methods 25
+24V +24V +24V +24V
R2 R
2.5k D ¢ E. Q2 Q8 } D 2.2k
AHO _BHO
amr R A7 ¥ KN N B2 BHI
| E— | E—
1k Ql Q3 Q9 Q7 1k
12V 412V +12V 412V
R4 R8
2.5k D ¢ i Q5 Q11 } D 2.2k
ALO BLO
R3 R7
au B8 7 D AT U
1k Q4 Q6 Q12 Q10 1k
Figure 1.21: Schematic of the push-pull stage of the H-bridge drive-stage.
12V 24V
T % T
. AN AN
L1 L1
C3| + C4 |+
R1 R2 R3 R — —
1k 10k 10k 1k 10 uF 10 uF
Q4

Figure 1.22: Schematic of the voltage multiplier.

capacitor/diode ladder is to the right.

The oscillator is to the left, while the

26

Construction of a remote controlled work platform for hydroacoustic work

.
™
-
o
axl

(a) Prototype of the full H-bridge driver for two H- (b) Prototype of the full motor control system stack

bridges. With the steering and H-bridge controller (control unit).
bridges (top), and H-bridge for left motor (middle)
and right motor (bottom).
located in the back of the top PCB, and not visible.
Laser-cut acrylic sheets form a very simple cover.

to the right (green board), and the drive-stage to
the left. The voltage multiplier is located above the
drive-stage.

With H-bridge driver for two H-

The RC-receiver is

Figure 1.23: Prototype of H-bridge driver and full motor control system.

heat away. We used a 2-layer standard PCB
with a copper thickness of 35 um. Based on
the equations described in section 1.2.3 and the
use of copper planes that are nearly square,
the resistance for the drive current will be low
even with 35 um copper. The current is also
distributed on two layers and between multiple
transistors, so the power dissipation is low
enough for the copper sheets to not overheat
during normal use.

As done in the first attempt, additional
flyback diodes and indicator LEDs are included.
Series resistors are connected to each gate of
the power transistors, to limit the gate current
(and turn-on and turn-off times) and dampen
ringing between the gate’s capacitance and
wire’s inductance. A value of 220 2 was initially
chosen, but this can be decreased. The gate
discharge diodes were not included, because
they were deemed unnecessary with the new
drive-stage. There is room on the PCB for a
transient-voltage-suppression (TVS) diode.

The gates of the power transistors are con-
nected to a 8-pin connector. Each leg in the
H-bridge (four transistors) can be connected
to two pins on this connector. By soldering
0 resistors, the PCB can be configured to
use the top (marked A) or bottom (marked
B) side of the connector!!. By doing so, the
same PCB layout can be used to create two
H-bridges, which can be controlled separately.
This is needed since we wish to control two
electric engines.

An assembled H-bridge is shown in figure
1.26a.

Second H-bridge driver design and
production

After the second H-bridge driver had been
prototyped on a veroboard, I designed a PCB
containing the same circuit. The PCB consists
of an ATxmega32A4U MCU, a voltage multi-
plier, two H-bridge drive-stages and connectors.

11Not to be confused with the A- and B-side of the H-bridge

Testing and results

27

SN

O

vuuy

Uy

Figure 1.24: Illustrations of the LFPAK package. From the left: Front view, side view, back view,

internal view.

The ATxmega32A4U is a smaller and cheaper
version of the previously used ATxmegal28A1,
and the same code can run on both (although
they have different peripherals available). The
bare PCB for the H-bridge driver is shown in
figure 1.28, and a assembled board is shown in
figure 1.26b.

1.3.3 Light version of the final
H-bridge construction

Since the second motor control system worked
very well, but used a lot of space, a light
version was constructed as well. This can be
useful for operating smaller motors. This unit
incorporates two H-bridges with two drivers
on one PCB, measuring only 5 x 10cm. It is
capable of driving loads of up to 8 A. The PCB
is shown in figure 1.30.

There was an error with the pinout of some
of the transistors, so the board is currently not
functional.

1.4 Testing and results

The complete motor control system, using the
prototype of the H-bridge driver, has been tested
at Lysaker, Norway and on lake Rimov, Czech
Republic. A temperature test has also been
performed.

1.4.1 Test at Lysaker

A complete motor control system (shown in
figure 1.23b), with two of the second version
H-bridges and the prototype of the H-bridge
driver, was tested May 2th, 2013 at Lysaker,
Norway. The control unit (assembled motor
control system) was placed in an 8 feet boat,
together with two electric outboard engines
and a lead-acid battery. The boat is shown
in figure 1.31 and 1.32b, and the control unit
in figure 1.32a. The engine’s steering handles
were mounted in a fixed position using wooden
bars, to keep them from rotating.

Both steering mechanisms were tested. The
most primitive steering mechanism (with each
stick individually controlling one motor) was
very difficult to use. The combination steering
mechanism, however, (with one stick control-
ling the thrust and the other controlling the
direction) was surprisingly easy to master. The
primitive steering mechanism was thus aban-
doned in favor of the combination steering.

After testing the system with a person on
board, the boat was released without a driver,
although with a fishing line for security. The
boat was successfully driven in multiple patterns
by an operator at shore, and showed great
maneuverability. The speed of the boat was also
rapidly changed from stand-still to full-speed,
and halted again, without damaging the control
unit.

12Fish Ecology Unit of the Department of Fish and Zooplankton Ecology of the IH BC CAS. http:

//www.fishecu.cz/

http://www.fishecu.cz/
http://www.fishecu.cz/

28

Construction of a remote controlled work platform for hydroacoustic work

«

' © gEDA pcb footprint e x

C f® .ij_\“uttp:_f_.w’pcb.zone

l;@‘:r‘oﬂo‘c].i

% ‘ a ‘ i“ b £

(t[2]eo]=]=]=]@]@)

%lement["" "LEPAK" " " 133.00mil 173.00mil 10.00mil
Pad[-75.00mil 99.00mil -75.00mil 116.00mil 28.
Pad[-25.00mil 99.00mil -25.00mil 116.00mil 28.
Pad[25.00mil 99.00mil 25.00mil 116.00mil 28.
Pad[75.00mil 99.00mil 75.00mil 116.00mil 28.
Pad[0.0000 -55.00mil 0.0000 -39.00mil 165.

Pad[-63.00mil -109.00mil 63.00mil -109.00mil 59.
ElementLine[128.00mil 160.00mil 128.00mil -168.
ElementLine[128.00mil -168.00mil -128.00mil -168.
ElementlLine[-128.00mil 160.00mil 128.00mil 160.
ElementLine[-128.00mil -168.00mil -128.00mil 160.

10.00|

0emil
0Gmil
0Omil
0omil
0emil
0Gmil
0Omil
0omil
00mil
0emitl

4

Pad

% -1.91mm, y: 2.73mm
FPad width: 0.7 1mm

Fad height: 1.14mm

Mask margin: 0.15mm
Clearance margin: 0.76mm

Figure 1.25: Universal Power-SO8 footprint, although especially made for LFPAK. Displayed
using my self-developed footprint editor.
pcb-footprint-editor. Demo available at http://pcb.zone in 2015.

Bendik S. Sgvegjarto Q
2013-92-89 2

Uersion 2

Cine

(a) Assembled PCB of second H-bridge.

Code available at https://github.com/epsiro/

=
smrzEl 7 s mlim™
szt]

T e o
204 D [152

s2amET LT

D [s2m
T

VL1 szam

D " Vsaam
2400 +
amp | ez
s [T s
S3u. T ¥
svmpef [s
53R m 1L s
CLV .
snpEl 0 1o
% E] "1 sem

Rt H-Bridge driver

rm Bandik S Sﬂveg,ﬂrfo_

- R 2p13-18-21
Rz :

PE3

Uersion 1

(b) Assembled PCB of second H-bridge driver.

Figure 1.26: Photographs of assembled PCBs for the second H-bridge and H-bridge driver.

https://github.com/epsiro/pcb-footprint-editor
https://github.com/epsiro/pcb-footprint-editor
http://pcb.zone

Testing and results 29

o
. Sﬂuegjq'r'fé :ZD

Uersion 2

=

Figure 1.27: CGI of the PCB for the second H-bridge. Left image shows the top side, right image
shows the bottom.

Figure 1.28: CGI of the PCB for the H-bridge driver. Left image shows the top side, right image
shows the bottom.

30 Construction of a remote controlled work platform for hydroacoustic work

Figure 1.29: Photograph of finished motor control system stack (control unit).

S
o
=T
@
o
=
[=
-0
i o
o =

(a) Photograph of assembled H- (b) CGI of H-bridge light PCB (c) CGI of H-bridge light PCB
bridge light PCB. top side. bottom side.

Figure 1.30: Assembled and CGI of H-bridge light PCB.

Testing and results 31

Figure 1.31: Photograph of boat, with electric engines and control unit, tested at Lysaker in May
2013.

(a) The control unit mounted in the boat. (b) The boat during deployment, with dr. Helge
Balk as scale.

Figure 1.32: Detailed image and image to scale, of the boat used at the Lysaker test.

32 Construction of a remote controlled work platform for hydroacoustic work

Figure 1.33: Photograph of aluminium boat used on lake Rimov.

(a) Photograph of boat with a Simrad EK60 GPT. (b) Simrad EK60 GPT directly connected to
a Ubiquity PicoStation M2 (through a POE-
injector).

Figure 1.34: Simrad EK60 GPT with boat and PicoStation.

Testing and results

33

1.4.2 Test on Rimov

The same control system as tested at Lysaker
was tested on lake Rimov in August 2013. A
suitable vessel was provided, along with two (dif-
ferent) electric outboard engines, by FishEcU!2.
The vessel was a 12 feet long aluminium boat,
shown in figure 1.33.

The boat was successfully driven in different
patterns, up to about 100 meters from the
operator. It was also tested at full speed, and
used for longer periods of time (hours).

Some of the journeys were conducted with
a Simrad EK60 400kHz General Purpose
Transceiver (GPT), as shown in figure 1.34a.
The data from the echosounder was transferred
wireless to the shore using a pair of Ubiquity
PicoStation M2. To view the echogram live we
first attempted to connect by remote desktop to
a computer located in the boat. The result was
not usable, as the refresh rate was very low. I
therefore configured the radio link and the GPT
to forward the User Datagram Protocol (UDP)
packages from the GPT directly through the
link and to a computer located at the shore.
The setup with the echosounder and the link is
shown in figure 1.34b. This worked very well,
and gave the same usability as sitting in the
boat. The data from these test surveys were
viewed and recorded to the computer at the
shore. We now had a working remote controlled
survey vessel, as shown in figure 1.35.

I wrote a C-application to parse the record-
ings, along with a web-based (JavaScript/-
HTML/CSS) echogram viewer!'®. The parser
was later ported to JavaScript as well. One of
the recordings taken with the remote controlled
survey vessel is shown in figure 1.36.

The boat was also remotely controlled to
move a hydroacoustic standard target at a fixed
depth along a straight path. This was done to
inspect oscillating phenomena occurring during
horizontal beaming. This worked successfully,
although the larger boat was more challenging
to maneuver than the boat used at Lysaker.

The tests conducted on lake Rimov showed
that the control system could successfully be
used as a remote work platform, carrying dif-

3Demo available at http://opensonar.net in 2015.

ferent payloads. It was also capable of working
with the hardware available at hand.

1.4.3 Temperature test

A temperature test was performed to find out
which parts of the H-bridge would get hot under
high loads. The Biltema electric outboard
engine was mounted in a big bucket with water
as shown in figure 1.39a. An H-bridge and
H-bridge driver was connected and the RC-
transmitter was used to control the thrust. A
self-made power resistor and a Hewlett-Packard
(HP) 3455A voltmeter was used to measure the
current, as well as a Kyoritsu 2300R fork current
tester, as shown in figure 1.38. The power
resistor was made using multiple turns of 2.3 %
resistance wire. Its resistance was measured to
be 14.3 mS2 using an Agilent 4263B LCR meter.
A Fluke Ti25 infrared (IR) camera was used to
monitor the temperature.

The RC-transmitter was used to keep the
thrust about ~90 %, which corresponded to a
current draw of ~20 A. 90 % was chosen because
this yields switching losses as well as a high
«static» loss. The battery could unfortunately
not keep up the current of 20 A for longer than
five minutes. The figure 1.37a shows the current
over the course of these five minutes, while figure
1.40 shows the temperature after one minute
and after three and a half minutes.

The battery had enough energy for a new
test with the motor running at a lower speed.
The cable was securely reattached to the screw
terminal, and the motor was run for another
three minutes. The duty-cycle was adjusted
with the RC-transmitter to keep a current draw
of 5 A. The figure 1.37b shows the current over
the course of these three minutes, while figure
1.41 shows thermal images of the whole H-bridge
and a close up of one leg.

The results of the temperature test is dis-
cussed in section 1.5.3.

http://opensonar.net

34 Construction of a remote controlled work platform for hydroacoustic work

Figure 1.35: Remote controlled survey vessel supervised by operators at the shore.

« - CaD cpensonar‘netfechoviewerfechoviewer.htm it | =

Start range: 100, stop range: 2000
Start ping: 0, stop ping: 800

B . SoosssussesESaRee: Jae ISR e |

Figure 1.36: Recording from one of the test surveys conducted on lake Rimov. Noise is visible as
horizontal lines.

Temperature [°]

Current [A]

Testing and results

35

160 . T . T
140 Max temperature
120 - A . o
A]
100 R = " E
80 =
60 2
5
40 =
20
0
Voltmeter and resistor
40 L Fork current tester |
30 + + + %
+ + + + g
20 |2 oo ° o =
o] O
10
0
00:00 02:00 04:00 06:00
Time

(a) Current and maximum temperature during the
20 A temperature test. We attempted to keep the
current at a constant 20 A. The max temperature
was caused by the screw terminal, and does not

give any information about the performance of the

H-bridge.

60 T T T T T
Max temperature A
50
40 . s
A A
30
20
10
0
Voltmeter and resistor +
s | Fork current tester o -
6
5 o
4 . + Q + ¢
2
0
00:00 01:00 02:00 03:00
Time

(b) Current during the 5 A temperature test. We
attempted to keep the current at a constant 5 A. The
max temperature was caused by the series resistor
for one of the indicator LEDs.

Figure 1.37: Current measured during the temperature test.

Figure 1.38: Current measurement setup for the temperature test. The power resistor is visible
to the right.

36

Construction of a remote controlled work platform for hydroacoustic work

(a) Electric outboard engine in a bucket of water,
used as the load.

(b) H-bridge and H-bridge driver.

Figure 1.39: Temperature test setup.

1.5 Discussion

The following paragraphs discusses design
choices, test results, problems encountered and
possible enhancements for the development and
use of the final motor control system. Potential
future work is presented in the last sections.

1.5.1 Motor control system
reliability

The motor control system has been successfully
used in Lysaker and on lake Rimov. Not a
single second version H-bridge has died on its
own over the course of the two years it has
existed. Although multiple H-bridge PCB have
become defective as a result of a user error.
E.g. short circuit by a foreign object or shoot-
through during flashing (reprogramming) of the
H-bridge controller MCU.

1.5.2 Motor switching noise

Testing conducted on lake Rimov with the
motor control system and an echo sounder
showed that the switching of the motor current

created a lot of noise (visible in figure 1.36).
To minimize this noise multiple measures can
be taken; a) the motor cables should be kept
away from the transducer cable; b) separate
batteries should be used for the echosounder
and the motor control system; ¢) the switching
frequency can be changed to not be a harmonic
of the echosounder frequency; d) the motor
cables can be shielded; e) ferrite chokes can be
added to the motor cables; or f) the whole motor
control system can be placed further away from
the echosounder. The motor cables were lying
across the transducer cable during the recording
on lake Rimov.

1.5.3 Discussion of temperature
test results

The resistance of the power resistor used to
measure the current may have changed, as
the high current running through it may have
altered its temperature. We therefore trust the
fork current tester instead, for the high current
(20 A) test.

A bad connection between the cable and the
cable crimp at the top screw terminal led to

Discussion 37

Temperature [°]

Figure 1.40: IR thermography of the 20 A temperature test. The left image shows the temperature
after one minute, while the right image shows the temperature after three and a half minutes. A
loose connection resulted in high thermal activity at one of the screw terminals.

Temperature [°]

Figure 1.41: IR thermography of the 5 A temperature test. The left image shows the temperature
of the whole H-bridge (after one minute), while the right image shows a close-up of the upper right
corner (after two minutes). A series resistor for one of the indicator LEDs and a flyback-diode
shows thermal activity.

38

Construction of a remote controlled work platform for hydroacoustic work

high resistance and high thermal activity for
the 20 A temperature test. This obscured the
temperature monitoring of the rest of the H-
bridge, but showed that parts of the PCB has
good heat distribution and that the thermal vias
are working. The heat distribution can be seen
in figure 1.40, where the temperature difference
is small over a large area, even outside the top
copper plane. Figure 1.27 shows the location of
the copper planes.

Thermal images from the 5 A test shown in
figure 1.41 reveals multiple interesting points.
The series resistor for one of the indicator LEDs
is the hottest component on the PCB. This
is caused by the high voltage drop over the
resistor (560€2), and the relative high current
consumption (18 mA) of the LED (governed
by the resistor). The result being a higher
power dissipation (180 mW) than the small 0603
resistor (100mW) can handle. The resistance
should be increased to decrease the current
through the LED and resistor. Alternately,
a physically bigger resistor must be used, e.g.
1206 (250 mW).

The upper left and lower right leg (corner)
is used to conduct the drive current to the
motor (in the forward direction). We expected
the transistors in these legs to be the hottest
components in the H-bridge. They are, however,
only slightly hotter than the surrounding PCB.

The upper right leg gets hotter than the
other legs of the H-bridge, and the flyback diode
in this corner gets hotter than the transistors.
The flyback diode in this leg conducts the back-
EMF from the motor back to the power supply
(capacitor and battery), when the drive current
is removed. The constant voltage drop over the
diode combined with this current results in a
significant power dissipation. We believe the
heat originating from the diode (and resistor)
increases the ambient temperature around the
transistors in the upper right corner, making
them appear hot as well. Switching the current
direction (through the H-bridge) should cause
the upper left corner to become the hottest,
and this could be investigated in a new test.
Decreasing the dead-time may help offload the
diode even more, and reduce its heat dissipation.

The motor cables were switched, so we drove
the motor backward (when we thought we drove
it forward). Driving it forward will result in a
higher current consumption.

1.5.4 Stress test

The temperature test was originally planned to
be a stress test, running the H-bridge until some-
thing broke or it reached a steady-state with
constant temperature. This was unfortunately
not possible, as the battery ran out, and there
was not enough time for a new attempt. I also
planned to perform multiple tests, with different
H-bridges. Some with a different number of
transistors, and some with a different type. For
instance just using four transistors, or using the
higher drain-source voltage version PSMN7R0-
60YS, which have a higher Rgs,, . A new stress
test, using an ample power source, could be
performed by others if the maximum ratings of
the H-bridge is needed.

1.5.5 Power dissipation

We have not yet measured and calculated the
actual power dissipation of the assembled (final)
motor control system. This was not deemed
important, as the system functioned well during
field use and managed to drive the engines
(and boat) we required. If needed, the static
power loss can be found by measuring the Ry,
or the voltage drop over the transistors and
using equation (1.1) or (1.3) (with a constant
load/current and switching disabled). Similar,
the power loss during the switching transitions
can be estimated by measuring the switching-
transition time (At) and using equation (1.11).

1.5.6 Cable connections and
-thickness

One of the nuts used to fasten the motor cable
(through a bolt) to the H-bridge loosened during
one of the tests on lake Rimov. This resulted
in the bolt getting very hot. This was later
discovered as the bolt had permanently changed
its color. Lock washers have since been used to
prevent nuts from loosening. A bad connection

Discussion

39

was also encountered while conducting the
temperature test. It is important to securely
attach any wires used for conducting the large
currents.

Appropriate wire thickness should also be
used in a production setting. Some of the
wires used when testing the H-bridge (and
shown in some of the pictures) were relative
thin. Connecting multiple wires in parallel was
considered, but no noticeable temperature rise
was found when using only one.

1.5.7 Power source

The Biltema engines states an operating time of
80 — 120 minutes at full speed and up to 4 hours
at half speed, when using a standard 75 Ah lead-
acid battery (for each engine). Multiple high
capacity batteries may be connected in parallel
to increase the operating time. A battery bank
may not be feasible if very long surveys needs
to be conducted. A diesel generator can then
be used to supply power to electric engines.

1.5.8 Abandonment of HIP4081

The problems we experienced using the HIP4081
could perhaps be fixed with a RC-snubber
suppressing the transients occurring at the load.
By developing our own H-bridge controller and
-driver, however, we were left with total control
over the whole system and we had no problems
with transients whatsoever.

1.5.9 Jump start problems

Earlier, we experienced a short jump start
of both motors when the RC-transmitter was
turned on after the motor control system had
been connected to power. In other words,
both engines tried to run at full speed for a
fraction of a second the moment power was
connected to the motor control system. We
were therefore cautious to always turn the RC-
transmitter on before power was applied to the
motor control system. We suspected that the
cause of this behaviour was that the MCU had
its pins configured as inputs or low outputs
during power-up. Pull-up resistors as described

in the section 1.5.11 were thought to be a
possible solution. In the end, we discovered that
it was the RC-receiver which outputted invalid
commands (pulse-widths) during power-up. By
skipping the first RC commands (as described
in section 1.3.2), the jump start problems
disappeared. The motor control system can
now be turned on, without problems, regardless
of whether the RC-transmitter is turned on or
off.

1.5.10 TVS diode

We did test the use of a TVS diode (SMCJ12CA)
on the second H-bridge, but it did not seem
to make any difference. This was however
not examined in detail, and we did not use
TVS-diodes further, since we did not have any
problems with transients anymore (when using
our H-bridge driver).

1.5.11 Drive-stage pull-up
resistors

Pull-up resistors should be added on the control
lines from the MCU to the drive-stage. Since
these resistors are currently missing, the MCU
must have its IO pins configured as outputs
at all times. If they are configured as inputs,
the control line will be left floating and could
be registered as a low signal by the drive-stage.
This would then turn «on» one of the transistors
in the H-bridge, and possibly create a shoot-
through condition. Pins are fortunately always
configured as outputs (as long as the firmware
is not modified), but pull-up resistors should be
added nonetheless as a safety feature.

1.5.12 Number of power
transistors

We initially decided to use four power transistors
in each leg of the second H-bridge to distribute
the heat and the electric current. One power
transistor alone is, however, rated high enough
to withstand the current drawn by our electric
engines. It could therefore be possible to reduce
the cost of the system, by reducing the number

40

Construction of a remote controlled work platform for hydroacoustic work

of power transistors. A stress test (as described
earlier) may dictate if this is feasible.

1.5.13 PCB heat and current
distribution enhancements

We only used a 2-layer standard PCB with
a copper thickness of 35 um for the H-bridge
PCBs. If higher heat and current distribution
is needed, the copper thickness can be increased
and/or more layers can be used.

1.5.14 Firmware reorganization

The firmware for the second steering- and
H-bridge controller (listed in appendix G) is
currently doing all its calculation in interrupt
service routines. The time used handling a
interrupt should be kept minimal, as not to
block other interrupts from being handled. The
priority of the interrupts are programmable, so
the interrupt with the long interrupt handler
should at least have a low priority. An im-
provement could be to set a flag when a RC or
UART command is received, and let the main
program do the calculations currently performed
in the timer interrupt. The timer could instead
be used to wake the MCU from sleep, if lower
power consumption is wanted.

1.5.15 UART communication

The UART steering command protocol does not
include any error-detection system, since loosing
some commands are not critical. When connect-
ing or disconnecting another control system (e.g.
an autopilot) over UART I have experienced
that some steering commands (bytes) have been
misread. A simple 1-bit Cyclic Redundancy
Check (CRC) parity bit or a new protocol
similar to NMEA 0183 (with checksum) can
be implemented to combat these problems.

1.6 Summary

A functional motor control system has been
developed, consisting of a RC-receiver (commu-
nication), a steering controller, two H-bridge
controllers with drive-stages and two H-bridges.
It is designed to drive two arbitrarily selected
12V brushed DC electric motors at up to 40 A,
although the max current rating has not been
tested. The motor control system can also be
used as a foundation for an autopilot. The
use of a digital steering controlled proved to
work better and give greater capabilities than
an all analog version. We experienced problems
when using a pre-made H-bridge driver, but a
self-developed H-bridge controller and -driver
worked successfully. A temperature test indi-
cates that the power MOSFETSs do not get very
hot during normal use. Testing of the control
unit (assembled motor control system), on two
different boats with two different sets of engines,
has shown that the motor control system is
capable of controlling the electric engines we
need. It has also shown that it is possible
to use the equipment available, and that the
complete cost of the system is low. The steering
mechanism of combining both sticks provided
very good control of the vessel, with a small boat
(8 feet) giving especially high maneuverability.
Noise problems caused by the motor switching
were encountered during fieldwork, and these
must be addressed before the motor control
system can be truly usable for hydroacoustic
work. Nevertheless, testing of the control unit
together with a Simrad EK60 echosounder and
a set of Ubiquity PicoStations show that the
vessel can be used as a remotely controlled work
platform.

Paper 2

Construction of an Attitude and
Heading Reference

System (AHRS)

Abstract

This paper presents the construction of an Attitude and Heading Reference System
(AHRS) useful for hydroacoustic work. The AHRS outputs calculated tilt, roll and heading
measurements based on sensor fusion from a 3-axis accelerometer, a 3-axis gyroscope and a
3-axis magnetometer. These measurements can be used to stabilize hydroacoustic recordings,
or as a part of the autopilot for an Automatic Survey Vessel (ASV). Three attempts were
done to create a functional AHRS, and both hard- and software for each of these will be
described. The final attempt resulted in a unit which fulfilled our requirements of accuracy

and reliability.

Keywords: AHRS, IMU

2.1 Introduction

This paper presents the construction of
an Attitude and Heading Reference System
(AHRS). The AHRS was needed for the fol-
lowing three tasks.

As part of the autopilot in my thesis cover-
ing the development of a «full-size low price
Automatic Survey Vessel (ASV)» I need a
compass to steer the vessel. A compass measures
the magnetic field of the Earth, and outputs
its heading relative to the magnetic poles. We
wanted to create an AHRS which could function
as a tilt-compensated' compass.

Horizontal hydroacoustic surveying is very
susceptible to angular movement, since a small
displacement at the face of the transducer
results in a large shift far from the transducer.
This movement can be caused by surface waves
or human activity in the vessel conducting the
survey. To compensate for this displacement,
the angular movement can be recorded and a
stabilization algorithm can be applied in post-
process. This works similar to the optical
image stabilization currently available in various
consumer cameras. We wanted to create an
AHRS to record the angular movement, and do
so with a (tilt) accuracy of at least £0.5°. This
corresponds to a displacement of about £25cm
for a target (e.g a fish) located 30 meter away
from the transducer.

LA tilt-compensated compass does not need to be oriented parallel to the magnetic field for it to calculate the

correct heading.

41

42

Construction of an Attitude and Heading Reference System (AHRS)

Figure 2.1: Illustration of tilt, roll and heading angles.

For some hydroacoustic experiments it is cru-
cial to know the true tilt of the transducer. For
instance when investigating surface-interaction
during horizontal beaming. We wanted to
create an AHRS which could function as an
inclinometer, providing a reliable and accurate
static orientation of hydroacoustic equipment.

We will describe how we solved these chal-
lenges by combining data from a 3-axis mag-
netometer, a 3-axis accelerometer and a 3-axis
gyroscope.

Tilt, roll and heading angles are shown in
figure 2.1.

A fellow master student, Johan Kleiberg
Jensen, was at the time I needed a compass,
working on his master thesis «Attitude Estima-
tion for Motion Stabilization in Sonar Systems»
[15]. He used a sensor with an embedded mag-
netometer. Unfortunately, he did not manage
to read the magnetometer-data from the sensor,
so I continued his work. Not only to get a
compass for my own autopilot, but also to create
an improved unit for experiments planned at
lake Rimov (Ceské Budgjovice, Czech Republic)
the summer of 2013, where information about
accurate tilt was essential.

The sensor Jensen found, contained three
microelectromechanical systems (MEMS), a 3-
axis accelerometer, a 3-axis gyroscope and a
3-axis magnetometer, all in one package. It is
produced by InvenSense and called MPU-9150

2http://www.x-io.co.uk/products/x-imu/

(cost; ~8USD each at a quantity of 100). The
sensor is actually a combination of two chips,
a MPU-6050 accelerometer and gyroscope and
an AK8975 magnetometer. The gyroscope does
not measure angular displacement, but angular
velocity. The term gyroscope is thus technically
not correct, and the term angular rate sensor
would be more fitting. Since the term gyroscope
is widely used when referring to an angular rate
sensor, we will still use this term throughout
the paper. Some specifications for MPU-9150 is
listed in table 2.1. Current consumption varies
depending on features enabled, sample rates,
and sleep modes. More details about the MEMS
can be found in [15-17].

Three attempts on creating a functional
AHRS have been made. These are described
in section 2.3. 1 have not developed any new
algorithms for the sensor fusion, but merely
adopted the work of others to create a device
that fulfilled our requirements. Our main
criteria was to get a unit which is a) low cost;
b) sufficiently accurate; c¢) watertight; d) has
good repeatability; and e) can calculate the
heading. Jensen’s unit did not fulfill criteria e)
and d) (with our clone of his unit).

x-IMU from x-io Technologies® is an in-
expensive AHRS platform, which could have
been used instead. We chose to make our own
because we wanted to continue the work of

http://www.x-io.co.uk/products/x-imu/

Theory

43

Table 2.1: Key specifications for the MPU-9150.

Parameter

Specification

Gyroscope full-scale range

+250° /s, £500° /s, £1000° /s, £2000° /s

Gyroscope sensitivity 131 I;S/S’ at £250°/s
Gyroscope total RMS noise 0.06°/s

Accelerometer full-scale range
Accelerometer sensitivity
Accelerometer total RMS noise
Operating temperature range
Operating voltage range

+2g, +4¢g, +8g, £16g
16384 158 at +2¢
4mg

—40°C - 85°C
2.375V - 3.465V

Jensen and create a custom solution using a
single integrated circuit (IC).

The AHRSs developed in this paper are
named HydroAHRS, although they were ini-
tially known as «IMU» (Inertial Measurement
Unit) or anglemeter.

2.2 Theory

2.2.1 Angle representation

There are multiple ways of representing spatial
orientation, and Euler angles, quaternions and
rotation matrices are widely used for this pur-
pose. They are just briefly mentioned in the
following paragraphs. An in-depth presentation
can be found in [18].

Euler angles describes a spatial orientation
using three parameters, each representing an
elemental rotation about one of the axes in a
3-dimensional Euclidean space. Euler angles
suffers from singularities (gimbal lock) around
its poles.

Quaternions is an extension of complex
numbers, making non-singular representation of
spatial orientation and rotation possible. It is in
other words capable of representing all rotations
and angles, even around the poles.

Rotation matrices is another way to repre-
sent spatial orientation relative to a reference-
axis set. They can avoid the singularities
around the poles, but is more computational
expensive than quaternions as they contain more
parameters.

2.3 Material and methods

In order to find the orientation in space, data
from all three sensors must be combined. The
gyroscope is used to measure the angular ve-
locity and find the angular displacement, while
the accelerometer and magnetometer provides a
reference. Angles calculated by simply summing
the angular displacement (gyroscope), would
suffer from a large drift over time. This method
can also just calculate relative angles. To
suppress the drift and achieve absolute angle
measurements (referenced to the Earth), the
accelerometer and magnetometer is needed.

Jensen developed a complimentary filter to
combine the accelerometer and gyroscope data.
This sensor fusion calculated the tilt and roll
angels. I wanted to calculate the heading as
well.

The first attempt on my own AHRS was to
port Jensen’s complimentary filter to an 8-bit
microcontroller unit (MCU), instead of running
it on top of a full operating system (OS). This
port is described in section 2.3.1. The port was
successful, but failed to fulfill our requirements
of good repeatability. This was experienced
during fieldwork at lake Rimov, described in
section 2.4.1.

I then gave it a second attempt using
firmware given by the manufacturer of the sensor
(InvenSense). This firmware enables the sensor
itself to do the accelerometer and gyroscope
fusion in its embedded Digital Motion Processor
(DMP). Fusion of magnetometer data was based

44

Construction of an Attitude and Heading Reference System (AHRS)

on work done by a company called Pansenti®.
This implementation is described in section 2.3.2.
The result was good tilt and roll measurements,
however the heading calculation was unreliable
(drifting and incorrect).

While struggling with the magnetometer
fusion, InvenSense released a motion processing
library which promised to do fusion of all its sen-
sors. Accelerometer and gyroscope fusion was
still done in the DMP, while the magnetometer
data fusion was done in a pre-compiled library
running on a MCU. Since I needed a fully
functional compass for the Automatic Survey
Vessel (ASV), I restarted the project yet again.
Now based on both new hard- and software.
The new software is described in section 2.3.3.
The new hardware incorporated a 32-bit ARM
Cortex-M MCU, which could handle the sensor
fusion at the maximal rate of the sensor, 200 Hz.

The HydroAHRS outputs its calculated
angles in the same (NMEA 0183 similar) format
as originally used by Jensen [15]. The format
is shown in figure 2.2 and table 2.2. The data
format theoretically allows 71 bytes (maximum
NMEA 0183 sentence length) to be output up
to 200 Hz using 115200 baud over UART. A
binary format, however, should be used if high
throughput is needed, to reduce the amount
of data transferred. For instance the binary
protocol created by InvenSense to communicate
with its OpenGL cube visualizer.

As the development of the firmware pro-
gressed, several hardware revisions were needed.
The enclosures were also changed, to com-
promise between ease of assembly and water
resistance. I will first present the development
of the firmware, and afterwards the development
of the hardware. Calibration and client side
software will be described at the end.

2.3.1 First software attempt —
Complimentary filter

The AHRS was originally based on the work of
Jensen [15]. Jensen used a Raspberry Pi single
board computer (SBC) running GNU/Linux to

3https://www.linkedin.com/company/pansenti-1lc

talk to the sensor and run his complimentary
filter. I felt the use of a SBC with a complex
OS was overkill for such a relatively easy task. I
wanted to create an alternative implementation
that was a) physically smaller; b) easier to make
watertight; ¢) more power efficient; d) even more
low cost; and e) easier to build multiple units
of. I therefore decided to port his code so it
could run on a 8-bit MCU. I chose an ATxmega
AU-series MCU from Atmel, because it had all
the peripherals I needed and was easy to work
with. Atmel’s toolchain is based on the GNU
Compiler Collection (GCC) toolchain, which
is very mature and well supported on multiple
platform, including GNU/Linux®.

His sensor fusion was built around a com-
plimentary filter and showed promising results
in testing [15]. I cleaned and restructured
his single code file into appropriate functions
over multiple files. I also wrote support code
for Inter-Integrated Circuit (I?C) and UART
communication. I used a Bus Pirate® to debug
the I?C communication. Jensen’s code is listed
in [15, p. 99]. My code is shown in appendix
J, licensed under GNU General Public License
(GPL) version 2 or later.

I assembled my own prototype version to
develop on, as described in section 2.3.4. 1
also built my own setup with an Raspberry Pi
for reference, due to problems occurring while
porting the code.

The AHRS is controlled by single character
commands over a serial link (115200 baud), as
listed in table 2.3.

One challenge I faced was the use of float-
ing point numbers. 1 consider changing all
calculations to use integer numbers, or take
advantage of the implementation of fixed point
math in version 4.8 of avr-gcc. FEventually,
testing showed that the MCU could handle the
floating point calculation at the low sample rate
of 20 Hz.

I use a real-time clock (RTC) crystal of
32.768 kHz to calibrate the internal radio control
(RC) oscillator and to timestamp samples with
low drift.

4clarification; to develop on — I run Debian GNU/Linux on my workstation
5Bus Pirate: http://dangerousprototypes.com/docs/Bus_Pirate

https://www.linkedin.com/company/pansenti-llc
http://dangerousprototypes.com/docs/Bus_Pirate

Material and methods

45

1
|

2 34
I

5 6 7 8 9 10 11 12
I | [

$PASHR,hhmmss.sss,hhh.hh,M,rrr.rr,ppp.pp,Xxx.xx,a.a,b.b,c.c,d,e*hh<CR><LF>

Figure 2.2: HydroAHRS data format.

Table 2.2: HydroAHRS data format field description.

Field

Placeholder

Description

0O U Wi

— = =
N = OO

hhmimss.sss
hhh.hh

M

ITT.IT

ttt.tt
XXX.XX

a.a

b.b

c.Cc

hh

Time (relative)

Heading [degrees]

Flag indicating true or magnetic north heading
Roll angle [degrees]

Tilt angle [degrees]

Heave (not used)

Roll angle accuracy (not used)
Tilt angle accuracy (not used)
Heading angle accuracy (not used)
Aiding Status (not used)
Accuracy indicator

Checksum

Table 2.3: Control commands for HydroAHRS mk.I.

Command (ASCII)

Command (hex) Function

= ®® 0 N w

0x73 Start sending angles
0x53 Stop sending angles
0x67 Set gyro bias

0x61 Set angle reference

0x31 Send one measurement

46

Construction of an Attitude and Heading Reference System (AHRS)

2.3.2 Second software attempt —
DMP

Since the complimentary filter did not give
the level of response and repeatability that
we needed (described in section 2.4.1) and
because it was difficult to get a readout from
the magnetometer embedded in the MPU-9150,
I began looking for other sensor fusion solutions.
InvenSense had released firmware which could
be downloaded into MPU-9150 to enable its
embedded Digital Motion Processor (DMP).
The firmware is available for download at their
website if you register as a developerf. A
company called Pansenti had also developed
a software library for Arduino and a library for
Linux based platforms to work with the MPU-
9150. The libraries included magnetometer data
fusion. I chose to port the Linux based library to
the ATxmega MCU I already used. The library
was available at their GitHub” website in 2013,
but has since been removed. The library was
released under a MIT-license.

The code gets quaternions from the DMP
and converts these into Euler angles before fus-
ing them together with the magnetometer data.
The magnetometer data is tilt-compensated and
mixed together with the gyroscope heading to
set the new heading angle.

After some struggling, I also managed to
implement native Universal Serial Bus (USB)
communication using the LUFA® library from
Dean Camera (which had experimental support
for ATxmega). This enabled me to use a
Device Firmware Upgrade (DFU) bootloader
to program (flash) the MCU over USB. The
DFU bootloader is described in an application
note from Atmel [19]. The HydroAHRS could
now be uploaded with new firmware even after
it had been casted in an enclosure.

The AHRS is controlled by single character
commands, as listed in table 2.4.

The firmware for HydroAHRS mk.II is listed
in appendix K.

Shttp://www.invensense.com/developers/
"https://github.com/Pansenti/linux-mpu9150
8http://www.fourwalledcubicle.com/LUFA. php

2.3.3 Third software attempt —
MPL and DMP

Due to the problems described in section 2.4.5
regarding the non-functional and drifting com-
pass, and other problems occurring with the
use of Euler angles, I was looking for yet a new
solution. I then discovered that InvenSense had
released a library during the summer of 2014,
which promised 9-axis fusion. This library is
called Motion Processing Library (MPL) and
is available for download if you register as a
developer. It is pre-compiled and the source
code is not available. They had some example
code for use with an ARM Cortex M4 MCU
and recommended a 32-bit CPU if 200 Hz sensor
integration where needed. This would however
mean I had to redo the project from scratch a
third time. I chose an ARM Cortex M4 MCU
from Texas Instruments (TI) named TM4C129
(cost; ~15USD each at a quantity of 100), and
decided to try again with ARM. This MCU
was selected because it has hardware Ethernet
PHY and MAC-layer embedded. The USB
communication previously used has a short
maximum length of only 5m [20]. Ethernet
enables up to 100 meter range [21].

Communication through Ethernet with
TM4C129 has not yet been implemented for Hy-
droAHRS, but has been done for the TM4C129
used in the autopilot described in paper 3.
Although an Ethernet bootloader has been
adapted and used successfully to program the
HydroAHRS. For this, a separate BOOTP- and
TFTP-server running on a nearby GNU/Linux
computer was applied.

I had hardware kits from Texas Instruments
(TT) which incorporated a MCU from the same
family as TM4C129, the TM4C123. The
TM4C123 is a smaller and cheaper version of
the TM4C129 (without Ethernet). The kit
was named EK-TM4C123GXL. I also had a
matching sensor hub from T1, called BOOSTXL-
SENSHUB, which had various sensors em-
bedded, including the MPU-9150. TI also
had code to do 6-axis fusion using their own

http://www.invensense.com/developers/
https://github.com/Pansenti/linux-mpu9150
http://www.fourwalledcubicle.com/LUFA.php

Material and methods

47

Table 2.4: Control commands for HydroAHRS mk.IT.

Command (ASCII) Command (hex)

Function

0x73
0x53
0x72
0x31
0x6D
0x61
0x4D
0x41
0x62
0x77
0x65
0x69

0o g o2 B R~ 0o

Start sending angles

Stop sending angles

Reset timestamp counter

Send one measurement

Calibrate magnetometer

Calibrate accelerometer

Reset magnetometer calibration
Reset accelerometer calibration
Run bootloader

Write mag. or accel. calibration
Read calibration data from EEPROM
Read serial number from EEPROM

complimentary filter. I decided to combine
these two projects (from TI and InvenSense)
into a functional 9-axis AHRS running on the
TM4C123.

Receiving commands and saving calibration
data to non-volatile memory is currently not
implemented for HydroAHRS mk.III.

The firmware is unfortunately not listed in
the appendix because of licensing restrictions,
but is available in-house at the Department of
Physics, University of Oslo.

2.3.4 Hardware for HydroAHRS
prototype

The port of Jensen’s work was initially devel-
oped on a prototype hardware platform. The
prototype platform consisted of a veroboard
with a breakout board for an ATxmegal28A1
and a breakout board for the MPU-9150, shown
in figure 2.3. Both were purchased from Spark-

Fun®.

2.3.5 Hardware for HydroAHRS
mk.I

When the port of Jensen’s code was functional
I decided to design a printed circuit board
(PCB) incorporating both the MCU and the
sensor, along with necessary communication and
support circuitry. The PCB consists of an 8-bit
ATxmega32A4U, the MPU9150 sensor, status
LEDs and additional components such as a crys-
tal and various headers. The communication
was done with UART from the MCU. Since I
wanted to have USB connectivity for easy user
handling, I used a FT232RL IC from FTDI
as an UART-to-USB bridge. By doing so I was
able to communicate and power the device using
a single cable. It was also directly compatible
with all new computers (which have USB). The
FT232RL was also used as the power regulator.
A standalone steel stencil was used to distribute
solder paste for the Quad Flat No-leads (QFN)-
package of the sensor. The PCB is shown in
figure 2.4b and assembled in figure 2.4a.

The PCB was designed to fit into a water-
tight case. I chose a casted aluminium case

from Deltron'® because it was the smallest case
I could find that would fit the PCB and a

9 ATxmegal28A1 breakout: https://www.sparkfun.com/products/9546, MPU-9150 breakout: https://www.

sparkfun.com/products/11486
10Box: Deltron 483-0020

H1TP68 certifies that the enclosure is dust tight and watertight in immersion beyond one meter of water.
12Connector: Bulgin PX0843/B, cable: Bulgin PX0840/B/5M00

https://www.sparkfun.com/products/9546
https://www.sparkfun.com/products/11486
https://www.sparkfun.com/products/11486

48 Construction of an Attitude and Heading Reference System (AHRS)

XMegald@

4 N
> P PDO-7 & PER-7 PFB-7

. EVEN(@-8) O O (o) O O OOOOOOO
_| \/ oDDC1-7) OAO,\O,‘O,‘O,‘OAOAOAOAOAO O

Figure 2.3: Prototype setup for porting the complimentary filter. In the middle is the
ATxmegal28A1 breakout board and to the right is the MPU-9150 breakout board.

T o E g “ @@G T
Anglemeater g ad I q ———PnI CLUCK
Hinsl 15 vl T - b ¥ ¥ 2013-86-15 v.1@ @ [F«PDI DATA X1_|

(a) Assembled HydroAHRS mk.I. (b) CGI of HydroAHRS mk.I PCB.

Figure 2.4: Images of HydroAHRS mk.I PCB.

Material and methods

49

USB connector while being rated 1P68.1% I
found watertight USB connectors and cables
from Bulgin'?.

I made two HydroAHRS mk.I units and
the instrument workshop at the department of
Physics helped me drill holes for the connectors.
These units were built to examine a hydroacous-
tic phenomenon when doing horizontal beaming.
One of the HydroAHRS mk.I units assembled
in the enclosure is shown in figure 2.5a.

The gasket along the edges of the enclosure
was covered in silicon grease to further increase
the water resistance. The PCB was also placed
away from the bottom of the enclosure, to allow
some water intake to be tolerated. Nevertheless,
fieldwork in Czech Republic showed that the
casing and the connector was not watertight
after rough handling. When the USB cable got
a tug, water escaped through the gasket. Water
was also leaking in along the edges of one of the
enclosures, probably caused by the front plate
being bent during drilling of the connector hole.

2.3.6 Hardware for HydroAHRS
mk.IT

For the HydroAHRS mk.II a new PCB was
designed and two new enclosures were built.

HydroAHRS mk.IT - PCB

The new PCB was designed to fit into the first
of the new enclosures, and was quite compact.
It had the Future Technology Devices Interna-
tional (FTDI) chip removed as I now used the
MCU for native USB communication. I added
an external power regulator and electrostatic
discharge (ESD)-protection for the USB signals.
The PCB is shown in figure 2.6b and assembled
in figure 2.6a.

A total of eleven HydroAHRS mk.II has been
assembled.

HydroAHRS mk.IT — First casing
revision

Due to the problems with the box used by
HydroAHRS mk.I, I wanted a smaller enclosure

with shorter edges. I also wanted to fill the
enclosure so there was no place for the water
to go. Since the USB connector was creating
difficulties, we opted for a non-removable cable
instead. I built and used my home-assembled
CNC-milling machine and milled acrylic plastic
sheets in different shapes, as shown in figure
2.7a. Multiple shapes were tested, and a version
of the final shape is shown in figure 2.7b. T wrote
a Python script to create the G-code needed to
mill this shape.

The PCB with components was placed in
one of the milled sheets. The USB cable was
wrapped with self-amalgamating tape to fill
the stress relief chamber. The main chamber
was filled with liquid epoxy. The other sheet
was placed on top, with a coat of acetone on
all connecting faces. The acetone dissolved
the surface of the acrylic sheets and fused
the two sheets together. An assembled unit
with this casing is shown in figure 2.5b. This
enclosure proved to be watertight, but required a
complicated manufacturing process and as later
testing have indicated, was prone to inflicting
ESD damage.

HydroAHRS mk.IT — Second casing
revision

A new revision of the enclosure for the same
PCB was developed using another casted alu-
minium case. We went back to using aluminium
as this would safely conduct static discharge
from other objects away from the PCB. The
casing would not create a static field itself
neither. Since the USB connector was removed,
the case could be quite compact. The PCB’s
mounting brackets and the USB cable was
submerged in Tec 7'3, to attach the PCB to
the case and provide stress relief for the cable.
Instead of using epoxy to fill the air cavity, we
used canning wax. Later on, the wax can be
melted away if the PCB needs reparation. Self-
amalgamating tape was used for cable bend
protection.

The process of mounting HydroAHRS mk.IT
in the aluminium enclosure is shown in figure
2.9

13MS polymer based sealant and adhesive, http://www.tec7.ie/products/tec7-sealant

http://www.tec7.ie/products/tec7-sealant

50 Construction of an Attitude and Heading Reference System (AHRS)

(b) HydroAHRS mk.II in the first revision

(a) Enclosure for HydroAHRS mk.I.
casing.

Figure 2.5: Enclosures for HydroAHRS mk.I and mk.II.

2(® 5 .]
Bendik®NDR L § § 5Y
Sevegjarta
e
CB2[f=

} | l:h.uu;;;;

EEFRERRERE

(a) Assembled HydroAHRS (b) CGI of HydroAHRS mk.II (c¢) CGI of HydroAHRS mk.II
PCB top side. PCB bottom side.

mk.II.
Figure 2.6: Images of HydroAHRS mk.II PCB.

Material and methods 51

(a) eShapeOko milling acrylic sheets. (b) Final shape of HydroAHRS mk.II
(first revision) casing.

Figure 2.7: Milled HydroAHRS mk.IT (first revision) casing.

ol

(a) HydroAHRS mk.II in alu- (b) HydroAHRS mk.II in alu- (¢) HydroAHRS mk.II in alu-
minium enclosures, before mount- minium enclosures, after being minium enclosures, after being
ing. submerged in Tec 7. filled with wax.

Figure 2.9: The mounting process for HydroAHRS mk.II, with the second revision casing.

92

Construction of an Attitude and Heading Reference System (AHRS)

2.3.7 Hardware for HydroAHRS
mk.ITI

With the change to a new MCU architecture, yet
another hardware revision was needed. The new
PCB incorporates the TM4C1294NCPDT from
TI, the MPU9150 sensor, a new power regulator,
SD-card connector, Ethernet connector, status
LEDs and support circuitry. The SD-card
connector is added for future use, if logging
to SD-card is needed. Since the new MCU has
embedded Ethernet MAC and PHY layer sup-
port, Ethernet has also been added as a possible
communication option, with passive Power-over-
Ethernet (POE) as the power supplier. The
other option is UART (possible to convert to
RS-232 or a current loop) with 5-24 V power.

The PCB is shown in figure 2.10b and
assembled in figure 2.10a.

A total of 13 HydroAHRS mk.III has been
assembled.

The PCB is designed to be mounted on a
metal plate, with a protective layer moulded
over it to make it watertight. The mould will
have a metal mesh inside to protect the PCB
from ESD damage. This enclosure has not yet
been built or tested.

2.3.8 Calibration

Multiple calibration methods has to be applied
for the HydroAHRS to be accurate. Each of the
three sensors must be calibrated individually,
and this has been done in different ways for the
various HydroAHRS revisions. The tilt offset
and slope error is then calibrated.

Magnetometer calibration

The HydroAHRS mk.I did not use the magne-
tometer, so no calibration was necessary.

The HydroAHRS mk.IT magnetometer cali-
bration is initiated by the user. The user then
moves the unit around, while the MCU finds
the maximum and minimum raw magnetome-
ter measurements for all three axes. This is
stored in EEPROM, and the subsequent raw
magnetometer measurements is offset and scaled
according to the mean and range (spread) of
the max./min. values. The spread of the raw

magnetometer measurements after calibration
from a HydroAHRS mk.IT is shown in figure
2.11.

The HydroAHRS mk.IIT uses the MPL to
automatically calibrate the magnetometer when
a good figure-eight movement is detected. This
is currently not saved to a non-volatile memory,
and is lost after a power-cycle.

Accelerometer calibration

The HydroAHRS mk.I did not calibrate the
accelerometer.

The HydroAHRS mk.II accelerometer cal-
ibration works similar to its magnetometer
calibration. The unit is moved around, and
the maximum and minimum accelerometer mea-
surements are found. This must be done with
very slow movements, as not to apply erroneous
acceleration. We only want to measure the
gravitational acceleration of the Earth. The
max./min. values are stored to EEPROM, and
the subsequent raw accelerometer measurements
is offset and scaled accordingly.

The HydroAHRS mk.III uses the MPL to
perform a self-test and calibrate the accelerom-
eter. The unit must be face-up or face-down
during the calibration. This self-test is at the
moment automatically performed on power-up
or after a reset. The calibrated values is saved to
(non-volatile) registers in the MPU-9150. The
self-test can be modified to only run after a user
request (and make use of the non-volatile nature
of these registers), if a command interface for
HydroAHRS mk.IIT is implemented.

Gyroscope calibration

The HydroAHRS mk.I uses a very primitive
method to calibrate the gyroscope. A single
measurement is taken while the unit is motion-
less, and this is subtracted from all subsequent
measurements to remove the bias.

Both HydroAHRS mk.II and HydroAHRS
mk.IIT uses the DMP to automatically calibrate
the gyroscope if it senses that it has been
motionless for eight seconds. HydroAHRS
mKk.IIT also runs a self-test on power-up or after
a reset, which calibrates the gyroscope. It must
therefore be motionless on power-up.

Material and methods

53

19 &

UHRT—.' TCRXVN BND

=

=
2.
B
%

(a) Assembled HydroAHRS (b) CGI of HydroAHRS mk.III (c) CGI of HydroAHRS mk.ITI

mk.III.

Raw magnetometer z-axis

PCB top side. PCB bottom side.

Figure 2.10: Images of HydroAHRS mk.ITI PCB.

4000
2000
0
—2000
—4000 4000
2000
~19%% 5000 —2005)

0 Raw magnetometer y-axis
2 . y
000 400 4000

Raw magnetometer x-axis

Figure 2.11: Calibrated raw magnetometer measurements from HydroAHRS mk.II.

54

Construction of an Attitude and Heading Reference System (AHRS)

Tilt offset calibration

There exists an offset error of every angle
calculated from a HydroAHRS, originating from
offsets in the IC assembly to the PCB, and
the PCB mounting to the case. We are most
interested in getting rid of the tilt offset. The
total tilt offset can be found by placing the
unit parallel to a true vertical (or horizontal)
reference. The difference between the calculated
tilt and the true tilt of 90 (or 0) degrees,
is the tilt offset. The HydroAHRS mk.II
was calibrated against a vertical reference as
described in section 2.4.4.

Tilt slope calibration

To correct for the relative error between each
tilt measurements, the slope must be calibrated.
If the tilt is changed from 10 to 20 degrees,
we expect the unit to change just as much as
if it was changed from 40 to 50 degrees. The
tilt measurements should be linear and have a
slope of 1. To check if the tilt measurements are
linear and find the slope, the unit is tilted while
a different reference setup measures the relative
tilt. The slope of several HydroAHRS mk.IT
units were found using the setup described in
section 2.4.4.

2.3.9 Front-end software

Multiple different software solutions has been
used to communicate with HydroAHRS.

Serial terminal emulator

GNU screen has been widely used as a serial
terminal emulator during development. Un-
der GNU/Linux you can simply write screen
/dev/tty<device> 115200 to connect to a Hy-
droAHRS at 115200 baud (press ’s’ and start
receiving data from HydroAHRS mk.I or Hy-
droAHRS mk.IT). The data can be logged to file
with cat /dev/tty<device> >> log.nmea.

Windows application

Helge Balk wrote a windows application in
Pascall using Lazarus for communication, cal-

ibration and logging with HydroAHRS. The
application is shown in figure 2.12.

Python- and web-based front-end

I created a web-based front-end in JavaScript/-
HTML/CSS to visualize the data from Hy-
droAHRS. A Python server talks to the Hy-
droAHRS over USB and redirects the data to
the web-app. The application is shown in figure
2.13.

Another Python-application using mat-
plotlib for the realtime-plotting has also been
developed.

InvenSense cube

InvenSense has released a Python application
which renders the spatial orientation of an
AHRS as a cube using OpenGL. The application
uses a binary format to transfer data from the
AHRS and can thus handle very high sampling
rates.

2.4 Testing and results

The HydroAHRS mk.I and mk.IT have been
tested in both controlled environments and
in fieldwork, however, the last version (Hy-
droAHRS mk.IIT) has not.

2.4.1 Fieldwork in Czech
Republic 2013

HydroAHRS mk.I was created for its use in
fieldwork in Czech Republic at lake Rimov
in August 2013. The experiments conducted
revolved around phenomenas occurring during
horizontal beaming with hydroacoustic echo
sounders. The mounting angle of the equipment
had to be known for the experiment to be
successful.

Two HydroAHRS mk.I units were built and
brought to the Czech Republic. To test their
water resistance they were suspended in a bucket
of water for multiple hours. No leakage was
observed.

Testing and results

95

@ IMU unit nr=5 WARNING: Not calibrated

Record data

File name:

File name postfix

Record Nr: 0

Test_1

Setup | Main | Calib1 |Calib.2[log [tmp | TabSheet2|

E Pan Tilt Rot IMU Mounting

\ (Stait Facing direction
N - .
S [C|Rec. onfoff @ Horizontal @ Same as transducer
e © Vertical () Opposite of transducer
W 783 88.8 -20 Readfreq. op [i
corr.=0.0 corr.=0.0 corr.=0.0 reading
History plot
o B Do o 2 RN
O O] x(-1)

Pan

0 20 40 60 80100120140160180200220240260

Figure 2.12: Windows-based front-end for HydroAHRS.

' [hydroAHRS Frontend =

€« = C f [}locahost:8080 =
(N
Current tilt: Current roll: Current heading,
-27.8 -45.0 103
(N
Accuracy; 3. Timestamp: 0 seconds,
- J

Figure 2.13: Web-based front-end for HydroAHRS.

o6

Construction of an Attitude and Heading Reference System (AHRS)

The units were then calibrated using a Leica
DISTO D5 as reference. The Leica has an
accuracy of £0.3°. It is shown in figure 2.14.

A bash script was used to record the tilt from
the HydroAHRS mk.I and note the reference
value from the Leica. Gnuplot was then used to
plot the results and to fit the data to a linear
function using a Non-linear least squares (NLLS)
Marquardt-Levenberg algorithm (available in
Gnuplot). The resulting linear regression gave
the offset and slope error of the HydroAHRS
mk.I compared to the Leica.

One of the units was mounted on the same
plate as a Simrad EK60 10 x 4° transducer,
as shown in the bottom of figure 2.15a, after
it had been calibrated. This unit was used
to report the tilt angle during the installation
and use of the transducer. 15 meter long active
USB-extension cables were used to connect the
HydroAHRS mk.I to a computer.

The other HydroAHRS mk.I was later
mounted on a sub-Atlantic pan (heading) tilt
rotator, along with a transducer, as shown in
figure 2.15b. The rotator had motors inside,
making it possible to turn it around in two axes
and adjusting its heading and tilt. The current
heading and tilt was reported by the rotator
using an integrated feedback potentiometer. A
Rieker H5A1-90 one axis inclinometer was also
mounted on the rotator. The rotator was set to
different tilt angles, and the same Leica DISTO
D5 was used to measure the angle. The results
are shown in figure 2.16.

During the experiments using the Hy-
droAHRS mk.I, two problems were encountered.
A slight drift in the tilt and roll measurements
was discovered. This is most likely caused
by the system slowly converging against a
value. More importantly, it was discovered
that the HydroAHRS mk.I had low repeatabil-
ity. Meaning that a power-cycle would change
the measurements even though the unit was
stationary. This made it practically impossible
to calibrate the device, and we did not trust its
data. After multiple days of attempting to get
trustworthy readings, a fail-safe replacement
was used instead (of any of the electronic
measuring devices). The replacement was a
simple protractor, consisting of a string with a

mass attached, an aluminium bar with degree
markings and a webcamera.

2.4.2 HydroAHRS mk.II
repeatability test

The repeatability of HydroAHRS mk.IT was
tested by mounting the device to a protractor.
Multiple readings were then taken at various
angles, with a power-cycle in between. The
measurements showed that the same angle was
found within 0.05° every time, after waiting for
the device to settle. This was, however, only
tested with one unit, so until a more thorough
repeatability test has been conducted, we regard
the tilt repeatability to be within 40.1°.

2.4.3 HydroAHRS mk.IT RTC
drift test

To find the level of drift on the timestamp
calculated from the RTC crystal we let a unit
run for multiple hours and compared the start
and stop timestamp with a Network Time
Protocol (NTP)-synchronized computer. We
found approximately 13seconds drift after 20
hours and 48 minutes. This corresponds to
174 ppm and is not adequate. A workaround is
discussed in section 2.5.4.

2.4.4 HydroAHRS mk.II indoor
test and calibration

Two procedures were conducted to find the offset
and slope error of each unit, and to see how
linear their response were.

HydroAHRS mk.IT offset calibration

First the offset error was found by placing the
unit parallel to a vertical surface. The vertical
surface was found by aligning an U-shaped
aluminium bar to a long string with a mass
attached at the end. The mass was suspended
in a bucket of water to dampen its movements.
The long length of the string and bar made it
possible to align the bar accurately. The setup
is shown in figure 2.17a.

Testing and results 57

(a) Leica mounted to a unit under test (UUT) (b) Leica mounted to a try square for easy calibra-
(HydroAHRS mk.I). tion.

Figure 2.14: Photographs of Leica DISTO D5 used for calibration.

(a) HydroAHRS mk.I during installation on trans- (b) Rotator (black), along with the transducer
ducer plate. (orange), the HydroAHRS mk.I (square grey box),
the Rieker (round grey box) and the Leica (yellow).

Figure 2.15: HydroAHRS mk.I in use at lake Rimov in 2013.

o8

Construction of an Attitude and Heading Reference System (AHRS)

HydroAHRS mk.I
sub-Atlantic rotator
Rieker H5A1-90 -

4
0
°. 4
[}
E;
< -8
+ A
g 1 A
5
Z 16 Fav
7
3] // X /
v —20 |- :
= —24
—928 Lo
_32 1 1 |

—32 —28 —24 —20 —16 —12

-8 -4 0 4

Reference angle (Leica) [°]

Figure 2.16: Calibration points and linear regression for tilt-meters used at lake Rimov in 2013.
The HydroAHRS mk.I, Rieker H5A1-90, and rotator-tiltmeter are shown.

HydroAHRS mk.II slope calibration

We used Pythagoras theorem to find the slope
error. The unit under test (UUT) was mounted
to an aluminium bar (figure 2.17b) at a known
distance away from a vertical ruler (figure 2.17c¢).
The ruler was confirmed to be vertical by using
the same method as described in the offset-
calibration. A laser pointer was attached to
the end of the bar. By tilting the bar, the
laser dot was moved between different steps of
the ruler. The angle reported by the UUT was
recorded for each step. This was done with
the UUT mounted both normal and reversed
(flipped front-to-back), to expose the offset error.
The measured data is shown in figure 2.18.

2.4.5 Fieldwork in Czech
Republic 2014

HydroAHRS mk.II (both with the first and
second casing) have been tested by FishEcU4

during fieldwork they have conducted in the
Czech Republic.

Multiple units of the first revision (plastic)
casing stopped working (no response over USB).
We suspect they died because of ESD-damage.
None of the second revision casing units have
died.

FishEcU reported that the heading calcula-
tion drifted substantially. This has been verified
by us. We found approximately 130° drift over
8 hours.

2.4.6 Dynamic test

A dynamic test setup has been created (together
with Jensen), but the test has not yet been
performed with any of the HydroAHRS. This
test would show the response time of the system.
An AHRS can be placed on a wooden rod with
one end connected to a wheel, while the other

14Fish Ecology Unit of the Department of Fish and Zooplankton Ecology of the ITH BC CAS. http:

//wuw.fishecu.cz/

http://www.fishecu.cz/
http://www.fishecu.cz/

Testing and results

59

(a) Vertical reference, using a
string and a heavy mass.

(b) Aluminium bar with UUT.

(c) Vertical ruler.

Figure 2.17: Offset and slope-calibration setup.

end of the rod gliding along the table. The
wheel is shown in figure 2.20.

When the wheel is turned to an angle 0, it
will move the rod to an angle ¢, as shown in
figure 2.21. The AHRS unit will measure the
tilt angle ¢ directly and save it. Since we knew
the geometry of the setup we can calculate ¢

from 6, by using equation 2.1.

rsin(0) +b> (2.1)

= arcsi
© T 1n< I

A PCB I created, containing a Atmel AT-
megab4 MCU (not ATxmega), is used to find 6.
Between every other pair of stokes on the wheel,
a piece of semi-reflecting tape is attached. This
reflects the light emitted from an infrared (IR)
LED, and was received by a photodetector!®.
The photodetector module output a series of
pulses as the wheel is turned. The higher the
revolution, the higher the frequency of these
pulses. The MCU received the pulses and counts
the time between them.

The maximum and minimum angle of the
rod can be determined by using a laser pointer,
pointing at the opposing wall. By measuring
the distance between the two points as well as
from the wall to the setup, simple trigonometry
can be used to give the angle, as done in the
slope calibration setup.

2.4.7 HydroAHRS mk.III indoor
test and calibration

The HydroAHRS mk.IIT has not yet been
tested or calibrated in a controlled environment.
Although preliminary tests have not shown
drift on the calculated heading. It has also
shown that the unit is capable of handling high
sample rates (up to 200 Hz). The tilt and roll
calculations are based on the same firmware for
the DMP as the HydroAHRS mk.II, and is thus
expected to provide similar results.

15The photodetector modulated the IR LED, so it was quite resistant of disturbances from the surrounding light

60 Construction of an Attitude and Heading Reference System (AHRS)

HydroAHRS mk.IT #01 + HydroAHRS mk.IT #08
HydroAHRS mk.IT #02 o HydroAHRS mk.IT #09)
HydroAHRS mk.IT #03 * HydroAHRS mk.IT #10 a
B,
90 e P
o a8 s
n®
g s s,
% E\:‘:‘ WX x 2,8
Z 70 e 0 5
ot %]
= & N
= 5 L8
S 60 S k|
S Y \
50
o
Ideal
130
= 120 I’ + B
=] e A
< x ot J&p
2 110 A 5"
5 e a giA
£ 100 A @ ‘QiEA
> }(/ ’s
i s g 'AAX
90 x o e
+ /// AAA
’ o
0 10 20 30 40 0 10 20 30 40
Reference angle [°] Reference angle [°]

Figure 2.18: Slope calibration measurements taken with HydroAHRS mk.IT units 1,2,3 in March
2014 and 8,9,10 in June 2014. Measurements were taken with the front side away from the ruler
(top), and again with the front against (bottom). This shows the offset error, as can be seen with
HydroAHRS mk.IT unit 10. Its measurements follows the ideal line when facing away from the
ruler, but misses the line after it has been flipped.

Testing and results 61

Figure 2.19: HydroAHRS mk.IT (first casing revision), used in experiments conducted by FishEcU
in the Czech Republic in 2014.

. \”';.‘ .'vo"

Figure 2.20: Photograph of the wheel and detector PCB for the dynamic test.

Figure 2.21: Diagram of the dynamic test.

62

Construction of an Attitude and Heading Reference System (AHRS)

2.5 Discussion

The following paragraphs discusses some
thoughts regarding the development and use
of the HydroAHRS.

2.5.1 HydroAHRS mk.II tilt test
results

Figure 2.18 shows that the tilt-measurements
from all the HydroAHRS mk.II units tested
are linear over their working range. The
repeatability test described in section 2.4.2
shows that power-cycles does not affect the
measured tilt. The slope and offset error may
thus be removed through calibration, which
results in accurate tilt-measurements. The exact
accuracy of the HydroAHRS mk.IT (or mk.IIT)
has not been determined, but an (absolute angle)
accuracy near the repeatability of £0.1° should
be achievable through calibration.

2.5.2 Comparison test

It should be emphasized that testing of the
complimentary filter, which showed bad repeata-
bility was done on the HydroAHRS mk.I. A test
comparing Jensen’s unit and HydroAHRS mk.I
was planned, but got cancelled when a new
solution for the sensor fusion emerged.

2.5.3 Mounting orientation

Care must be taken when calibrating and
mounting the units, to make sure the units
are mounted the same way as when they were
calibrated.

2.5.4 Timestamp drift

To circumvent the high drift on the timestamp
from HydroAHRS mk.II, we can use the client
computer to reset the RTC frequently. Another
solution is to let the client computer ask for
single samples and timestamp the sample on
the computer. If the computer is also used for
receiving the data from an echosounder, both
will be timestamped with the same clock and
automatically be synchronized. There is a delay
(with jitter) between the clients request and a
sample has been delivered. This delay and jitter
should be measured.

2.5.5 DMP and MPL
documentation

The firmware downloaded into the DMP of
the MPU-9150 is a pre-compiled binary blob.
With the lacking documentation of the DMP,
it makes it very difficult to inspect what the
DMP is actually doing or change its behaviour.
Nevertheless, testing has shown that the DMP
is performing a satisfactory sensor fusion of the
accelerometer and gyroscope data. The same
applies for the pre-compiled MPL, used for the
magnetometer fusion.

2.5.6 Future work

Future work involve testing the heading calcu-
lation of the final version, testing the dynamic
response at the full sampling rate of 200 Hz, im-
plementing Ethernet communication and saving

all calibration data to EEPROM.

Summary

63

2.6 Summary

Three different attempts have been made on
designing a fully functional AHRS, with both
software and hardware undergoing these revi-
sions. These are named HydroAHRS mk.I,
mk.IT and mk.III. The final version (mk.IIT)
uses a 32-bit ARM Cortex-M MCU, a MPU-
9150 (3-axis accelerometer, 3-axis gyroscope and
3-axis magnetometer) sensor, and code supplied
from the manufacturer (InvenSense) to perform
sensor fusion and angle calculations. Fieldwork
has shown that the HydroAHRS mk.II, with the
second casing revision, can be successfully used
under water. A simple repeatability test with

power-cycles between each measurement was
conducted with HydroAHRS mk.II. The test
showed that the same angle was found within
+0.1° every time, after waiting for the device
to settle. Offset and slope calibrations have
been performed on six HydroAHRS mk.IT units,
which all showed a linear response over their
working range. Together with the repeatability
test, an accuracy close to 40.1° should thus
be achievable. We have managed to create a
unit which fulfilled our requirements of a) low
cost; b) sufficient accuracy; ¢) watertightness;
d) repeatability; and e) with heading calculation,
although the last version (mk.III) has not yet
been tested.

64

Construction of an Attitude and Heading Reference System (AHRS)

Paper 3

Construction of a primitive
autopilot for hydroacoustic work

Abstract

This paper presents the construction and implementation of a primitive autopilot used to
automatically steer a work platform for hydroacoustic work. Together with a vessel, this
creates an Automatic Survey Vessel (ASV). A Global Navigation Satellite System (GNSS)
and a compass is used to steer the vessel at constant speed through multiple waypoints.
Realtime transmission of new waypoints enables dynamic route generation. Recorded or
pre-planned routes can also be executed. The autopilot has been successfully tested on a

land-based rover.

Keywords: Autopilot, GNSS

3.1 Introduction

A lot of equipment and manpower is required to
conduct hydroacoustic surveys with high cover-
age. Earlier work described in paper 1 presents
the construction of a remote controlled hydroa-
coustic work platform. This work platform can
be controlled from a distance, thus making it
possible to do hydroacoustic experiments or
fieldwork without letting movement from the
operator disturb the hydroacoustic recordings.

To further increase the efficiency of hydroa-
coustic fieldwork, an autopilot can be used
to control the vessel during surveys. This
has multiple applications, for instance auto-
matic night surveying, automatic abundance
estimation, environmental surveillance, and as
a tool for manual surveying. By telling the
autopilot to follow a larger vessel with a crew,
higher survey coverage can be achieved and

complicated driving patterns can be created
(as the small boat is more agile than the large
manned vessel). This paper will describe the
implementation of a primitive autopilot as a
proof of concept for future work. A vessel with
this autopilot is named an Automatic Survey
Vessel (ASV).

The autopilot is able to follow a route con-
sisting of multiple waypoints. These waypoints
will be given to the autopilot while it is running.
The waypoints can originate from a pre-planned
route on a map, an earlier recorded route, or be
dynamically calculated by a separate computer
in realtime. This makes it possible to create
driving patterns on-the-fly. For instance to
make the ASV drive in patterns around a larger
vessel with a crew. The autopilot will follow
pre-programmed rules, without making any
decisions while it is running. It is therefore
not autonomous, but merely automatic. All
activity will be under human supervision. A
web-based control panel is used to observe and

65

66

Construction of a primitive autopilot for hydroacoustic work

control the vessel, and communicates with the
autopilot using WebSockets.

A similar project was presented in 2013 [22],
focusing on automatic estimation of fish density.
This is one of the possible application with our
ASV. Other related projects include [3,23-25].

3.2 Theory

3.2.1 PID-regulator

A PID-regulator is a simple yet powerful control
loop system. It continuously calculates the error
between the current state of a system and the
wanted state (setpoint). The error signal is
modified by the PID-regulator to produce an
optimal control signal for the system, using
multiplicative, integral and derivative terms, as
shown in figure 3.1.

More information about PID-regulators is
available at [26-28].

3.2.2 WebSockets

WebSockets is protocol that allows full-duplex
communication between a web-browser and
a server. The server can send messages to
the web-browser without being polled for the
information. WebSockets makes it possible to
create real-time interactive control systems in a
web-browser.

It has been standardized by the Internet
Engineering Task Force (IETF) as RFC 6455.
More details can be found in the standard [29].

3.2.3 High accuracy positioning

Multiple solutions are possible to get high
accuracy position data. Primarily the setup
of a personal Differential GPS (DGPS) system,
subscription to correction data distributed by
satellite or land-based networks or the use of
real-time kinematics.

A local DGPS system can be created by plac-
ing one or multiple Global Navigation Satellite
System (GNSS)-receivers around an area to be
examined. These will be fixed to the ground

Las in free speech

and can average their position over time to ac-
curately return their true position. A deviation
from this position is an error, mainly created
by atmospheric phenomena. This deviation (for
each satellite) can be sent to a mobile vessel,
enabling it to compensate for the error in its
own measurements.

Multiple permanently installed base stations,
often located along coastal shores for use in
maritime navigation, make up already available
DGPS systems. Access to the deviation data
from these systems can be purchased, with a
price depending on the level of accuracy needed
(deci- or centimeter). The data is commonly
relayed by radio from land stations. Kystverket
[30] and Kartverket [31] provides such services
in Norway. High accuracy is achieved when the
distance to the base stations is short.

Deviation data can also be relayed using
satellites (satellite-based augmentation system
(SBAS)) and constitutes a wide area DGPS-
system. The accuracy is not as a high as a
localized DGPS system, since the base station
is usually far away, but the coverage is good.
European Geostationary Navigation Overlay
Service (EGNOS) is a SBAS deployed in Europe
and Wide Area Augmentation System (WAAS)
is a SBAS covering North America.

Real-time kinematics measures the phase
of the carrier wave from a GNSS to achieve
high accuracy, in addition to using the infor-
mation encoded within the GNSS-messages [32].
RTKLIB is a free! program package for GNSS
positioning, making all the calculations neces-
sary to perform real-time kinematics. RTKLIB
needs access to raw data from a GNSS-receiver,
which is only available on selected devices (e.g.
U-blox 6 PPP).

Further information about GNSS and SBAS
can be found in [33].

3.2.4 Haversine

The haversine formula is an equation which gives
the great-circle distance between two points on
a sphere, with good numerical precision [34].
With ¢1, ¢o as the latitude of point 1 and
2, A1, Az is the longitude of point 1 and 2,

Material and methods

67

kpe(t)

u() +/Z\ I k; [e(t)dt

+/Z\+

)

b

t
System %L

&/

+

Figure 3.1: Overview over a PID-regulator.

A¢ = ¢o — ¢1 and AN = Ay — \q, the haversine
is given as equation (3.1).
2

A A
a = sin 7¢ + €OS @1 COS P2 sin? -

d = 2rarcsin (v/a) (3.1)

where 7 is the radius of the sphere, and d is the
distance.

3.2.5 Bearing

The initial bearing between two points on a
sphere is given by equation (3.2) [35].

y = sin A\ cos ¢o

T = CoS @1 Sin ¢o — sin ¢y cos o cos AN

0 = arctan 2 (3.2)
x

where 0 is the bearing, ¢1, ¢o is the latitude
of the initial and final point, and A\ is the
difference between the longitude of the initial
and final point.

A normalized bearing (0-360 °) is given by
(04360) % 360, where % is the (floating) modulo
operator.

3.3 Material and methods

The autopilot extends the remote work platform
described in paper 1. It will be placed as

a fourth printed circuit board (PCB) on the
control unit stack. A block schematic of the
complete control unit stack is shown in figure
3.2, and a photograph in figure 3.3.

3.3.1 Selection of GNSS

We chose to use a single GNSS-receiver as
a start, since this is the lowest entry point
(simple and inexpensive) to a positioning system
and is usable anywhere on Earth. The GNSS-
receivers found have support for SBAS and
this has been enabled most of the time. A
single GNSS-receiver may be sufficient, as we
do not have very strict requirements for absolute
position. We will rely on the compass for
short term navigation and by only using the
autopilot in lakes (and away from the shore),
we have few obstacles. Good coverage can also
be achieved without having to follow an exact
route. A more advanced positioning system can
be implemented at a later stage, if needed.

We initially chose to use a Trimble Coper-
nicus II, but preliminary testing showed dis-
appointing accuracy and reception sensitivity
(under difficult conditions). A U-blox 6 Precise
Point Positioning (PPP) evaluation kit was
acquired, since it promises sub-meter precision
when used together with a SBAS. It can also
output the raw data needed by RTKLIB.

Non-PPP variants within the same family
have been used afterwards, namely U-blox NEO-

2CEP is a measure of precision. It sets the radius of a circle (with the mean as center), where 50 % of all

samples is expected to be included.

68 Construction of a primitive autopilot for hydroacoustic work

HydroAHRS
(Compass)

GPS antenna

=il

[Receiver]

\r WiFi
AP

Figure 3.3: Photograph of the complete control unit stack, with motor control system, autopilot
and compass.

Material and methods

69

6M, U-blox NEO-7M and U-blox NEO-MS8N. U-
blox NEO-M8N promises a position precision of
2.0m Circular Error Probable (CEP)? and has
been chosen as the GNSS-receiver to use in the
autopilot. This is the latest device in the U-blox
NEO M-series and offers a good compromise
between price (44 EUR) and performance.

We have used active (GPS only) patch
antennas supplied by U-blox during testing and
development. As suggested by [36], changing to
a geodetic-grade antenna is an effective way to
increase performance.

Three tests investigating the performance of
the chosen GNSS-receivers have been conducted,
and are described in section 3.5.

3.3.2 Selection of compass

Along with a GNSS to get position data, the
autopilot will use an Attitude and Heading
Reference System (AHRS) to get the current
heading. Our self-made HydroAHRS described
in paper 2 will be used as the compass.

3.3.3 Selection of MCU

ATxmega32A4U from Atmel was initially chosen
as the microcontroller unit (MCU) for the
autopilot, but this was later changed to an ARM
Cortex M4 MCU from Texas Instruments (TT)
named TM4C129 (cost; ~15USD each at a
quantity of 100). The change was done because
TM4C129 has both Ethernet MAC and PHY
layer embedded, making it possible for it to talk
directly over Ethernet.

OpenOCD was used together with a USB
JTAG debugger® from Olimex to flash (pro-
gram) the ARM MCU. GNU Debugger (GDB)
was used together with OpenOCD to debug the
MCU.

3.3.4 Firmware and autopilot
algorithm

A very simple algorithm is used in this au-
topilot. Based on the measured location of
the vessel (from the GNSS), and where we
want arrive (from the waypoint), the wanted

3Prod. id: ARM-USB-OCD-H

course is calculated using equation (3.2). The
measured heading (from the compass) is then
used to calculate the thrust needed to achieve
the wanted heading corresponding to the calcu-
lated course. The heading is adjusted while
maintaining (near) constant speed. A PID-
regulator is used to calculate the thrust needed
to achieve the wanted heading, as fast as
possible with minimum overshoot. It is based
on an application note and code from Atmel
[28]. A waypoint is approved as passed when
the GNSS-receiver reports a position within a
perimeter around the waypoint’s center. The
next waypoint will then be used as the new
destination, or the autopilot will stop if no
new waypoints are available. New waypoints
received by the autopilot will be acknowledged
back to the sender upon arrival.

Firmware incorporating this algorithm was
written for the TM4C129. A block schematic
of the autopilot algorithm and program flow
is shown in figure 3.4. The firmware for the
autopilot is listed in appendix M.

3.3.5 Hardware and PCB

The hardware of the autopilot consist of the
main MCU which calculates the thrust to each
of the engines, a GNSS, a compass and a
communication unit. All of these modules were
separate PCBs during the development of the
autopilot, as shown in figure 3.5.

These components were finally combined
into one 4-layer PCB, with the compass exter-
nally connected as a snap-in board. To minimize
the signal loss from the Global Positioning
System (GPS) antenna to the GNSS-receiver
special care was given during the routing of the
RF-signal path. The trace width was adjusted
together with the substrate thickness to give a
matched impedance of 50€). A separate solid
ground plane is placed under the GNSS-receiver
circuit, connected to the digital ground plane in
a single point. A guard ring is routed around the
GNSS signal path to minimize noise reception.

The PCB is shown in figure 3.6 and an
assembled autopilot is shown in figure 3.7.

70 Construction of a primitive autopilot for hydroacoustic work

TCP package
with command
received

motor ready = true Parse new WP first_ WP = new_WP

yes

next. WP = new_ WP

N ACK new WP via UDP

Init ASV autopilot task Init IwIP task -

]

Create
FreeRTOS task

]

Sleep 100 ms Stop motors Send UART byte

Init PID-regulator

10 Hz

AHRS data yes Parse PASHR Calculate PID-change GNSS && AHRS \ yes Drive motors
received? Set current heading and motor thrust && motor ready? S

no
1Hz
GNSS data yes Parse GPMRC Calculate distance yes first_ WP = next_ WP
received? Set current location to first. WP next_ WP =0
no
first_ WP = 0
motor ready = false
Send UDP package
1no with status \
\ Calculate course

Count number of WP

Figure 3.4: Block schematic of the autopilot algorithm and program flow. A callback function
from lwIP starts the incoming TCP command parsing.

Material and methods 71

Figure 3.6: CGI of the autopilot PCB. Left image shows the top side, right image shows the
bottom.

72

Construction of a primitive autopilot for hydroacoustic work

Figure 3.7: Photograph of assembled autopilot PCB.

3.3.6 Sub-system communication

All of the sub-systems communicate with the
main MCU using UART. Inter-Integrated
Circuit (I2C) was considered, but UART was
found to be sufficient since the sub-systems do
not need to share a bus or talk directly to each
other. UART is simpler to work with since
there is no need for a complex driver. Each
sub-system talks to a separate UART instance
in the MCU. When an interrupt signals the
arrival of a new byte from each sub-system, this
byte is put into a ring buffer with a common
interrupt handler (shared by all sub-systems).
A command counter for each sub-system is
increased when a newline is received. The
newline terminates one command.

3.3.7 Operator communication

We need a way for the operator to control the au-
topilot. The radio control (RC)-communication
used for the remote work platform is too simple
and does not have the required bandwidth.
Ethernet is a widely used and robust network
technology that is fitting for communication
with the autopilot.

A radio link consisting of two Ubiquity
PicoStation M2 delivers a stable, encrypted
and long range wireless connection between
the operator and the ASV. This was tested
in paper 1. These units were chosen because
they are a) omni-directional; b) physically small;
¢) inexpensive; and d) manufactured by a
well-known company specializing in wireless
bridges.

TM4C129 has Ethernet capabilities embed-
ded, but still requires quite a lot of software
to utilize (e.g. a real-time operating system
(RTOS)?* and an Internet Protocol (IP)-stack).
In the terms of the OSI model, the physical-
(PHY) and data link-layer (MAC) is embed-
ded in hardware, while the network- (IP) and
transport-layer (UDP/TCP) must be imple-
mented in software. A different communication
device was therefore initially used.

A very cheap (~5USD) Chinese chip named
ESP8266 incorporates a wireless transceiver
and UART peripherals, all in one package.
The transceiver was used as a serial to WiFi
bridge, connecting the autopilot to one of the
PicoStations. This was, however, found to be
quite unreliable.

4A RTOS is not required, but convenient if multiple tasks needs to be performed at the same time.

Material and methods

73

The firmware was therefore adapted to run
FreeRTOS and IwIP to utilize the hardware
Ethernet capabilities of TM4C129 to send status
messages. The ESP8266 was thus abandoned.
User Datagram Protocol (UDP) was chosen as
the transport-layer for the status messages as
the loss of some status packets are tolerated.
Incoming commands are transported using TCP,
since their arrival is crucial. The Media Access
Control (MAC)-address (02:41:53:56:00:00) was
set to a local administered address [37].

The PicoStation functions as a wireless
Access Point (AP), but not as a router since we
want the MCU and the client to reside within
the same network. We use static IP-addresses,
as the PicoStation cannot function as a Dynamic
Host Configuration Protocol (DHCP)-server
without being a router. The MCU has the
static address 192.168.0.21, the PicoStation
192.168.0.20, and the client a different address
in the 192.168.0/24 range®.

Wireshark is a free® packet analyzer used to
debug the Ethernet communication.

3.3.8 ASV Land

Many cycles of testing were needed while devel-
oping the autopilot. Since the autopilot relies on
input from GNSS-satellites and needs room to
move freely it is necessary to perform this testing
outdoors. A land rover was therefore built to
make the development of the autopilot easier.
By using the land rover it is possible to test the
autopilot frequently without having to travel to
a lake. This saves time in planning, traveling
and installation. It also makes it possible to
mark the path (track) traveled on the ground.
The land rover is shown in figure 3.8.

The land rover uses the same motor place-
ment as a vessel on water. One motor on each
side is connected to a wheel. A third wheel,
which can rotate freely, is used for support. By
controlling the rotational speed and direction
of each of the side wheels, the land rover will
steer and move in the same way as an ASV.

The land rover is built using plywood, wood,
plastic laminated plates (Perstorp) and acrylic
sheets. Two powerful motors were needed to
drive the wheels. I visited a wrecking yard and
bought two front wiper motors (8D1955113B by
Bosch). Front wiper motors were chosen because
of their high torque and easy availability.

The continues current draw of each of the
motors without load was almost 5 A, while the
peak inrush current was 8 A.

These motors have a RPM disk, making it
possible to count their revolutions. Table 3.1
shows the revolutions per minute (RPM) for
each of the motors. This was measured using an
oscilloscope, with the disk connected through a
pull-up resistor to a power source.

A maximum forward rotational speed of 110
RPM and a wheel diameter of 20 cm yields a
maximum speed of about 4km/h (20 x 7 X
110 =22,

minute

Table 3.1: Rotational speed for the two front
motor wipers used in the land rover.

Motor Backward [rpm] Forward [rpm)]
Motor 1 92 112
Motor 2 83 128

The wheels are mounted to the motor by
pressing a mounting bracket on the wheel to
a rilled shaft on the motor. This type of
mounting limits the size of the wheel, as it
cannot withstand large forces perpendicular to
the rotation of the wheel.

3.3.9 ASV control panel

A web-based control panel has been developed
to control and monitor the autopilot. This
control panel shows the location of the ASV
on a map, its current and wanted heading, its
distance to the first waypoint and other status
information. The control panel automatically
sends new waypoints to the autopilot when a
waypoint has been passed (number of waypoints

5The slash notation /24 means that 24 bits is used for the address space, and the remaining 8 bit is used for
the host address space. 8 bit gives us 256 host addresses (0-255).

Sas in free speech

74 Construction of a primitive autopilot for hydroacoustic work

Figure 3.8: Photograph of land rover.

[1] ASV Control Panel x

< - ¢ « ®»ochost s

|4
18]

>

Wy,

s 1,

o @,
e N %

)

=

2

F

&
S
=

5
2
o

A =
KA

% Running

£ 2015-04-26
O 10:48:25

® 2wWP

& 25.6 m to WP
£@ oK ¥
fo

K
O ‘

2
o

(o]
(o]

LS

mﬂ"‘m

© 0O
40 24

Figure 3.9: Web-based control panel for the ASV. The blue and red needle shows the current
and wanted heading respectively. The red circles indicates the next waypoints.

Testing and results

(0]

reported by the autopilot is less than two). The
control panel is shown in figure 3.9.

Node.js is used to relay the content of
the UDP packages from the autopilot, over
WebSockets (using Socket.IO) to the web-app.
It also sends control messages over TCP back
to the autopilot.

The code for the node.js server and control
panel is listed in appendix N.

3.4 Testing and results

Three GNSS-receiver tests have been performed.

One moving outdoor test, one long-term indoor
stationary test and one short-term outdoor
stationary test. The autopilot has been tested
with the land rover.

3.4.1 Moving GNSS-receiver test

Keeping a GNSS-receiver stationary gives a
good indication of its performance and this
has been tested in the two consecutive test
setups. We wanted, nevertheless, to make sure
that there was no internal algorithm optimizing
its position while being stationary. We would
therefore like to test one of the GNSS-receivers
(U-blox 6 PPP, with SBAS disabled) accuracy
during movement. The best way to achieve
this would be to have a good reference path for
the GNSS-receiver to move along. A circular
path created with a carousel was finally chosen
because of the high accuracy and repeatability
given by this setup. I built a large carousel using
string, wood and aluminium bars as shown in
figure 3.10. The antenna for the U-blox 6 PPP
was placed at the end of the horizontal beam,
5.0 meter from the center.

The carousel was placed outside, and the
data from the GNSS-receiver was recording to
a Secure Digital (SD)-card using OpenLog’.
We did four takes, moving the GNSS-receiver
around multiple times at different speeds each
time, as listed in table 3.2. The whole recording
lasted 15 minutes and 50 seconds, and is showed

in figure 3.11. The two last takes had few data
points because of their short period.

The recording of the first and second take,
consisting of 10 cycles with an average period
of 22.5 and 17.4 seconds respectively, is shown
in figure 3.12. The center of the circle was
found by averaging all the points along the
circle (of the second take). It is therefore not
the exact center, but the best measure I had
available. By assuming the Earth is flat over
the area around the circle, I found that 0.0027
arc minutes latitude and 0.0054 arc minutes
longitude corresponds to 5 meters from the
center. The samples are scaled accordingly, to
show the distance from the center.

The deviation from the circle was found by
a Python program. The program translated all
the values to decimal degrees and calculated the
haversine distance for each one to the center.
This distance should be 5 meters. The sample
size is too small to calculate standard deviation.
The error for the second take is shown in figure
3.13, along with the latitudinal and longitudinal
position referenced to the center. The error is
less than +1m for this take. The first (and
other) take had worse latitudinal accuracy, as
shown in figure 3.11 and 3.12.

3.4.2 Long-term indoor
stationary GINSS test

Three of the GNSS-receivers considered for use
with the autopilot were tested over a period of
40 days in a stationary setup. The receivers
considered were U-blox 6 PPP, U-blox NEO-
6M and Trimble Copernicus II. The U-blox 6
PPP had SBAS disabled. The Trimble stopped
functioning during the setup. All of them
were fixed to one location during the whole
experiment. They were placed indoors in a
window sill for weather-protection, as shown
in figure 3.14. We thought the view of the
sky was adequate, and the receivers were able
to find a minimum of four satellites at most
times. The receivers output NMEA-messages
at an interval of 1 Hz which were logged by a
computer over Universal Serial Bus (USB). Awk®

7SparkFun OpenLog is an open source data logger. Available at https://www.sparkfun.com/products/9530
8Awk is an interpereted programming language commonly used for data extraction and text processing

https://www.sparkfun.com/products/9530

Latitude

Longitude

76 Construction of a primitive autopilot for hydroacoustic work

Figure 3.10: Carousel used in the moving GNSS-receiver test. The antenna of the GNSS-receiver
is placed at the end of the horizontal beam. Joakim Myrland is standing next to it for scale.

Table 3.2: List of takes during carousel GNSS test.

Take # From To # of per Time [Sec] Period [if‘;er]

1 13:17:53 13:21:38 10 225 22.5

2 13:22:36 13:25:30 10 174 17.4

3 13:26:37 13:28:07 10 90 9.0

4 13:29:33 13:30:07 5 34 6.8
59°56.199 | | 4 - | T]
59°56.196 M‘%&}ﬁ\ﬁ\f %qgﬁﬁ\ﬁﬁg’ Jﬁ%gﬁﬁ?{fﬂﬁ% f\"é f])
59°56.193 iy 1 | | :

i

i

s e
S
ﬁ.{
b+

Sl
ol

13:18 13:20 13:22 13:24 13:26 13:28 13:30

Time

B r—;

LTI
—

Figure 3.11: Raw latitude and longitude data of all takes in the GNSS carousel test.

Testing and results 7

6 6 ;
o, o oo C ofoN 00 S5O, o
5 400 Qf’&rﬁ I 4 . > oses
45 o V Oo Cp O% ° 0 D
) @ o
© %/ q o°8
g 2tfo - 2 | o
o 9 o ©
& ° °c °®
g & o % Sl
5 Ofe 00 0 0d®
< [0) Y
% °© o © o
kS og® % ° goo o [o°®
g g o [} 0] /00
s o) °© o
=1 ® oo [° o p%é
R .. o . S 4 s ° N
z ® g0 By 0, P05 X o e ©
Q) feleoYe) : & 9] ocl
= 0 8 ® ® 00 0 2° B @ o
—6 | o 08 6 ;
-6 -4 =2 0 2 4 6 -6 -4 =2 0 2 4 6
Latitudinal distance from center [m] Latitudinal distance from center [m)]
(a) First take. (b) Second take.

Figure 3.12: Plot of the distance from the center of the moving GNSS-circle to the mean, for the
first and second take. The solid line marks the carousel.

Eoroas AN A A A A AR
g 2 LS 2 WA G G A S A S A S S S WA A
£ a5 L0 AR U AL A S F A AW WA Y
I LA A A S WA VA S VA VA
AT W S & AR AN
- N SN £ U SR 00 N 4 1 G A0 O O AL AW A
O 4 B T A SO R S ARG
T 2 VISR V00 W0 B0 VAN ¥ S0 ¥ SN VA V¥
- 1

05 /\ A

R R A AN TAT W N Sy
2 05 \ / Y% v Y A
=T \Y, i

13:22:30 13:23:00 13:23:30 13:24:00 13:24:30 13:25:00 13:25:30

Time

Figure 3.13: Data from the second GNSS carousel take. From the top: latitudinal positon relative
to center, longitudinal positon relative to center and the error from the reference path.

78 Construction of a primitive autopilot for hydroacoustic work

Figure 3.14: The indoor stationary GNSS-receiver test setup. The gray box to the left is the
U-blox 6 PPP evaluation kit with the black antenna. The red PCB is the Trimble Copernicus II
with the beige antenna in the middle. The blue PCB is the U-blox NEO-6M with the rightmost
beige antenna.

NEO-6M CEP mmmm |

(%]

Samples in bin
Total samples

12
10

SN = O

14
12
10

SN = O

-40

-20 0 20

Latitudinal distance

from median [m]

40

-40

-20 0 20

Longitudinal distance

from median [m]

40

0 20 40 60

80 100

Distance from median [m]

Figure 3.15: Histogram over the distance from the median coordinate, for the two GNSS-receivers
used in the long time stationary indoor test. Bin-size is 2m.

Testing and results

79

was used to extract the date, time, latitude
and longitude position from the $GPRMC
message and number of satellites in view and
horizontal dilution of precision (HDOP) from
the $GPGGA message, from 3.5 GB of NMEA
0183 (ASCII) data. The median location was
calculated, and the distance from each sample
was found using the haversine formula in Python.
Figure 3.15 shows a histogram of the recorded
data. U-blox 6 PPP had a CEP of 20.36 m,
while U-blox NEO-6M had a CEP of 26.19m in
this test. Standard deviation was not calculated
as the data did not have a normal distribution.

The results are discussed in section 3.5.1.

3.4.3 Outdoor stationary GNSS
test

Due to the poor results from the indoor GNSS
test, a new stationary test was set up outdoors.
Five patch antennas were placed on the roof of
a residential building, as shown in figure 3.16a.
They were connected to five GNSS-receivers,
as shown in figure 3.16b. Receiver 1 and 2
were U-blox NEO-MS8N, receiver 3 and 4 were
U-blox NEO-7M, and receiver 5 was the U-
blox 6 PPP (with SBAS disabled) previously
tested. Unit 1,2,3 and 4 were located on the
autopilot PCB. Communication was initially
done directly via USB to each GNSS-receiver,
but USB communication for unit 1, 2, 3 and
4 stopped working after external power was
applied to a USB-hub®. Data was therefore read
from unit 1, 3 and 4 through the onboard MCU
and sent to a computer via UART and FTDI
(serial-to-USB) cables. Unit 2 was not used
because not enough FTDI-cables were available.

The test was conducted over a period of 24
hours, in the same way as the indoor stationary
test previously described.

The CEP, mean and standard deviation
for each receivers latitudinal and longitudinal
position was calculated, and is listed in table
3.3. A histogram of the data is shown in figure
3.17.

The results are discussed in section 3.5.2.

9The exact cause has not yet been investigated.

3.4.4 Autopilot test

The autopilot was tested on land using the
land rover with a pre-defined route. I used
the line-markings of a soccerfield with artifical
turf to create a reference path for the autopilot
to follow. I used a U-blox 7TM GNSS-receiver
to find the coordinates of five points on this
path, by averaging the measured position for
each point over a minimum of five minutes
(shown in figure 3.20a). The coordinates were
found six days before the test was conducted.
These coordinates were used as waypoints for
the autopilot.

Preliminary tests revealed that the compass
behaved unreliable when mounted on top of the
autopilot PCB. It suddenly changed its heading
significantly within short time intervals. A LED
indicating magnetic interference occasionally lit
up as well. The compass was therefore mounted
on top of a rod, to distance it from the magnetic
fields from the motors and the GPS-antenna’s
magnet. The compass worked as expected and
did no longer complain about interference after
it was moved. The new setup is shown in figure
3.20b.

Another preliminary test showed oscillations
when the land rover was trying to drive in a
straight line. The autopilot tried to adjust its
course, but overestimated the necessary thrust-
difference needed to get the correct heading.
The result was overshoot, and continues oscil-
lations. The oscillations disappeared after the
P-factor was decreased.

The land rover has different speeds on each
motor, with the right wheel moving faster than
the left wheel. This results in the land rover
turning left, when the H-bridges is controlling
them to move straight forward. This could
have been fixed by implementing an adjustment
factor for each individual motor in the steering
controller of the H-bridge driver. We kept the
asymmetrical behaviour, however, as it would
give the autopilot a greater challenge and could
be used as an simulation of the effect of external
forces acting upon the ASV. For instance wind
or a water current turning (but not drifting) the
vessel.

%]

Samples in bin
Total samples

80 Construction of a primitive autopilot for hydroacoustic work

| P

(a) Five patch antennas mounted on a roof. (b) Five GNSS-receivers. The four autopilot PCBs
are shown to the right.

Figure 3.16: Outdoor stationary GNSS-receiver test setup.

-2 -1 0 1 2 -2 -1 0 1 2 0 1 2 3 4

Latitudinal distance Longitudinal distance
from mean [m] from mean [m]

Figure 3.17: Histogram over the distance from the mean coordinate, for each of the four GNSS-
receivers used in the outdoor stationary test. Bin-size is 20 cm.

Distance from mean [m]

Discussion

81

Table 3.3: CEP, mean position and standard deviation (o) for the outdoor GNSS test.

* marks receivers with SBAS correction enabled.

of Latitude Longitude
Unit U-blox model samples CEP [m)] Mean [°] o [m] Mean [°] o [m]
1 NEO-M8N* 60613 0.95 59.9573828 1.06 10.7873568 0.65
2 NEO-M8N* 0 - - - - -
3 NEO-7M* 86400 0.77 59.9573831 0.80 10.7873701 0.58
4 NEO-7M* 86400 1.13 59.9573792 1.12 10.7873627 0.88
5 6 PPP 86400 1.02 59.9573799 1.26 10.7873459 0.68

The land rover was placed at the start
coordinate, with its heading pointing away from
the first waypoint. A laptop running the ASV
control panel was connected to the wireless
LAN (WLAN) AP on the land rover. After
a connection was established, the land rover
was started by sending the first waypoints and
activating its motors. The ASV control panel
automatically sent new waypoints after the
land rover passed each one. Waypoints were
approved as passed when the GNSS-receiver
reported a position within a 2m perimeter from
the waypoint’s center. Status messages from the
land rover was logged to file on the computer, as
well as to an SD-card on the land rover (using
the OpenLog).

To mark the path traveled, white stones were
placed behind the support wheel of the land
rover (located in the middle of the back). The
distance from each stone to the reference line
was later measured (together with its position
along the line) as shown in figure 3.20c.The
distance to the line was measured directly with
a ruler and a tape measure. The position along
the line was found by measuring the relative
distance from the last stone. Since the relative
measurements results in an accumulation of
errors, each line position was finally scaled
according to the total length of the line. A
total of 243 stones were placed and measured.

The reference path and the path traveled
(from the measured stones and GPS) are shown
in figure 3.18. The wanted heading (calculated
by the autopilot) and the current heading (mea-

sured by the compass) for the whole transect is
shown in figure 3.19.
The results are discussed in section 3.5.3.

3.5 Discussion

The following paragraphs discusses test results,
problems encountered and possible enhance-
ments for further development of the autopilot.

3.5.1 Long-term indoor GNSS
test

A median value was calculated instead of a mean
because of outliers and a skewed distribution.
The median gave a value closer to the mode.
The latitudinal accuracy was better than the
longitudinal. The window sill (and wall) the
GNSS-receivers were placed in is almost parallel
to the meridian, and this may explain the bad
longitudinal accuracy.

It is clearly visible that the indoor test
was inadequate, as the calculated CEP was
greater than 20 meters. We found both very
low accuracy and precision, much worse than
the previous (moving) GNSS test. The long-
term indoor GNSS test was thus incapable of
giving an impression of the performance of the
GNSS-receivers tested.

3.5.2 Outdoor GNSS test

The outdoor GNSS test was only conducted
in 24 hours, but still provides an indication of
the performance of the GNSS receivers. Unit

10gpsd is a free (as in free speech) GPS service daemon. http://www.catb.org/gpsd/

http://www.catb.org/gpsd/

Vertical distance from start coordinate [m]

Heading

82 Construction of a primitive autopilot for hydroacoustic work

30 T T T T T T T
Stone position .
N GPS -----
25 Planned route 7
2 | C N]
\\%J N >
15 Y /’/.:.,- \' P’;'/..';.- : i
»”° Py ol ®
%12\ g S e 4
10 | RO P R H 1
I\;
e
5 | ‘& i i
(/ s (,t
).
.1./.0'. \r
75 1 1 1 1 1 1 1
—70 —60 —-50 —40 -30 —20 —10 0

Horizontal distance from start coordinate [m]
Figure 3.18: Reference path and path traveled (from measured stones and GPS) for the land

rover autopilot test. The black circles have a radius of 2 meter, and shows the perimeter of the
waypoints.

NE - - . - - . - - .

Measured heaiding N
Wanted-+heading o

¥

F o+ 4+ # + + +i+

SW

SE 1 1 1 1
10:45 10:46 10:47 10:48 10:49 10:50 10:51

Time
Figure 3.19: Wanted heading (calculated by the autopilot) and the measured heading (from the
compass) for the land rover autopilot test.

Discussion

83

(a) Setup used to find the coordinates (b) Land rover with el- (c) Measurement setup to find stone

for the waypoints.

evated compass.

positions.

Figure 3.20: Photographs of the autopilot test setup.

1 had almost 30% of its samples missing or
invalid. This unit had earlier been automatically
reconfigured by gpsd!® and outputted different
NMEA messages than the others. Some samples
may have been corrupted when passing through
the MCU. The longitudinal accuracy was
consistently better than the latitudinal, and the

overall accuracy was similar for all the receivers.

SBAS was disabled (by error) on the U-blox
6 PPP, which makes a comparison between
PPP and non-PPP units difficult. The accuracy
found in the test was close to our expectations
given by the manufacturer’s specifications. A
CEP of about 1 meter is sufficient for the
autopilot.

3.5.3 Autopilot test

The autopilot managed to pass through all its
waypoints (figure 3.18) and stopped when it
arrived at the last. It did, however, drive
between each waypoint in large arcs. We
believe some of this behaviour is caused by the
asymmetry in motor thrust, but the main source
is the compass reporting wrong headings. This
can be seen by the difference in the northbound
(first and second waypoint) and the southbound
(last and second to last waypoint) arc. The
compass used should therefore be tested and
investigated closer. The error may be solved

by using a lookup-table between the real and
measured heading from the compass. This look-
up table can be generated by driving in a full
circle at a constant speed while the measured
heading angles from the compass is recorded.
Another way to create the look-up table would
be to rotate the compass to certain known
(relative) angles and interpolate the values in
between.

The maximum deviation from the reference
path was encountered halfway into the third arc,
with a distance of ~9.69m to the reference line.
The positions reported by the GPS corresponds
to the measured stone positions, for the most
part of the route.

The behaviour of the PID-regulator can be
seen in figure 3.19. The measured heading
is continuously adjusted to follow the wanted
heading. The asymmetry of the motor thrust
(that causes the rover to turn left) can also be
seen, as the measured heading is almost always
located below the wanted heading.

3.5.4 Communication
enhancements

The status messages is currently sent to the
broadcast address 255.255.255.255. This ad-
dress should be changed to an address in the

84

Construction of a primitive autopilot for hydroacoustic work

IPv4 local multicast scope (239.255.0.0/16) [38,
p. 2] to avoid spamming the whole network.

The new waypoint acknowledgement sent
back from the autopilot to the control panel
should be transferred using TCP instead of
UDP, since the UDP package may never arrive.

3.5.5 Implement WebSocket in
the MCU

The best way to communicate with the autopilot
would be to use the Ethernet capabilities of the
TM4C129 and implement a Hypertext Transfer
Protocol (HTTP)- and WebSocket-server in
the firmware. WebSockets enables full-duplex
realtime communication directly between the
front end software (webpage) and the MCU.
The webpage could be served by the MCU,
or preloaded on a device. By implementing
everything in the MCU, very little is required
by the operating device, just a modern web
browser which supports WebSockets and other
HyperText Markup Language (HTML) 5 com-
ponents. Any laptop, tablet or even smart
phone may thus be used to directly control the
vessel, without the need of a separate computer.

3.5.6 PID-regulator

We are at the moment only using the P-factor
in the PID-regulator, so it is currently only a
P-regulator.

3.5.7 Approximations

The bearing changes while traveling between
two points on a sphere (unless a rhumb line is
followed), but we only use the initial bearing
(forward azimuth) when calculating the course.
We believe this is a valid approximation as the
bearing is recalculated every second (after each
GNSS-sample).

We assume a spherical Earth with a radius
of 6373 km.

11

as in free speech

3.5.8 Autopilot and motor driver
communication bug

A bug between the autopilot and the motor
driver results in the motor driver stopping the
motors for a couple of seconds at seemingly
random occasions. This happens if the motor
drivers thinks the autopilot has stopped sending
commands. The bug is visible 45 seconds into
the heading-recordings of figure 3.19, as the
heading-measurements were constant when the
land-rover stopped temporarily. The cause of
the bug has not yet been found.

3.5.9 ARM toolchain

The change to a new MCU platform was quite
time-consuming, since a whole new toolchain
was used. We faced challenges with the linker-
script (mapping of the memory areas), dynamic
memory allocation, and the floating-point unit
(FPU). Stack-overflows and hardfaults were
frequent. The final software solution has,
however, proved to be stable and easy to expand.
The use of a RTOS makes it very easy to add
new tasks in seamless concurrency.

3.5.10 True north

The use of the magnetic north as reference
instead of the true north causes an error when
navigating. We believe this can be tolerated for
the short distances (< 1km) we operate with,
and with the small magnetic declination of only
~2.8° in Oslo [39,40].

3.5.11 GNSS ready flag

The autopilot is currently halted if no GNSS fix
is available. A more strict check could be used
instead, e.g. by requiring a minimum number of
visible satellites. Alternatively let the autopilot
run, but warn the user that the accuracy is low.

3.5.12 Alternative software

OpenCPN is a free!! chartplotter and naviga-
tion software project. It may be sensible to use

Summary

85

or intergrate OpenCPN in the autopilot, as this
is a mature and widely used software solution
for maritime navigation.

Other free autopilot-systems exists, e.g. Pa-
parazzi [41]. Although this is made for aircrafts,
some of the code base may be applicable for a
maritime autopilot.

3.5.13 Future work

A more advanced autopilot should be developed
before the system is usable for hydroacoustic
work. It could for instance learn from its
past history and use it to predict the future.
A Kalman filter would be suitable for a new
autopilot.

We had a requirement of constant speed.
If minimum survey time is wanted, the thrust
could be adjusted depending on the distance to
the next waypoint.

Another improvement would be to use more
than one waypoint to calculate the course. For
instance by cutting corners and even out the
track.

Additional sensors can be included in the
control system to improve and extend the func-
tionality of the ASV. For instance a RADAR
for obstacle avoidance, an echosounder for depth
measurements, water- and wind movement sen-

sors for improved navigation and a (IP) camera
for supervision.

3.6 Summary

We have developed a primitive autopilot for
hydroacoustic work using an inexpensive GNSS-
receiver and our self-developed compass. The
autopilot is running on a 32-bit ARM Cortex M4
MCU, and talks with its sub-systems (GNSS,
compass, motor control system) over UART. A
web-based control panel has been developed to
observe and control the vessel. Status messages
are transferred as UDP-packages over Ethernet
to a nearby computer, which relays the data
using WebSockets to the web-based control
panel. Control commands are sent back to the
autopilot using TCP.

Different positioning solutions have been
considered, but the use of a single GNSS-
receiver was chosen. Multiple GNSS-receivers
have been tested, and a suitable low cost GNSS-
receiver has been found.

A land rover has been built as a development
platform for the autopilot. The autopilot has
been tested on the land rover, and was able to
follow waypoints, but with significant deviations
from the planned route.

86

Construction of a primitive autopilot for hydroacoustic work

Summary

This thesis has presented the development of an Automatic Survey Vessel (ASV). The goal was
to create a low cost control unit which could be placed in an arbitrarily selected full-sized boat
and be used to make hydroacoustic surveying on lakes more efficient. The work was presented
through three papers.

Paper 1, «Construction of a remote controlled work platform for hydroacoustic worky, covered
the development of a motor control system. Two attempts on creating a (H-bridge based) motor
control system for brushed DC-motors have been completed and is described in this paper. The
final attempt has proved itself capable of controlling electric outboard engines powerful enough to
propel a full-sized vessel. The motor control system has remote control functionality which allows
an operator to steer the vessel from a distance. Tests conducted with a vessel carrying a scientific
echosounder (with wireless transmission of data) has shown that the system can be used as a
remote controlled work platform for hydroacoustic work. It was observed that switching-noise
generated by the motor control system may corrupt hydroacoustic recordings, and this must be
addressed in the future.

Paper 2, «Construction of an Attitude and Heading Reference System (AHRS)», covered the
development of a compass needed for navigation. Three attempts on creating an AHRS have
been completed and is described in this paper. The tilt-calculations from the second attempt has
been tested in controlled- and fieldwork-environments and fulfilled our criteria of repeatability
and accuracy. Preliminary testing of the heading-calculations (compass) from the third attempt
showed promising results.

Paper 3, «Construction of a primitive autopilot for hydroacoustic work», used the motor
control system from paper 1 and the compass from paper 2 to create a simple autopilot able to
steer a full-sized boat. A primitive proof-of-concept autopilot capable of following dynamically
generated waypoints has been developed and is described in this paper. The autopilot has been
tested on a land rover with partial success. The land rover was able to pass through all waypoints,
but with significant deviations from the planned route.

We have accomplished to lay the foundation for an Automatic Survey Vessel (ASV) platform,
with a functional motor control system, a compass and a simple autopilot. A more advanced
autopilot can reuse all the hardware developed, or just the motor control system and compass.
Future work includes a) suppressing the motor-switching noise; b) testing and improving the
reliability of the compass; ¢) incorporating a (local) DGPS solution; d) improving the autopilot,
e.g. with the use of a Kalman filter; e) extending the ASV with multiple sensors (cameras,
echosounders, RADAR, water- and wind movement); f) including obstacle avoidance and other
safety requirements; and g) finally making the ASV autonomous with ongoing route planning.

87

88

Summary

Closing

I have learned a lot, and had much fun while working on my master thesis. 13 printed circuit
boards (PCBs) have been designed in association with this project, where 8 have been directly
involved (and described in this thesis). This includes designs used to get familiar with some of
the components, but excluding revisions with only minor adjustments. A total of 52 PCBs have
been assembled.

I have designed hardware, written firmware in C, computer software in Python, JavaScript
(node.js), Awk and Bash, as well as web-based front-ends in JavaScript/HTML/CSS.

89

90

Closing

Appendix A

Installation of ASV control panel

The following guide will install and setup the ASV control software on a fresh install of Debian
Wheezy where sudo access is available. Installation of Debian is not covered in this guide, but
can in short steps be done as described in step 0.

1. Add a new package repository (Debian Backports) to get access to newer software, e.g.
nodejs.

echo "deb http://http.debian.net/debian wheezy-backports main" | sudo tee -append
/etc/apt/sources.list

2. Update available packages
sudo apt-get update

3. Install nodejs (with a symlink for node)
sudo apt-get -t wheezy-backports install nodejs-legacy

4. Install git and chromium, as well as necessary software to install npm
sudo apt-get install git chromium curl build-essential

5. Install and update npm
curl -L -insecure https://www.npmjs.org/install.sh | sudo sh
sudo npm install -g npm

6. Install ASV control panel
mkdir git && cd git
git clone https://github.com/epsiro/ASV_control_panel
cd ASV_control_panel/

7. Install node-static and socket.io
npm install node-static
npm install socket.io

8. Start the ASV control panel server
nodejs server.js

9. Open the URL localhost with chromium. Alternatively the ASV control panel may be
accessed from another computer/tablet/smartphone by opening the IP address of the
machine were the ASV control panel was installed. E.g. 192.168.4.101 . The IP address
may be found using ifconfig.

91

https://github.com/epsiro/ASV_control_panel

92 Installation of ASV control panel

0. Install Debian Wheezy

(a) Download the correct image (e.g. amd64 live) from debian.org

(b) Use dd on a linux machine to transfer the image to a usb stick. Be very careful not
to overwrite the wrong device! e.g. dd if=debian.img of=/dev/sdX bs=4M; sync
where X is your device.

(¢) Insert the USB stick into a computer and choose it as the prefered boot device by
configuring the BIOS.

(d) Follow the on-screen instructions for installation.

(e) Add yourself to the sudo group to get SuperUser privileges by editing the file /etc/group
as root and log off and on again.
su
then
nano /etc/group

(f) Configure network

Appendix B

PCB production

One PCB is designed in Zuken CadStar. All other PCBs have been designed in gEDA pcb!. My
self-developed footprint editor? was used to create many of the footprints. Very little proprietary
software has been used in my master thesis.

The large PCBs (involved with the H-bridge) is mainly manufactured by Seeed Technology
Inc. a company located in Shenzhen, China. The smaller PCBs is manufactured by OshPark,
located in the United States of America (US). This is due to their different price models. The
autopilot PCB was manufactured through the electronic laboratory at UiO’s connection with
Elprint.

Thttp://pcb.geda-project.org/
2Code available at https://github.com/epsiro/pcb-footprint-editor. Demo available at http://pcb.zone
in 2015.

93

http://pcb.geda-project.org/
https://github.com/epsiro/pcb-footprint-editor
http://pcb.zone

Appendix C

Analog steering controller

schematics

1 3
100k
Zero adjust

Timeout

1N4148

R10
15 Deadband

R11
15k Deadband

Freq

Vee

Vee
C5 R6
100n [LOOk

470k Span

TRI?%

Freq

——

C6
100n

R7
[LOOk

10k Freq

TITLE Convert servo-signal to PWM

Original design by Bob Blick

FILE: servo_to_pwm.sch
PAGE 1oF1

REVISION: A (2012-05-24)
DRAWN BY: Bendik S. Sevegjarto

94

Appendix D

MCU code for servo to PWM
signal converter

Code for ATtiny85 proof of concept servo to PWM signal converter, as described in section 1.3.1.
The code is licensed under the MIT license (listing D.1).

Listing D.1: MIT license
Copyright (c) 2015 Bendik S. Sgvegjarto

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction , including without limitation the rights
to use, copy, modify, merge, publish, distribute , sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

© 00Uk W

© OO Uk W

The above copyright notice and this

all copies or

substantial portions

THE SOFTWARE IS PROVIDED "AS IS",

THE SOFTWARE.

permission notice
of the Software.

WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

code / attiny _servo_to_pwm.c

define F _CPU 1000000

include <avr/io.h>

include <util/delay.h>

+#
#4
#include <avr/interrupt.h>
#
#

define SPEED PBI1
#define DIR PB3
#define DD_SPEED DDBI1
#define DD _DIR DDB3
#define SERVO_IN PCINT4

void init ()

Jxxxxxx For the out signal xxskxxx/

{

/* SPEED and DIR as output */
DDRB = 1<<SPEED | 1<<DIR;

/* Mode:

Fast PWM x/

95

IN NO EVENT SHALL THE

96 MCU code for servo to PWM signal converter
TCCROA = 1<<WGMOl | 1<<WGMO0;
TCCROB = 0<<WGM02;
/% No prescaling of counter clock */
TOCROB |= 0<<CS02 | 0<<CS01 | 1<<CS00;
/* OCOB on Compare Match, sets OCOB at BOTTOM x/
TCCROA |= 1<<COMOB1 | 0<<COMOBO;
Jkkxxkk For the in signal sskxxx/
/* Globally enable interrupts */
sei ();
/% Enable pin change interrupt =/
GIMSK = 1<<PCIE;
/% Pin change interrupt is enabled on SERVO_IN x/
PCMSK = 1<<SERVO_IN;
/% Start a mormal counterl with prescaler /4 x/
TCCR1 = 1<<CS11 | 1<<CS10;
}
void main() {
init ();
for (5;) {
}
}
ISR (PCINTO_vect) {

/% We have a rising edge %/
if (PINB & 1<<PB4) {
/* Reset counterl */
TCNT1 = 0;

/% We have a falling edge x/
} else {
if (TCNTI >= 123 && TCNT1 <= 131) {
PORTB &= ~1<<DIR;
OCROB = 0;
} else {
/* Motor forward x/
if (TCNTI1 & 0x80) {
PORTB |= 1<<DIR;

/x Set the PWM duty cycle x/
/x (TONTI — 0z80)%2 x/
OCROB = (TCNT1 & ~0x80)<<1;

/% Motor backward */
} else {
PORTB &= ~1<<DIR;

/+* Set the PWM duty cycle x/
OCROB = (0x80 — TCNT1)<<1;

Appendix E

MCU code for first digital
steering controller

Code for ATxmegal28A1 digital steering controller, as described in section 1.3.1. The code is
licensed under the MIT license (listing D.1).

code/HIP4081_ controller/main.c

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include <stdint .h>

#define F_CPU 8000000UL

#define PWM_FREQ 1000L
#define PER (F_CPU/PWM_FREQ)

© 00O Uk WN

10

11 #define sec_to_tic(sec) secxF_CPU
12 #define CENTER_LEN 1.5e¢-—3

13 #define DEAD BAND 0.02e¢-—3

14

15 #define LEFT STICK 0x00

16 #define RIGHT STICK 0x01

18 static intl6_t min_pulse width[2];
19 static intl6_t max_pulse width[2];

21 static int8_t left__stick;
22 static int8_t right_stick;

24 static intl6_t left__motor_fwd;
25 static intl6_t left__motor_bck;
26 static intl6__t right__motor_fwd;
27 static intl6_t right_motor__bck;

28

29 void

30 clock_init () {

31

32 /* RC2M->PLL, 4z multiplier x/

33 OSC.PLLCTRL = OSC_PLLSRC_RC2M_gc | 0x4;
34

35 /* Start PLL x/

36 OSC.CTRL |= OSC_PLLEN_bm;

37

38 /+* Wait for PLL to become stable x/

39 while (!(OSC.STATUS & OSC_PLLRDY_ bm)) ;
40

41 /* Disable ccp "Configuration Change Protection' x/

97

98 MCU code for first digital steering controller
42 CCP = CCP_IOREG_ gc;
43
44 /% Use PLL output as the system clock x/
45 CLK.CTRL = CLK_SCLKSEL_PLL_gc;
46 }
47
48 void
49 servo_init () {
50
51 /* Configure PCO and PC1 for imput x/
52 PORTC.DIRCLR = PINO_bm;
53 PORTC.DIRCLR = PIN1_bm;
54
55 /% Interrupt on both edges. x/
56 PORTC.PINOCTRL = PORT_ISC_BOTHEDGES gc;
57 PORTC.PIN1ICTRL = PORT ISC BOTHEDGES gc;
58
59 /% Select PCO as input to event channel 0,
60 * and PC1 as input to event channel 1. x/
61 EVSYS.CHOMUX = EVSYS CHMUX PORTC_PINO gc;
62 EVSYS.CHIMUX = EVSYS CHMUX PORTC_ PIN1 gc;
63
64 /% Pulse width capture, wusing event channel 0 and 1 */
65 TCC1.CTRLD = TC_EVSEL CHO_gc | TC_EVACT PW_gc;
66
67 /* Enable Input "Capture or Compare' channel A and B. x/
68 TCC1.CTRLB |= TCO_CCAEN_bm | TC0_CCBEN_bm;
69
70 /* Set the period of the counter. Quote from datasheet:
71 *
72 * If the Period register value is set lower than 0x8000, the polarity of
73 * the I/O pin edge will be stored in the Most Significant Bit (MSB) of the
74 * Capture register after a Capture. If the MSB of the Capture register is
75 * zero, a falling edge generated the Capture. If the MSB is one, a rising
76 * edge generated the Capture.
7 */
78 TCC1_PER = 0x7fff;
79
80 /% Start timer by selecting a clock source. No prescaling. */
81 TCC1.CTRLA = TC_CLKSEL DIV1 gc;
82
83 /% Enable CCA and CCB interrupt */
84 TCC1.INTCTRLB = TC_CCAINTLVL_LO_gc | TC_CCBINTLVL_LO_gc;
85 }
86
87 void
88 pwm_init () {
89
90 /* Enable the PWM outputs, PEO, PEl, PE2 and PE3 x/
91 PORTE.DIR = 0b00001111;
92
93 /* Set the TC period x/
94 TCEO_PER = PER;
95
96 /x Configure the TC for single slope mode. */
97 TCEO0.CTRLB = TC_WGMODE_SS gc;
98
99 /* Enable Compare channel A, B, C and D. x/
100 TCEO.CTRLB |= TCO_CCAEN bm | TCO_CCBEN_ bm | TCO CCCEN_bm | TC0_CCDEN_bm;
101
102 /% Start timer by selecting a clock source. No prescaler. x/
103 TCEO.CTRLA = TC_CLKSEL_DIV1_ gc;
104 }
105
106 void
107 int__init () {
108
109 /* Enable low level interrupt */
110 PMIC.CTRL |= PMIC LOLVLEN bm;
111
112 /% Enable global interrupt =/
113 sei();

114 }

99

int
main

}

void

calibrate stick (intl6_t = pulse width,

}

void

O A

// TODO: Save this in eeprom and add calibration button

min_ pulse_width [LEFT_STICK] = —3431L;
max_ pulse_width [LEFT_STICK] = 3379L;
min_ pulse_width [RIGHT STICK| = —3423L;
max_ pulse_width [RIGHT STICK| = 3385L;

clock__init ();
servo__init () ;
pwm__init () ;
int__init ();

for (;;) {
}

if (*pulse_width < min_pulse_width[stick]) {

min_ pulse_width[stick] = *pulse_width;

}

if (*pulse_width > max_pulse_width[stick]) {
max_ pulse_width[stick] = #pulse_width;

}

drive_motors () {

/+ Left and right stick is in middle position

* Stand still x/

if (left_stick == 0 && right_stick == 0) {
left _motor_ fwd ;
left _motor__bck ;
right_motor_fwd = 0;
right__motor__bck = 0

/* Turn on the spot */

} else if (left_stick == 0) {
left__motor_fwd = right_stick;
left_motor__bck = —right__stick;
right_motor_fwd = —right__stick;

right _motor__bck = right_stick;

/% Drive forwards */

} else if (left_stick > 0) {
left_motor__fwd = left__stick 4+ right__stick;
left__motor__bck = 0;
right _motor_ fwd
right_motor__bck

/* Drive backwards x/

} else if (left_stick < 0) {
left_motor_fwd = 0
left__motor_bck = —
right_motor_fwd = 0;

int8 _t stick) {

(within dead band)

left stick — right_ stick;
0;

>
left stick — right_stick;

right_motor_bck = —left__stick 4+ right__stick;

/* Remove overflows x/

if (left_motor_ fwd < 0) left motor_ fwd = 0;

if (left_motor_bck < 0) left _motor_bck = 0;

if (right_motor_ fwd < 0) right motor_ fwd = 0;
if (right motor bck < 0) right motor bck = 0;
if (left_motor_fwd > 127) left_ motor_ fwd = 127;
if (left_motor_ bck > 127) left motor_ bck = 127;

222
223
224

17

19
20

22

24

100 MCU code for first digital steering controller

if (right_motor_ fwd > 127) right motor_fwd
if (right_ motor_bck > 127) right motor_bck

127;
127;

/x Set PWM registers x/

TCEO_CCABUF (left_motor_fwd*PER) /127L;
TCEO_CCBBUF (left__motor_bck*PER) /127L;
TCE0_CCCBUF (right_motor_fwd*PER) /127L;
TCEQ_CCDBUF (right_motor__bck*PER) /127L;

}

int8_t
normalize stick_position(intl6_t =* pulse_width, uint8_ t stick) {

intl6_t stick_position;

/* Center around 1.5 ms x/
*pulse width —= sec_to_ tic (CENTER LEN) ;

/* Dead band */
if (abs(xpulse_width) <= sec_to_tic(DEAD BAND)) {
stick__position = 0;

/% Scale to —127..127 x/
} else if (xpulse_width >= 0)

stick_position = (xpulse_width % 127L)/max_pulse_width[stick];
} else {

stick__position = —(xpulse_width x 127L)/min_pulse width[stick];
}

Jx 125..127 —> 127 %/

if (stick_ position >= 125) {
stick__position = 127;

}

return (int8_t) stick_position;

}

ISR (TCC1_CCA_vect) {
left _stick = normalize_stick_position(&TCCl_CCA, LEFT_ STICK) ;
drive_motors () ;

}

ISR (TCC1_CCB_vect) {
right_stick = normalize_ stick position(&TCC1_CCB, RIGHT_ STICK) ;
}

code/HIP4081__controller/Makefile

DEVICE = atxmegal28al

AVRDUDE = avrdude —p x128al —c jtagmkII —P usb
AVARICE = avarice —mKkII —j usb ——xmega :4242
CC = avr—gcc

CFLAGS = —g -W —Wall —02 —std=c99 —mmcu=$ (DEVICE)
OBJECTS = main.o
debug: flash

sleep 2

$ (AVARICE) &

flash: all
$ (AVRDUDE) —U flash :w:main.hex:1i

all: main . hex

clean:
rm —f *.hex *.lst *.0 *.bin

$ (OBJECTS) : | depend

main. bin: $(OBJECTS)

25

27
28
29

31
32
33

35
36

101

$(CC) $(CFLAGS) —o main.bin $(OBJECTS)

main.hex: main. bin
avr—objcopy —j .text —j
avr—size —totals *.o0

read :

$ (AVRDUDE) —U eeprom:r:eeprom.dat:r

hd eeprom.dat

depend:
@$(CC) -MM $ (ALL_CFLAGS)

.data —O

*

.C

sed

ihex main.bin main. hex

’s/$%/ Makefile/’

Appendix F

First H-bridge schematics

P2V vLC PRV P2V

S B 5 < o P2V
veo

1

HIP4281

ar gy mmsl mivnpoc | E

NI BB er—iim, fr |l

BHI AL

BLI arof ALO,
N [bIS AHE.
= HDEL pusf motor red, ||« 2
aH LDEL BHO]_ BHO, | T2 | [i08F"

LI mro) B0,

SH3 SH4
molor black mator_red
3988 >

. =
2
AHO

e

BYPASS

[

PROJECT.

DRAVING
TAIE UNIVERSITY OF DSLD
[GHEET | Dept. of Physics
[] lc)copyright All rights reserved

102

Appendix G

MCU code for ASV H-bridge

controller

Code for ATxmega32A4U digital steering and H-bridge controller, as described in section 1.3.2.
A block schematic of the program flow is shown in figure 1.18. The code is also available at
https://github.com/epsiro/ASV_H-bridge_controller and is licensed under GNU General
Public License (GPL) version 2 or later.

code/ASV__H-bridge_ controller/main.c

1 #include <avr/io.h>

2 #include <avr/interrupt.h>

3 #include <stdio.h>

4 #include <stdint .h>

5 #include <stdlib .h>

6

7 #define BAUD D 9600UL

8 #define BSEL _D(baud) ((F_CPU / (16 % baud)) — 1)
9

10 #define PWM FREQ 1000L

11 #define PER (F_CPU/(2xPWM FREQ))
12

13 #define STATE FREQ 100L

14 #define STATE PER ((F_CPU/8)/STATE FREQ)
15

16 #define RC FREQ 50L

17

18 #define NUMBER OF RC CMD_TO AVERAGE 8
19

20 #define sec_to_tic(sec) secxF_CPU
21 #define CENTER LEN 1.5e-—3

22 #define DEAD BAND 0.04e-3

23

24 #define ON PER

25 #define OFF 0

26 #define DELAY (4*PER)/100L

27

28 #define LEFT STICK 0x00

29 #define RIGHT STICK 0x01

30

31 #define LEFT MOTOR 0x00

32 #define RIGHT MOTOR 0x01

33

34 #define FORWARD 1

35 #define BACKWARD —1

36

37 #define AH 0x00

38 #define AL 0x01

103

https://github.com/epsiro/ASV_H-bridge_controller

104

MCU code for ASV H-bridge controller

#define BH 0x02
#define BL 0x03

#define TRUE 0x01
#define FALSE 0x00

static volatile uintl6_tx drive [4][2] = {
{&TCC0_CCABUF, &TCC0O_CCCBUF},
{ 0, 0},
{&TCC0_CCBBUF, &TCC0_CCDBUF},
0, 0}};
static intl6_t min_pulse_ width[2];
static intl6_t max_pulse width[2];
static int8_t left__stick = 0;
static int8_t right_stick = 0;
static int8_t average_motor_thrust[2] = {0, 0};
static volatile int8_t uart_motor_thrust[2] = {0, 0};
static volatile uint32_t number_of rc_commands = 0;
static volatile uint32_t number_of_ runs_ without_rc_command = 0;
static volatile uint8_t rc_receiver__ready = FALSE;
static volatile uint32__t number_of uart_commands = 0;
static volatile uint32_t number_of runs_without_uart_command = 0;
static volatile uint8_t uart_receiver_ready = FALSE;
void
clock__init () {
/% RC2M—>PLL, 4z multiplier x/
OSC.PLLCTRL = OSC_PLLSRC_RC2M_gc | 0x4;
/* Start PLL x/
OSC.CTRL |= OSC_PLLEN_bm;
/* Wait for PLL to become stable x/
while (!(OSC.STATUS & OSC_PLLRDY bm)) ;
/% Disable ccp "Configuration Change Protection' x/
CCP = CCP_IOREG_ gc;
/* Use PLL output as the system clock x/
CLK.CTRL = CLK SCLKSEL PLL gc;
}
void
rc_init () {
/% Configure PB0O and PB1 for imput x/
PORTB.DIRCLR = PINO_bm;
PORTB.DIRCLR = PIN1_ bm;
/% Interrupt on both edges. x/
PORTB. PINOCTRL = PORT_ISC_BOTHEDGES_gc;
PORTB. PINICTRL = PORT_ISC_BOTHEDGES_gc;
/+ Select PBO as input to event channel 0,
* and PB1 as input to event channel 1. x/
EVSYS.CHOMUX = EVSYS_CHMUX_ PORTB_PINO_gc;
EVSYS.CHIMUX = EVSYS_CHMUX_ PORTB_PIN1_gc;
/% Pulse width capture, wusing event channel 0 and 1 */
TCC1.CTRLD = TC_EVSEL_CHO_gc | TC_EVACT PW_gc;
/* Enable Input "Capture or Compare' channel A and B. x/
TCC1.CTRLB |= TCO_CCAEN bm | TCO0_CCBEN_bm;
/% Set the period of the counter. Quote from datasheet:
*
* If the Period register value is set lower than 0xz8000, the polarity of

105

}

* the I/O pin edge will be stored in the Most Significant Bit (MSB) of the
* Capture register after a Capture. If the MSB of the Capture register is
* zero, a falling edge generated the Capture. If the MSB is one, a rising
* edge generated the Capture.

*

TCC1_PER = 0x7fff;

/% Start timer by selecting a clock source. No prescaling. */
TCC1.CTRLA = TC_CLKSEL_DIV1_gc;

/* Enable CCA and CCB interrupt x/
TCC1.INTCTRLB = TC_CCAINTLVL_LO_gc | TC_CCBINTLVL_LO_gc;

void
fsm__init () {

}

/* Set the period of the counter x/
TCDO_PER = STATE PER;

/x Start timer by selecting a clock source. /8 prescaling. */
TCDO0.CTRLA = TC_CLKSEL_DIV8 gc;

/* Enable overflow interrupt x/
TCDO.INTCTRLA = TC_OVFINTLVL_ HI gc;

void
pwm__init () {

/+* Enable the PWM outputs for the left and right motor
* Left: PC0O, PCl1, PC2 and PC3

* Right: PC4, PC5, PC6 and PC7

*

PORTC.DIR = 0xFF;

/x Set the TC period x/
TCCO_PER = PER;

/x Configure the TC for dual slope mode. */
TCCO0.CTRLB = TC_WGMODE DS T gc;

/* Enable Compare channel A, B, C and D. %/
TCCO.CTRLB |= TCO_CCAEN _bm | TCO_CCBEN_bm | TCO_CCCEN_bm | TC0_CCDEN_bm;

/% Start timer by selecting a clock source. No prescaler. x/
TCCO0.CTRLA = TC_CLKSEL_DIV1_gc;

/* Enable AwEr Dead Time Insertion x/
AWEXC.CTRL |= AWEX_ DTICCAEN bm | AWEX DTICCBEN bm
| AWEX_DTICCCEN bm | AWEX_DTICCDEN_ bm;

/x Set the dead time (both high and low)
* in number of CPU cycles

* 240 ticks = 30us x/

AWEXC.DTBOTH = 240;

/* Owerride all pins x/
AWEXC.OUTOVEN = 0xff;

/* Invert all pins x/

PORTC. PINOCTRL PORT_INVEN_ bm;
PORTC. PIN1ICTRL PORT_INVEN_ bm;
PORTC. PIN2CTRL PORT_INVEN_ bm;
PORTC. PIN3CTRL PORT_INVEN_ bm;
PORTC. PIN4ACTRL PORT _INVEN_ bm;
PORTC. PIN5SCTRL PORT_INVEN_ bm;
PORTC. PIN6GCTRL PORT_INVEN_ bm;
PORTC. PINTCTRL PORT_INVEN_ bm;

/* Make sure we have a safe start */
#drive [AH] [LEFT_MOTOR] = OFF;
xdrive [BH] [LEFT__MOTOR] = OFF;

106

MCU code for ASV H-bridge controller

}

void

xdrive [AH] [RIGHT MOTOR]
xdrive [BH] [RIGHT MOTOR]

OFF;
OFF;

int__init () {

}

void
butt

}

void

/% Enable high and low level interrupt %/
PMIC.CTRL |= PMIC_HILVLEN_bm;
PMIC.CTRL |= PMIC LOLVLEN bm;

/% Enable global interrupt =/
sei();

on_init () {

/* Configure PE2 and PE3 for imnput x/
PORTE.DIRCLR = PIN2_ bm;
PORTE.DIRCLR = PIN3_bm;

led _init () {

}

void
uart

}

int
main

/* Set Green LED-pin PDj as output x/
PORTD.DIRSET = PIN4_bm;

/* Set Red LED-pin PD5 as output x/
PORTD.DIRSET = PIN5_bm;

/* Invert the LED pins, so the LEDs light when we set them high */

PORTD.PIN4CTRL |= PORT_INVEN_bm;
PORTD.PINSCTRL |= PORT_INVEN_bm;

_init (void) {

/% Set PD3 (TX) as output x/
PORTD.DIRSET = PIN3_bm;

/* Set the baud rate x/

wint16_t bsel = BSEL D(BAUD D);
USARTDO.BAUDCTRIB = (bsel >> 8) & OxFF;
USARTDO.BAUDCTRLA = (uint8_t) bsel;

/* Enable low level UART receive interrupt x/
USARTDO.CTRLA = USART_ RXCINTLVL_LO_ gc;

/% Enable the UART transmitter and receiver */
USARTDO.CTRLB = USART RXEN bm | USART TXEN bm;

/% Asynchronous USART, mo parity, 1 stop bit, 8 data bits x/
USARTDO.CTRLC = USART_CHSIZEO _bm | USART_CHSIZEl bm;

O {

// FIXME: Save this in eeprom and add calibration button

min_ pulse width [LEFT STICK] = —3431L;
max_ pulse_width [LEFT_STICK] = 3379L;
min_ pulse width [RIGHT STICK]| = —3423L;
max_ pulse_width [RIGHT _STICK] = 3385L;

clock__init () ;
rc_init ();
fsm__init () ;
pwm__init () ;

107

int__init ();
button_init () ;
led__init () ;
uart__init ();

//PORTD.OUTSET = PINj_bm;
//PORTD.OUTSET = PIN5_bm;

for (;;) {
}
}

void
calibrate_stick (int16_t * pulse_width, int8 t stick) {

if (xpulse_width < min_pulse width[stick]) {

min_pulse_width[stick] = xpulse_width;
}
if (xpulse_width > max_pulse width[stick]) {
max_ pulse_width[stick] = spulse_width;
}
}
void

single_sticks () {

drive_motor (LEFT_MOTOR, left_stick);
drive__motor (RIGHT MOTOR, right_stick);
}

void
combo_ sticks () {

intl6_t motor__thrust_left;
intl6__t motor__thrust_right;

if (left_stick == 0 && right_stick != 0) {
/x Turn on the spot */
motor__thrust_left = right_stick;
motor__thrust_right = —right_ stick;

} else {

/* Drive %/
motor__thrust_ left
motor__thrust_right

left__stick + right_stick;
left__stick — right__stick;

}

/* Remove overflows x*/
if (motor_thrust_ left
if (motor_thrust_left
if (motor_thrust_right
if (motor_thrust_right

127) motor_thrust_left
—127) motor__thrust_left
127) motor_thrust_right

>
<
>
< —127) motor_ thrust right

127;
—127;
127;
—127;

drive__motor_ 1p (LEFT_MOTOR, (int8 _t) motor_thrust_left);
drive__motor_lp (RIGHT MOTOR, (int8 t) motor_thrust_right);

}

void
drive_motor_lp(int8_ t motor, int8 t motor_thrust) {

/* Calculate moving average x/
average_motor__thrust [motor] = ((int32_t)

(NUMBER_OF RC_CMD_TO_AVERAGE — 1)skaverage_ motor_thrust[motor]
4+ motor_thrust)/NUMBER OF RC CMD TO AVERAGE;

drive__motor (motor, average_ motor_thrust[motor]) ;

}

void
drive__motor(int8 t motor, int8 t motor_ thrust) {

108 MCU code for ASV H-bridge controller
/* Scale the pwum—value x/
uintl6_t pwm = (abs(motor_thrust)*PER)/127L;
if (motor_thrust > 0) {
/% Drive forward x/
#drive [AH] [motor] = OFF;
#drive [BH] [motor] = pwm;
} else {
/* Drive backward x/
#drive [AH] [motor] = pwm;
#drive [BH] [motor] = OFF;
}
}
int8_t

normalize stick_position(intl6_t % pulse_ width, uint8 t stick) {

}

intl6_t stick__position;

/* Center around 1.5 ms x/
*pulse__width —= sec__to_ tic (CENTER_LEN) ;

/% Dead band */
if (abs(xpulse_width) <= sec_to_tic(DEAD BAND)) {

stick__position = 0;

/* Scale to —127..127 x/
} else if (xpulse_width >= 0) {

stick position = (xpulse_ width % 127L)/max_pulse width[stick];
} else {

stick_position = —(xpulse__width * 127L)/min_pulse_ width[stick];
Jx 125..127 —> 127 x/

if (stick_position >= 125) {
stick__position = 127;
}

return (int8 t) stick position;

ISR (TCC1_CCA_vect) {

}

number_of runs_ without_rc_command = 0;

if (rc_receiver_ready == TRUE)
left _stick = normalize_ stick_ position(&TCCl_CCA, LEFT STICK) ;
} else {

/x Skip the first interrupts since the receiver is mot stable then x/
if (++number_of rc_commands >= 1000xRC_FREQx%2) {

rc_receiver__ready = TRUE;
}

ISR (TCC1_CCB_vect) {

}

if (rc_receiver_ready == TRUE) {
right stick = normalize stick position(&TCCl_CCB, RIGHT_ STICK) ;

ISR (TCDO_OVF_vect) {

/* Turn off both LEDs, so they will light only when they should */

109

PORTD.OUTCLR = PIN4_bm;
PORTD.OUTCLR = PIN5_bm;

/* Timeout if we do mot get any rc commands.

* Triggered after waiting for two missing commands */

if (++number_of runs_without rc_command >= 2x(STATE FREQ/RC_FREQ)) {
rc_receiver__ready = FALSE;
number_of rc_commands = 0;

}

/* Timeout if we do not get any wart commands. */
if (++number_of runs_without_uart_command >= 20) {
uart__receiver__ready = FALSE;
number__of uart_commands = 0;

}

if (rc_receiver_ready == TRUE) {

//if (PORTE.IN & PIN2_ bm)
//single__sticks ();

//else

/+* Set red LED to show that we are using commands from RC receiver x/
PORTD.OUTSET = PIN5_bm;

combo_ sticks () ;
} else if (uart_receiver_ready == TRUE) {

/x Set green LED to show that we are wusing commands from UART x/
PORTD.OUTSET = PIN4 bm;

drive__motor (LEFT_MOTOR, uart_motor_thrust [LEFT MOTOR]) ;
drive__motor (RIGHT _MOTOR, uart_motor_thrust [RIGHT MOTOR]) ;

} else {

drive__motor (LEFT_MOTOR, 0);
drive__motor (RIGHT _MOTOR, 0);

}
ISR (USARTDO_RXC_vect) {
number_ of_runs_ without__uart_ command = 0;

uint8 _t motor;
int8_t direction;

uint8 _t command = USARTDO0.DATA;

/% Get the two MSB of command x/
switch (command >> 6) {

case O0:
motor = LEFT MOTOR;
direction = BACKWARD;
break;

case 1:
motor = LEFT MOTOR;
direction = FORWARD;
break;

case 2:
motor = RIGHT MOTOR;
direction = BACKWARD;
break;

case 3:
motor = RIGHT MOTOR;
direction = FORWARD;
break;

oo

10

12
13

15

110 MCU code for ASV H-bridge controller

NS
*

Set the left or right motor thrust, with the correct direction and speed.

0z3f = 0b00111111 and masks out the speed from the command. This
speed (0..63) is then scaled to (0..127) by multiplying by two and
adding one. The direction wariable is positiv for forward and
negative for backward direction , and thus give the final speed as an
int8__t of range —127..127

L R

*/

uart__motor_thrust [motor] = direction *(command & 0x3f)*2 + 1;
if (uart_receiver_ready == FALSE) {
/x Skip the first interrupts since the receiver is mot stable then x/

if (++number_of uart_commands >= 100) {
uart__receiver_ready = TRUE;
}

code/ASV_H-bridge_ controller/Makefile

DEVICE = atxmega32a4
AVRDUDE = avrdude —p x32a4 —c jtag2pdi —P usb
F_CPU=8000000UL

CC = avr—gcc
CFLAGS = —g -W —Wall —02 —std=gnu99 —mmcu=$ (DEVICE) —-DF CPU=$(F_CPU) —lm —pedantic

OBJECTS = main.o
all: main. hex

clean:
rm —f *.hex *.lst *.0 *.bin

$(OBJECTS) : | depend

main. bin: $(OBJECTS)
$(CC) $(CFLAGS) —o main.bin $(OBJECTS)

main. hex: main. bin
avr—objcopy —j .text —j .data —O ihex main.bin main.hex
avr—size ——totals *.o0
avr—size —C —mcu=$ (DEVICE) x.o0

read :
$ (AVRDUDE) —U eeprom:r:eeprom.dat:r
hd eeprom.dat

depend:
@$(CC) MM $ (ALL_CFLAGS) *.c | sed ’s/$$/ Makefile/’

flash: all
$ (AVRDUDE) —U flash :w:main.hex:1i

Appendix H

Second H-bridge schematics

PSMN2R6-40YS

+12v

T
<E P2

VS-10BQ040PBF

D1

&

R9
LED:

TP3 TP4

D3

AN

R10 LED:.

D2

D4

=

AHO

+12v

CONN1

AlO

BLO

© N o o os oW oN e

TITLE H-bridge

FILE: h-bridge.sch
PAGE 1o0F1

REVISION: F (2013-02-04)
DRAWN BY: Bendik S. Sgvegjarto

5 | 6

7 | B

111

Appendix I

H-bridge driver schematics

The schematic for the voltage doubler (subcircuit S1) is shown in figure 1.22. The schematic for

the singe H-bridge driver (subcircuit S2 and S3) is shown in figure 1.21.

saav

saav

saav

33y
3
2
swi
1 2
swz
R S}

+12v

saav

24y

aav %
AHO-M1 1 2 pro-
aav ALQ-M1 3 4 plow
vz AHO-M2S 6 BHO-M
ATxmega32AdU | 3| 5| 8 B2 & 8| &
33898 e oL o °f © ~ALo=M2 T3 e
PAOIADCO gegg pe0 TRC_QH;L_.
PAVADC1 pa1[oRC-CH2 . ~
2] pazianc2 P2DACO [RC=CHA
PAYIADC3 eeapact |TRC=CHA
PAIADCA
PASIADCS proncTALzTOSC2 (2
PABIADCS 0 x
PATIADCT pruxTALTOSCE (31T
PCOISDA eoo [22a
pCuSOL pouxcko [2e
PC2RXDD PoZRXDO 22 TX=FTDI,
PCITXO0 PoaTxpo (22 RX=ETDI,
PCanSS Poamss [24LED1 .
PCSIMOSIXCKL PosMosixckl [22LED2
PCAMISORXDL
PCTISCKITXOL
=
PEL
B P s cog
pes 22838
55556
= BEE
& + =
me
FiE REVISION
PAGE or DRAWN BY:

112

Appendix J

HydroAHRS mk.I MCU code

Code for ATxmega32A4U in HydroAHRS mk.I, as described in section 2.3.1. The code is licensed
under GNU GPL version 2 or later.

code/hydroAHRS_ mkI/main.c

1 #include <avr/io.h>

2 #include <avr/interrupt.h>
3 #include <util/delay .h>
4 #include <inttypes.h>

5 #include <stdio.h>

6

7 #include "main.h"

8 #include "twi.h"

9 #include "uart.h"

10 #include "matrix.h"

11 #include "MPU9150.h"

12 #include "imu_ calc.h"

13

14 void

15 CCP__write(volatile uint8_ t % address, uint8_ t value) {
16

17 /* Begin a critical task, so we must disable interrupt */
18 uint8 t volatile saved_sreg = SREG;

19 cli();

20

21 volatile uint8 t * tmpAddr = address;

22 asm volatile (

23 "movw,,;r30 ,, ,%0" "\n\t"

24 "1digurl6 , Lu%2" "\n\t"

25 "out %3, r16" "\n\t"

26 "stoouuuuZ, ou%l” "\n\t"

27 :

28 : "r" (tmpAddr), "r" (value), '"M" (CCP_IOREG gc), "i" (&CCP)
29 : "r16", "r30", "r31"

30)

31

32 /+* End the critical task x/

33 SREG = saved_ sreg;

34 }

35

36 void

37 clock__init (void) {

38

39 /x Select 82 kHz as external clock x/

40 OSC.XOSCCTRL = OSC_XOSCSEL_32KHz gc;

41

42 /+ Start the 32MHz and extermnal clock, but keep 2MHz clock on x/
43 OSC.CTRL |= OSC_XOSCEN_bm | OSC_RC32MEN_bm;

44

45 /% Wait until 32MHz clock is ready x/

113

114 HydroAHRS mk.I MCU code

while (!(OSC.STATUS & OSC_RC32MRDY_bm)) ;
/% Wait for the exzternal oscillator to stabilize. x/
while (!(OSC.STATUS & OSC_XOSCRDY_bm));
/* Enable write access to protected register CLK.CTRL with CCP_ write
x Set 32MHz clock as source */
CCP_write(&CLK.CTRL, CLK_SCLKSEL_RC32M_gc) ;
/* Wait for the system to switch clock %/
_delay_us(2);
/% Disable all clocks except 32MHz and exzternal clock =/
OSC.CTRL = OSC_XOSCEN_bm | OSC_RC32MEN_bm;
/* Set 82 kHz TOSC as calibration reference */
OSC.DFLLCTRL = OSC_RC32MCREF_bm;
/* Enable automatic run—time calibration */
DFLLRC32M.CTRL = DFLL_ENABLE_bm;
}
void
rtc_init (void) {
// Set 32 kHz from exzternal 82kHz oscillator as clock source for RTC.
CLK.RTCCTRL = CLK_RTCSRC_TOSC32_gc | CLK_RTCEN_bm;
// Wait until RTC is not busy.
while (RTC.STATUS & RTC_SYNCBUSY_bm) ;
/% Period register wvalue. Must subtract 1, because zero wvalue counted.
* Gives an overflow every 1/1024 second %/
RTC.PER = 32 — 1;
/* Make sure COMP and CNT is 0. */
RTC.COMP = 0;
RTC.CNT = 0x0000;
/* Divide by 1, so 32.768 kHz frequency x/
RTC.CTRL = RTC_PRESCALER_DIV1_gc;
/* Enable overflow interrupt. x/
RTC.INTCTRL = RTC_OVFINTLVL_HI gc | RTC_COMPINTLVL_OFF_gc;
}
void
int_init () {
/x Configure PB2 as input x/
PORTB.DIRCLR = PIN2_bm;
/% Enable INTO as low level interrupt x/
PORTB.INTCTRL = PORT_INTOLVL_LO_ gc;
/% Assign PB2 as source for INTO x/
PORTB.INTOMASK = PIN2_bm;
/x Configure interrupt on falling edge %/
PORTB.PIN2CTRL = PORT_ISC_FALLING_ gc;
/% Enable high and low level interrupt %/
PMIC.CTRL |= PMIC_HILVLEN_bm;
PMIC.CTRL |= PMIC_LOLVLEN_bm;
/% Enable global interrupt =/
sei () ;
}
void

led __init () {

/* Set Red LED-pin PC2 as output */

115

//PORTC. DIRSET = PIN2_bm;

/* Set Red LED-pin PC2 as input, so it won’t light up before we have

* received the ’start’—signal x/
PORTC.DIRCLR = PIN2_bm;

/x Set Green LED-pin PC3 as output x/
PORTC.DIRSET = PIN3_bm;

/* Invert the LED pins, so the LEDs light when we set them high */

PORTC.PIN2CTRL |= PORT_INVEN_bm;
PORTC.PIN3CTRL |= PORT_INVEN_bm;

int

main () {
clock_ini
uart__init
rtc_init (
twi_init (
int__init (
led __init (

/% Clear screen x/
uart_send_str("\x1b[H\x1b[2J");

_delay_ms(50) ;
MPU9150_init () ;

for (;;) {
}

ISR (PORTB_INTO_vect) {

/*x Toggle the green LED when we get data from the sensor */

PORTC.OUTTGL = PIN3_bm;

/* Turn the red LED on when we begin to compute %/
//PORTC.OUTSET = PIN2_bm;

read calculate send angles();

/% Turn the red LED off when we are finished with the
//PORTC.OUTCLR = PIN2_bm;

relative time_t relative__time;
uint8_t running = FALSE;
uint8_t send__one_measurment = FALSE;

ISR (USARTDO_RXC_vect) {
uint8__t command;
command = USARTDO0.DATA;

/% Start sending angles x/

if (command == ’s’) {
running = TRUE;
RTC.CNT = 0x0000;
TCCO.CNT = 0;

relative__time.ticks = 0;
relative_ time.secs = 0;
relative__time.minutes = 0;
relative__time.hours = 0;
relative_ time.days = 0;

PORTC.DIRSET = PIN2_bm;

compution x/

© OO Uk WN -

116 HydroAHRS mk.I MCU code
/% Stop sending angles */
if (command = ’S’) {
running = FALSE;
PORTC.DIRCLR = PIN2_ bm;
}
/x Set gyro bias x/
if (command == ’g’)
set__gyro__bias () ;
}
/% Set angle reference x/
if (command = ’a’) {
set__angle_reference () ;
}
/% Send one measurment */
if (command == 1)
RTC.CNT = 0x0000;
TCCO.CNT = 0;
relative_time.ticks = 0;
relative__time.secs = 0;
relative__time.minutes = 0;
relative__time.hours = 0;
relative_time.days = 0;
send__one__measurment = TRUE;
}
}
ISR (RTC_OVF_vect) {
/% Ticks is 1/1024 seconds x/
relative__time.ticks++;
if (relative time.ticks > 1023) {
relative__time.ticks = 0;
relative__time.secs++;
PORTC.OUTTGL = PIN2_bm;
if (relative time.secs > 59) {
relative_ time.secs = 0;
relative__time.minutes++;
}
if (relative_ time.minutes > 59) {
relative__time.minutes = 0;
relative__time.hours++;
}
if (relative time.hours > 23) {

relative__time.hours =
relative__time.days++;

0;

code/hydroAHRS mkI/main.h

ifndef MAIN_H
define MAIN_H

#define TRUE 1
#define FALSE 0

typedef struct {
uintl6_t ticks;
uint8_t secs;
uint8_t minutes;
uint8_t hours;
uintl6__t days;

© 00O U W -

117

} relative time_ t;

extern relative_time_t relative_time;
extern uint8_t running;
extern uint8 t send_one_measurment;

#endif
code/hydroAHRS__mkI/imu_ calc.c
#include <math.h>
#include <stdlib .h>
#include <inttypes.h>
#include "main.h"
#include "imu_ calc.h"
#include "matrix.h"
#include "twi.h"
#include "uart.h'
#include "MPU9150.h"
static void get_sensor_data(raw_sensor_t sraw_sensor_data);

static void remove_gyro_bias(int8 t xgyro_bias, raw_sensor_t sxraw_sensor_data);
static void convert_ sensor_data(raw_sensor_t s*raw_sensor_data, sensor_t s*sensor_data);
static void apply_drift_ correction(float xomega_correction P, float kxomega_correction_ I

sensor__t xsensor_data);

static void update_rotation_matrix(sensor_t xsensor_data, float R[][3]);

static void normalize_ rotation_matrix(float R[][3]) ;

static void calculate_roll_ pitch_error(sensor_t *sensor_data, float R[][3], float =x*
roll_pitch_error);

static void calculate_omega_correction_P (float s*roll_pitch_error, float =

omega_ correction_P);

static void calculate _omega_correction_I(float *roll pitch_error, float =
omega_ correction_1I);

static void retrieve euler_ angles(axes_t xangle, float R[][3]);

static void send_ angles(raw_sensor_t *xraw_sensor_data, sensor_t s*sensor_data, axes_t =x
angle, relative time_t =xrelative time);

static void send raw_data(raw_sensor_t xraw_sensor_data);

static intl6_t comp2int(uint8 t msb, uint8 t lsb);

raw__sensor_t raw_ sensor_ data;

sensor__t

sensor__data;

axes_t angle;

static float R[3][3] = {{1, 0, 0},
{0, 1, o},
{0, 0 11}
static int8 t gyro_bias[3] = {12, 24, 5};
static float angle reference[3] = {0.0, 0.0, 0.0};

static float omega_correction P [3];
static float omega_correction_I[3];

float roll_pitch_error [3];

extern void
read__calculate_send__angles () {

get_sensor__data(&raw__sensor_data);

// send_raw__data(&raw__sensor__data) ;

remove_ gyro_bias(gyro__bias, &raw_sensor_data);

convert_sensor_data(&raw_sensor_data, &sensor_data);

apply drift correction (omega_correction P, omega correction I, &sensor data);

update_rotation_ matrix(&sensor_data, R);

118 HydroAHRS mk.I MCU code
normalize_rotation_matrix (R);
/% Calculate drift correction x/
calculate_roll_pitch_error(&sensor_data, R, roll_pitch_error);
calculate_omega_correction_ P (roll_pitch_error, omega_correction P);
calculate__omega_ correction_I(roll_pitch_error, omega_correction_1I);
retrieve__euler_ angles(&angle, R);
if (send_one_measurment == TRUE) {
send__angles(&raw__sensor__data, &sensor__data, &angle, &relative_time);
//uart__send__str("\z04");
send__one__measurment = FALSE;
} else if (running = TRUE) {
send__angles(&raw__sensor__data, &sensor_data, &angle, &relative_time);
}
}
/*
* Get the data from the accelerometer and gyroscope
- -
*
* Output: Acceleromter raw data

*

*/

sta

Output: Gyroscope raw data

tic void

get_sensor__data(raw_sensor_t *xraw_sensor_data) {

}

i2¢c__slave__addr = MPU9150_ADDR;

raw_sensor__data—>temperature = (read_reg(TEMP_OUT H)<<8) + read_reg(TEMP_OUT L);

raw__sensor__data—>accl_x
raw__sensor__data—>accl_y
raw_ sensor__data—>accl_z

raw__sensor__data—>gyro_ x
raw__sensor__data—>gyro_y
raw_ sensor__data—>gyro_ z

i2c__slave__addr = AK8975C_ADDR;
write_reg (AK _CNTL, 0x01);

raw__sensor__data—>magn_x comp2int (read_reg (AK _HXH), read_reg(AK HXL)
raw_ sensor__data—>magn_y comp2int (read_ reg (AK HYH), read_reg(AK HYL)
raw_sensor__data—>magn_z = comp2int(read reg(AK HZH), read reg(AK HZL)

inline void
set__gyro_bias () {

// TODO: Awverage over multiple measurments
gyro__bias [0] raw_ sensor_ data.gyro_x;
gyro__bias [1] raw__sensor__data.gyro_y;
gyro__bias [2] = raw_sensor_data.gyro_z;

char str_buf[30];
uart__send_str("gyro_xybias:_.");
itoa (gyro_bias[0], str_buf, 10);
uart_send_str(str_buf);
uart__send_str (", gyro_y.bias: ");
itoa (gyro_bias[1], str_buf, 10);
uart__send_str(str_buf);

uart send_ str(", gyro_z bias: ");
itoa (gyro__bias[2], str_buf, 10);
uart__send_str(str_buf);

comp2int (read reg (GYRO XOUT H), read reg(GYRO _XOUT L)
comp?2int (read reg (GYRO_YOUT H), read_ reg(GYRO_YOUT L)
comp2int (read_reg (GYRO_ZOUT H), read_reg(GYRO_ZOUT L)

)
)
)

comp2int (read_reg (ACCEL_XOUT H), read_reg(ACCEL XOUT L)
comp2int (read_reg (ACCEL_YOUT H), read_reg(ACCEL YOUT L)
comp2int (read_reg (ACCEL_ZOUT H), read_reg(ACCEL_ZOUT L)

)
)
)

)3
)
)

119

131 uart__send_str("\n\r");
132 }

134 /%
Remove the raw bias from the gyroscope data

*
*
137 %
* Input: Gyroscope raw data with bias
* Qutput: Gyroscope raw data without bias
140 */
141 static inline wvoid

142 remove_gyro_bias(int8 t =xgyro_bias, raw_sensor_t xraw_sensor_data) {

144 raw_sensor__data—>gyro_x = raw_sensor_data—>gyro_x — gyro_bias[0];
145 raw_sensor__data—>gyro_y = raw_sensor_data—>gyro_y — gyro_bias[1];
146 raw_sensor__data—>gyro_z = raw_sensor_data—>gyro_z — gyro_ bias[2];
147 }

148

149 static void
150 convertisensoridata(rawisensorit xraw__sensor__data, sensor_t *sensoridata) {

152 /% Convert accelerometer and gyroscope data to real units x/

153

154 /% Get acceleration in mg x/

155 sensor__data—>accl_x = (float) raw_sensor_data—>accl_x / ACC_LSB;

156 sensor__data—>accl_y = (float) raw_sensor_data—>accl_y / ACC_LSB;

157 sensor__data—>accl_z = (float) raw_sensor_data—>accl_z / ACC_LSB;

158

159 /* Get angular rotaion in deg/sec */

160 /* TODO: Make sure raw__sensor__data should be divided on GYRO_HZ x/

161 sensor__data—>gyro_x = (float) raw_sensor_data—>gyro_x / (GYRO_LSB % GYRO HZ);
162 sensor__data—>gyro_y = (float) raw_sensor_data—>gyro_y / (GYRO_LSB % GYRO_HZ) ;
163 sensor__data—>gyro_z = (float) raw_sensor_data—>gyro_z / (GYRO_LSB % GYRO_HZ) ;
164

165 /x Convert gyroscope data from degrees to radians */

166 sensor__data—>gyro_x = sensor_data—>gyro_ x x DEG2RAD;

167 sensor__data—>gyro_y = sensor__data—>gyro_y *x DEG2RAD;

168 sensor__data—>gyro_z = sensor__data—>gyro_z x DEG2RAD;

169

170 /x Keep gyro_z at 0 untill the magnetometer is implemented */

171 sensor__data—>gyro_z = 0;

172

173 /* Get temperatur in degrees Celcius */

174 sensor__data—>temperature = (raw_sensor_data—>temperature + 11900) / 340;
175 }

176

177

178 /*

179 % Add the drift correction to the angular change from last measurmemt

180 % ————

181

182 x Input: Measured change in angle (in degrees) since last measurment

183 * Input: Omegea_p

184 * Input: Omegea_ i

185 * Owutput: Corrected measured change in angle since last measurment

186 x/

187 static inline void

188 apply_ drift correction(float xomega_ correction P, float kxomega_ correction_ I, sensor_t x*
sensor__data) {

189

190 sensor__data—>gyro_x = sensor_data—>gyro_x + omega_correction_ P [0] +
omega_ correction_I[0];

191 sensor__data—>gyro_y = sensor_data—>gyro_y + omega_correction P [1] +
omega_ correction_I[1];

192 sensor__data—>gyro_z = sensor__data—>gyro_z + omega_ correction_ P [2] +
omega_ correction_I[2];

193 }

194

195 /%

196 * Make a matriz consisting of the accelerometer corrected change in degrees
197 * since last measurment (that we got from the accelerometer)

198 %

199 = Update the rotation matriz by multiplying it with the update matrix

HydroAHRS mk.I MCU code

current state"

RII[3]) {

—sensor__data—>gyro_z, sensor__data

1, —sensor__data

sensor__data—>gyro_x,

vector [2]) ;

then they are mormal to

We use this to form an

direction by cross

120
* "Add the change in degrees from last measurment to the
*
*/
static void
update_rotation_ matrix(sensor_t xsensor_data, float
float R_ buffer [3][3];
/% Construct update matriz */
float R_update[3][3] = {{ 1,
—>gyro_y },
{ sensor_data—>gyro_z,
—>gyro_x },
{ —sensor__data—>gyro_y,
L}
/% Multiply "rotation matriz" with "update matriz" *x/
/* R__buffer = R * Rup x/
matrix__ mult (R_buffer, R, R_update);
/* R = R__buffer x/
matrix__copy (R, R__buffer);
}
static float
root_sum_square(float x, float y, float z) {
return sqrt(square(x) + square(y) + square(z));
}
static void
normalize_vector (float svector) {
float rss = root_sum_square(vector[0], vector[1l],
vector [0] = vector[0] / rss;
vector [1] = vector[1] / rss;
vector [2] = vector[2] / rss;
¥
/x
* Renormalize the rotation matrix
*
* In a perfect world then the rotation matriz would remain ortonormal,
* but since it is mnot, we have to correct for this.
. ——
*
* Input: Rotation matriz
* Output: Orthonormal rotation matric
*
static void
normalize rotation_matrix(float R[][3]) {
float R_ buffer [3][3];
/* Renormalize rotation matriz (to keep orthogonal) x/
/% When the dot product of two wvectors is zero,
* each other. If mnot, then they are mnot mormal.
* error estimate for non—nmormalized vectors.
*/
/* Dot product x/
/* TODO: Make this a function */
float error = —0.5 = (R[0][0] = R[1][0] +
RIOJ[1] = R[1]J[1] +
R{O]J[2] = R[1][2]);
/x We apply the error scalar to the two rows in opposite
* coupling x/
R_buffer [0][0] = (R[0][0] * error) 4+ R[O][0];
R_buffer [0][1] = (R[0][1] * error) + R[O][1];
R_buffer [0][2] = (R[0][2] = error) + R[0][2];

270
271
272
273
274
275

121

/x

*

* ¥ ¥

*

R_buffer [1][0] = (R[1][0] = error) + R[1][0];
R_buffer [1][1] = (R[1][1] = error) + R[1][1];
R_buffer [1][2] = (R[1][2] * error) + R[1][2];

/* Cross product */

R_buffer [2][0] = ((R_buffer [0][1] = R_buffer[1][2]) — (R_buffer[0][2] % R_buffer
1][1 ;

R bu[ffil[]Q%[l)] = ((R_buffer [0][2] * R_buffer[1][0]) — (R_buffer[0][0] % R__buffer
1][2 ;

R bu[ff(]er[[]Z%[Z)} = ((R_buffer [0][0] * R_buffer[1][1]) — (R_buffer[0][1] % R_buffer
[(1110]))3

normalize_vector (R__buffer [0]
normalize_ vector (R__buffer [1]
normalize_ vector (R_ buffer [2]

/x R = R__buffer x/
matrix__copy (R, R__buffer);

Error estimate

Input
Input
Output =

)
)
)

normalized rotation matrizc
normalized acceleration wvector
Error estimate for roll

and pitch (rpe)

*/
static void
calculate roll_pitch_error(sensor_t x*sensor_data,

) A

float g_magnitude;
float g_vector [3];

float R[][3], float x*roll_ pitch_error

g_magnitude = root_sum_ square(sensor_data—>accl_x, sensor__data

—>accl_z);

sensor__data—>accl_y,

g_vector [0]
g _vector[1]
g_vector [2]

sensor__data—>accl_x / g_magnitude;
sensor__data—>accl_y / g magnitude;
sensor__data—>accl_z / g_magnitude;

/* Cross product */

/* TODO: cross product function */
roll _pitch_error[0] = ((g_vector[1l] * R[2][2]) — (g_vector[2] = R[2][1])) / 65536L;
roll _pitch_error[1] = ((g_vector[2] x R[2][0]) — (g_vector[0] = R[2][2])) / 65536L;
roll pitch_error [2] = ((g_vector [0] * R[2][1]) — (g_vector[1] * R[2][0])) / 65536L;
}
static inline void

calculate _omega_correction_ P (float

«roll_pitch__error ,

/* Calculate omega correction P x/

omega_ correction_ P [0] = roll_pitch_error[0] % K P_PITCH ROLL;
omega_ correction__P [1] = roll_pitch_error[1] * K P PITCH ROLL;
omega_ correction_P [2] = roll_pitch_error[2] = K P PITCH ROLL;
}
static inline void

calculate_omega_correction_I(float

*roll__pitch_error,
static float acceleration_integral[3] = {0,0,0};

/+* Calculate omega correction I */

float xomega_correction_ P)

float xomega_correction 1I)

/x %/

acceleration_integral [0] = acceleration_integral [0] + (roll_pitch_error [0] =
K_I PITCH ROLL) / (1024L x GYRO_HZ);

acceleration_ integral [1] = acceleration integral[1l] + (roll_pitch_error[1] =
K_I_PITCH_ROLL) / (1024L * GYRO_HZ);

acceleration_ integral [2] = acceleration_integral[2] + (roll_pitch_error[2] =

K_I_PITCH_ROLL) / (1024L % GYRO_HZ) ;

122 HydroAHRS mk.I MCU code
omega_ correction_I[0] = acceleration_integral [0];
omega_correction_I[1] = acceleration_integral [1];
omega_ correction_I[2] = acceleration_integral [2];

}

static inline wvoid

retrieve__euler__angles (axes_t =xangle, float R[][3]) {

}

stat

angle—>roll = (atan2(—R]
angle—>pitch = (asin(R[2
angle —>yaw = (atan2(—-R]

ic void

]

2][0], R[2][2])) * RAD2DEG;
[1]))« RAD2DEG;
0][1], R[1][1])) * RAD2DEG;

send__angles(raw_sensor_t xraw_sensor_data, sensor_t xsensor_data, axes_t xangle,
relative_time_t =xrelative_ time) {

}

float scaled_roll;
float scaled__pitch;
char str_buf[30];

sprintf (str_buf, "%0.2d",
uart__send_str(str_buf);

sprintf(str_buf, ":%0.2d",

uart__send_str(str_buf);

sprintf(str_buf, ":%0.2d",

uart__send_str(str_buf);

sprintf (str_buf, ".%0.3d",

uart__send_str(str_buf);
uart__send_str(",");

sprintf (str_buf, "%+0.5d,
uart__send_str(str_buf);

sprintf (str_buf, "%+0.5d,
uart__send_str(str_buf);

sprintf(str_buf, "%+40.5d,
uart__send_str(str_buf);

sprintf (str_buf, "%+0.5d,
uart__send_str(str_buf);

sprintf (str_buf, "%+0.5d,
uart_ send str(str_buf);

sprintf (str_buf, "%+0.5d,
uart_send_str(str_buf);

sprintf(str_buf, "%40.2d,
uart_send_str(str_buf);

"

"

"

"

"

"

"

relative__time—>hours);

relative__time—>minutes) ;

relative time—>secs);

(relative time—>ticks*1000UL)/1024UL) ;

, raw_sensor_data—>accl_x);

, raw_sensor_data—>accl_y);

, raw_sensor_data—>accl_z);

, raw_sensor__data—>gyro_x);

, raw_sensor_data—>gyro_y);

s rawisensoridata7>gyroiz) H

s sensor_data—>temperature) ;

scaled__roll = angle—>roll /1.1 — angle_reference[0]/1.1;

dtostrf(scaled_roll, 3, 2
uart__send_str(str_buf);
uart_send_str(",");

)

str__buf);

scaled __pitch = angle—>pitch /1.1 — angle_ reference[1]/1.1;

dtostrf(scaled pitch, 3,
uart__send_str(str_buf);

uart_send_str("\n\r");

inline wvoid

set__

angle reference () {

angle_reference [0]
angle_ reference [1]

2, str_buf);

angle.roll;
angle. pitch;

angle reference [2] = angle.yaw;

123

char str_buf[30];

" "

uart_send_str("roll reference:. ;
dtostrf(angle_ reference[0], 3, 2, str_buf);
uart__send_str(str_buf);

"

uart_send_str (", pitch_ reference: ");
dtostrf(angle_ reference[1], 3, 2, str_buf);
uart__send_str(str_buf);

uart_send_str("\n\r");

422 static void
423 send_raw_ data(raw_sensor_t *raw_sensor_data) {

456 }

char str__buf[30];

uart__send_str("Temp:. ") ;
itoa (raw_sensor_data—>temperature, str_buf,
uart__send_str(str_buf);

uart__send_str("\tAccl _x:.");
itoa (raw_sensor data—>accl_x, str_buf, 10);
uart_send_str(str_buf);

uart__send_str("\tAccl _y:.");
itoa (raw_sensor_data—>accl_y, str_buf, 10);
uart_send_ str(str_buf);

uart__send_str("\tAccl_z:.");
itoa (raw_sensor_data—>accl_z, str_buf, 10);
uart__send_str(str_buf);

uart__send_str("\tGyro_x:,");
itoa (raw_sensor_data—>gyro_x, str_buf, 10);
uart__send_str(str_buf);

uart__send_str("\tGyro_y:,");
itoa (raw_sensor__data—>gyro_y, str_buf, 10);
uart__send_str(str_buf);

uart_send_str("\tGyro_z:.,");
itoa (raw_sensor_ data—>gyro z, str_buf, 10);
uart__send_str(str_buf);

uart_send_str("\n\r");

458 static intl6_t
459 comp2int (uint8_ t msb, uint8 t lIsb) {

intl6_t x = 0;
if ((msb & 0x80) == 0x80) {
Isb "= 0xff;
msb "= 0xff;
msb &= 0x7f;
x = (intl6_t) ((msb << 8) + Isb + 1);
return —x;
} else {
x = (intl6_t) ((msb << 8) + Isb);

return x;

10);

1
2

© 00O Uk WN =

124

HydroAHRS mk.I MCU code

code/hydroAHRS_mkI/imu_ calc.h

#ifndef IMU_CALC_H
#define IMU_CALC_H

#define DEG2RAD (M_PI/180L)
#define RAD2DEG (180L/M_PI)

#define K I PITCH ROLL 512
#define K P_PITCH _ROLL 512

typedef struct {
intl6_t accl_x;
intl6_t accl_y;
intl6_t accl_z;

intl6_t gyro_x;
intl6_t gyro_y;
intl6_t gyro_z;

intl6__t magn_x;
intl6_t magn y;
intl6_t magn z;

intl6_t temperature;
} raw_sensor_t;

typedef struct {
float accl_x;
float accl_y;
float accl_z;

float gyro_x;
float gyro_y;
float gyro_z;

float magn_x;
float magn y;
float magn_z;

intl6_t temperature;
} sensor_t;

typedef struct {
float roll;
float pitch;
float yaw;

} axes_t;

extern void read calculate send_ angles () ;
extern void set_gyro_bias();

extern void set_angle_ reference () ;

#endif

code/hydroAHRS_mkI/uart.c

#include <avr/io.h>
#include <inttypes.h>

#include "uart.h"

void
uart__init (void) {

/% Set PD3 (TX) as output x/
PORTD.DIRSET = PIN3_bm;

/* Set the baud rate x/
// USARTC1.BAUDCTRLA = (wint8__t) BAUD;

// USARTC1.BAUDCTRLB = ((USARTC1.BAUDCTRLB) & 0zF0) | ((BAUD >> 8) & 0z0F);

USARTDO0.BAUDCTRLA = 0x2E;
USARTDO.BAUDCTRIB = 0x98;

N O Ut W

/* Enable low level UART receive interrupt x/
USARTDO.CTRLA = USART_ RXCINTLVL_LO_ gc;
/% Enable the UART transmitter and receiver x/
USARTDO.CTRLB = USART RXEN bm | USART TXEN bm;
/% Asynchronous USART, mo parity, 1 stop bit, 8 data bits x/
USARTDO.CTRLC = USART_CHSIZEO_bm | USART_CHSIZEl bm;

}

void

uart_send__byte(uint8_t ch) {
/*x Wait for TX buffer to be empty,
* which is indicated by the UDREI bit being cleared x/
while (!(USARTDO.STATUS & USART DREIF bm)) {
}
USARTDO.DATA = ch;

}

void

uart_send__hex(uint8_ t ch) {

uint8_t temp;
uart__send_str("0Ox");
/* Send high nibble x/
temp = (uint8_t) ((ch & 0xF0) >> 4) 4+ 0x30;
if (temp > 0x39)
temp += T7;
uart_send_byte(temp) ;
/* Send low nibble x/
temp = (ch & 0x0F) + 0x30;
if (temp > 0x39)
temp += 7;
uart__send_ byte(temp) ;
}
void
uart__send_str(char sptr) {
/% Send the string, one byte at time */
while (xptr) {
uart_send_byte(xptr);
ptr++;
}
void
uart__send_newline (void) {
/* Send newline and return x/
uart_send_ byte(’\n’);
uart_send__byte(’'\r’);
}
code/hydroAHRS mkI/uart.h
#ifndef UART H
#define UART H
#define BAUD ((uint16_t) ((F_.CPU / (16.0 % (115200))) + 0.5) — 1)
void uart__init(void);
void uart_send_byte(uint8_t ch);

10

12

© 0O Uk WN -

126 HydroAHRS mk.I MCU code
void uart_send_ hex(uint8_t ch);
void uart_send_str(char xptr);
void uart_send_ newline (void);
#endif
code/hydroAHRS_mkI/twi.c
#include <avr/io.h>
#include <avr/interrupt.h>
#include <inttypes.h>
#include "main.h"
#include "uart.h"
#include "twi.h"
volatile int8_t TWIBusy; // This flag is set when a send or receive is started
volatile int8_ t byte2Send; // Number of bytes to send to DS1337
volatile int8 t byte2Read; // Number of bytes to read from DS1337
volatile int8_t status; // Transaction status
volatile uint8_ t wlindex; // index to txBuf
volatile uint8 t rIndex; // index to rzBuf
int8 t rxBuf[15]; // Buffer to hold time read from keyboard
int8_t txBuf[10]; // Buffer of time for transfer to RTC
int8_t dispBuf[22]; // Display buffer
uint8_t i2c¢_slave_addr; // = MPU9150 ADDR;
void
twi_init () {
/* Configure SDA as output */
PORTC.DIRSET = PINO_bm;
/% Configure SCL as output */
PORTC.DIRSET = PIN1_bm;
/* Enable TWI Master and (high level) TWI read and write interrupt */
TWIC.MASTER.CTRLA = TWI MASTER ENABLE bm | TWIL MASTER RIEN bm | TWI MASTER WIEN bm;
I'WIC.MASTER.CTRLA |= TWIL _MASTER INTLVLO bm | WI_MASTER INTLVL1 bm;
/* Set the TWI frequency x*/
TWIC_MASTER BAUD = TWIL FREQ;
/% Force TWI bus to idle state x/
T'WIC.MASTER.STATUS = TWI _MASTER BUSSTATE(O bm;
}
uint8 _t
read_reg(uint8_t addr) {
/% Wait until TWI bus is idle */
while (TWIBusy) ;
/% Occupy the TWI bus x/
TWIBusy = 1;
status = NORMAL;
wlndex = 0;
rIndex = 0;
byte2Send = 1;
byte2Read = 1;
txBuf [0] = addr;
/* Generate START condition and send SLA + W x/
I'WIC.MASTER.ADDR = i2c¢_slave__addr + 0;
/% Wait until read is complete x/
while (TWIBusy) ;

127

return rxBuf[0];

}

void

write__

/*

/*

status
wlndex
rIndex

byte2Send
byte2Read

txBuf[0]
txBuf[1]

/%

reg (uint8 t addr,

uint8_t value) {

Wait until TWI bus is idle */
while (TWIBusy) ;

Occupy the TWI bus x/
TWIBusy = 1;

NORMAL;
03
03

)
3

2
0

addr;
value;

Generate START condition and send SLA + W x/

T'WIC.MASTER.ADDR = i2c¢_slave__addr + 0;

/*

Wait until read

while (TWIBusy) ;

}

ISR (TWIC_TWIM._ vect) {

/%

if (TWIC.MASTER.STATUS & TWI_MASTER,_ARBLOST bm) {

Arbitration lost

is complete */

condition */

status = ARBLOST;

/% Bus error condition x/

}

/*
}

else if (TWIC.MASTER.STATUS & TWI_MASTER_BUSERR_bm) {

status = BUSERR;

Send data */

else if (TWIC.MASTER.STATUS & TWI_MASTER WIF _bm) {

if (TWIC.MASTER.STATUS & TWI_MASTER RXACK_ bm)

/% Receive negative ACK from slave x/
status = NEGACK;

/% Generate a STOP condition x/
TWIC.MASTER.CTRLC = 0x03;

/* Release TWI bus x/
TWIBusy = 0;

/% More data to

} else if (byte2Send > 0) {

send? x/

/* Send out next byte x/
TWIC.MASTER.DATA = txBuf[wlndex++];
byte2Send ——;

/x All data bytes have been transmitted x/

} else {

/* Need to read data? */
if (byte2Read > 0) {

/% generate RESTART & send SLA + R x/
//TWIC.MASTER.ADDR = MPU9150 ADDR + 1;
TWIC.MASTER.ADDR = i2c¢_slave__addr + 1;

/x All
} else {

transaction

is finished x/

{

1
2
3
4
5
6

7
8

1
2
3
4
5

128 HydroAHRS mk.I MCU code
/% generate STOP condition x/
WIC.MASTER.CTRLC = 0x03;
/* mormal result x/
status = NORMAL;
/* release TWI bus x/
TWIBusy = 0;
}
}
/% Read data =/
} else if (TWIC.MASTER.STATUS & TWL MASTER_RIF_bm) {
if (byte2Read > 1) {
/* Send ACK and receive the mnext byte x/
T'WIC.MASTER.CTRLC = 0x02;
} else {
/% Send NACK and generate STOP condition */
T'WIC.MASTER.CTRLC = 0x07;
/* Release TWI bus x/
TWIBusy = 0;
}
rxBuf[rIndex++] = TWIC.MASTER.DATA;
byte2Read ——;
} else {
/% Send NACK and generate STOP condition */
TWIC.MASTER.CTRLC = 0x07;
/* Release TWI bus x/
TWIBusy = 0;
}
code/hydroAHRS mkI/twi.h
ifndef TWI_H
define TWI_H
#define TWIL FREQ ((F_CPU / (2.0 =% (400000))) — 5)
#define NORMAL 0 // Normal successful data transfer
#define ARBLOST 1 // Arbitration lost condition
#define BUSERR 2 // Bus error condition
#define NEGACK 3 // Receive NACK condition

void twi_init(void);

//void send_cmd(uint8__t addr, uint8_t wvalue);
uint8 t read_ reg(uint8 t addr);

void write_reg(uint8_t addr, uint8_t value);

extern int8_t rxBuf[];
extern uint8_t i2c_slave__addr;
#endif

code/hydroAHRS_ mkI/matrix.c

#include <inttypes.h>
#include "matrix.h"

void

6 matrix_mult(float x[][3], float y[][3], float z[][3]) {
7

8 for (uint8_t i = 0; i < 3; i++4) {

9
10 for (uint8_t j = 0; j < 3; j++) {
11
12 x[1][] = 0;
13
14 for (uint8_t k = 0; k < 3; k++)
15
16 x[i][j] 4= y[i][k] * 2z[k][j];
17 }
18 }
19 }
20
21 void
22 matrix_copy(float x[][3], float y[][3]) {
23
24 for (uint8_t i = 0; i < 3; i++) {
25
26 for (uint8_t j = 0; j < 3; j++) {
27
28 <[1105] = y[i1051;
29 }
30 1
31 }

code/hydroAHRS_ mkI/matrix.h

1 #ifndef MATRIX H

2 #define MATRIX H

3

4 void matrix_mult(float x[][3], float y[][3], float z[][3]);
5 void matrix_copy(float x[][3], float y[][3]);
6

7 #endif

1
2
3

129

code/hydroAHRS mkI/MPU9150.c

#include <inttypes.h>

#include "twi.h"

4 #include "MPU9150.h"

5

6 void

7 MPU9150_init () {

8

9 i2c¢_slave_addr = MPU9150_ADDR;

10

11 /x Wake up */

12 write_reg (PWR_MGMT 1, 0x00);

13

14 /* Set samplerate to 50 Hz x/

15 write_reg (SMPLRT DIV, SAMPLERATEDIVIDER) ;
16

17 /% Set low pass filter x/

18 write_reg (CONFIG, DLPF CFG) ;

19

20 /* Interrupt when new sample is ready */
21 write_reg (INT_ENABLE, 0x01);

22

23 /* I2C Pass—by =/

24 write_reg (INT_PIN_CFG, BYPASS CFG);
25 }

code/hydroAHRS_ mkI/MPU9150.h

1 #ifndef MPU9150_ H
2 #define MPU9150 H
3

130 HydroAHRS mk.I MCU code
4 #define MPU9150 ADDR 0xDO
5 #define AK8975C ADDR 0x18
6
7 /+* Definitions of register MPU9150 map */
8 #define AUX_VDDIO 1
9 #define SMPLRT DIV 25
10 #define CONFIG 26
11 #define GYRO_CONFIG 27
12 #define ACCEL_CONFIG 28
13 #define FF_THR 29
14 #define FF_DUR 30
15 #define MOT THR 31
16 #define MOT DUR 32
17 #define ZRMOT_ THR 33
18 #define ZRMOT_ DUR 34
19 #define FIFO_EN 35
20 #define I12C_MST CTRL 36
21 #define I12C_SLV0O_ADDR 37
22 #define I12C_SLV0_REG 38
23 #define 12C_SLV0O_CTRL 39
24 #define I2C_SLV1 ADDR 40
25 #define 12C_SLV1_REG 41
26 #define 12C_SLV1_ CTRL 42
27 #define I12C_SLV2_ ADDR 43
28 #define I12C_SLV2 REG 44
29 #define 12C_SLV2 CTRL 45
30 #define I2C_SLV3_ADDR 46
31 #define I12C_SLV3_REG 47
32 #define 12C_SLV3_CTRL 48
33 #define I2C_SLV4 ADDR 49
34 #define 12C_SLV4 REG 50
35 #define I12C_SLV4_ DO 51
36 #define 12C_SLV4_ CTRL 52
37 #define 12C_SLV4_DI 53
38 #define 12C_MST STATUS 54
39 #define INT PIN_ CFG 55
40 #define INT ENABLE 56
41 #define INT_STATUS 58
42 #define ACCEL_XOUT_H 59
43 #define ACCEL XOUT L 60
44 #define ACCEL_YOUT H 61
45 #define ACCEL_YOUT L 62
46 #define ACCEL_ZOUT H 63
47 #define ACCEL _ZOUT L 64
48 #define TEMP OUT H 65
49 #define TEMP OUT L 66
50 #define GYRO_XOUT H 67
51 #define GYRO_XOUT L 68
52 #define GYRO YOUT H 69
53 #define GYRO_YOUT L 70
54 #define GYRO_ZOUT H 71
55 #define GYRO_ZOUT L 72
56
57 /x Eaxzternal data registers x/
58 #define MOT DETECT STAT US 97
59 #define I12C_SLV0_DO 99
60 #define I12C_SLV1_DO 100
61 #define I12C_SLV2_DO 101
62 #define 12C_SLV3_DO 102
63 #define 12C_MST DELAY CT RL 103
64 #define SIGNAL PATH RES ET 104
65 #define MOT_ DETECT CTRL 105
66 #define USER,_CTRL 106
67 #define PWR MGMT 1 107
68 #define PWR MGMT 2 108
69 #define FIFO_COUNTH 114
70 #define FIFO_COUNTL 115
71 #define FIFO_R_W 116
72 #define WHO AM I 117
73
74 /* Register map for AK8975C Magnetometer x/
75 #define AK_INFO 1
76 #define AK ST1 2

131

77 #define AK_ HXL 3
78 #define AK HXH 4
79 #define AK HYL 5
80 #define AK HYH 6
81 #define AK_ HZL 7
82 #define AK HZH 8
83 #define AK_ST2 9
84 #define AK CNTL 10

85 #define AK ASAX 16

86 #define AK_ ASAY 17

87 #define AK ASAZ 18 // Z—Azis sensitivity

89 /+x MPU9150 Dewvice options x/
90 #define SAMPLERATEDIVIDER 39 // 1kHz/40 = 25Hz sample rate

91 #define DLPF CFG 1 // Gives 1kHz sampling and 188Hz BW
92 #define BYPASS CFG 2 // Set up for i2c by—pass mode
93

94 /x AK8975C Device options x/

95 #define AK ADR 12 // Slave adress of magnetometer
96 #define AK CNTL_MODE 1 // Single measurement mode

97

98 /x General options x/

99 #define DEBUG_MODE 1 // If 1, program will be verbose
100 #define ACC_LSB 16384L // No. of bits pr g

101 #define GYRO LSB 131L // No. of bits pr deg/s

102 #define GYRO_HZ 25 // Data output rate

103 //#define GYRO DT ((1/GYRO_HZ)x1000)
104 #define GYRO DT 40

105
106 void MPU9150_init(void);
107
108 #endif
code/hydroAHRS mkI/Makefile
1 DEVICE = atxmega32a4
2 AVRDUDE = avrdude —p x32a4 —c jtag2pdi —P usb
3 F_CPU=32000000UL
5 CC = avr—gcc
6 CFLAGS = —g -W —Wall —02 —std=gnu99 —mmcu=$ (DEVICE) —DF CPU=$(F_CPU) —Im —pedantic

8 OBJECTS = main.o uart.o twi.o matrix.o MPU9150.0 imu_ calc.o

10 flash: all
11 $ (AVRDUDE) —U flash :w:main.hex:i

13 all: main . hex

15 clean:
16 rm —f *.hex x.lst *.0 =x.bin

18 $(OBJECTS): | depend

20 main. bin: $(OBJECTS)
21 $(CC) $(CFLAGS) —o main.bin $(OBJECTS)

23 main. hex: main. bin

24 avr—objcopy —j .text —j .data —O ihex main.bin main.hex
25 avr—size ——totals *.o0

26 #avr—size —C —mcu=$ (DEVICE) x.o0

28 read:
29 3 (AVRDUDE) —U eeprom:r:eeprom.dat:r
30 hd eeprom.dat

32 depend:
33 @$(CC) -MM $ (ALL_CFLAGS) x.c | sed ’s/$$/ Makefile/’

© 000U WN -

Appendix K

HydroAHRS mk.IT MCU code

Code for ATxmega32A4U in HydroAHRS mk.II, as described in section 2.3.2.

This code depends on LUFA-130901 from Dean Camera, eMPL from InvenSense and Two Wire
Interface (TWI)-drivers from Atmel. LUFA-130901 is available at http://www.github.com/
abcminiuser/lufa/archive/LUFA-130901.zip. eMPL is available at http://www. invensense.
com/developers/. TWI drivers is available at http://www.atmel.com/tools/AVRSOFTWAREFRAMEWORK .
aspx. The code is licensed under the MIT license (listing D.1) unless otherwise specified.

code/hydroAHRS__mkII/main.c

#include
#include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include

<avr/io.h>
<avr/interrupt .h>
<avr/eeprom .h>
<util/delay .h>
<inttypes.h>
<stdio.h>

"main.h"
"twi.h"
"uart.h"
"mpu9150.h"
"usb_talk.h"
"nmea.h"

#define LED_PORT PORTC
#define LED_PIN PIN2_ bm

relative__time_t relative_time;

uint8_t

running = FALSE;

uint8_t send__one_measurment = FALSE;
uint8 t getting angle reference = FALSE;

//static

static int calibrate_mag = 0;
static int calibrate_accel =

//static

float avarage_pan = 0.0;

int change = 0;

typedef struct {
uint8__t calibrated;
intl6_t minVal[3];
intl6_t maxVal[3];
} accel_cal_st;

typedef struct {
uint8_t calibrated;
intl6_t minVal[3];
intl6_t maxVal[3];
} mag_cal st;

132

http://www.github.com/abcminiuser/lufa/archive/LUFA-130901.zip
http://www.github.com/abcminiuser/lufa/archive/LUFA-130901.zip
http://www.invensense.com/developers/
http://www.invensense.com/developers/
http://www.atmel.com/tools/AVRSOFTWAREFRAMEWORK.aspx
http://www.atmel.com/tools/AVRSOFTWAREFRAMEWORK.aspx

133

41 /+ Create wvariable in EEPROM x/

42 acce

1_cal_st EEMEM EEaccel_ cal;

43 mag_ cal_st EEMEM EEmag_cal;

45 char

EEMEM EEserial _number [5];

47 /x Create variable in RAM x/

48 acce

1_cal_st accel_cal;

49 mag_cal_st mag_cal;

51 char

53 cald
54 cald

56 void
58 int
60 }

62 void

64 void

serial _number [5] = "0011";

ata_t accel_cal_or;
ata_t mag_ cal_or;

(x start__bootloader)(void) = (void (%) (void)) (BOOT_SECTION_START/2+40x1FC/2);

get__ms(unsigned long *count) {
return 0;

___no_operation(void) { }

65 CCP_write(volatile uint8_ t * address, uint8_t value) {

86 void

/% Begin a critical task, so we must disable interrupt */
uint8_t volatile saved_sreg = SREG;

cli();

volatile uint8_t x tmpAddr = address;
asm volatile (

"movw,r30 , , ,%0" "\n\t"
"1digorl6, o %2" “\n\t"
"outy,Lu%3,0r16" "\n\t"

"St,JuuuZ,Ju%l" "\n\t"

"r" (tmpAddr), "r" (value), "M" (CCP_IOREG gc), "i" (&CCP)
S "r16", "r30", "r31"

)5
/% End the critical task */
SREG = saved_sreg;

clock__init () {

/* Start the PLL to multiply the 2MHz RC oscillator to 32MHz */

OSC.PLLCTRL = OSC_PLLSRC_RC2M_gc | (F_CPU / 2000000);
OSC.CTRL |= OSC_PLLEN_bm;
while (!(OSC.STATUS & OSC_PLLRDY_bm)) ;

/* and switch the CPU core to run from it x/
CCP__write(&CLK.CTRL, CLK SCLKSEL PLL gc);

/* Wait for the system to switch clock x/
_delay_us(2);

/x Select 32 kHz as external clock x/
OSC.XOSCCTRL = OSC_XOSCSEL_32KHz_ gc;

/* Start the 32MHz internal RC oscillator and exztermnal clock,
on */

OSC.CTRL |= OSC_XOSCEN_bm | OSC_RC32MEN_bm;

/* Wait until 32MHz clock is ready x/
while (! (OSC.STATUS & OSC_RC32MRDY_bm)) ;

/% Wait for the external oscillator to stabilize. x/
while (!(OSC.STATUS & OSC_XOSCRDY_bm));

but keep 2MHz clock

/* and start the DFLL to increase it to 48MHz using the USB SOF as a reference %/

134

HydroAHRS mk.IT MCU code

}

OSC.DFLLCTRL |= (2 << OSC_RC32MCREF_gp) ;
DFLLRC32M.COMP1 = ((F_USB / 1000) & OxFF);
DFLLRC32M.COMP2 = ((F_USB / 1000) >> 8);

NVM.CMD
DFLLRC32M . CALA
DFLLRC32M .CALB
NVM.CMD

NVM_CMD_READ CALIB ROW_ gc;

0;

/* Enable automatic run—time calibration */
DFLLRC32M.CTRL = DFLL ENABLE bm;

void
rtc_init (void) {

}

pgm_read_byte(offsetof (NVM_PROD_SIGNATURES t, USBRCOSCA)) ;
pgm_read_byte(offsetof (NVM_PROD_SIGNATURES_t, USBRCOSC)) ;

/+ Set 82 kHz from external 32kHz oscillator as clock source for RTC.

CLK.RTCCTRL = CLK_RTCSRC_TOSC32_gc | CLK_RTCEN_bm;

/* Wait until RTC is not busy */
while (RTC.STATUS & RTC_SYNCBUSY_ bm) ;

/% Period register wvalue. Must subtract 1, because zero wvalue is counted.

* Gives an overflow every 1/1024 second %/
RTC.PER = 32 — 1;

/% Make sure COMP and CNT is 0. x/
RTC.COMP = 0;
RTC.CNT = 0x0000;

/* Divide by 1, so 32.768 kHz frequency x*/
RTC.CTRL = RTC_PRESCALER DIVl gc;

/* Enable overflow interrupt. x/
RTC.INTCTRL = RTC_OVFINTLVL_HI gc | RTC_COMPINTLVL_OFF gc;

void
int__init () {

}

/% Enable high, medium and low level interrupt =/
PMIC.CTRL = PMIC_LOLVLEN_bm | PMIC_MEDLVLEN bm | PMIC_HILVLEN_bm;

/* Enable global interrupt */
sei();

void
led init () {

/% Set Green LED-pin PC2 as output x/
//LED _PORT.DIRSET = LED_PIN;

/* Invert the LED-pin, so the LED light when we set it high x/
LED PORT.PIN2CTRL |= PORT INVEN bm;

/* Set it to light as default, so we can toogle it later on x/
LED_PORT.OUTSET = LED_PIN;

void print__accel (mpudata_t smpu) {

/* Clear screen */
printf("\x1b[H\x1b[2J");

printf("\rCalibrate accelerometer ") ;
printf ("X, %4d|%4d|%4d o00Y %4d | %4d | %4d0 o0 0 Z0%4d | %4d | %4d ",

accel__cal.minVal[0] , mpu—>rawAccel [0] , accel cal.maxVal[0]
accel__cal.minVal[1l], mpu—>rawAccel[1l], accel_cal.maxVal[1l]
accel__cal.minVal[2], mpu—>rawAccel[2], accel_ cal.maxVal[2]

//fflush (stdout) ;

)

)

135

185 void print__mag(mpudata_t xmpu) {
/% Clear screen x/
printf("\x1b[H\x1b[2J");

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

printf("\rCalibrate_magnetometer_ ") ;

printf ("X %4d|%4d|%4d, . Y, %A4d|%4d | %4d 020 %4d | %dd | Y%dd "
mag_cal.minVal[0], mpu—>rawMag[0],
mag_cal.minVal[1l] , mpu—>rawMag[1],
mag_cal.minVal[2], mpu—>rawMag[2],

//ff

void print_fused_ euler__angles_as_nmea(mpudata_t xmpu)

char
char
char
char

spri

spri

lush (stdout);

nmea_ sentence_time [80];
nmea_ sentence_data [80];
nmea_ checksum__buffer [3];
nmea_ sentence [80];

ntf(nmea_sentence_time, "$PASHR,%0.2d%0.2d%0.2d.%0.3d,",

relative__time . hours,
relative__time.minutes,
relative_time.secs,

(relative time.ticks+*1000UL)/1024UL) ;

ntf (nmea_sentence_ data, "%.7.2f M%.,7.2f,%,7.2f,,0.1,0.1,1.0,0,1",
mpu—>fusedEuler [VEC3_Z]
mpu—>fusedEuler [VEC3_X]
mpu—>fusedEuler [VEC3_Y]

nmea__sentence ,

* RAD_TO_DEGREE,
* RAD_TO_DEGREE,
*+ RAD_TO_DEGREE) ;

mag_ cal.maxVal [
mag_ cal.maxVal [
mag_ cal.maxVal [

{

nmea__sentence__time,

sprintf (nmea_sentence, "%s%sx*",
sprintf(nmea_ checksum_ buffer,
sprintf(nmea_sentence, "%s%s",
printf("%s\r\n", nmea_sentence);

}

void print_fused_ euler_angles(mpudata_t smpu) {
const number_of samples = 50;
//av

arage_pan = ((number__of samples — 1)xavarage_pan + mpu—>fusedEuler [VEC3 Z]

RAD TO DEGREE)/number__of samples;

printf("\r\n%0.2d:%0.2d:%0.2d.%0.3d, ",

printf('%.6.1f, % 6.1, % 4.0f",
mpu—>fusedEuler [VEC3_X]
mpu—>fusedEuler [VEC3_Y]
mpu—>fusedEuler [VEC3_Z]

}

relative__time.hours,
relative__time.minutes
relative_time.secs,

)

(relative time.ticks+*1000UL)/1024UL) ;

//avarage__pan) ;

+ RAD_TO_DEGREE,
+ RAD_TO_DEGREE,
+ RAD_TO_DEGREE) ;

void print_debug data(mpudata_t sxmpu) {

prin

prin

}

(", Yudi, Y4l Sondi"
mpu—>rawMag [VEC3_X] ,
mpu—>rawMag [VEC3_Y] ,
mpu—>rawMag [VEC3_Z]) ;

e (", %41, %4l Toodi",

mpu—>calibratedMag [VEC3_X],
mpu—>calibratedMag [VEC3_Y],
mpu—>calibratedMag [VEC3_Z]) ;

void parse_command (char command)

/% Start sending angles x/

if (

command == ’'s’) {
running = TRUE;

{

0]
1]
2]

)

)

nmea_ sentence_data) ;
"%02X" , nmea_ checksum (nmea_sentence));
nmea_ checksum_ buffer);

136 HydroAHRS mk.IT MCU code

RTC.CNT = 0x0000;
TCCO.CNT = 0;
relative__time.ticks = 0;
relative__time.secs = 0;
relative__time.minutes = 0;
relative__time.hours = 0;
relative__time.days = 0;
LED_ PORT.DIRSET = LED_PIN;
calibrate__mag = 0;
calibrate__accel = 0;
/x Clear screen x*/
printf ("\x1b[H\x1b[2J");

}

/* Stop sending angles */

if (command = ’S’) {
running = FALSE;
calibrate_mag = FALSE;
calibrate__accel = FALSE;
LED_PORT.DIRCLR = LED_PIN;

}

/* Reset counter x/

if (command = ’'r’) {
RTC.CNT = 0x0000;
TCCO.CNT = 0;
relative__time.ticks = 0;
relative__time.secs = 0;
relative__time.minutes = 0;
relative__time.hours = 0;
relative__time.days = 0;
calibrate_mag = FALSE;
calibrate__accel = FALSE;

}

/% Send one measurment */

if (command = ’1’) {
send__one_ measurment = TRUE;
calibrate _mag = FALSE;
calibrate_ accel = FALSE;

}

/* Calibrate mag */

if (command == ’'m’) {
calibrate__mag = TRUE;
calibrate__accel = FALSE;
//change = TRUE;

}

/% Calibrate accel x/

if (command == ’a’)
calibrate__mag = FALSE;
calibrate__accel = TRUE;
//change = TRUE;

}

/* Reset mag */

if (command = "M’)
mag_cal.calibrated = FALSE;
for (uint8_t i = 0; i < 3; i++4)

mag_cal.minVal[i] = INT16_MAX; //0z7fff; ??
mag_cal.maxVal[i] = INT16_MIN; //0x8000; ??

//eeprom__write__block(&accel_cal, &FEFEaccel_cal, sizeof(accel cal_st));

/* Reset accel x/

if (command = ’A’)
accel_cal.calibrated = FALSE;

for (uint8_t i = 0; i < 3; i++) {

137

accel__cal.minVal[i]
accel__cal.maxVal[i]

INT16_MAX; //0z7fff; 2?2
INT16_MIN; //028000; #?

}
//eeprom__write__block(&accel cal, &EEaccel_cal, sizeof(accel cal_st));
}
/% Run bootloader x/
if (command == ’'b’)
printf("Resetting and_ starting bootoader\r\n");
_delay_ms(1500);
/* Start a software reset x/
CCP__write(&RST.CTRL, RST SWRST bm);
}
/% Get debug info x/
if (command == ’d’)
printf ("%d. <—>_.%d\n%d <—>_%d\n%d <—> %d\n" ,
mag_cal.minVal[0], mag_ cal.maxVal[0],
mag_cal.minVal[1l], mag cal.maxVal[l],
mag_cal.minVal[2], mag_cal.maxVal[2]) ;
printf ("%dy: %d\n%d. : Yed\n%d.: %d\n",
mag_cal_or.range [0], mag_cal_or.offset [0],
mag_cal or.range[l], mag cal or.offset[1],
mag_cal_or.range[2], mag cal or.offset [2]);
}

if (command == ~’

w’) A

if (calibrate_accel) {
accel_cal.calibrated = TRUE;

eeprom__write_block(&accel cal, &EEaccel_cal, sizeof(accel cal_st));

/* Clear screen x/
printf("\x1lb[H\x1b[2J");
printf("accel_cal values_ written to EEPROM.");

}

if (calibrate mag) {
mag_cal.calibrated = TRUE;
eeprom__write_block(&mag cal, &EEmag cal, sizeof(mag_ cal_st));
/* Clear screen */
printf ("\x1lb[H\x1b[2J");
printf("mag cal values written to EEPROM.");

}

calibrate_mag = FALSE;
calibrate__accel = FALSE;
running = FALSE;

}
/* Read EEPROM calibration data %/
if (command == ’e’)

eeprom__read_ block(&accel cal, &EEaccel cal, sizeof(accel cal st));
eeprom__read__block(&mag_cal, &EEmag cal, sizeof(mag_cal_st));

/x Clear screen %/
printf("\x1b[H\x1b[2J");

printf("accel_cal: X %4d|%4d ., ,0Y %4d|%4d 00 Z0%4d | %4d\r\n" ,
accel cal.minVal[0], accel cal.maxVal[0],
accel cal.minVal[l], accel cal.maxVal[l],
accel cal.minVal[2], accel_ cal.maxVal[2]) ;

printf("mag cal: . 0X %4d|%4d 000 Y 0 %4d | %4d L0020 %4d | %4d "

mag_cal.minVal[0], mag_cal.maxVal[0],
mag_cal.minVal[1l], mag cal.maxVal[l],
mag_cal.minVal[2], mag cal.maxVal[2]) ;

calibrate__mag = FALSE;
calibrate__accel = FALSE;
running = FALSE;

138 HydroAHRS mk.IT MCU code

/* Read EEPROM serial number x/

if (command == ’i’)
eeprom_read_ block(&serial _number, &EEserial _number, sizeof(serial number));
printf("serial_number: %s\r\n", serial number);
}
#if 0
/% Write EEPROM serial number x/
if (command = 1)
eeprom__write_ block(&serial _number , &EEserial _number, sizeof(serial number));
}
#endif

}

void run_bootloader_on_soft_reset () {
if (RST.STATUS & RST SRF bm) {

LED_PORT.DIRSET = LED_PIN;

for(uint8_t i; i < 7; i++) {
LED PORT.OUTTGL = LED_PIN;
_delay_ms(200) ;

}

cli () ;
EIND = BOOT_SECTION_START>>17;
start__bootloader () ;

}

void load__calibration_from__eeprom () {
eeprom_read__block(&accel_cal , &EEaccel_cal, sizeof(accel cal_st));
eeprom_read_block(&mag cal, &EEmag cal, sizeof(mag cal_ st));

accel__cal_or.offset [0] = (short) ((accel_cal.minVal[0] + accel_cal.maxVal[0])
accel_cal_or.offset [1] = (short) ((accel_cal.minVal[l] + accel_cal.maxVal[1l])
accel_cal_or.offset [2] = (short) ((accel_cal.minVal[2] + accel_cal.maxVal[2])
accel_cal_or.range[0] = (short) (accel_cal.maxVal[0] — accel_cal_or.offset [0]
accel_cal_or.range[l] = (short) (accel_cal.maxVal[l] — accel_cal_or.offset [1]
accel_cal_or.range[2] = (short) (accel_cal.maxVal[2] — accel_cal_or.offset [2]

mag_cal _or.offset [0] = (short) ((mag cal.minVal[0] + mag cal.maxVal]|
mag_cal_or.offset [1] = (short) ((mag_cal.minVal[l] + mag_cal.maxVal|
mag_cal_or.offset [2] = (short) ((mag_cal.minVal[2] + mag cal.maxVal|
mag_cal_or.range[0] = (short) (mag_cal.maxVal[0] — mag_ cal _or.offset
mag_cal_or.range[l] = (short) (mag_cal.maxVal[l] — mag cal _or.offset
mag_cal _or.range[2] = (short) (mag cal.maxVal[2] — mag cal or.offset

if (accel_cal.calibrated == TRUE)
mpu9150 set accel cal(&accel cal or);

}
if (mag_ cal.calibrated == TRUE) {
mpu9150_set__mag cal(&mag cal_or);
}
}
int

main () {
clock__init ();
led init ();
run__bootloader_on_soft_reset();
J/wart__init () ;
rtc_init ();
twi_init ();
int__init ();
usb__talk_init ();

0])
1)
21)

[on
[1])
(21

)
)

)

)
)
)

)
)

3

139

/* Hack: set the serial_number x/
eeprom__write_block(&serial _number , &EEserial _number, sizeof(serial_number));

_delay_ms(50) ;

mpu9150_init (SAMPLE RATE, YAW_MIXING._ FACTOR) ;
load__calibration_from__eeprom () ;

mpudata_t mpu;

memset(&mpu, 0, sizeof(mpudata_t));

accel_ cal.minVal[i
accel__cal.maxVal[i

INT16_MAX; //0z7fff; 2?2

35 i+4) {
= INT16_MIN; //028000; 27

for (uint8_t i = 0; i <
]
]

for (uint8_t i = 0; i
mag_cal. minVal[i]
mag_ cal.maxVal[i]

37 i4++)
INT16_MAX; //0z 7fff; 22
INT16_MIN; //028000; 2?

A

}
for (;;) {

/* Receive bytes from the host x/
char command = CDC_ Device_ReceiveByte(& VirtualSerial CDC__Interface);
parse__command (command) ;

CDC_ Device. USBTask(& VirtualSerial CDC_Interface);
USB__USBTask() ;

if (mpu9150_read(&mpu) = 0) {
if (calibrate_mag)
for (uint8_t i = 0; i < 3; i++4)
if (mpu.rawMag[i] < mag_cal.minVal[i]) {
mag_cal.minVal[i] = mpu.rawMag|i |;
//change = TRUE;

if (mpu.rawMag[i] > mag_cal.maxVal[i
mag_cal.maxVal[i] = mpu.rawMag]| i
//change = TRUE;

}

} else if (calibrate accel)
for (uint8_t i = 0; i <

if (mpu.rawAccel[i]
accel_cal.minVal

//change = TRUE;

1

{

3; i++) {
< accel_cal.minVal[i]) {
[i] = mpu.rawAccel[il];

if (mpu.rawAccel[i] > accel_cal.maxVal[i]) {
accel_cal.maxVal[i] = mpu.rawAccel[i];
//change = TRUE;

}
} else {
if (send_one_measurment == TRUE) {
print_ fused euler__angles_as_nmea(&mpu) ;
//print__fused__euler__angles(&mpu) ;
//print_debug__data(&Empu) ;
send__one__measurment = FALSE;

} else if (running) {
print_ fused euler_angles_as_nmea(&mpu) ;
//print_debug__data(&Empu) ;

HO OO U kR WN -

140

HydroAHRS mk.IT MCU code

//if (change) {

if (calibrate_mag)
print_mag(&mpu) ;
if (calibrate__accel)
print__accel(&mpu) ;

else

//}

//change = FALSE;

// 50 Hertz

_delay_ms(20);

}
ISR (RTC_OVF_ vect

/* Ticks is

)

{

1/1024 seconds */
relative__time.ticks++;

if (relative time.ticks > 1023)
relative_time.ticks = 0;
relative_time.secs++;

LED_PORT.OUTTGL = LED_PIN;

if (relative time.secs > 59) {
relative__time.secs = 0;
relative__time.minutes++;

}

if (relative_time.minutes > 59)
relative_time.minutes = 0;
relative__time.hours++;

}

if (relative_time.hours > 23) {
relative__time.hours = 0;
relative__time.days++;

{

{

code/hydroAHRS mkIT/main.h

ifndef MAIN_H
define MAIN_H

#define TRUE 1
#define FALSE 0

#define SAMPLE RATE

50

#define YAW MIXING FACTOR 4

#define LOOP_DELAY ((1000 / SAMPLE RATE) — 2)

#define LENGTH(array) (sizeof(array) / sizeof(array|[0]))

#define delay_ms
#define get_ms
#define log_ i
#define log_e
#define min(a, b

)

_delay__ms
linux__get__ms
printf
printf

((a < b) 7 a

static inline int reg int cb(struct

return O0;

}

#define MAX CMD LENGTH 20

typedef struct {

uintl6_t ticks;

uint8_t secs;

3

b)

int__param_ s xint_ param)

OO0 Uk WN

141

uint8_t minutes;

uint8 t hours;

uintl6_t days;
} relative time_ t;
void __no_operation(void);
extern relative_time_t relative_time;
extern uint8_t running;
extern uint8_ t send_one_measurment;
#endif

code/hydroAHRS_ mkII/mpu9150.c

??//
// This file is part of linuz—mpu9150
//
// Copyright (c¢) 2013 Pansenti, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software”), to deal in
// the Software without restriction , including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
// Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

24 #include <inttypes.h>

25
26

28

#include "eMPL/inv_mpu.h"
27 #include "eMPL/inv_mpu_dmp_motion_driver.h"
#include "mpu9150.h"

static int data_ready () ;

static void calibrate data(mpudata t xmpu);

static void tilt_compensate(quaternion_t magQ, quaternion_t unfusedQ);

static int data_fusion (mpudata_t smpu);

static unsigned short inv_row_2 scale(const signed char sxrow);

static unsigned short inv_orientation_matrix_to_scalar(const signed char xmtx);

int debug_on;
int yaw_ mixing_ factor;

#if 0
int use__accel_cal;
caldata_t accel_cal_data;

int use_mag_cal;
caldata__t mag_cal_data;
#endif

void mpu9150_set_debug(int on) {

}

debug_on = on;

uint8_t mpu91507init(uint87t sample rate, uint8 t yaw_mixing factor) {

signed char gyro_orientation [9] = {

142 HydroAHRS mk.IT MCU code

57 0, 0, 1 };

58

59 mpu__init () ;

60 mpu_set_sensors (INV_XYZ GYRO | INV_XYZ ACCEL | INV_XYZ COMPASS) ;
61 mpu_ configure_ fifo (INV_XYZ GYRO | INV_XYZ ACCEL) ;

62 mpu_set_sample_rate(sample_rate);

63 mpu_set__compass_sample_rate(sample_rate);

64 dmp_load_motion driver_firmware() ;

65 dmp_set_orientation(inv__orientation_ matrix_to_scalar(gyro_orientation));
66 dmp__enable_feature (DMP_FEATURE 6X LP QUAT | DMP_FEATURE SEND RAW_ACCEL |
67 DMP_FEATURE SEND_ CAL GYRO | DMP_FEATURE GYRO_ CAL) ;
68 dmp_set_ fifo_rate(sample_rate);

69 mpu_set__dmp_state (1) ;

70

71 return 0;

72 }

73

74 void mpu9150_exit () {

75 // Turn off the DMP on exzit

76 mpu_set_dmp_state (0) ;

7

78 // TODO: Should turn off the sensors too

79

80

81 #if 0

82 void mpu9150_set_accel cal(caldata_t =xcal) {

83 int i;

84 long bias [3];

85

86 if (!lcal) {

87 use__accel_cal = 0;

88 return;

89 }

90

91 memcpy(&accel__cal_data, cal, sizeof(caldata_t));

92

93 for (i = 0; i < 3; i++) {

94 if (accel _cal_data.range[i] < 1)

95 accel cal_data.range[i] = 1;

96 else if (accel cal data.range[i] > ACCEL_SENSOR_RANGE)
97 accel cal_data.range[i] = ACCEL_SENSOR_RANGE;
98

99 bias[i] = —accel_cal_data.offset [i];

100 }

101

102 if (debug _on) {

103 printf("\naccel cal_ (range,:_ offset)\n");

104

105 J/for (i = 0; i < 3; i++)

106 J/printf("%d : %d\n", accel _cal_data.range[i], accel _cal _data.offset[i]);
107 }

108

109 mpu_set__accel_bias(bias);

110

111 use__accel_cal = 1;

112 }

113

114 void mpu9150_ set_mag cal(caldata_t xcal) {

115 int i;

116

117 if (!lcal) {

118 use__mag_cal = 0;

119 return;

120 1

121

122 memcpy(&mag_cal_data, cal, sizeof(caldata_t));

123

124 for (i = 0; i < 3; i++) {

125 if (mag_ cal data.range[i] < 1)

126 mag cal data.range[i] = 1;

127 else if (mag_cal data.range[i] > MAG_SENSOR RANGE)
128 mag_cal_data.range[i] = MAG_SENSOR_RANGE;

143

130 if (mag_cal_data.offset [i] < —MAG_SENSOR RANGE)

131 mag_cal_data.offset [i] = —MAG_SENSOR_RANGE;

132 else if (mag_cal data.offset [i] > MAG_SENSOR_RANGE)

133 mag_cal_data.offset [i] = MAG_SENSOR RANGE;

134 1

135

136 if (1) {

137 printf("\nmag cal_ (range_ : offset)\n");

138

139 for (i = 0; i < 3; i++)

140 printf("%d.: %d\n", mag cal data.range[i], mag_ cal_ data.offset[i]);

141 1

142

143 use__mag_cal = 1;

144 }

145 #endif

146

147 int mpu9150_read dmp(mpudata_t xmpu) {

148

149 short sensors;

150 unsigned char more;

151

152

153 if (!data_ready())

154 return —1;

155

156 if (dmp_read_fifo(mpu—>rawGyro, mpu—>rawAccel, mpu—>rawQuat, &mpu—>dmpTimestamp, &

sensors , &more) < 0) {

157 printf("dmp_read_fifo() failed\n");

158 return —1;

159 }

160

161 while (more) {

162 // Fell behind, reading again

163 if (dmp_read_fifo(mpu—>rawGyro, mpu—>rawAccel, mpu—>rawQuat, &mpu—>dmpTimestamp
, &sensors , &more) < 0)

164 printf("dmp_read_fifo() failed\n");

165 return —1;

166 }

167 }

168

169 return 0;

170 }

171

172 int mpu9150_ read mag(mpudata_t xmpu) {

173

174 if (mpu_get_compass_reg(mpu—>rawMag, 0) < 0) {

175 printf ("mpu_get compass_reg(),failed\n");

176 return —1;

177 }

178

179 return 0;

180 }

181

182 int mpu9150_read(mpudata_t xmpu) {

183

184 if (mpu9150_ read dmp(mpu) != 0)

185 return —1;

186

187 if (mpu9150_read_ mag(mpu) != 0)

188 return —1;

189

190 calibrate_data (mpu) ;

191

192 return data_ fusion (mpu) ;

193 }

194

195 int data_ready () {

196

197 short status;

198

199 if (mpu_get_ int_ status(&status) < 0) {

200 printf("mpu_get_int_status (). failed\n");

144

HydroAHRS mk.IT MCU code

}

return 0;

}

// debug
//if (status != 0z0103)

// fprintf(stderr, "%04X\m", status);

return (status == (MPU_INT STATUS DATA READY | MPU_INT STATUS DMP |
MPU_INT_STATUS _DMP _0)) ;

void calibrate_data (mpudata_t smpu) {

}

if (use_mag cal) {
mpu—>calibratedMag [VEC3_Y] = —(short) (((long) (mpu—>rawMag [VEC3_X] — mag_cal_data.
offset [VEC3_X])
x (long)MAG_SENSOR _RANGE) / (long)mag cal data.range [VEC3_X]) ;

mpu—>calibratedMag [VEC3_X] = (short) (((long) (mpu—>rawMag[VEC3_Y] — mag_cal_ data.
offset [VEC3_Y])
* (long)MAG_SENSOR _RANGE) / (long)mag cal data.range[VEC3_Y]) ;

mpu—>calibratedMag [VEC3_Z] = (short) (((long) (mpu—>rawMag [VEC3_Z] — mag_cal_data.
offset [VEC3_Z])
* (long)MAG_SENSOR_RANGE) / (long)mag_cal_data.range [VEC3_Z]) ;
} else {
mpu—>calibratedMag [VEC3_X]
mpu—>calibratedMag [VEC3_Y]
mpu—>calibratedMag [VEC3_Z]

mpu—>rawMag [VEC3_Y];
—mpu—>rawMag [VEC3_X] ;
mpu—>rawMag [VEC3_Z] ;

}

if (use_accel_cal)
mpu—>calibratedAccel [VEC3_X]
ACCEL_SENSOR_RANGE)
/ (long)accel_cal_ data.range[VEC3 X]) ;

—(short) (((long)mpu—>rawAccel [VEC3_X] * (long)

mpu—>calibratedAccel [VEC3_Y] = (short) (((long)mpu—>rawAccel [VEC3_Y]| x* (long)
ACCEL_SENSOR_RANGE)
/ (long)accel cal_ data.range[VEC3 Y]) ;

mpu—>calibratedAccel [VEC3_Z] = (short) (((long)mpu—>rawAccel [VEC3_Z] * (long)
ACCEL_SENSOR_RANGE)
/ (long)accel cal data.range[VEC3 Z]) ;
} else {
mpu—>calibratedAccel [VEC3_X]
mpu—>calibratedAccel [VEC3 Y]
mpu—>calibratedAccel [VEC3_Z]

—mpu—>rawAccel [VEC3_X];
mpu—>rawAccel [VEC3_Y];
mpu—>rawAccel [VEC3_Z];

void tilt_compensate (quaternion_t magQ, quaternion_t unfusedQ) {

quaternion__t unfusedConjugateQ ;
quaternion_t tempQ;

quaternionConjugate (unfusedQ, unfusedConjugateQ) ;
quaternionMultiply (magQ, unfusedConjugateQ , tempQ);
quaternionMultiply (unfusedQ , tempQ, magQ) ;

data_ fusion (mpudata_t smpu) {
quaternion_t dmpQuat;
vector3d_t dmpEuler;
quaternion__t magQuat;
quaternion__t unfusedQuat;
float deltaDMPYaw;

float deltaMagYaw;

float newMagYaw;

float newYaw;

dmpQuat [QUAT W]
dmpQuat [QUAT _X]
dmpQuat [QUAT Y]
dmpQuat [QUAT _Z]

(float)mpu—>rawQuat [QUAT W] ;
(float)mpu—>rawQuat [QUAT X];
(float)mpu—>rawQuat [QUAT_Y];
(float)mpu—>rawQuat [QUAT _Z];

145

quaternionNormalize (dmpQuat) ;
quaternionToEuler (dmpQuat, dmpEuler) ;

mpu—>dmpEuler [VEC3_X] = dmpEuler [VEC3_X];
mpu—>dmpEuler [VEC3_Y] dmpEuler [VEC3_Y];
mpu—>dmpEuler [VEC3_Z] dmpEuler [VEC3_Z];

mpu—>fusedEuler [VEC3_X] = dmpEuler [VEC3_X];
mpu—>fusedEuler [VEC3_Y] = —dmpEuler [VEC3_Y];
mpu—>fusedEuler [VEC3_Z] = 0;

eulerToQuaternion (mpu—>fusedEuler , unfusedQuat);

// Maybe the drift appeared here?
deltaDMPYaw = —dmpEuler [VEC3_Z] + mpu—>lastDMPYaw ;
//if ((deltaDMPYaw <= 0.0001) || (—deltaDMPYaw <= 0.0001)) {
if (fabs(deltaDMPYaw) < 0.0001) {
deltaDMPYaw = 0;

}

//printf("deltaDMPYaw(% 6.10f) = —dmpEuler [VEC3_Z](% 6.10f) + mpu—>lastDMPYaw(%
6.10f)\n\r", deltaDMPYaw, dmpEuler[VECS Z], mpu—>lastDMPYaw) ;

mpu—>lastDMPYaw = dmpEuler [VEC3_Z];

magQuat [QUAT W]
magQuat [QUAT X]
magQuat [QUAT Y]
magQuat [QUAT Z]

03

mpu—>calibratedMag [VEC3_X];
mpu—>calibratedMag [VEC3_Y];
mpu—>calibratedMag [VEC3_Z];

tilt__compensate (magQuat, unfusedQuat);
newMagYaw = —atan2f(magQuat[QUAT Y], magQuat [QUAT X]) ;

if (newMagYaw != newMagYaw) {
printf ("newMagYaw NAN\n") ;
return —1;

}

if (newMagYaw < 0.0f)
newMagYaw = TWO_PI + newMagYaw ;

newYaw = mpu—>lastYaw + deltaDMPYaw;

if (newYaw > TWO_PI)
newYaw —= TWO_PI;

else if (newYaw < 0.0f)
newYaw += TWO_PI;

deltaMagYaw = newMagYaw — newYaw;

if (deltaMagYaw >= (float)M_PI)
deltaMagYaw —= TWO_PI;

else if (deltaMagYaw < —(float)M _PI)
deltaMagYaw += TWO_PI;

//<yaw—miz—factor> Effect of mag yaw on fused yaw data.

// 0 = gyro only

// 1 = mag only

// > 1 scaled mag adjustment of gyro data
// The default is 4.

if (yaw_mixing factor > 0)
newYaw += deltaMagYaw / yaw__mixing factor;

if (newYaw > TWO_PI)
newYaw —= TWO_PI;

else if (newYaw < 0.0f)
newYaw += TWO_PI;

mpu—>lastYaw = newYaw;

if (newYaw > (float)M_PI)
newYaw —= TWO_PI;

© 00U WN -

146

}
/x

HydroAHRS mk.IT MCU code
//mpu—>fusedEuler [VEC3_Z] = newYaw;
//mpu—>fusedEuler [VEC3_Z] = newMagYaw;
mpu—>fusedEuler [VEC3_Z] = dmpEuler [VEC3_Z];

eulerToQuaternion (mpu—>fusedEuler , mpu—>fusedQuat) ;

return 0;

These next two functions convert the orientation matriz (see

* gyro__orientation) to a scalar representation for wuse by the DMP.
* NOTE: These functions are borrowed from InvenSense’s MPL.

*/

unsigned short inv_row_2 scale(const signed char xrow) {

}

unsigned short b;

if (row[0] > 0)
b = 0;
else if (row[0]

N
=

else if (row[1] > 0)

b= 1;
else if (row[1l] < 0)
b = 5;
else if (row[2] > 0)
b = 2;
else if (row[2] < 0)
b = 6;
else
b=7; // error

return b;

unsigned short inv_orientation_ matrix_to_scalar(const signed char smtx) {

unsigned short scalar;
/%
XYZ 010_001_000 Identity Matrix
XZY 001_010_000
YXZ 010_000_001
YZX 000_010_001
ZXY 001_000_010
ZYX 000_001_010

*/

scalar = inv_row_ 2 scale(mtx);

scalar |= inv_row_2_ scale(mtx + 3) << 3;
scalar |= inv_row_2 scale(mtx 4+ 6) << 6;

return scalar;

code/hydroAHRS__mkII/mpu9150.h

%//

This file is part of linuz—mpu9150
Copyright (c) 2018 Pansenti, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software'), to deal in
the Software without restriction , including without limitation the rights to wuse,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright mnotice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE 1S PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

67

© 00Uk W

147

// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#ifndef MPU9150 H
#define MPU9150_H

#include "quaternion.h"

#define MAG SENSOR RANGE 4096
#define ACCEL_SENSOR_RANGE 32000

// Somewhat arbitrary limits here. The values are samples per second.

// The MIN comes from the way we are timing our loop in imu and imucal.

// That’s easily worked around, but mo one probably cares.

// The MAX comes from the compass. This could be avoided with separate

// sample rates for the compass and the accel/gyros which can handle

// faster sampling rates. This is a TODO item to see if it’s useful.

// There are some practical limits on the speed that come from a ’‘userland’
// implementation like this as opposed to a kernel or ’‘bare—metal’ driver.
#define MIN SAMPLE RATE 2

#define MAX SAMPLE RATE 100

typedef struct {
short offset [3];
short range [3];
} caldata_t;

typedef struct {
short rawGyro[3];
short rawAccel [3];
long rawQuat [4];
unsigned long dmpTimestamp;

short rawMag[3];
unsigned long magTimestamp;

short calibratedAccel [3];
short calibratedMag [3];

quaternion__t fusedQuat;
vector3d_t fusedEuler;

vector3d__t dmpEuler;

float lastDMPYaw;
float lastYaw;
} mpudata_t;

void mpu9150_set_debug(int on);

uint8 _t mpu9150_ init(uint8_t sample_rate, uint8_t yaw_mixing_ factor);
void mpu9150_exit () ;

int mpu9150_read (mpudata_t s*mpu) ;

int mpu9150 read dmp(mpudata_t smpu);

int mpu9150_read_mag(mpudata_t smpu);

void mpu9150_set_accel cal(caldata_t =xcal);

void mpu9150_ set mag cal(caldata_t =xcal);

#endif

code/hydroAHRS mkII/nmea.c

#include "nmea.h"

#if 0
void handle_gnss_data ()
get__uart__str (GNSS_DEVICE, message [GNSS_DEVICE]) ;

/% Get the wanted message type */
if (!'strncmp (message [GNSS_DEVICE], "$GPRMC", 6)) {

148

HydroAHRS mk.IT MCU code

12 }

}
14 #endif

printf("%s\r\n", message[GNSS_DEVICE]) ;
//nmea__checksum(&message [GNSS_DEVICE]) ;

16 uint8 t nmea checksum (int8 t >s<nmeaisentence) {

18 //char checksum [3];

20 uint8_t temp = 0;

22 /) 1

because we want to

23 uint8_t i = 1;

skip the $

25 //while (nmea__sentence[i++] I= 7,7);

27 /% Calculate checksum x/

28 whil

e(nmea_sentence[1i]

1= %)

// XOR each character
temp "= nmea_sentence [i++];

33 return temp;

35 //sprintf(checksum,

37 #if 0

38 /* Compare the two last

39 if (

nmea_sentence[++1i]
nmea_ sentence[++1i]

return 0;

44 } else {

}
48 #endif
49
50

return 1;

"%02X\n", temp);

characters in mmea_ _sentence with the
== checksum [0] &&
== checksum [1]) {

51 uint8_t nmea_parse(int8_t *nmea_sentence) {

52

53 printf("nmea: %s\r\n",

54

55 return O0;

56 }

nmea__sentence) ;

checksum in (ascii) %/

code/hydroAHRS_ mkII/nmea.h

1 #ifndef NMEA H
2 #define NMEA H

3
4 #include
5

<inttypes.h>

6 uint8 t nmea checksum(int8 t *nmeaisentence);
7 uint8 t nmea_parse(int8 t s*nmea_sentence);

8
9 #endif
code/hydroAHRS mkIT/twi.c
1 #include <avr/io.h>
2 #include <avr/interrupt.h>
3 #include <stdio.h>
4 #include <inttypes.h>
5
6 #include "main.h"
7 #include "uart.h"
8 #include "twi.h"
9 #include "twim.h'

149

10

11 void

12 twi_init ()

13 /* Configure SDA as output */

14 PORTC.DIRSET = PINO_bm;

15

16 /+* Configure SCL as output */

17 PORTC.DIRSET = PIN1_bm;

18

19 /* Enable TWI Master and (high level) TWI read and write interrupt x/

20 //TWIC.MASTER. CTRLA = TWI _MASTER ENABLE bm | TWI_MASTER RIEN bm |
TWI_MASTER_WIEN bm;

21 //TWIC.MASTER.CTRLA |= TWI_MASTER INTLVLO bm | TWI_MASTER INTLVL1 bm;

22

23 /x Set the TWI frequency */

24 //TWIC _MASTER _BAUD = TWI FREQ;

25

26 /% Force TWI bus to idle state x/

27 //TWIC.MASTER.STATUS = TWI_MASTER BUSSTATEQ bm;

28

29 twi_options_t m_ options = {

30 .speed = TWI_SPEED,

31 //.chip = TWI_MASTER_ADDR,

32 .chip = 0x00,

33 .speed_reg = TWI FREQ

34 s

35

36 twi_master__init(&TWI_MASTER, &m_ options) ;

37 twi_master__enable(&TWI _MASTER) ;

38 }

39

40 int

41 i2c¢c__write (unsigned char slave__addr, unsigned char reg_addr,

42 unsigned char length, unsigned char const xdata) {

43

44

45 uint8 _t tmp[20];

46

47 status__ code_t master_status;

48

49 tmp[0] = reg_addr;

50

51 for (uint8_t i = 0; i < length; i++4) {

52 tmp[i+1] = data[i];

53

54

55 // Package to send

56 twi_package t packet = {

57 .addr__length = 0,

58 .chip = slave__addr,

59 .buffer = (void x*)tmp,

60 .length = length + 1,

61 .no__wait = false

62 }s

63

64 #if DEBUG

65 printf("\ti2c__write(%02X, ,%02X, %u, [", slave addr, reg addr, length);

66

67 if (length == 0)

68 printf (" NULL,].)\n");

69

70 else {

71 for (uint8_t i = 0; i < length; i++)

72 printf (" %02X", data[i]);

73

74 printf("u]o)\n");

75

76 #endif

7

78 master_status = twi_master_write(&TWIL _MASTER, &packet);

79 }

80

int

© 00Uk WN -

24

150 HydroAHRS mk.IT MCU code
i2c¢_read (unsigned char slave_ addr, unsigned char reg addr,
unsigned char length, unsigned char xdata) {
status__code__t master_ status;
#if DEBUG
printf("\ti2c_read(%02X, %02X, %u,. ...)\n", slave_addr, reg_addr, length);
#endif
uint8 _t tmp[2];
tmp [0] = reg_addr;
twi__package t packet = {
.addr__length = 0,
.chip = slave__addr,
.buffer = tmp,
.length =1,
.no__wait = false
}s
master_status = twi_master_write(&TWIL MASTER, &packet);
twi__package t packet_rcv = {
.addr__length = 0,
.chip = slave__addr,
.buffer = data,
.length = length ,
.no_ wait = false
}s
master_status = twi_master_read(&TWI _MASTER, &packet_ rcv);
#if DEBUG
printf("\tLeaving_i2c_read (), read %d_bytes: ", length);
for (uint8_t i = 0; i < length; i++)
printf("%02X.,", data[i]);
printf("\n");
#endif
return O0;
}
code/hydroAHRS mkII/twi.h
ifndef TWI_H
define TWI_H
#define TWIL MASTER TWIC
#define TWI_MASTER PORT PORTC
#define TWI_SPEED 400000
J/#define TWL FREQ ((F_CPU / (2.0 % (400000))) — 5)
#define TWL_FREQ ((F_CPU / (2.0 % (TWL_SPEED))) — 5)

//#define NORMAL 0 // Normal successful data transfer
//#define ARBLOST 1 // Arbitration lost condition

//#define BUSERR 2 // Bus error condition
//#define NEGACK 8 // Receive NACK condition

void twi_init(void);

//void send_cmd(uint8__t addr, uint8_t wvalue);
uint8 t read_reg(uint8_ t addr);

void write_reg(uint8_t addr, uint8_t value);

extern int8_ t rxBuf[];
extern uint8_t i2c_slave__addr;
#endif

code/hydroAHRS__mkII/uart.c

151

1 #include <stdio.h>

2 #include <avr/io.h>

3 #include <inttypes.h>

4

5 #include "uart.h"

6

7 //static FILE mystdout = FDEV_SETUP _STREAM(wart__putchar, NULL, _FDEV_SETUP_ WRITE) ;
8

9 void

10 uart_init (void) {

11

12 /* Set PD3 (TX) as output x/

13 PORTD.DIRSET = PIN3_bm;

14

15 /% Set the baud rate x/

16 // USARTC1.BAUDCTRLA = (wint8__t) BAUD;

17 // USARTC1.BAUDCTRLB = ((USARTC1.BAUDCTRLB) & 0zF0) | ((BAUD >> 8) & 0z0F);
18 USARTDO.BAUDCTRLA = 0x2E;

19 USARTDO0.BAUDCTRIB = 0x98;

20

21 /% Enable low level UART receive interrupt x/
22 USARTDO.CTRLA = USART_ RXCINTLVL_LO_gc;

23

24 /* Enable the UART transmitter and receiver */
25 USARTDO.CTRLB = USART RXEN bm | USART TXEN_bm;
26

27 /% Asynchronous USART, mo parity, 1 stop bit, 8 data bits x/
28 USARTDO.CTRLC = USART_CHSIZEO bm | USART_CHSIZEl1l bm;
29

30 //stdout = &mystdout;

31 }

32

33 void

34 uart_send_byte(uint8_t ch) {

35

36 /* Wait for TX buffer to be empty,

37 * which is indicated by the UDREI bit being cleared x/
38 while (!(USARTDO.STATUS & USART DREIF_bm)) {
39 1

40

41 USARTDO.DATA = ch;

42 }

43

44 void

45 uart_send__hex(uint8_t ch) {

46 uint8__t temp;

47

48 uart_send_str("0x");

49

50 /% Send high nibble x/

51 temp = (uint8_t) ((ch & 0xF0) >> 4) 4+ 0x30;
52

53 if (temp > 0x39)

54 temp += 7;

55

56 uart_send_byte (temp) ;

57

58 /* Send low nibble x/

59 temp = (ch & 0x0F) 4 0x30;

60

61 if (temp > 0x39)

62 temp 4= 7;

63

64 uart_send_ byte(temp) ;

65 }

66

67 void

68 uart_ sen

d_str(char sptr) {

70 /* Send the string, one byte at time x/
71 while (xptr) {
72 uart_send__byte(xptr);

© 0O Uk WN -

152 HydroAHRS mk.IT MCU code

ptr++;

}
void
uart__send_newline (void) {

/* Send newline and return x/
uart_send_byte(’'\n’);
uart_send_byte(’'\r’);

}
int uart_putchar (char ch, FILE xstream) {

if (ch == ’\n’)
uart__putchar(’\r’, stream);
uart_send__byte(ch);
return O0;
}
code/hydroAHRS mkII/uart.h

#ifndef UART H

#define UART H

#define BAUD ((uint16_t) ((F_CPU / (16.0 * (115200))) + 0.5) — 1)

void uart__init(void);

void uart_send_byte(uint8_t ch);

void uart_send_ hex(uint8_t ch);

void uart_send_str(char xptr);

void uart_send_newline (void);
int uart_putchar(char ¢, FILE xstream);

#endif

code/hydroAHRS mkII/usb_talk.c

#include "usb_ talk.h"

/x LUFA CDC Class driver interface configuration and state information.
* structure is passed to all CDC Class driver functions, so that multiple
* instances of the same class within a device can be differentiated from one
* another.

*/
USB_ ClassInfo_ CDC_ Device_t VirtualSerial CDC_ Interface = {

+s

void

.Config = {
.ControllnterfaceNumber =0,
.DataINEndpoint = {
. Address = CDC_TX_FEPADDR,
. Size = CDC_TXRX_EPSIZE,
. Banks =1,
s
.DataOUTEndpoint = {
. Address = CDC_RX_FEPADDR,
. Size = CDC_TXRX_EPSIZE,
. Banks =1,
s
.NotificationEndpoint = {
. Address = CDC_NOTIFICATION_EPADDR,
. Size = CDC_NOTIFICATION__EPSIZE,
. Banks =1,
b,
I
usb__talk_init (void) {

USB_ Init () ;

153

32 /x Create a regular character stream for the interface so that it can be
33 * used with the stdio.h functions x*/

34 CDC__Device_CreateStream (& VirtualSerial CDC__Interface, stdout);
35

36 //LEDs_SetAlILEDs (LEDMASK USB _NOTREADY) ;

37 }

38

39 #if 0

40 void usb_talk_task(void) {

41 /* Receive bytes from the host x/

42 char ¢ = CDC_ Device_ReceiveByte(& VirtualSerial CDC_ Interface);
43

44 switch (c¢) {

45 case ’'b’:

46 printf("Starting bootloader...\r\n");

47

48 #if 0

49 cli();

50 _delay_ms(2000) ;

51 EIND = BOOT_SECTION_START>>17;

52 start__bootloader () ;

53 #endif

54 break;

55 }

56

57

58 CDC_ Device_ USBTask(& VirtualSerial CDC__Interface);
59

60 USB__USBTask() ;

61 }

62 #endif

63

64 void EVENT_USB_ Device_ Connect(void) {

65 //LEDs_SetAlILEDs (LEDMASK USB_ENUMERATING) ;

66

67

68 void EVENT__USB_ Device_ Disconnect(void) {
69 //LEDs_SetAllLEDs (LEDMASK USB_NOTREADY) ;
}

70
71
72 void EVENT_USB_ Device_ConfigurationChanged (void) {
73 bool ConfigSuccess = true;
74
75 ConfigSuccess &= CDC_Device_ConfigureEndpoints(&VirtualSerial CDC_Interface);
76
7 //LEDs_SetAlLEDs(ConfigSuccess ¢ LEDMASK USB_READY : LEDMASK USB ERROR) ;
78
79
80 void EVENT_USB_ Device ControlRequest (void) {
81 CDC_ Device_ProcessControlRequest (& VirtualSerial CDC_ Interface);
82 }
code/hydroAHRS_ mkII/usb_ talk.h
1 #ifndef _USB TALK H
2 #define _USB TALK H
3
4 #include "Descriptors.h"
5
6 #include <LUFA/Drivers/USB/USB.h>
7
8 void usb_talk_ init(void);
9 void usb_talk_task(void);

11 void EVENT__USB_ Device_Connect(void) ;

12 void EVENT_USB_ Device_Disconnect(void) ;

13 void EVENT_USB_ Device_ConfigurationChanged (void) ;
14 void EVENT_USB_ Device_ControlRequest(void) ;

16 extern USB_ ClassInfo_ CDC_ Device_t VirtualSerial CDC_ Interface;

18 #endif

© 00O Uk WN -

© 00U WN -

24
25
26
27
28
29
30
31
32
33
34

154 HydroAHRS mk.IT MCU code

code/hydroAHRS_mkII/vector3d.c

??//
// This file is part of linuz—mpu9150
// Copyright (c¢) 2013 Pansenti, LLC

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in

// the Software without restriction , including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
// Software, and to permit persons to whom the Software is furnished to do so,

// subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#include "vector3d.h'

void vector3DotProduct (vector3d_t a, vector3d_t b, float xd)
xd = a[VEC3_X] x b[VEC3 _X] + a[VEC3_ Y] * b[VEC3 Y] + a[VEC3 Z] x b[VEC3 Z];

}

void vector3CrossProduct(vector3d_t a, vector3d_t b, vector3d_t d) {
d[VEC3 X] = a[VEC3_Y] * b[VEC3_Z] — a[VEC3 Z] * b[VEC3 Y];
d[VEC3_Y] = a[VEC3_Z] = b[VEC3 _X] — a[VEC3_X] * b[VEC3_Z];
d[VEC3_Z] = a[VEC3 X]| * b[VEC3 Y] — a[VEC3 Y] * b[VEC3 X]:

code/hydroAHRS mkII/vector3d.h

??//
// This file is part of linuz—mpu9150
// Copyright (c¢) 2013 Pansenti, LLC

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in

// the Software without restriction , including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
// Software, and to permit persons to whom the Software is furnished to do so,

// subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#ifndef VECTOR3D_H
#define VECTOR3D_H

#include <math.h>

#define DEGREE TO_RAD ((float)M_PI / 180.0f)
#define RAD_TO_DEGREE (180.0f / (float)M_PI)
#define TWO_PI (2.0f % (float)M_PI)

#define VEC3_ X 0

35
36

27

47

155

#define VEC3 Y 1
#define VEC3 7 2
typedef float vector3d_t[3];

void vector3DotProduct (vector3d_t a, vector3d_t b, float x*d);
void vector3CrossProduct(vector3dd_t a, vector3d_t b, vector3d_ t d);

#endif

code/hydroAHRS mkII/quaternion.c
%//

// This file is part of linuz—mpu9150

// Copyright (c¢) 2013 Pansenti, LLC

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software'), to deal in

// the Software without restriction , including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
// Software, and to permit persons to whom the Software is furnished to do so,

// subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#include "quaternion.h"

void quaternionNorm (quaternion_t g, float =xn)

{
*n = sqrtf (q[QUAT W] x q[QUAT W] + q[QUAT X] = q[QUAT X] +
q[QUAT_Y] * q[QUAT Y] + q[QUAT Z] * q[QUAT Z]) ;
}
void quaternionNormalize (quaternion_t q)
float length;
quaternionNorm (q, &length);
if (length == 0)
return;
q[QUAT W] /= length;
q[QUAT X] /= length;
q[QUAT Y] /= length;
q[QUAT Z] /= length;
}
void quaternionToEuler (quaternion_t q, vector3d t v)
{
// fiz roll near poles with this tolerance
float pole = (float)M PI / 2.0f — 0.05f;
v[VEC3_Y] = asinf(2.0f x (q[QUAT W] * q[QUAT Y] — q[QUAT X] = q[QUAT Z]));
if ((v[VEC3_Y] < pole) && (v[VEC3_Y] > —pole))
v[VEC3_X] = atan2f(2.0f x (q[QUAT Y] * q[QUAT _Z] + q[QUAT W] = q[QUAT X]) ,
1.0f — 2.0f = (q[QUAT X] = q[QUAT X] + q[QUAT Y] * q[QUAT Y]));
}
v[VEC3_Z] = atan2f(2.0f % (q[QUAT X] x q[QUAT Y] + q[QUAT W] x q[QUAT Z]),
1.0f — 2.0f %= (q[QUAT_Y] * q[QUAT_Y] + q[QUAT_Z] * q[QUAT_Z]));

© 00U WN -

156 HydroAHRS mk.IT MCU code
}
void eulerToQuaternion (vector3d_t v, quaternion_ t q)
{
float cosX2 = cosf(v[VEC3 X] / 2.0f);
float sinX2 = sinf(v[VEC3_X] / 2.0f);
float cosY2 = cosf(v[VEC3 Y] / 2.0f);
float sinY2 = sinf(v[VEC3_Y] / 2.0f);
float cosZ2 = cosf(v[VEC3 Z] / 2.0f);
float sinZ2 = sinf(v[VEC3_Z] / 2.0f);
q[QUAT W] = cosX2 % cosY2 % cosZ2 + sinX2 x sinY2 % sinZ2;
q[QUAT_X] = sinX2 * cosY2 % cosZ2 — cosX2 x sinY2 % sinZ2;
q[QUAT_ Y] = cosX2 % sinY2 % cosZ2 + sinX2 % cosY2 % sinZ2;
q[QUAT_Z] = cosX2 % cosY2 x sinZ2 — sinX2 % sinY2 % cosZ2;
quaternionNormalize (q) ;
}
void quaternionConjugate (quaternion_t s, quaternion_t d)
{
d [QUAT W] = s [QUAT W];
d [QUAT _X] = —s[QUAT X];
d [QUAT Y] = —s[QUAT Y];
d[QUAT _Z] = —s [QUAT Z];
}
void quaternionMultiply (quaternion_t ga, quaternion_t gb, quaternion_t qd)
{
vector3d_t va;
vector3d_t vb;
float dotAB;
vector3d_t crossAB;
va [VEC3_X] = qa[QUAT_X];
va [VEC3_Y] = qa[QUAT Y];
va[VEC3_Z] = qa|QUAT Z];
vb [VEC3_X] = gb[QUAT X];
vb [VEC3_Y] = gqb[QUAT Y];
vb [VEC3 Z] = gb[QUAT Z];
vector3DotProduct (va, vb, &dotAB);
vector3CrossProduct (va, vb, crossAB);
qd [QUAT W] = qa[QUAT W] = gb[QUAT W] — dotAB;
qd [QUAT _X] = qa [QUAT W] = vb[VEC3_X] + gb[QUAT W] % va[VEC3 X] 4+ crossAB[VEC3 X];
qd [QUAT_Y] = qa [QUAT W] % vb[VEC3_ Y] + gb[QUAT W] % va[VEC3 Y] + crossAB[VEC3 Y];
qd [QUAT_Z] = qa[QUAT W] =% vb[VEC3_Z] + gb[QUAT W] = va[VEC3_Z] + crossAB[VEC3_Z];
}
code/hydroAHRS mkII/quaternion.h
??//
// This file is part of linuz—mpu9150
//
// Copyright (c¢) 2013 Pansenti, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"”), to deal in
// the Software without restriction , including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
// Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE 1S PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

N =

157

// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#ifndef MPUQUATERNION H
#define MPUQUATERNION_H

#include "vector3d.h"

#define QUAT W 0
#define QUAT X 1
#define QUAT Y 2
#define QUAT Z 3

typedef float quaternion_t [4];

void
void
void
void
void

quaternionNormalize (quaternion t q);

quaternionToEuler (quaternion_t q, vector3d_t v);

eulerToQuaternion (vector3d_t v, quaternion_t q);

quaternionConjugate (quaternion_t s, quaternion_t d);
quaternionMultiply (quaternion t ga, quaternion t gb, quaternion t qd);

#endif /+ MPUQUATERNION H x/

code/hydroAHRS_mkII/Descriptors.c

#include "Descriptors.h"

/%

*

*

Device descriptor structure. This descriptor, located in FLASH memory, describes
the owverall

device characteristics , including the supported USB wversion, control endpoint size
and the

number of device configurations. The descriptor is read out by the USB host when
the enumeration

process begins.

*/
const USB_ Descriptor_Device t PROGMEM DeviceDescriptor = {

}s
Ve

*
*

.Header = {.Size = sizeof(USB_ Descriptor_Device_t), .Type =
DTYPE_ Device} ,

.USBSpecification = VERSION_BCD(01.10) ,

. Class = CDC_CSCP__CDCClass,

.SubClass = CDC_CSCP__NoSpecificSubclass,

.Protocol = CDC__CSCP__NoSpecificProtocol,

.Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE,

. VendorID = 0x03EB,

.ProductID = 0x2044,

.ReleaseNumber = VERSION_BCD(00.01) ,

STRING_ ID_ Manufacturer,
STRING_ ID_ Product,
USE_ INTERNAL_SERIAL,

.ManufacturerStrIndex
.ProductStrIndex
.SerialNumStrIndex

.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS

Configuration descriptor structure. This descriptor, located in FLASH memory,
describes the wusage

of the device in one of its supported configurations, including information about
any device interfaces

and endpoints. The descriptor is read out by the USB host during the enumeration
process when selecting

a configuration so that the host may correctly communicate with the USB dewvice.

const USB_ Descriptor_ Configuration t PROGMEM ConfigurationDescriptor = {

. Config = {
.Header = {.Size = sizeof(
USB_ Descriptor_ Configuration_Header_t), .Type = DTYPE_ Configuration},

158 HydroAHRS mk.IT MCU code
.TotalConfigurationSize = sizeof (USB_ Descriptor_ Configuration_t),
.Totallnterfaces = 2,

. ConfigurationNumber =1,
.ConfigurationStrIndex = NO_DESCRIPTOR,
.ConfigAttributes = (USB_CONFIG_ATTR, RESERVED |
USB_CONFIG _ATTR_SELFPOWERED) ,
. MaxPowerConsumption = USB_CONFIG_POWER_MA(100)
s
.CDC_CCI_Interface = {
.Header = {.Size = sizeof(USB_Descriptor_Interface_t),
Type = DTYPE_ Interface},
.InterfaceNumber =0,
.AlternateSetting =0,
. TotalEndpoints =1,
. Class = CDC__CSCP__CDCClass,
.SubClass = CDC__CSCP__ACMSubclass,
.Protocol = CDC_CSCP__ATCommandProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
b
.CDC_Functional Header = {
.Header = {.Size = sizeof(
USB_ CDC_ Descriptor_ FunctionalHeader_t), .Type = DTYPE_ CSlInterface},
. Subtype = CDC_DSUBTYPE_ CSlInterface_ Header,
.CDCSpecification = VERSION_BCD(01.10) ,
},
.CDC__Functional ACM = {
.Header = {.Size = sizeof(
USB__ CDC_ Descriptor_ FunctionalACM_t), .Type = DTYPE_ CSlInterface},
. Subtype = CDC_DSUBTYPE_ CSInterface_ ACM,
.Capabilities = 0x06,
I
.CDC__Functional Union = {
.Header = {.Size = sizeof(
USB_CDC_ Descriptor_ FunctionalUnion_t), .Type = DTYPE_ CSInterface},
.Subtype = CDC_DSUBTYPE_ CSlInterface_ Union,
.MasterInterfaceNumber = 0,
.SlavelnterfaceNumber =1,
I
.CDC__NotificationEndpoint = {
.Header = {.Size = sizeof(USB_ Descriptor_Endpoint_t), .Type

= DTYPE_ Endpoint },

.EndpointAddress
.Attributes

ENDPOINT _USAGE_DATA) ,

.EndpointSize
.PollingIntervalMS$S
Iz

.CDC_DCI_Interface = {

.Header

CDC_NOTIFICATION EPADDR,
(EP_TYPE INTERRUPT | ENDPOINT ATTR NO_SYNC |

CDC_NOTIFICATION__EPSIZE,

OxFF

{.Size

Type = DTYPE_Interface},

.InterfaceNumber
.AlternateSetting

. TotalEndpoints

1
0

5
)

2,

sizeof (USB_ Descriptor_Interface_t),

103
104
105
106
107
108

110
111

112

114

115

120

159

. Class = CDC__CSCP__CDCDataClass,
.SubClass = CDC_CSCP_ NoDataSubclass,
.Protocol = CDC__CSCP_ NoDataProtocol,

.InterfaceStrIndex NO_DESCRIPTOR

I
.CDC__DataOutEndpoint = {
.Header = {.Size = sizeof (USB_ Descriptor_ Endpoint_t),
= DTYPE_ Endpoint },
.EndpointAddress = CDC_RX EPADDR,
.Attributes = (EP_TYPE_BULK | ENDPOINT ATTR NO_SYNC |
ENDPOINT _USAGE_DATA) ,
.EndpointSize = CDC_TXRX_EPSIZE,
. PollingIntervalMS = 0x05
I
.CDC__DataInEndpoint = {
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t),
= DTYPE_Endpoint},
.EndpointAddress = CDC_TX_ EPADDR,
.Attributes = (EP_TYPE_BULK | ENDPOINT ATTR NO_ SYNC |
ENDPOINT USAGE_DATA) ,
.EndpointSize = CDC_TXRX EPSIZE,
. PollingIntervalMS = 0x05
}

/*% Language descriptor structure. This descriptor, located in FLASH memory, is
returned when the host requests

* the string descriptor with index 0 (the first indez). It is actually an array
16— bit integers, which indicate

. Type

. Type

of

* wvia the language ID table awvailable at USB.org what languages the device supports

for its string descriptors.
*
const USB_ Descriptor_String t PROGMEM LanguageString = {
.Header = {.Size = USB_STRING LEN(1), .Type = DTYPE_ String},

.UnicodeString = {LANGUAGE ID_ENG}
}s

/*% Manufacturer descriptor string. This is a Unicode string containing the
manufacturer’s details in human readable

* form, and is read out upon request by the host when the appropriate string ID
requested , listed in the Device

* Descriptor.

*

const USB_ Descriptor_String t PROGMEM ManufacturerString = {
.Header = {.Size = USB_STRING_LEN(6), .Type = DTYPE_ String},

.UnicodeString = L"Epsiro"

+s

/%% Product descriptor string. This is a Unicode string containing the product’s
details in human readable form,

* and is read out upon request by the host when the appropriate string ID is
requested , listed in the Device

* Descriptor.

*/
const USB_ Descriptor_String t PROGMEM ProductString = {
.Header = {.Size = USB_STRING LEN(25), .Type = DTYPE_ String},

.UnicodeString = L"Inertial Measurement Unit"

+s

s

/x% This function is called by the library when in device mode, and must be overridden

(see library "USB Descriptors”

* documentation) by the application code so that the address and size of a requested

descriptor can be given

160 HydroAHRS mk.IT MCU code

162 * to the USB library. When the device receives a Get Descriptor request on the
control endpoint, this function

163 * is called so that the descriptor details can be passed back and the appropriate
descriptor sent back to the

164 * USB host.

165 x/

166 uintl6_t CALLBACK USB_ GetDescriptor(const uintl6_t wValue,
167 const uint8_t wlndex,

168 const void#xx const DescriptorAddress) {
169

170 const uint8_t DescriptorType = (wValue >> 8);

171 const uint8_t DescriptorNumber = (wValue & OxFF);

172

173 const void*x Address = NULL;

174 uintl6_t Size = NO_DESCRIPTOR;

175

176 switch (DescriptorType) {

177 case DTYPE_Device:

178 Address = &DeviceDescriptor;

179 Size = sizeof (USB_ Descriptor_Device_t);

180 break

181 case DTYPE_ Configuration:

182 Address = &ConfigurationDescriptor;

183 Size = sizeof(USB_ Descriptor_Configuration_ t);
184 break;

185 case DTYPE_String:

186 switch (DescriptorNumber) {

187 case STRING_ID_ Language:

188 Address = &LanguageString;

189 Size = pgm_read_byte(&LanguageString.Header. Size) ;
190 break;

191 case STRING_ID_Manufacturer:

192 Address = &ManufacturerString;

193 Size = pgm_read_ byte(&ManufacturerString. Header. Size);
194 break;

195 case STRING_ID_Product:

196 Address = &ProductString;

197 Size = pgm_read_byte(&ProductString . Header. Size);
198 break;

199 }

200

201 break;

202 }

203

204 *DescriptorAddress = Address;

205 return Size;

206 }

code/hydroAHRS mkII/Descriptors.h

1 #ifndef _DESCRIPTORS H
2 #define DESCRIPTORS H

3

4 /x Includes: x/

5 #include <avr/pgmspace.h>

6

7 #include <LUFA/Drivers/USB/USB.h>

8

9 /+* Macros: x/

10 /+% FEndpoint address of the CDC device—to—host motification IN endpoint. x/

11 #define CDC_NOTIFICATION_ EPADDR (ENDPOINT_DIR_IN | 2)

12

13 /+x Endpoint address of the CDC device—to—host data IN endpoint. */
14 #define CDC_TX EPADDR (ENDPOINT DIR_IN | 3)

15

16 /+% Endpoint address of the CDC host—to—device data OUT endpoint. x/
17 #define CDC_RX EPADDR (ENDPOINT_DIR, OUT | 4)

18

19 /xx Size in bytes of the CDC device—to—host notification IN endpoint. x/
20 #define CDC_NOTIFICATION_EPSIZE 8

21

22 /xx Size in bytes of the CDC data IN and OUT endpoints. x/

57

161

#define CDC_TXRX EPSIZE 16
/% Type Defines: x/
/*% Type define for the device configuration descriptor structure. This must be defined
in the
* application code, as the configuration descriptor contains several sub—descriptors
which
* wvary between devices, and which describe the device’s usage to the host.
*
typedef struct {
USB__ Descriptor__Configuration_Header_t Config;
// CDC Control Interface
USB_ Descriptor_Interface_t CDC__CCI__Interface;
USB__CDC_ Descriptor_ FunctionalHeader_ t CDC__Functional__Header;
USB__CDC_ Descriptor__Functional ACM__t CDC__Functional _ACM;
USB_CDC_ Descriptor_ FunctionalUnion_t CDC__Functional Union;
USB_ Descriptor_ Endpoint_t CDC_ NotificationEndpoint;
// CDC Data Interface
USB__Descriptor__Interface_t CDC_DCI__Interface;
USB_ Descriptor__Endpoint_t CDC__DataOutEndpoint;
USB_ Descriptor_ Endpoint__t CDC__DatalnEndpoint;
} USB_ Descriptor_ Configuration_t;
/*% Enum for the device string descriptor IDs within the device. FEach string descriptor
should
* have a unique ID index associated with it, which can be used to refer to the string
from
* other descriptors.
*/

enum StringDescriptors_t {

STRING_ID_ Language = 0, /#*x< Supported Languages string descriptor ID (must be
zero) */
STRING_ID_Manufacturer = 1, /%< Manufacturer string ID x/
STRING_ID_Product = 2, /#x< Product string ID x/
}s
/* Function Prototypes: x/
uint16_t CALLBACK_USB_ GetDescriptor(const uintl6_t wValue,
const uint8__t wlndex,
const void#*x const DescriptorAddress)
ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR _ARG(3) ;
#endif
code/hydroAHRS mkII/LUFAConfig.h
#ifndef _LUFA_CONFIG_H
#define _LUFA_CONFIG_H__
/* General USB Driver Related Tokens: x/
#define USE_STATIC_ OPTIONS (USB_DEVICE_OPT_FULLSPEED |
USB_OPT_RC32MCLKSRC | USB_OPT_BUSEVENT_PRIHIGH)
/* USB Device Mode Driver Related Tokens: x/
#define USE_FLASH DESCRIPTORS
#define FIXED_CONTROL_ENDPOINT_SIZE 8
#define FIXED_NUM_CONFIGURATIONS 1
#define MAX_ ENDPOINT INDEX 4
#endif
code/hydroAHRS_mkIT/Makefile
MCU = atxmegal28a4du
F_CPU = 32000000
F_USB = 48000000

AVRDUDE = avrdude —p x128a4u —c jtag2pdi —P usb

—
O ©

11
12

14

16

162

HydroAHRS mk.IT MCU code

CC = avr—gcc
CC_FLAGS = -DUSE LUFA CONFIG HEADER

CC_FLAGS +=

CC_FLAGS += —ffunction—sections
LD_FLAGS = —Wl],—gc—sections —Wl,—u, vfprintf —Ilprintf_flt —lm
DEFS = —DEMPL_TARGET_ LINUX —DMPU9150 —DAK®g975_SECONDARY —DTWIC

EMPLDIR = eMPL

SRC

TARGET

ARCH
OPTIMIZATION
LUFA_PATH

= $(TARGET) .c usb_talk.c Descriptors.c uart.c twi.c twim.c mpu9150.c
quaternion.c vector3d.c inv_mpu.c inv_mpu_dmp_motion_ driver.c nmea.c $(LUFA_SRC USB

) $(LUFA_SRC_USBCLASS)

main

XMEGA

s
../LUFA—130901/LUFA

include $(LUFA_PATH)/Build/lufa_sources.mk
include $(LUFA_PATH)/Build/lufa_build .mk
include $(LUFA_PATH)/Build/lufa_hid .mk

flash : all

inv__

#3 (AVRDUDE) —U flash :w:main. hex: 1

—echo "b" > /dev/ttyACMO

sleep 3

dfu—programmer atxmegal28a4u erase

dfu—programmer atxmegal28a4u flash main.hex ——debug 5
! dfu—programmer atxmegal28ad4u start

mpu_dmp_ motion_driver.o : $(EMPLDIR)/inv_ mpu_dmp_ motion_driver.c

$(CC) $(CC_FLAGS) $(DEFS) —I $(EMPLDIR) —c¢ $(EMPLDIR)/inv_mpu_dmp_motion_driver.c

inv_mpu.o : $(EMPLDIR)/inv_mpu.c

$(CC) $(CC_FLAGS) $(DEFS) —I $(EMPLDIR) —c $(EMPLDIR)/inv_mpu.c

—g -W —02 —std=gnu99 —mmcu=$ (MCU) —DF_CPU=$ (F_CPU) —pedantic —mrelax

Appendix L

HydroAHRS mk.III schematics

TTTTT

EV.
3.0.1

hydroAHRS

DATE
2015-01-05

DRAWN BY: . PAGE:
hydroAHRS.sch B. Sgvegjarto 1 of 4

163

HydroAHRS mk.III schematics

164

vee ouelBangs ‘g
a4 A8 v e
A1va \A T T T Ta T T
SHHVOIPAY 8 g g Is
3y Tl EhO = EMoHs ARN
ZHAB9L'ZE | 2X ZHWSZ | TX
150
a & IS TSaT 158
5 <2 ven
2[1% (e 1rd e
3| |7 5]
= e (UBVSddON) Ord 67
El
2 2lan
5 b (500VES0143) £ -zt
= a3t
2 (5190150143) THa [-1oe
(SL40N/0S0Id3) OHd [=m
@ “XHONT 6
DSOS T s FXHONT T s (SNMAONVOSTOZIOTSOIGE) T9d o=
IO T (PWMAONTOSTOTITTSOIGISdd0Nz) 094 | Com
o TN — — oxiona o
° auvoras o o 5or]rod tenmpnosnia) (60MLZLVOXEISSIOLINVAONTOIONS) vd (-5
ST TS 0 SMzrzeranz 8 EF{s0d (uvoxeissieesoua) ONOULMOEISSENMAON) E4d (=
asow s]E 5 %204 (O1vaxeissizzsoias) (001 ISSENMON) 24 [rn
aan cUsllsUslls T2 Hesesssoa (1HLI0LYOXEISS TRONECTONS) 44 | Lon
8 |e | |@ | 8 w{0dd troeissInzs0i3) (ZOULITLYOXEISSIONMAONIOOTTON) 034 7w
TSOW as T |19 anwo
357 5e4 Gavasnis1oEnosE avoxussanm) s3d |
e Hso ewam 2 s Gavasseenassaon) (iosvaxtissio) v3a [
— AEE+ AEES $o77] £ (MIQ0BSNVSLOTNIADA0NNI IO H/0ES0Ie3) (d1atn/oNIvY) £3d =z
T19N ziva £57{ 24 LXNOSSNL0NI62S0IG3) (@oarnnm) z3d -5e
z L= R £9-{ rad (uonLvaxerssi2o) (ESAERNN) 13d | rm
S| * o £51{0dd (e4SnZLVaXEISS/+Z0) (SLYTVENIV) 03d [g7m
_1! 2 |3 B
gHg 8 o5 | e (suoenmsTnoszoTIsESOld) (L4403 VS OUNT40P L LHOXESSINIINIY) L0 n
- D vas— 2 ona (sasenpatnivaseoeivesoiss) (NA309S1S 2SO0 LEIYOXCISSISNIY) 908 ek rrrerrerer <.
g HH ena (s1oznssatnoesoiss) (L2162 LEVOXTISSINI) S0a [t
L s ST o (Suazrvooarnvezsoas) (eiznDe00ELZLVXISSINY) baa [k
Fer v v 3
R 2 5w 101 (100t %
o 5| ONd (S1Tr) (0400TL5S:
5 (TdD00L0LYAXEISSVSLOZIOTIIINIY) T0d (==
= =2 4Me (BONDNTd05L) (04D00LITLVOXZISSMIOSLOZIOOIISTNIV) 00d =
nEe + o (500 TaN0405.1)
+Z o (aoaonasanyiaoon) (x15S003100) 0 =
+L o (S100neRaLI0GO0R)
o
(LL500310) vou o
AMONAW o our
~E ows aoozusTSOIEE) 02 T
(soiams) T T
5] 14 (naEsnTg00Ts) (OUNTOMS) 02d - St
) +28 {01 (davesioaoors)
= +22{61a (saesnaoo0LEESOI) .
e o +271a (ra0esnI0400L9ZS0143) (SLO0NSSATISSOSSOLIOIN) ved [k
—— an el WAt +22 14 (ca0asnOXaITSOGOTO) or
5| 214 (za08SNIOBUABTSOIGAI00)
e am el rovrmaat] 3 GaomsniowignoszoziTsosa) (snanoasom o) 15
Prart +Z 014 (0a0asNVELTV0NVaSZOzIOTSOIGE)
| 5 =] D4 G010 110
“Tonf5E SR w07 on)
roN3)
“ToN[FRIF NI “TOVAIF I onz)
=22 e (SLomESOIGEIOTNY) Gapnraoor.
I va SuanzsoazmT) s (awnogoot
w2 e Gcsorvrsora) 2 v
B — L0 3
SzTTTZ66YL XGZTOPNL ™
fTT ¥XEONT
R o 1o g
9 o la |a g o
£ 15 2 |2 S JE 18 |18 18 |8 |8 |8 |8 8 |°
EELE B EEEE s EE EEE B &
T =
= 2
= rEer
¥OLDINNOD LINUIHLI UITIOMINODOHIIN
7] ano
ar|ane -
nal) o
al) P 3 ST s X TEVIT
nal) omsioaL [5 oar oxu[5xaTavIT
Flane s Tar <m0
8
ano olamsrs
3 T W C
Tlane 2 nomsou (g = SOT AEE
e \ﬁ 5
nee Aeer ovir 1avn a3l

165

Ul LM2937
vce
11N out| 3
GND
2
R1 J1
g 8
] 22uF ~| 4 22uF & i
S fpm— L 1
s ct ——c2 = cs D2 5
E ~ N 2
N
TITLE: REV.
hydroAHRS
FILE: 3 DRAWN BY: . PAGE:
power_supply_unit.sch B. Sgvegjarto 2 of 4
+33V
:V c c
S S S
8 8]
| s S
o o~ ®
o o o
o] o© o
433V +33V
S = +3.3V
S S
) 8 u1
MPU-9150 o| 8| »
2 a0
ClL 2 sel $8 3 REGOUT
SDA 24 spA s cPouT
% Es oA ADO
- ES_CL
“ o
o
QDAIARD_‘(—12 INT
1 esvne =
L cikin 299 cikouT (224
o o o
= o] It]
TITLE: REV.
hydroAHRS
FILE:) . B DRAWN BY: . PAGE:
inertial_measurement_unit.sch B. Sgvegjarto 4 of 4

Appendix M

MCU code for ASV autopilot

Code for TM4C129 ASV autopilot, as described in section 3.3.4.
algorithm running in the program is shown in figure 3.4.

This code depends on iot_mcu_lib and iot_ tiva_template from Lindem Data Acquisition AS.
iot__mecu_lib is available at https://github.com/Lindem-Data-Acquisition-AS/iot_mcu_lib.
iot__tiva_ template is available at https://github.com/Lindem-Data-Acquisition-AS/iot_
tiva_template. The code is licensed under the MIT license (listing D.1) unless otherwise

A block schematic of the

specified.
code/asv__ap_mcu/src/main.c
1 #include <stdbool.h>
2 #include <stdint .h>
3 #include <stddef.h>
4 #include <stdio.h>
5 #include "inc/hw_gpio.h"
6 #include "inc/hw_memmap.h"
7 #include "inc/hw_nvic.h"
8 #include "inc/hw_types.h"
9 #include "inc/tm4cl29xnczad.h"
10

11 #include
12 #include
13 #include
14 #include
15 #include
16 #include
17 #include
18 #include
19 #include
20 #include
21

22 #include
23 #include
24 #include
25 #include

uint32_t
void

}
#endif

void

___error___(char xpcFilename,
send__debug_assert(pcFilename,

vApplicationStackOverflowHook (xTaskHandle spxTask,

"driverlib/gpio.h"
"driverlib /pin_map.h"
"driverlib/rom.h"
"driverlib /rom_map.h"
"driverlib/sysctl.h"
"led__task.h"
"lwip__task.h"
"hello__world__task.h"
"asv_ap/uart.h"'
"asv_ap/course_calc.h"

"FreeRTOS.h"
"task.h"
"queue.h"
"semphr.h"

g_system__clock;

#ifdef DEBUG

uint32_t ui32Line) {
ui32Line) ;

signed char

166

spcTaskName) {

https://github.com/Lindem-Data-Acquisition-AS/iot_mcu_lib
https://github.com/Lindem-Data-Acquisition-AS/iot_tiva_template
https://github.com/Lindem-Data-Acquisition-AS/iot_tiva_template

167

ROM__GPIOPinWrite (GPIO_PORTA_BASE, GPIO_PIN_0, 0); // Red
ROM__ GPIOPinWrite (GPIO_ PORTH_BASE, GPIO_PIN_2, 0); // Yellow
while (1) {
}

}

void

pin_init (void) {

// Enable all the GPIO peripherals

ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOB) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOC) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOD) ;
ROM _ SysCtlPeripheralEnable (SYSCTL PERIPH GPIOE) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOF) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOG) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOH) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOJ) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOK) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOL) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_ PERIPH_ GPIOM) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH GPION) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOP) ;
ROM__SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOQ) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOR) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOS) ;

// PF1/PK}/PK6 are used for Ethernet LEDs

ROM_ GPIOPinConfigure (GPIO_PK4 ENOLEDO) ;

ROM_ GPIOPinConfigure (GPIO_PK6_ENOLEDL1) ;
GPIOPinTypeEthernetLED (GPIO_PORTK_BASE, GPIO_PIN_4);
GPIOPinTypeEthernetLED (GPIO_PORTK_BASE, GPIO_PIN_6) ;

#ifdef DEVKIT
// PN5 is wused for the wuser LED
ROM__GPIOPinTypeGPIOOutput (GPIO_ PORTN_BASE, GPIO_PIN_5)
ROM__GPIOPinWrite (GPIO_ PORTN_BASE, GPIO_PIN_5, 0);
#else

5

GPIO_PIN_0);

GPIO_PIN_2);

// PAO—1 is used for the wuser LED
ROM__ GPIOPinTypeGPIOOutput (GPIO_ PORTA BASE, GPIO_PIN_ 1 |
ROM__ GPIOPinWrite (GPIO_ PORTA_BASE, GPIO_PIN 1 | GPIO_PIN_ 0, GPIO_PIN_0);
// PH2-8 is used for the wuser LED
ROM_ GPIOPinTypeGPIOOutput (GPIO_ PORTH_BASE, GPIO_PIN_3 |
ROM__GPIOPinWrite (GPIO_PORTH_BASE, GPIO_PIN_3 | GPIO_PIN_2, GPIO_PIN_3 |
#endif
}
int
main (void) {

// Run from the PLL at 120 MHz.

g_system_clock = MAP_ SysCtlClockFreqSet ((SYSCTL_XTAL_25MHZ |
SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480) ,
configCPU__ CLOCK_HZ) ;

MAP__FPULazyStackingEnable () ;
MAP_FPUEnable () ;

// UART init
UART_init () ;

// Enable processor interrupts.
ROM_ IntMasterEnable () ;

// Initialize the device pinout appropriately for this
pin_init ();

board.

GPIO_PIN_2)

168 MCU code for ASV autopilot
111
112 // Make sure the main oscillator is enabled because this is required by
113 // the PHY. The system must have a 25MHz crystal attached to the OSC
114 // pins. The SYSCTL MOSC HIGHFREQ parameter used when the crystal
115 // frequency is 10MHz or higher.
116 SysCtIMOSCConfigSet (SYSCTL_MOSC_HIGHFREQ) ;
117
118 printf ("ASV autopilot started.\r\n");
119
120 // Create the LED task.
121 if (LEDTasklInit() != 0) {
122
123 while (1) {
124 }
125
126 }
127
128 // Create the lwIP tasks.
129 if (lwIPTaskInit() !'= 0) {
130
131 while (1) {
132
133
134 }
135
136 // Create the hello world task.
137 if (hello_world_init() != 0) {
138
139 while (1) {
140
141
142 1
143
144 // Create the ASV autopilot task.
145 if (ASV_ap_init() != 0) {
146
147 while (1) {
148
149
150 }
151
152 // Start the scheduler. This should not return.
153 vTaskStartScheduler () ;
154
155 // In case the scheduler returns for some reason, loop forever.
156 while (1) {
157
158 }

code/asv__ap_ mcu/src/main.h

1 extern uint32_t g_system_ clock;

code/asv_ap_mcu/src/asv_ap/course_calc.c

1 #include <stdint .h>

2 #include <stdbool.h>
3 #include <inttypes.h>
4 #include <string.h>

5 #include <math.h>

6 #include <stdio.h>

7 #include <stdlib .h>

8

9 #include "lwip/tcp.h"

10 #include "course_calc.h"
11 #include "driverlib/rom.h"
12 #include "uart.h"

13 #include "nmea.h"

14 #include "priorities.h"

15 #include "FreeRTOS.h"

16 #include "task.h'

17 #include "queue.h"

18 #include "semphr.h"

19 #include "udp_send.h"

20

21 #define STACKSIZE ASV_AP_ TASK 600

22

23 #define K P 0.30

24 #define K 1 0.00

25 #define K D 0.00

26

27 coord_t g_current__location;

28 coord_t g_first _waypoint = {0, 0};

29 coord_t g next_waypoint = {0, 0};

30 float g_current__heading;

31 float g_wanted__heading;

32 uint32_t g current_time;

33 uint32_t g_ current__date;

34 uint8_t g_magnetometer__accuracy;

35 uint8__t g_run_motors = false;

36 uint8_t g_nr_of wp = 0;

37 float g _distance_ to_wp;

38 int8_t g port_motor_ thrust = 0;

39 int8_t g_stbd_motor_thrust = 0;

40 uint8__t g_send_status_msg = false;

41 uint8 t g gps ready = false;

42 uint8 t g_compass_ready = false;

43

44 static char message [4][UART_BUFFER_SIZE];

45

46

47 float

48 get__heading (coord_t initial_ coordinate, coord_t final coordinate)

49

50 float latl = initial__coordinate.latitude x DEG2RAD;

51 float lat2 = final_coordinate.latitude x DEG2RAD;

52

53 float delta_lon = (final coordinate.longitude — initial_ coordinate.longitude)
DEG2RAD;

54

55 float y = sin(delta_lon) * cos(lat2);

56 float x = cos(latl)x*sin(lat2) — sin(latl)xcos(lat2)xcos(delta_ lon);

57

58 float heading = atan2(y, x);

59

60 // (heading*RADZ2DEG + 360.0)% 360.0;

61 return fmod ((heading*RAD2DEG + 360.0), 360.0);

62 }

63

64 float

65 get_distance(coord_t initial coordinate, coord_t final coordinate) {

66

67 uint32_t R = 6373;

68

69 float latl = initial__coordinate.latitude x DEG2RAD;

70 float lat2 = final_ coordinate.latitude x DEG2RAD;

71

72 float delta_lon = (final_ coordinate.longitude — initial_ coordinate.longitude)
DEG2RAD;

73 float delta_lat = (final coordinate.latitude — initial coordinate.latitude) =x
DEG2RAD;

74

75 float a = pow(sin(delta_lat/2), 2) 4+ cos(latl)*cos(lat2)=*pow(sin(delta_lon/2),

76 float ¢ = 2 % atan2(sqrt(a), sqrt(l — a));

77 float distance = R % c;

78

79 return 1000xdistance;

80 }

81

82 wvoid

83 drive_motors(int8__t port_motor_int, int8 t stbd_motor_int) {

84

85 /* Get the direction x/

86 uint8_t port_motor_direction = (port_motor_int > 0) ? 1 0;

169

*

*

2);

170 MCU code for ASV autopilot

uint8 t stbd_motor_direction = (stbd_motor_int > 0) 7 1 : 0;

/% Get the speed x/
uint8__t port_motor_speed = abs(port_motor_int);
uint8 t stbd_motor_speed = abs(stbd_motor_int);

/* Build the steering commands */

uint8__t port_motor_cmd = (PORT_MOTOR << 7) | (port_motor_direction << 6) | (
port__motor_speed & 0x3f);

uint8_t stbd_motor_cmd = (STBD_MOTOR << 7) | (stbd_motor_direction << 6) | (
stbd__motor_speed & 0x3f);

/% Send the steering commands to the MC x/
ROM__UARTCharPut (MC_MODULE, port_motor_cmd) ;
ROM__UARTCharPut (MC_MODULE, stbd_motor_cmd) ;

}

void
pid_init (int16_t p_factor, intl6_t i_factor, intl6_t d_factor, pid_data_t =pid) {

// Start wvalues for PID controller
pid—>sum__error = 0;
pid—>last__process__value = 0;

// Tuning constants for PID loop
pid—>P_ factor = p_ factor;
pid—>1_ factor = i_ factor;
pid—>D_ factor = d__factor;

// Limits to avoid overflow

pid—>max_error = MAX INT / (pid—>P_ factor + 1);

pid—>max_sum_error = MAX I TERM / (pid—>I_factor + 1);
}

intl6_t

modulo(intl6_t a, intl6_t n) {
return a — floor(a/n) * n;

}

intl6_t

angle difference(intl6_t al, intl6_t a2) {
return modulo(((al — a2) + 180), 360) — 180;

}

intl6_t
pid_controller (int1l6_t set_point, intl6_t process_value, pid_data_t =pid) {

intl6_t error, p_term, d_term;
int32_t i _term, ret, temp;

error = angle_difference (set__point, process_value);

// Calculate p_term and limit error owverflow
if (error > pid—>max_error) {
p_term = MAX_ INT;

} else if (error < —pid—>max_error) {
p_term = —MAX_ INT;

} else{
p_term = pid—>P_ factor * error;

}

// Calculate i_term and limit integral runaway
temp = pid—>sum_ error 4+ error;

if (temp > pid—>max_sum_error) {
i_term = MAX I TERM;

pid—>sum_ error = pid—>max_sum_ error;

} else if (temp < —pid—>max_sum_error) {
i_term = —MAX I TERM;
pid—>sum__error = —pid—>max_sum__error;

171

} else {

pid—>sum__error = temp;
i_term = pid—>I_factor * pid—>sum_ error;
}
// Calculate d_term
d_term = pid—>D_ factor * (pid—>last__process_value — process

pid—>last__process__value =

process_ value;

ret = (p_term + i_term + d_term) / SCALING FACTOR;
if (ret > MAX_INT) {

ret = MAX_ INT;

} else if (ret < —MAX_INT) {
ret = —MAX_INT;

}

return ((intl6_t)

}

void

ret);

calculate_motor__thrust (pid_data_t xpid) {

//int8__t comnstant__thrust = 0;
int8_t constant__thrust = 32;

int8_t port_motor_thrust;
int8_t stbd_motor_thrust;
int8 _t diff__thrust;

int8_t stbd__motor_sign;
int8 _t port__motor_sign;

/* PID regulator

intl6_t change =

/x Use different
stbd__motor__sign
port__motor_sign

/* Run both motors at the same speed if change is below

*/

driving direction for each of the motors x/
(change > 0) ? —1 : 1;
(change > 0) ? 1 : —1;

pid_controller (g _wanted heading,

if (abs(change) < 2) {

diff_ thrust

=0

3

/* Set lower bounds */
} else if (abs(change) < 8) {

diff_ thrust

= 8

3

/* Set upper bounds x/
} else if (abs(change) > 24) {

diff thrust

} else {
diff thrust
}

= 2

4;

= abs(change);

stbd__motor_thrust =
port_motor__thrust =

#if VERBOSE

printf("Motor thrust (change, port,_ stbd)

_value);

g_current_heading,

threshold x/

constant__thrust + diff_ thrust*stbd__motor_sign;
constant__thrust + diff_ thrusts*port_motor_signj;

, stbd_motor_thrust);

fflush (stdout);
#endif

g_compass_ready

=t

rue;

if (g_run_motors && g gps_ready && g compass_ready) {

g stbd_motor_thrust =
g_port_motor__thrust =

stbd_motor_thrust;
port__motor_thrust;

drive_motors(port_motor_ thrust, stbd_ motor_ thrust);

1 %1 %1 %i\n\r", change,

port__motor_ thrust

172 MCU code for ASV autopilot

230 } else {

232 g_stbd_motor__thrust
233 g_port__motor__thrust

o o

235 drive_motors (0, 0);

239 void handle_mc_data() {
241 get__uart__str (MC_DEVICE, message [MC_DEVICE]) ;

243 #ifdef DEBUG

244 printf("MC,.: %s\r\n", message [MC_DEVICE]) ;
245 #endif

246 }

248 void handle_imu_data(pid_data_t *pid) {

250 get__uart_str (IMU_DEVICE, message [IMU_DEVICE]) ;

251

252 #ifdef DEBUG

253 printf ("IMU,: %s\r\n", message [IMU_DEVICE]) ;

254 #endif

255

256 /% Check that the sentence is not corrupt x/

257 //if (nmea__checksum (message [GNSS_DEVICE]) == 0) {

258 nmea_ parse_ PASHR (message [IMU_DEVICE]) ;

259

260 if (g_magnetometer_ accuracy == 3) {

261 g_compass_ready = true;

262 } else {

263 g_compass_ready = false;

264 B

265

266 #if VERBOSE

267 printf (" Course (wanted, current ,_ error): %+07.2f %+07.2f %+07.2f\n\r",

268 g_wanted heading, g _current_heading, (g_wanted heading —
g_current_heading));

269 fflush (stdout);

270 #endif

271

272 calculate_motor_thrust(pid);

273 g_send__status_msg = true;

o1 /)

275 1}

276

277 void handle_gnss_data ()

278 get__uart__str (GNSS_DEVICE, message [GNSS_DEVICE]) ;

280 #ifdef DEBUG
281 printf ("GNSS: %s\r\n", message [GNSS_DEVICE]) ;
282 #endif

284 /% Get the wanted message type */
285 if (!strncmp (message [GNSS_DEVICE], "$GPRMC', 6)) {

287 /% Check that the sentence is not corrupt x/
288 if (nmea_ checksum (message [GNSS_DEVICE]) == 0) {

290 /% And if it good, parse it and get the current location */
291 nmea_ parse. GPRMC (message [GNSS_DEVICE]) ;

293 if (g_current location.latitude == 0 && g current_location.longitude == 0)
294 g_gps_ready = false;

296 } else {

298 g_gps_ready = true;

300 g_distance_to_wp = getidistance(gicurrentilocation s gifirstiwaypoint);

173

if (g_distance_to_wp < 2) {

if (g_next_waypoint.latitude != 0 && g_next_waypoint.longitude !=
0) {
g_first__waypoint.latitude = g_next__waypoint.latitude;
g_first_waypoint.longitude = g_next_ waypoint.longitude;

g_next__waypoint.latitude = 0;
g_next__waypoint.longitude = 0;

} else {
g_first_waypoint.latitude = 0;
g_first_waypoint.longitude = 0;

/* Stop motors if we do mot have a waypoint to go to x/

g_run_motors = false;
}
}
g_nr_of_wp = 0;
if (g_first_waypoint.latitude != 0 && g_first_waypoint.longitude != 0)
g_nr_of wp+-+;
if (g_next_waypoint.latitude != 0 && g_next_waypoint.longitude != 0)

g_nr_of _wp+-+;

/* We can now calculate our new course based on our current
* location and the first waypoint */
g_wanted heading = get_heading(g_current_location, g_first_ waypoint);

parse_ command (struct tcp_pcb xtpcb, struct pbuf *xp) {

char incomming command[512];
char response [128];
uint32_t index = 0;

double latitude;

double longitude;

send_udp_bin((uint8 t %) p—>payload, p—>len);

memcpy(&incomming command, p—>payload, p—>len);
printf("%s\r\n", incomming command) ;

/* Check message typex/

if (!strncmp(&incomming command [index], "HLT", 3)) {
g_run_motors = false;

} else if (!strncmp(&incomming command[index], "RUN", 3)) {
g_run__motors = true;

} else if (!strncmp(&incomming command [index], "DEL", 3)) {

g_first_waypoint.latitude = 0
g_first__waypoint.longitude =
g_next__waypoint.latitude = 0;
g_next_waypoint.longitude = 0;
g nr_of wp = 0;

0;

} else if (!strncmp(&incomming command|[index], "NWP', 3)) {

/% Skip to message x/
while (incomming command[index++] = 7 ,7);

// Get latitude [+—mmmm.mmmmm]
latitude = atof(&incomming command [index]) ;

// Skip the latitude (already parsed)
while (incomming command[index++] = ’,7);

// Get longitude [+—mmmm.mmmmmnm]

174

MCU code for ASV autopilot

longitude = atof(&incomming command[index]) ;

// Skip the

while (incomming command[index++] !=

longitude (already parsed)
)
// Acknowledge new WP

sprintf(response, "ACKRWP,%.6f,%.6f",

send__udp(response);
// FIXME wuse tcp for

latitude ,
ack.

if (g_first_waypoint.
g_first_waypoint.

g_first_waypoint.

latitude =
longitude =

latitude;
longitude;

} else {
g_next__waypoint.latitude =
g_next__waypoint.longitude =

latitude;
longitude;

}

g_nr_of_wp = 0;

if (g_first_waypoint.latitude
g nr_of wp++;

(g_next__waypoint.latitude
g_nr_of _wp++;

if

g_distance_to_wp =

}

static void
ASV__ap_task(void xpvParameters) {

char status [512];
uint8_t gps_ok = 0;

// Loop forever
while (1) {

vTaskDelay (100 / portTICK RATE_MS) ;
if (cmd__counter [MC_DEVICE] > 0) {
handle_mc_data () ;

}

if
}
if
}
if

(cmd__counter [IMU_DEVICE] > 0) {
handle imu_data(pvParameters);

(cmd__counter [GNSS_DEVICE] > 0) {
handle_gnss_data () ;

(g_current_location.latitude
gps_ok = 1;
} else {

gps_ok = 0;

if (g_send_status_msg) {
sprintf(status,

,%.6f,%.6f,%.6f,%.6f,%1,%i",
(unsigned long) g_current_date,
(unsigned long) g current_ time,
g_current__location.latitude ,
g_current__location.longitude ,
gps_ok,
g_current__heading ,
g_wanted__heading,
g_distance_to_wp,
g_nr_of wp,
g_magnetometer_accuracy ,
g_run__motors,

tecp__write (tpcb, &response,

= 0 && g first waypoint.longitude

= 0 && g_next__waypoint.longitude

get__distance(g_current_location,

= 0 && g__current__location.longitude

longitude);

strlen (response),

1);

latitude == 0 && g_first_waypoint.longitude == 0) {

1= 0)

1= 0)

g_first_waypoint);

1= 0) {

"STATUS, %06 1u,%061u,%.6f,%.6f,%i,%.2f,%.2f,%.1f,%i,%d,%d

457
458
459
460
461
462
463
464

471
472
473
474
475
476

1
2

© 00~ Utk W

10
11
12
13
14
15
16
17
18

175

g_first_waypoint.latitude ,
g_first_waypoint.longitude ,
g_next__waypoint.latitude ,
g_next__waypoint.longitude ,
g_port__motor__thrust,
g_stbd_motor_thrust);

//UART _send(LOG_MODULE, status);
printf("%s\r\n", status);
send_udp(status);

g_send_status_msg = false;

uint32_t
ASV_ap_init(void) {

// Parameters for regulator
static pid__data_t pid__data;

// PID init

pid_init (K_P % SCALING FACTOR, K_I * SCALING FACTOR , K D % SCALING FACTOR , &

pid_data);

// Start AHRS
//UART _send(IMU_MODULE, "s");

// Create the ASV autopilot task.

if (xTaskCreate (ASV_ap_task, (const portCHAR % const)"ASV_ap",

STACKSIZE ASV_AP_TASK, &pid_data, tskIDLE PRIORITY + PRIORITY_ ASV_AP TASK, NULL

) 1= pdTRUE) {
return (1) ;

}

// Success.

return (0) ;

}

code/asv__ap_mcu/src/asv__ap/course_ calc.h

#ifndef COURSE _CALC H
#define COURSE_CALC_H

/% 289.255.66.83 x/

//#define IPADDR ASV_MULTICAST ((u32_t)0xzefff4253UL)
/% 192.168.0.19 x/

//#define IPADDR ASV_MULTICAST ((u82_t)0xC0A80018UL)
#define IPADDR_ASV_MULTICAST ((u32_t)0xffffffffUL)

#include <stdint .h>
#define SCALING_FACTOR 128

#define PORT MOTOR 0x00
#define STBD MOTOR 0x01

#define DEG2RAD (2xM_PI)/360.0
#define RAD2DEG 360.0/(2+M_PI)

typedef struct {
double latitude;
double longitude;
} coord_t;

extern coord_t g_current_location;
extern coord_t g_first_waypoint;
extern coord_t g_next__waypoint;

extern float g_current__heading;
extern float g_wanted__heading;

© 00O Uk WN -

176 MCU code for ASV autopilot

extern uint32_t g current_time;
extern uint32_t g_ current__date;

extern uint8_t g_magnetometer__accuracy;
extern uint8 t g run_ motors;

extern uint32_t hello_world__init(void);

/* PID Status

* Setpoints and data wused by the PID control algorithm
*

typedef struct {

// Last process wvalue, used to find derivative of process wvalue.
intl6_t last__process__value;

// Summation of errors, used for integrate calculations
int32_t sum_ error;

// The Proportional tuning constant, multiplied with SCALING FACTOR

intl6_t P_ factor;

// The Integral tuning constant, multiplied with SCALING FACTOR
intl6_t I_factor;

// The Derivative tuning constant, multiplied with SCALING_FACTOR
intl6_t D_ factor;

// Mazimum allowed error, avoid overflow
intl6_t max_ error;

// Mazimum allowed sumerror, avoid overflow
int32_t max_sum_ error;

} pid_data_t;

/* Mazimum values

* Needed to avoid sign/overflow problems
*
#define MAX INT INT16_ MAX
#define MAX LONG INT32_ MAX
#define MAX I TERM (MAX_LONG / 2)
void pid_init (intl6_t p_factor, intl6_t i_factor, intl6_t d_ factor,

void handle mc_data() ;

void handle_imu_data(pid_data_t xpid);

void handle_gnss_data () ;

void parse_command(struct tcp_ pcb *tpcb, struct pbuf *p);
uint32_t ASV__ap_ init(void);

#endif

pid_data_t =xpid);

code/asv__ap_mecu/src/asv__ap/nmea.c

#include "nmea.h"

#include <inttypes.h>
#include <ctype.h>
#include <stdlib .h>
#include <stdint .h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "course_ calc.h"
#include "uart.h"

uint8_t
nmea_ checksum (char nmea_sentence []) {

char checksum [3];

uint8_t temp = 0;

// 1 because we want to skip the §
uint8_t i = 1;

/* Calculate checksum x/
while (nmea_sentence[i] != ’x7)

// XOR each character

temp "= nmea_sentence[i++];
sprintf (checksum, "%02X\n", temp);
/* Compare the two last characters in mmea__sentence
if (nmea_sentence[++i] == checksum[0] &&
nmea_sentence[++i] == checksum[1]) {
return 0;
} else {
return 1;
}
double

convert from_ degree_minutes_to_pure_degrees(double angle) {

double degrees;
double minutes_fractionj;

minutes_fraction = modf(angle /100, °rees);

angle = degrees + (minutes_fraction*100) /60;

return angle;

}

void
nmea_ parse_ GPRMC (char nmea_sentence[]) {

uint32_t index;
float time;

uint32_t date;
double latitude;
double longitude;
index = 0;
// Skip $GPRMC
while (nmea_sentence[index++] = 7,7);
// Get time
time = atoi(&nmea_sentence[index]) ;
// Skip time (already parsed)
while (nmea_sentence[index++] 1= 7,7);
// Skip A
while (nmea_sentence[index++] = 7,7);
// Get latitude [ddmm .mmmmm]
latitude = atof(&nmea_sentence[index]) ;
//printf("current_location n: %s\r\n", nmea_sentence[indez]) ;
J//printf("current__location n: %d\r\n", (int)
// Convert to pure degrees [dd.dddd] format
latitude = convert from degree minutes to_ pure degrees(latitude);
// Skip the latitude (already parsed)
while (nmea_sentence[index++] 1= 7,7);
// Correct latitude for N/S
if (nmea_sentence[index] == ’S’) {
latitude = —latitude;
}

checksum in (ascii) */

178 MCU code for ASV autopilot

// Skip '"N/S" (already parsed)
while (nmea_sentence[index++] != 7,7);

// Get longitude [ddmm.mmmmm]
longitude = atof(&nmea_sentence[index]) ;

// Convert to pure degrees [dd.dddd] format
longitude = convert_from_degree_ minutes_to_pure_degrees(longitude);

// Skip the longitude (already parsed)

L)

while (nmea_sentence[index++] != 7,7);

// Correct latitute for E/W

if (nmea_sentence[index] = "W’) {
longitude = —longitude;

}

// Skip "E/W" (already parsed)

while (nmea_sentence[index++] != 7,7);

// Skip speed
while (nmea_sentence[index++] = 7 ,7);

// Skip course
while (nmea_sentence[index++] != 7,7);

// Get date

date = atoi(&nmea_sentence[index]) ;

// Skip date (already parsed)
while (nmea_sentence[index++] = 7,7);

// Update the global wariables
g_current__location.latitude = latitude;
g_current__location.longitude = longitude;
g_current_time = (uint32_t) time;
g_current__date date;

}

void
nmea_ parse_ PASHR (char nmea_sentence [])

{
//printf("current_location: %.6f,%.6

", latitude , longitude);

float tilt;
float roll;

uint32_t index = 0;

// Skip $PASHR

while (nmea_sentence[index++] != 7,7);

// Skip time

while (nmea_sentence[index++] != 7,7);
// Get heading

g_current__heading = atof(&nmea_sentence[index]) ;
while (nmea_sentence[index++] != 7,7);
// Skip M

while (nmea_sentence[index++] = 7,7);
// Get tilt

tilt = atof(&nmea_sentence[index]) ;
while (nmea_sentence[index++] != 7,7);
// Get roll

tilt = atof(&nmea_ sentence[index]) ;
while (nmea_sentence[index++] != 7,7);

// Skip empty

while (nmea_sentence[index++4] !=
while (nmea_sentence[index++] ! s
while (nmea_sentence[index++] ! .

i
SOl

164
165
166
167
168
169

QOO Uk W -

Ju

© 00~ Uk WN -

179

while (nmea_sentence[index++] != 7,
while (nmea_sentence[index++] != 7,

// Get magnetometer accuracy

g_magnetometer_ accuracy = atoi(&nmea_sentence[index]) ;

code/asv__ap_mcu/src/asv_ap/nmea.h

#ifndef NMEA H
#define NMEA H

#include <stdint .h>

uint8 _t nmea_ checksum (char nmea_sentence[]) ;

]
void nmea_ parse. GPRMC(char nmea_sentence[]) ;
void nmea_parse_ PASHR (char nmea_sentence[]) ;
#endif
code/asv_ap_mcu/src/asv_ap/uart.c
#include "uart.h"
#include <stdint.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include "main.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "driverlib/pin_map.h"'
#include "driverlib/rom.h"
#include "driverlib/uart.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
/%
* GNSS Txz: PD4 U2Rx 9600
* GNSS Rxz: PD5 U2Tz
* AHRS Tx: PKO U4Rx 115200
* AHRS Rx: PK1 U4Tz
* DBG Tx: PC6 U5Rx 115200
* DBG Rx: PC7 U5Tx
* MC Tz: PC4 U7Rz 9600
* MC Rx: PC5 U7Tz
*
*/
volatile char uart_buffer [4] [UART BUFFER_ SIZE];
volatile uint8 t cmd_counter[4] = {0, 0, 0, 0};
volatile uint8 t write_ index[4] = {0, 0, 0, 0};
volatile uint8_ t read_index [4] = {0, 0, 0, 0};
volatile uint8 t byte_ counter[4] = {0, 0, 0, 0};
void
UART_init(void) {
// Enable UART2, UART4, UART5, UART7 and GPIO peripherals
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH UART?2) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH UART4) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_UARTS) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_UARTY) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_ GPIOC) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH_ GPIOK) ;
ROM_ SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOD) ;
// Set pin D4 and D5 as UART2
ROM_ GPIOPinConfigure (GPIO_PD4 U2RX) ;
ROM__GPIOPinConfigure (GPIO_PD5_U2TX) ;

180

MCU code for ASV autopilot

99 wvoid
100 UART_send_nn(uint32_t module, char sstring) {

void

ROM__GPIOPinTypeUART (GPIO_PORTD_BASE, GPIO_PIN_4

// Set pin KO and K1 as UARTY
ROM__GPIOPinConfigure (GPIO_PKO0_U4RX) ;
ROM__GPIOPinConfigure (GPIO_PK1_ U4TX) ;

| GPIO_PIN_5);

ROM__GPIOPinTypeUART (GPIO_PORTK_BASE, GPIO_PIN_0 | GPIO_PIN_1);

// Set pin C6 and C7 as UART5
ROM__GPIOPinConfigure (GPIO_PC6_U5RX) ;
ROM__GPIOPinConfigure (GPIO_PC7_US5TX) ;

ROM__GPIOPinTypeUART (GPIO_PORTC_BASE, GPIO_PIN_6

// Set pin C4 and C5 as UART7
ROM__GPIOPinConfigure (GPIO_PC4_UTRX) ;
ROM__GPIOPinConfigure (GPIO_PC5_U7TX) ;

ROM__GPIOPinTypeUART (GPIO_PORTC_BASE, GPIO_PIN_4

// Configure UART2 as 9600 baud 8N1

| GPIO_PIN_7);

| GPIO_PIN_5);

ROM__UARTConfigSetExpClk (UART2_BASE, g_system_ clock, 9600,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG_PAR_NONE)) ;

// Configure UARTj as 115200 baud 8NI1

ROM__UARTConfigSetExpClk (UART4 BASE, g system_ clock, 115200,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG_PAR_NONE)) ;

// Configure UART5 as 115200 baud 8NI1

ROM__UARTConfigSetExpClk (UART5_BASE, g system_ clock, 115200,
(UART _CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG._PAR_NONE)) ;

// Configure UART7 as 9600 baud 8N1

ROM__UARTConfigSetExpClk (UART7_BASE, g system_ clock, 9600,
(UART _CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG. PAR_NONE)) ;

// Enable UART interrupts
ROM_ IntEnable (INT UART2) ;
ROM__IntEnable (INT_UART4) ;
ROM_ IntEnable (INT_UARTS5) ;
ROM_ IntEnable (INT _UARTT) ;
ROM__UARTIntEnable (UART2_ BASE, UART INT RX
ROM__UARTIntEnable (UART4 BASE, UART INT RX
ROM__UARTIntEnable (UART5_BASE, UART INT RX
ROM__UARTIntEnable (UART7_BASE, UART INT RX

// Loop until string is over
while (xstring != ’\0’) {

// Write single character
ROM__UARTCharPut(module, xstring4-+);

111 UART _send(uint32_t module, char *xstring) {

UART_send_nn(module, string);

ROM__UARTCharPut(module, ’\r

)
ROM__UARTCharPut(module, ’\n’);

119 char get_uart_char(uint8_t device) {

char data;

UART_INT_RT) ;
UART_INT_RT) ;
UART_INT_RT) ;
UART_INT_RT) ;

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

181

}

void

}

void
uart

/*x Wait for data from device x/
while (byte_counter[device] == 0);

/% Disable interrupt because we want to access the wart buffer x/
ROM_ IntMasterDisable () ;

/x Copy a byte from the wart buffer to a local wvariable */
data = uart__buffer [device][read_ index[device]++];

/% Reset the read counter if we have reached the end of the buffer,
* the message contiues from the start of the memory x/
if (read_index[device] == UART_ BUFFER_SIZE) {
read_index [device] = 0;
¥

/*x We have finished getting one byte, so there is one less to do x/
byte_counter[device]——;

/*x We can enable interrupt again x/
ROM__IntMasterEnable () ;

/* And return the data x/
return data;

get_uart_str(uint8 t device, char xmessage_buffer) {
uint8_t i = 0;

for (i = 0; ((message_buffer[i] = get_uart_char(device)) != ’\n’);

/% Null terminate string */
message__buffer[i] = 0;

/* Decrement command counter (without beeing interrupted) x/
ROM_ IntMasterDisable () ;
cmd__counter [device]——;
ROM __IntMasterEnable () ;

_rx_interrupt__handler (uint8_t device, uint32_t module) {

uint32_t ui32Status;

// Get the interrrupt status.
ui32Status = ROM_UARTIntStatus(module, true);

// Clear the asserted interrupts.
ROM__UARTIntClear (module, ui32Status);

// Loop while there are characters in the receive FIFO.
while (ROM__UARTCharsAvail(module)) {

char data = ROM_UARTCharGet(module) ;

if (data != ’\r’) {
uart__buffer [device][write index[device]++] = data;
if (data = ’\n

")
cmd__counter [device]|++;
}

if (write_index[device] == UART BUFFER SIZE) {
write_index[device] = 0;
}

byte_counter [device]++;

/* Error handling */

if (byte_counter[device] == UART_BUFFER_SIZE) {
byte_counter[device] = 0;
cmd__counter [device] = 0;

i++);

© 0O Uk WN -

182 MCU code for ASV autopilot

}

void
UART5_int_handler(void) {

uint32_t status;

// Get the interrrupt status.
status = ROM_UARTIntStatus (UART5_BASE, true);

// Clear the asserted interrupts.
ROM__UARTIntClear (UART5_BASE, status);

// Loop while there are characters in the receive FIFO.
while (ROM_UARTCharsAvail (UART5_BASE))

ROM__UARTCharPut (UART5_BASE, ROM__UARTCharGet (UART5_BASE)) ;
}

}

void
UART2_int_handler (void) {

uart_rx_interrupt__handler (GNSS_DEVICE, GNSS MODULE) ;
}

void
UART4_int__handler (void) {

uart_rx_interrupt_handler (IMU_DEVICE, IMU_ MODULE) ;
}

void
UART7_int__handler (void) {

uart_rx_interrupt_handler (MC_DEVICE, MC MODULE) ;
}

code/asv_ap_mcu/src/asv_ap/uart.h

#include <stdint .h>
#include "inc/hw_memmap.h"

#define UART_ BUFFER SIZE 255

#define LOG_MODULE UART5_ BASE
#define MC MODULE UART7_BASE
#define IMU_MODULE UART4 BASE
#define GNSS_MODULE UART2 BASE
#define WLAN MODULE UART5 BASE

//#define LOG_DEVICE 0z00
#define MC_DEVICE 0x00
#define IMU_DEVICE 0x01
#define GNSS_DEVICE 0x02
#define WLAN DEVICE 0x03

void UART_init(void);

void UART_send(uint32_t module, char xstring);

void UART_send _nn(uint32_t module, char xstring);

void WLAN_send(char *string);

void get_uart_str(uint8_t device, char xmessage_buffer);
void UART2_int_handler(void) ;

void UART4_int__handler(void) ;

void UARTS5_int_handler(void) ;

void UART7_int_handler(void) ;

extern volatile uint8_t cmd_counter [];

code/asv_ap_mcu/src/tasks/led_task.c

/x

183

¥ oK X X X X X X X X ¥ X X ¥ ¥ ¥ ¥ ¥

*
~N

Copyright (c) 2015 Lindem Data Acquisition AS. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may mot use
these files except in compliance with the License. You may obtain a copy of the
License at

http ://www. apache.org/licenses /LICENSE—2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Author: Joakim Myrland

website : www.LDA . as

ematl: joakim . myrland@LDA . as

project: https://github.com/Lindem—Data—Acquisition—AS/iot__tiva__template/

#include <stdint .h>
#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/rom.h"
#include "config/lwiplib.h"
#include "led task.h"
#include "priorities.h"
#include "FreeRTOS.h'
#include "task.h"

#include "queue.h"

#include "semphr.h"

// The stack size for the LED toggle task.

#define STACKSIZE LEDTASK 128

// The amount of time to delay between toggles of the LED.
#define LED DELAY_ON 750

#define LEDiDELAY:OFF 250

// This task simply toggles the wuser LED at a 1 Hz rate.
static void
LEDTask(void xpvParameters) {

portTickType ui32LastTime;
uint32_t ui32Temp;

// Get the current tick count.
ui32LastTime = xTaskGetTickCount () ;

// Loop forever.
while (1)

ui32Temp = lwIPLocallPAddrGet () ;

/% No IP acquired x/
if (ui32Temp == IPADDR NONE || ui32Temp == IPADDR_ANY) {

// Turn off the wuser LED.

#ifdef DEVKIT

ROM__ GPIOPinWrite (GPIO_ PORTN_BASE, GPIO_PIN_5, GPIO_PIN_5);
#else

ROM_ GPIOPinWrite (GPIO_PORTA_ BASE, GPIO_PIN 1, GPIO_PIN 1);
#endif

// Wait for the required amount of time.
vTaskDelayUntil(&ui32LastTime , LED DELAY OFF / portTICK RATE_MS) ;

// Turn on the wser LED.
#ifdef DEVKIT

ROM_ GPIOPinWrite (GPIO_ PORTN_BASE, GPIO_PIN_5, 0);
#else

184 MCU code for ASV autopilot

75 ROM__ GPIOPinWrite (GPIO_ PORTA_BASE, GPIO_PIN_1, 0);

76 #endif

7

78 // Wait for the required amount of time.

79 vTaskDelayUntil(&ui32LastTime , LED DELAY OFF / portTICK RATE_MS) ;
80

81 /% Auto IP acquired x/

82 } else if ((ui32Temp & OxFFFF) == OxFEA9) {

83

84 // Turn off the wser LED.

85 #ifdef DEVKIT

86 ROM__ GPIOPinWrite (GPIO_ PORTN_BASE, GPIO_PIN_5, GPIO_PIN_5);
87 #else

88 ROM__GPIOPinWrite (GPIO_ PORTA_BASE, GPIO_PIN_1, GPIO_PIN_1);
89 #endif

90

91 // Wait for the required amount of time.

92 vTaskDelayUntil (&ui32LastTime , LED_DELAY. ON / portTICK_RATE_MS) ;
93

94 // Turn on the wuser LED.

95 #ifdef DEVKIT

96 ROM __GPIOPinWrite (GPIO_ PORTN_BASE, GPIO_PIN 5, 0);

97 #else

98 ROM__ GPIOPinWrite (GPIO_ PORTA_ BASE, GPIO_PIN_1, 0);

99 #endif

100

101 // Wait for the required amount of time.

102 vTaskDelayUntil(&ui32LastTime , LED_DELAY OFF / portTICK RATE_MS) ;
103

104 /% DHCP IP acquired x/

105 } else if ((ui32Temp & OxFFFF) =— 0xA8CO0) {

106

107 // Turn off the wuser LED.

108 #ifdef DEVKIT

109 ROM__ GPIOPinWrite (GPIO_ PORTN_BASE, GPIO_PIN_5, GPIO_PIN_5);
110 #else

111 ROM_ GPIOPinWrite (GPIO_ PORTA_BASE, GPIO_PIN_1, GPIO_PIN_1);
112 #endif

113

114 // Wait for the required amount of time.

115 vTaskDelayUntil(&ui32LastTime , LED DELAY OFF / portTICK RATE_MS) ;
116

117 // Turn on the wser LED.

118 #ifdef DEVKIT

119 ROM_ GPIOPinWrite (GPIO_ PORTN_BASE, GPIO_PIN_5, 0);

120 #else

121 ROM_ GPIOPinWrite (GPIO_ PORTA_BASE, GPIO_PIN_1, 0);

122 #endif

123

124 // Wait for the required amount of time.

125 vTaskDelayUntil(&ui32LastTime , LED_DELAY ON / portTICK_RATE_MS) ;
126

127 } else {

128 vTaskDelayUntil(&ui32LastTime , 2000 / portTICK_RATE_ MS) ;

129 }

130

131 }

132

133 }

134

135 // Initializes the LED task.
136 uint32_t
137 LEDTaskInit (void) {

138

139 // Create the LED task.

140 if (xTaskCreate (LEDTask, (const portCHAR % const)'"LED", STACKSIZE LEDTASK, NULL,
tskIDLE_PRIORITY + PRIORITY LED TASK, NULL) != pdTRUE) {

141 return (1) ;

142 1

143

144 // Success.

145 return (0);

OO~ Ulk WN -

OO~ U ks WN—

code/asv__ap_mcu/src/tasks/led_task.h

/%

* Copyright (c) 2015 Lindem Data Acquisition AS. All rights reserved.

E3

* Licensed under the Apache License, Version 2.0 (the "License"); you may not use
* these files except im compliance with the License. You may obtain a copy of the
* License at

*

* http://www. apache.org/licenses /LICENSE—2.0

*

* Unless required by applicable law or agreed to in writing, software distributed
* wunder the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

« CONDITIONS OF ANY KIND, either exzpress or implied. See the License for the

* specific language governing permissions and limitations wunder the License.

*

* Author: Joakim Myrland

* website : www.LDA . as

* ematl: joakim .myrland@LDA . as

* project: https://github.com/Lindem—Data—Acquisition—AS/iot__tiva__template/
*

“/

#ifndef = LED TASK H

#define __ILED TASK H

/% o sk ok sk ok sk ok sk ok sk ok sk sk sk ok ok sk ok sk sk sk ok sk ok sk ok K sk ok sk ok sk ok s ok ok sk ok sk sk ok ok sk ok Sk ok R sk R sk ok sk ok Sk sk K sk ok sk ok sk ok sk ok ok sk ok ok ok ok ok ok
//

// Prototypes for the LED task.

//

/o sk ok sk ok sk ok s sk ok sk ok sk sk s sk ok sk ok sk sk s sk R sk ok sk ok R sk ok sk ok sk ok sk sk ok sk ok sk sk s ok ok sk ok Sk ok R sk R sk ok sk ok Sk sk K sk ok sk ok sk ok K ok ok sk ok ok ok K ok ok ok
extern uint32_t g ui32LEDDelay;
extern uint32_t LEDTaskInit(void);

#endif // __LED TASK H__

code/asv_ap_mcu/src/tasks/lwip_ task.c

//***
// lwip__task.c — Tasks to serve web pages over Ethernet wusing lwIP.

// Copyright (c) 2009—2014 Tezas Instruments Incorporated. All rights reserved.
// Software License Agreement

// Texas Instruments (TI) is supplying this software for wuse solely and
// exclusively on TI’s microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may mot combine this software with "viral" open—source

// software in order to form a larger program.

THIS SOFTWARE IS PROVIDED "AS IS' AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

// DAMAGES, FOR ANY REASON WHATSOEVER.

// This is part of revision 2.1.0.12573 of the DK-TM/C129X Firmware Package.
//***

#include <stdint .h>

#include <stdbool.h>

#include "inc/hw_ints.h"

#include "inc/hw_types.h"

#include "driverlib/rom.h"
#include "lwiplib.h"

#include "httpserver_ raw/httpd.h"
#include "httpserver_raw/fsdata.h"'
#include "led_task.h"

#include "lwip_task.h'

186 MCU code for ASV autopilot

36 extern uint32_t g_system_ clock;
38 //***
40 // Sets up the additional lwIP raw API services provided by the application.

41 //

42 //***
43 void
44 SetupServices (void xpvArg)
47 // Initialize the sample httpd server.
//
49 httpd__init () ;

51 /* Initalize the tcp config server x/
52 config server_ init();

54 //http__server_netconn__init();

56 1

B8/ /ot ko ok ok o sk ok ok KK K o o o o ok KKK KK o o o ok oK KK KKK K o oK o oK KKK KK K K o o oK KKK K K o o oK KKK KK K K o oK kKK K K
/

60 // Initializes the lwIP tasks.

62 //***

63 uint32_t
64 lwIPTaskInit(void)

65 {

66 uint8_t puiSMAC[6];

67 uint8_t hex_array [16] = {

68 00, 17, 27, 030, 4r, 'sc. v6°, 7', '8°, '9’, 'A’, °B’, 'C’, 'D’, 'BE’, 'F’
69 };

70

71 uint32_t ui32User0, ui32Userl;

72 ROM_ FlashUserGet(&ui32User0, &ui32Userl);

73

74 if ((ui32User0 == Oxffffffff) || (uid32Userl == Oxffffffff)) {

75

76 // MAC address has not been programmed, use default.

77 /) ASV = 0z41 0353 0z56

78 puiBMAC[0] = 0x02;

79 puiSMAC[1] = 0x41;

80 pui8MAC [2] = 0x53;

81 PUiMAC[3] = 0x56;

82 puiSMAC[4] = 0x00;

83 pui8MAC [5] = 0x00;

84

85 } else {

86

87 puiSBMAC[0] = ((ui32User0 >> 0) & O0xff);

88 puiSMAC[1] = ((ui32User0 >> 8) & 0xff);

89 puiSMAC[2] = ((ui32User0 >> 16) & 0xff);

90 puiSMAC[3] = ((ui32Userl >> 0) & 0xff);

91 puiSMAC[4] = ((ui32Userl >> 8) & 0xff);

92 puiSBMAC[5] = ((ui32Userl >> 16) & 0xff);

93

94 1

95

96

97 // Lower the priority of the Ethernet interrupt handler. This is required
98 // so that the interrupt handler can safely call the interrupt—safe
99 // FreeRTOS functions (specifically to send messages to the queue).
100

101 ROM_ IntPrioritySet (INT_EMACO, 0xCO);

102

103 //

104 // Initialize lwIP.

105 //

106 //lwIPInit(g_system__clock, puiSMAC, aton("192.168.1.21"), aton("255.255.255.0"),

aton ("192.168.1.1"), IPADDR_USE_STATIC) ;

OO~ U kWK~

© 00N U ik WN

187

lwIPInit (g_system_ clock, pui8MAC, 0xC0A80115, OxFFFFFF00, 0xCO0A80101,
IPADDR, USE_STATIC) ;

//lwIPInit(g_system__clock, puiSMAC, 0xC0A80015, O0xFFFFFF00, 0xC0A80001,
IPADDR _USE_STATIC) ;

//lwIPInit(g_system__clock, puiS8MAC, 0xC0A80015, O0zFFFFFF00, 0xC0A80014,
IPADDR _USE_STATIC) ;

/

// Setup the remaining services inside the TCP/IP thread’s context.

tcpip__callback (SetupServices, 0);

//

// Success.

Vs

return (0) ;

code/asv_ap_mcu/src/tasks/lwip_ task.h

/o sk ok sk ok sk ok s sk ok sk ok sk sk sk sk ok sk ok sk sk s sk K sk ok sk ok sk ok sk ok sk sk sk ok ok sk ok sk sk o ok ok sk ok sk ok R sk R sk ok sk ok Sk sk K ok ok sk ok sk ok K ok ok sk ok ok ok K ok ok ok
// lwip__task.h — Prototypes for the lwIP tasks.

// Copyright (c) 2009—2014 Tezas Instruments Incorporated. All rights reserved.
// Software License Agreement

// Texas Instruments (TI) is supplying this software for wuse solely and
// exclusively on TI’s microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may mot combine this software with "viral" open—source

// software in order to form a larger program.

THIS SOFTWARE IS PROVIDED "AS IS' AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

// DAMAGES, FOR ANY REASON WHATSOEVER.

// This is part of revision 2.1.0.12573 of the DK-TM/C129X Firmware Package.
//***

#ifndef = LWIP TASK H
#define _ LWIP_TASK H

//***

/
// Prototypes.
//

//***
extern uint32_t lwIPTaskInit(void);

#endif // __ _LWIP_TASK H _

code/asv__ap_mcu/src/tasks/lwiplib.c

//***

// Copyright (c) 2018—2014 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement

// Texas Instruments (TI) is supplying this software for wuse solely and
// exclusively on TI’s microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may mot combine this software with "viral" open—source

// software in order to form a larger program.

188 MCU code for ASV autopilot

// THIS SOFTWARE IS PROVIDED "AS IS' AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

// DAMAGES, FOR ANY REASON WHATSOEVER.

// This is part of revision 2.1.0.12573 of the DK-TM4C129X Firmware Package.
//

/o sk ok sk ok sk ok sk sk ok sk ok sk sk sk ok ok sk ok sk sk R sk ok sk ok sk sk R sk ok sk ok sk ok sk sk ok sk ok sk sk sk ok sk ok SR sk K sk R sk ok sk ok s sk ok sk ok sk sk s ok ok sk ok sk sk o ok ok sk ok ok

#include <stdint.h>
#include <stdbool.h>

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_nvic.h"
#include "inc/hw_emac.h"
#include "driverlib/debug.h"
#include "driverlib/emac.h"
#include "driverlib /rom.h"
#include "driverlib /rom_ map.h"
#include "driverlib/sysctl.h"

#if RTOS FREERTOS
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
#endif

#include "lwiplib.h"
#include "lwip/tcpip.h'
#include "netif/tivaif.h"

//***

// Ensure that ICMP checksum offloading is enabled; otherwise the TM4C129

// driver will not operate correctly.

//
//***
#ifndef LWIP_OFFLOAD_ICMP_CHKSUM

#define LWIP_OFFLOAD_ICMP_CHKSUM 1

#endif

[/ /o sk ok sk ok sk ok sk sk ok sk ok sk sk sk ok ok sk ok sk sk R sk ok sk ok sk sk R sk ok sk ok sk sk sk sk ok sk ok sk ok K sk ok sk ok SR sk K sk R sk ok sk ok K sk ok sk ok sk sk s ok sk sk ok sk sk sk sk ok sk ok ok

// The lwIP Library abstration layer provides for a host callback function to
// be called periodically in the lwIP context. This is the timer interval, in
// ms, for this periodic callback. If the timer interval is defined to 0 (the
// default value), then no periodic host callback is performed.

//***
#ifndef HOST TMR_INTERVAL

#define HOST TMR INTERVAL 0

F#else

extern void lwIPHostTimerHandler (void);

#endif

/o sk sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk ok sk sk R sk ok sk ok sk sk R sk ok sk ok sk ok K ok ok sk ok sk sk kR sk ok sk ok SR sk R sk R sk ok sk ok s sk ok sk ok sk sk s ok sk sk ok sk ok K sk ok sk ok ok

// The link detect polling interval.

//

[/ /o s sk sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk R sk ok sk ok sk sk R sk ok sk ok s sk sk sk ok sk ok sk sk sk sk ok sk ok S sk R sk R sk ok sk ok s sk ok sk ok sk sk sk sk sk sk ok sk sk sk sk ok sk ok ok

#define LINK TMR INTERVAL 10

/o ok sk ok ok ok sk ok sk ok s ok ok sk oK sk ok K sk K sk ok 3 ok K sk ok sk ok 3k ok s ok oK sk ok sk ok K ok K sk ok 3 ok K sk R sk ok Sk ok 3 ok ok sk ok sk ok s ok K ok oKk ok ok o K ok ok

//
// Set the PHY configuration to the default (internal) option if necessary.

//

/o sk sk ok sk ok sk sk ok sk ok sk sk s ok ok sk ok sk ok R sk ok sk ok sk sk R sk ok sk ok sk ok sk ok ok sk ok sk ok K sk K sk ok R sk R sk R sk ok sk ok R sk ok sk ok sk ok sk ok ok ok oKk ok ok ok ok sk ok ok

157
158
159

189

#ifndef EMAC_PHY_ CONFIG
#define EMAC_PHY_ CONFIG

(EMAC_PHY_TYPE INTERNAL |

EMAC_PHY INT MDIX EN
EMAC_PHY_AN_100B_T FULL_DUPLEX)

#endif

—

// The lwIP mnetwork interface structure for the Tiva Ethernet MAC.

static struct netif g_sNetlF;

// The application’s interrupt handler for hardware timer events from the MAC.

tHardwareTimerHandler g_pfnTimerHandler;
// The default IP address acquisition mode.
static uint32_t g ui32IPMode = IPADDR_USE STATIC;

// The most recently detected link state.
#if LWIP_AUTOIP || LWIP_DHCP

static bool g_DbLinkActive = false;
#endif

// The IP address to be used. This is used during the
changed.

// stack and when the interface configuration is
static uint32_t g ui32IPAddr;

// The netmask to be used. This is used during the

// and when the interface configuration is changed.

static uint32_t g_ui32NetMask;

initialization of the

initialization of the stack

// The gateway address to be wused. This is wused during the initialization of
is changed.

// the stack and when the interface configuration
static uint32_t g ui32GWAJddr;

// The stack size for the interrupt task.
#if INO_SYS
#define STACKSIZE LWIPINTTASK 128

// The handle for the "queue' (semaphore) used to
// from the interrupt handler.
static xQueueHandle g_ plnterrupt;

stgnal the interrupt task

// This task handles reading packets from the Ethernet controller and supplying

// them to the TCP/IP thread.
static void
IwIPInterruptTask (void xpvArg)

{
//
// Loop forever.
/7

while (1)

// Wait until the semaphore has been signaled.

while (xQueueReceive (g_pInterrupt, &pvArg, portMAX DELAY) != pdPASS)

}
//

// Processes any packets waiting to be sent or

//

tivaif_ interrupt(&g_sNetIF, (uint32_t)pvArg);

//

// Re—enable the Ethernet interrupts.

received .

//

MAP_EMACIntEnable (EMACO_BASE, (EMAC_INT RECEIVE | EMAC_INT_TRANSMIT |
EMAC_INT_TX_STOPPED |
EMAC_INT RX_NO_BUFFER |
EMAC_INT_RX_STOPPED | EMAC_INT_PHY)) ;

}
}
#endif
// This function performs a periodic check of the

// appropriately if it has changed.
#if LWIP_AUTOIP || LWIP_DHCP

link

status and responds

190 MCU code for ASV autopilot

160 static void

161 lwIPLinkDetect (void)

162 {

163 bool bHaveLink;

164 struct ip_addr ip_ addr;
165 struct ip__addr net__mask;
166 struct ip_addr gw_addr;

/7
169 // See if there is an active link.
171 bHaveLink = MAP EMACPHYRead(EMACO_BASE, 0, EPHY BMSR) & EPHY BMSR LINKSTAT;

173 //
174 // Return without doing anything else if the link state hasn’t changed.

//
176 if (bHaveLink == g_bLinkActive)
177 {
178 return;
179 }

//
182 // Save the mew link state.

/
184 g bLinkActive = bHaveLink;

187 // Clear any address information from the network interface.
188 //

189 ip_addr.addr = 0;

190 net__mask.addr = 0;

191 gw_addr.addr = 0;

192 netif set_addr(&g_sNetIF, &ip_addr, &net_mask, &gw_addr);

194 //
195 // See if there is a link now.

[/
197 if (bHaveLink)

//
200 // Start DHCP, if enabled.

//
202 #if LWIP_DHCP
203 if (g_ui32IPMode = IPADDR_USE_DHCP)
204
205 dhcp start(&g sNetlF);
206
207 #endif
208
209 //
210 // Start AutoIP, if enabled and DHCP is mnot.

7/

212 #if LWIP_AUTOIP

213 if (g_ui32IPMode == IPADDR_USE_AUTOIP)
{

215 autoip__start(&g_sNetlF);
217 #endif

218 }

219 else

220

221 //

222 // Stop DHCP, if enabled.

//
224 #if LWIP_DHCP
225 if (g_ui32IPMode == IPADDR_USE_DHCP)

227 dhcp_stop(&g_sNetIF);

229 #endif

//
232 // Stop AutoIP, if enabled and DHCP is not.

191

//
234 #if LWIP_AUTOIP
235 if (g_ui32IPMode == IPADDR_USE_AUTOIP)
236 {
237 autoip_stop(&g_sNetlIF);

239 #endif
240 1

}
242 #endif

244 // Handles the timeout for the host callback function timer when using a RTOS.
245 #if INO_SYS && HOST TMR._INTERVAL

246 static void

247 lwIPPrivateHostTimer (void xpvArg)

248 {

249

250 // Call the application—supplied host timer callback function.
251 //

252 IwIPHostTimerHandler () ;

253

254

255 // Re—schedule the host timer callback function timeout.
256

257 sys__timeout (HOST _TMR_INTERVAL, lwIPPrivateHostTimer , NULL);
258 1}

259 #endif

260

261 // Handles the timeout for the link detect timer when using a RTOS.
262 #if !NO_SYS && (LWIP_AUTOIP || LWIP_DHCP)

263 static void

264 lwIPPrivateLinkTimer (void xpvArg)

265 {

266

267 // Perform the link detection.

268 //

269 IwIPLinkDetect () ;

270

271

272 // Re—schedule the link detect timer timeout.
273 //

274 sys__timeout (LINK_TMR_INTERVAL, lwIPPrivateLinkTimer , NULL);
275 }

276 #endif

277

278 // Completes the initialization of lwIP. This is directly called when not
279 // wsing a RTOS and provided as a callback to the TCP/IP thread when wusing a
280 // RTOS.

281 static void

282 lwIPPrivatelnit (void xpvArg)

283 {

284 struct ip_addr ip_addr;
285 struct ip_addr net_mask;
286 struct ip_addr gw_addr;
287

288 #if INO_SYS
289 #if RTOS FREERTOS

290 // If wsing a RTOS, create a queue (to be used as a semaphore) to signal
291 // the Ethernet interrupt task from the Ethernet interrupt handler.
292 g_plnterrupt = xQueueCreate(l, sizeof(void x*));

293 // If wsing a RTOS, create the FEthernet interrupt task.

294 xTaskCreate (lwIPInterruptTask , (const portCHAR % const)"eth_ isr",
295 STACKSIZE_ LWIPINTTASK, 0, tskIDLE_PRIORITY + 1,

296 0);

297 #endif

298 #endif

299

300

301 // Setup the network address values.

302 //

303 if (g_ui32IPMode == IPADDR_USE_STATIC)

304 {

305 ip_addr.addr = htonl(g_ui32IPAddr);

192 MCU code for ASV autopilot

net_mask.addr = htonl(g_ui32NetMask) ;

gw_addr.addr = htonl(g_ui32GWAddr) ;
}
else
{
ip__addr.addr = 0;
net__mask.addr = 0;
gw_addr.addr = 0;
//

// Create, configure and add the Ethernet controller interface with

// default settings. ip__input should be used to send packets directly to
// the stack when not wusing a RTOS and tcpip__input should be used to send

// packets to the TCP/IP thread’s queue when using a RTOS.

//
netif add(&g sNetlF, &ip addr, &net mask, &gw_ addr, NULL, tivaif_ init ,

tcpip__input);
netif set_default(&g_ sNetlF);
// Bring the interface up.
netif set_ up(&g_sNetlF);

//

// Setup a timeout for the host timer callback function if wusing a RTOS.

//
#if INO_SYS && HOST TMR, INTERVAL

sys_timeout (HOST TMR,_ INTERVAL, lwIPPrivateHostTimer , NULL);
#endif

//
// Setup a timeout for the link detect callback function if wusing a RTOS.

//
#if INO_SYS && (LWIP_AUTOIP || LWIP_DHCP)

sys_ timeout (LINK_TMR_INTERVAL, lwIPPrivateLinkTimer , NULL);
#endif
}

/***/
/x IPIsNetlIfUp

/x

/x Check if the interface and link is Up.

/*

/x In : momne

/x Out : momne

/% Return: 0 / 1

/***/

int IPIsNetIfUp (void)
{

int NetIfUp = 0;
if ((netif is_ up(&g_ sNetlF)) && (netif is_link up(&g_ sNetIF)))

NetlfUp = 1;
}

return (NetIfUp) ;
} /% IPIsNetIfUp */

/o sk ok sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk ok sk sk R sk ok sk ok Sk sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok ok sk ok sk ok SR sk R sk R sk ok sk ok K sk ok sk ok sk sk s ok ok sk ok sk sk ok ok ok sk ok ok

/
//! Initializes the lwIP TCP/IP stack.
i
//! \param wi32SysClkHz is the current system clock rate in Hz.
//! \param pui8MAC is a pointer to a siz byte array containing the MAC
//! address to be wused for the interface.
//! \param wi32IPAddr is the IP address to be used (static).
//! \param wi32NetMask is the network mask to be used (static).
//! \param wi32GWAddr is the Gateway address to be used (static).

\

a

param ui32IPMode is the IP Address Mode. \b IPADDR_USE STATIC will force

403
404
405
406
407
408
409
410
411
412
413
414

193

//! static IP addressing to be used, \b IPADDR USE DHCP will force DHCP with
//! fallback to Link Local (Auto IP), while \b IPADDR USE _AUTOIP will force
//! Link Local only.

/! This function performs initialization of the lwIP TCP/IP stack for the
//! Ethernet MAC, including DHCP and/or AutoIP, as configured.

//! \return None.

//

/3 ok ok ok K s ok oK K o ok R K KK K KKK K K KKK KKK R KK K KK K K KK K R KK K KK K KK K R KK K K KK K K KK KK KK K KK K K K

void

lwIPInit (uint32_t ui32SysClkHz, const uint8 t xpuiSMAC, uint32_t ui32IPAddr,
uint32_t ui32NetMask, uint32_t ui32GWAddr, uint32_t ui32IPMode)

{

//
// Check the parameters.

//
#if LWIP_DHCP && LWIP_AUTOIP
ASSERT ((ui32IPMode == IPADDR_USE_STATIC)
(ui321PMode == IPADDR_USE DHCP) |
(ui32IPMode == IPADDR_USE_ AUTOIP)
#elif LWIP_DHCP
ASSERT ((ui32IPMode
(ui32IPMode
#elif LWIP_ AUTOIP
ASSERT ((ui32IPMode
(ui32IPMode

[
|
)
IPADDR_USE_STATIC) ||
IPADDR_USE_DHCP)) ;

IPADDR, USE_STATIC) ||
IPADDR_USE_AUTOIP)) ;

#else
ASSERT (ui32IPMode == IPADDR_USE_ STATIC) ;
#endif
//
// Enable the ethernet peripheral.
//
MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH EMACO) ;
MAP_SysCtlPeripheralReset (SYSCTL PERIPH EMACO) ;
// Enable the internal PHY if it’s present and we’'re being
// asked to wuse it.
1/
if ((EMAC_PHY_CONFIG & EMAC PHY TYPE MASK) == EMAC_ PHY_ TYPE_ INTERNAL)
{
//
// We’ve been asked to configure for wuse with the internal

// PHY. Is it present?

1/
if (MAP_SysCtlPeripheralPresent (SYSCTL_PERIPH_ EPHYO))

{
// Yes — enable and reset it.
//
MAP__SysCtlPeripheralEnable (SYSCTL_PERIPH_ EPHYO) ;
MAP_SysCtlPeripheralReset (SYSCTL_PERIPH EPHYO) ;
}
else
{
//
// Internal PHY is not present on this part so hang here.
//
while (1)
}
}

//
// Wait for the MAC to come out of reset.

while (! MAP__ SysCtlPeripheralReady (SYSCTL_PERIPH EMACO))

{
}

194 MCU code for ASV autopilot

// Configure for wuse with whichever PHY the wuser requires.

//
MAP_EMACPHY ConfigSet (EMACO_BASE, EMAC_PHY_CONFIG) ;

//
// Initialize the MAC and set the DMA mode.

//

MAP_EMACInit (EMACO_BASE, ui32SysClkHz ,
EMAC BCONFIG_MIXED_ BURST | EMAC_BCONFIG_PRIORITY FIXED,
4, 4, 0);

/7
// Set MAC configuration options.

//
MAP_EMACConfigSet (EMACO_BASE, (EMAC_CONFIG_FULL DUPLEX |
EMAC_CONFIG_CHECKSUM_OFFLOAD |
EMAC_CONFIG_7BYTE PREAMBLE |
EMAC_CONFIG_IF_GAP_96BITS |
EMAC_CONFIG_USE_MACADDRO |
EMAC_CONFIG_SA_ FROM_DESCRIPTOR |
EMAC_CONFIG_BO_LIMIT_1024) ,
(EMAC_MODE_RX STORE_FORWARD |
EMAC MODE TX STORE FORWARD |
EMAC_MODE_TX_ THRESHOLD_ 64 BYTES |
EMAC_MODE_ RX THRESHOLD_ 64 BYTES), 0);

//
// Program the hardware with its MAC address (for filtering).

//

MAP_EMACAddrSet (EMACO_BASE, 0, (uint8_t x)puiSMAC);

// Save the network configuration for later wuse by the private
// initialization .

g_ui32IPMode
g_ui32IPAddr

ui32IPMode;
ui32IPAddr;

g_ui32NetMask = ui32NetMask;

g ui32GWAddr = ui32GWAddr;

//

// Initialize lwIP. The remainder of initialization is done immediately if

// mot wusing a RTOS and it is deferred to the TCP/IP thread’s context if
// wusing a RTOS.

tepip_init (IwIPPrivatelnit, 0);
/ EEREEEEEEEEEEEEEEEREEEEEEREEEREEREEESEEESEEESESESEESEEESEEEESEESEESEESEESESESETSESESE S

//! Registers an interrupt callback function to handle the IEEE—1588 timer.
s
//! \param pfnTimerFunc points to a function which is called whenever the
//! Ethernet MAC reports an interrupt relating to the IEEE—1588 hardware timer.
/!
//! This function allows an application to register a handler for all
//! interrupts generated by the IEEE—1588 hardware timer in the FEthernet MAC.
//! To allow minimal latency timer handling, the callback function provided
//! will be called in interrupt context, regardless of whether or not lwIP is
//! configured to operate with an RTOS. In an RTOS environment, the callback
//! function is responsible for ensuring that all processing it performs is
//! compatible with the low level interrupt contezt it is called in.

!

//! The callback function takes two parameters. The first is the base address
//! of the MAC reporting the timer interrupt and the second is the timer

//! interrupt status as reported by EMACTimestampIntStatus(). Note that

//! EMACTimestampIntStatus () causes the timer interrupt sources to be cleared
//! so the application should not call EMACTimestampIntStatus() within the
//! handler.

a

//! \return None.

7/

553
554
555
556
557

195

/o sk sk ok sk ok sk ok sk ok sk sk sk ok ok sk ok sk sk o sk ok sk ok sk sk sk ok sk ok sk ok s sk ok sk ok sk sk ok ok sk ok sk ok R sk R sk ok sk ok sk sk K sk ok sk ok sk ok K ok ok sk oKk ok K ok ok ok
void
IwIPTimerCallbackRegister (tHardwareTimerHandler pfnTimerFunc)

{

// Remember the callback function address passed.

7/

g_pfnTimerHandler = pfnTimerFunc;

//**>k****>k***************>k***

/

//! Handles Ethernet interrupts for the lwIP TCP/IP stack.

i

//! This function handles Ethernet interrupts for the lwIP TCP/IP stack. At

//! the lowest level, all receive packets are placed into a packet queue for
//! processing at a higher level. Also, the transmit packet queue is checked
//! and packets are drained and transmitted through the Ethernet MAC as needed.
//! If the system is configured without an RTOS, additional processing is

//! performed at the interrupt level. The packet queues are processed by the
//! lwIP TCP/IP code, and lwIP periodic timers are serviced (as needed).

/!

//! \return None.

//

/ EEREEEEEEEEEREEEEEREEEEEREEESREREEEEESEEESEESEEESEESEEEESEEEESSEESEESEESEESESESESESESESSI
void
lwIPEthernetIntHandler (void)
{
uint32_t ui32Status;
uint32_t ui32TimerStatus;
#if INO_SYS

portBASE_TYPE xWake;
#endif
//
// Read and Clear the interrupt.
/7
ui32Status = MAP_EMACIntStatus(EMACO_BASE, true);
// If the interrupt really came from the Ethernet and mnot our
// timer, clear it.
1/
if (ui32Status)
MAP_EMACIntClear (EMAC0_BASE, ui32Status);
}
// Check to see whether a hardware timer interrupt has been reported.
/7
if (ui32Status & EMAC_INT TIMESTAMP)
//
// Yes — read and clear the timestamp interrupt status.
//
ui32TimerStatus = EMACTimestampIntStatus (EMACO_BASE) ;
//
// If a timer interrupt handler has been registered, call it.
if(g_pfnTimerHandler)
g pfnTimerHandler (EMACO BASE, ui32TimerStatus);
}
//
// The handling of the interrupt is different based on the use of a RTOS.
// A RTOS is being used. Signal the Ethernet interrupt task.
//
xQueueSendFromISR (g_ pInterrupt, (void x)&ui32Status, &xWake) ;

196 MCU code for ASV autopilot

// Disable the Ethernet interrupts. Since the interrupts have mnot been
// handled, they are not asserted. Once they are handled by the Ethernet
// interrupt task, it will re—enable the interrupts.

//

MAP_EMACIntDisable (EMACO_BASE, (EMAC_INT RECEIVE | EMAC_INT_ TRANSMIT |
EMAC_INT_TX_STOPPED |
EMAC_INT_RX_NO_BUFFER
EMAC_INT_RX_STOPPED | EMAC_INT_PHY)) ;

//

// Potentially task switch as a result of the above queue write.

//
#if RTOS FREERTOS
if (xWake == pdTRUE)

portYIELD_FROM_ISR(true) ;
#endif
[/ /o ok kKKK K o o o ok KKK KK K o o R oK KKK KK K K o s oK KKK KKK o o o oK KKK K o oK o oK KKK K K K o o oK KKK K Kk

//! Returns the IP address for this interface.

//! This function will read and return the currently assigned IP address for
//! the Stellaris Ethernet interface.

i
//! \return Returns the assigned IP address for this interface.
/ Sk 3k 3k sk >k >k sk 3k sk ok sk Sk sk sk sk >k sk 3k sk ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk 3k k ok ok sk

uint32_t
lwIPLocallIPAddrGet (void)

{
#if LWIP_AUTOIP || LWIP_DHCP
if (g_bLinkActive)

return ((uint32_t)g sNetIF.ip_addr.addr);
else
{
return (0 xffffffff);

}
#else

return ((uint32_t)g sNetIF.ip_addr.addr);
#endif
}
/ Sk 3k 3k sk >k >k 3k 3k 3k sk sk sk sk sk sk >k ok 3k 3k 3k sk Sk Sk sk sk sk >k 3k 3k ok ok sk Sk Sk sk sk 3k sk 3k 3k ok sk sk Sk sk sk sk 3k 3k 3k 3k 3k 3k ok ok sk sk sk sk sk sk sk 3k ok ok Sk sk sk sk sk sk kR ok ok ok sk
//! Returns the network mask for this interface.
/!
//! This function will read and return the currently assigned network mask for
//! the Stellaris Ethernet interface.
/7!
//! \return the assigned network mask for this interface.
//
/ sk sk sk sk ok ok ok ok sk sk ok ok ok ok ok ok 3k 3k sk ok ok ok ok sk sk ok sk sk sk sk sk ok ok ok ok sk sk sk ok ok ok ok sk 3k 3k sk o ok ok 5k 5k 5k 5k 5k ok ok 3k 3k sk 3k 3 ok ok ok ok 5k ok ok ok ok ok ok k %k ok ok %
uint32_t
lwIPLocalNetMaskGet (void)

return ((uint32_t)g sNetIF.netmask.addr);
//***
//! Returns the gateway address for this interface.
a
//! This function will read and return the currently assigned gateway address
//! for the Stellaris FEthernet interface.
/!
//! \return the assigned gateway address for this interface.

197

//

/ sk sk sk 3k ok ok ok 3k 3k ok sk sk Sk sk sk >k ok ok 3k 3k 3k sk Sk sk sk sk ok >k 3k 3k 3k 3k Sk Sk sk sk sk ok ok 3k 3k 3k sk Sk sk sk sk ok ok 3k 3k 3k 3k K 3k sk Sk Sk sk 3k ok ok 3k 3k 3k 3k 3k Sk sk sk ok ok ok ok 3k ok sk
uint32_t
lwIPLocal GWAddrGet (void)

return ((uint32_t)g sNetIF.gw.addr);

/o ok s sk kKK KK K K s s ok KKK K K K o S ok KKK E K K o S o kKKK KK K o SRR R KK K o s ok ok kKKK K K K o o R KK Kok
//! Returns the local MAC/HW address for this interface.

//! \param pui8MAC is a pointer to an array of bytes used to store the MAC
//! address.

//! This function will read the currently assigned MAC address into the array
//! passed in \e puiSMAC.

//! \return None.

//***
void
lwIPLocalMACGet (uint8__t xpui8MAC)

MAP_EMACAddrGet (EMACO_BASE, 0, pui8MAC) ;

/s ok s sk sk sk sk sk ok sk sk sk sk ok sk ok sk sk K sk ok sk ok sk sk sk ok ok sk ok sk sk s sk ok sk ok sk sk R sk ok sk ok sk sk K sk ok sk ok sk ok s sk K sk ok sk ok sk sk R sk ok sk ok S sk K sk ok sk ok K ok ok
//
// Completes the metwork configuration change. This is directly called when
// mot wusing a RTOS and provided as a callback to the TCP/IP thread when wusing
// a RTOS.
//
/o sk ok sk ok sk ok s sk ok sk ok sk sk sk ok ok sk ok sk sk s sk K sk ok sk sk R sk ok sk ok sk sk sk sk ok sk ok sk sk sk ok sk ok sk ok R sk R sk ok sk ok sk sk K sk ok sk ok sk ok sk ok ok sk ok ok ok ok ok ok ok
static void
IwIPPrivateNetworkConfigChange (void *pvArg)
{

uint32_t ui32IPMode;

struct ip__addr ip__addr;

struct ip__addr net_mask;

struct ip_addr gw_addr;

//
// Get the new address mode.

//
ui32IPMode = (uint32_ t)pvArg;

// Setup the network address values.

1/

if (ui32IPMode == IPADDR_USE_STATIC)
ip_addr.addr = htonl(g_ui32IPAddr);
net_mask.addr = htonl(g_ui32NetMask) ;
gw_addr.addr = htonl (g ui32GWAddr) ;

}
#if LWIP_DHCP || LWIP_AUTOIP

else
{
ip_addr.addr = 0;
net__mask.addr = 0;
gw_addr.addr = 0;
}
#endif
// Switch on the current IP Address Aquisition mode.
switch (g_ui32IPMode)
//
// Static IP
7/

768

198

MCU code for ASV autopilot

case IPADDR_USE_STATIC:

{

// Set the new address parameters. This will change the address
// configuration in lwIP, and if mecessary, will reset any links
// that are active. This is wvalid for all three modes.

//
netif set__addr(&g_sNetIF, &ip_addr, &net_mask, &gw_addr);

//
// If we are going to DHCP mode, then start the DHCP server now.

#if LWIP_DHCP

#endif

#endif

if ((ui32IPMode == IPADDR_USE_DHCP) && g_bLinkActive)

dhcp_start(&g_sNetlF);

// If we are going to AutolP mode, then start the AutolP process
// mow.

//
767 #if LWIP_AUTOIP

if ((uid32IPMode == IPADDR_USE_AUTOIP) && g_bLinkActive)

autoip_start(&g_ sNetIF);

//
// And we’re done.

//
break;

//
// DHCP (with AutoIP fallback).

#if LWIP_DHCP
case IPADDR_USE DHCP:

{

//
// If we are going to static IP addressing, then disable DHCP and
// force the new static IP address.

[/
if (ui32IPMode == IPADDR_USE_STATIC)

dhcp_stop(&g_ sNetlF);
netif set_addr(&g_sNetIF, &ip_addr, &net_ mask, &gw_addr);

//
// If we are going to AUTO IP addressing, then disable DHCP, set
// the default addresses, and start AutolP.

//
#if LWIP_AUTOIP

#endif

#endif

else if(ui32IPMode == IPADDR_USE_AUTOIP)

{
dhcp_stop(&g sNetlF) ;
netif set addr(&g_sNetIF, &ip_addr, &net_ mask, &gw_addr);
if (g_bLinkActive)
autoip_start(&g_sNetlF);
}
}
break;

//
// AUTOIP

817
818
819
820
821
822
823
824

199

//
#if LWIP_AUTOIP
case IPADDR_USE_ AUTOIP:

{

// If we are going to static IP addressing, then disable AutolIP and
// force the new static IP address.

A
if (ui32IPMode == IPADDR_USE_STATIC)

autoip_stop(&g_sNetlIF);
netif_ set__addr(&g_sNetlF, &ip_addr, &net_mask, &gw_addr);

//
// If we are going to DHCP addressing, then disable AutoIP, set the
// default addresses, and start dhcp.

/
#if LWIP_DHCP
else if(ui32IPMode == IPADDR_USE DHCP)
{
autoip_stop(&g_ sNetlF);
netif _set__addr(&g_sNetlF, &ip_addr, &net_mask, &gw_addr);
if(g_bLinkActive)
dhcp_start(&g_ sNetlF);
}
#endif
break;
#endif
¥
/
// Bring the interface up.
netif_set_up(&g_sNetlIF);
// Save the mew mode.
//
g_ui32IPMode = ui32IPMode;
}
//***
//! Change the configuration of the lwIP network interface.
/!
//! \param wi32IPAddr is the new IP address to be used (static).
//! \param wi32NetMask is the mew network mask to be used (static).
//! \param wi82GWAddr is the new Gateway address to be used (static).
//! \param wi82IPMode is the IP Address Mode. \b IPADDR USE STATIC 0 will
//! force static IP addressing to be wused, \b IPADDR _USE DHCP will force DHCP
//! with fallback to Link Local (Auto IP), while \b IPADDR _USE AUTOIP will
//! force Link Local only.
/!
//! This function will evaluate the new configuration data. If necessary, the
//! interface will be brought down, reconfigured, and them brought back up
//! with the new configuration .
/!
//! \return None.
//
//***
void
lwIPNetworkConfigChange (uint32__t ui32IPAddr, uint32_t ui32NetMask,
uint32_t ui32GWAddr, uint32_t ui32IPMode)
{
/
// Check the parameters.

//
#if LWIP_DHCP && LWIP_AUTOIP
ASSERT ((ui32IPMode == IPADDR._USE_STATIC) ||

200 MCU code for ASV autopilot

890 (ui32IPMode == IPADDR_USE_DHCP) ||

891 (ui32IPMode == IPADDR_USE_AUTOIP)) ;

892 #elif LWIP_ DHCP

893 ASSERT ((ui32IPMode == IPADDR_USE_STATIC) ||

894 (ui32IPMode == IPADDR,_USE DHCP))

895 #elif LWIP_AUTOIP

896 ASSERT ((ui32IPMode == IPADDR_USE_STATIC) ||

897 (ui32IPMode == IPADDR_USE_AUTOIP)) ;

898 #else

899 ASSERT (ui32IPMode == IPADDR_USE_STATIC) ;

900 #endif

901

902 //

903 // Save the network configuration for later use by the private network
904 // configuration change.

905 v/

906 g ui32IPAddr = ui32IPAddr;

907 g_ui32NetMask = ui32NetMask;

908 g ui32GWAddr = ui32GWAddr;

909

910

911 // Complete the network configuration change. The remainder is done
912 // immediately if not wsing a RTOS and it is deferred to the TCP/IP
913 // thread’s context if wusing a RTOS.

914

915 tcpip__callback (lwIPPrivateNetworkConfigChange , (void x*)ui32IPMode) ;
916 }

917

L8/ /o sk sk ok ok sk o ok ok ok ok o ok ok ok o ok ok ok ok ok oK 3K oK K K 3K oK K K K KR K K K R KK K K KK K K oK K K KR K R KoK K KoK KK KK K K KK K K K K K
919 //

920 // Close the Dozygen group.

921 //! @}

922 //

023/ /s sk sk ok sk ok sk ok sk sk ok sk ok sk sk s sk ok sk ok sk sk R sk ok sk ok sk sk R sk ok sk ok sk ok s sk ok sk ok sk sk K sk ok sk ok SR sk K sk R sk ok sk ok K sk ok sk ok sk sk s ok ok sk ok sk sk o ok ok sk ok ok

code/asv_ap_mcu/src/tm4cl29.1d

1 _stack_size = 4K;

2

3 MEMORY

4

5 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 1024K
6 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 256K
7}

8

9 SECTIONS

10 {

11 .text

12 {

13 _start_ext = .;

14 KEEP (* (.isr__vector))

15 *(.text*)

16 *(.rodata*)

17 _end__text = .;

18 } > FLASH

19

20 .data

21

22 __start__data = .;

23 *(vtable)

24 * (. datax)

25 _end_ data = .;

26

27 } > SRAM AT > FLASH

28

29 .ARM. extab : { *x(.ARM.extabx .gnu.linkonce.armextab.*) } > FLASH
30 _ _exidx_start = .;

31 .ARM. exidx : { *x(.ARM. exidx* .gnu.linkonce.armexidx.*) } > FLASH
32 __exidx_end = .;

33

34

35 . bss

© 0O Uk WN -

34
35
36
37

201

_start__bss = .;
* (. bssx*)

* (COMMON)
_end_bss = .;

} > SRAM

__heap_bottom = .;
__heap_top = ORIGIN(SRAM) + LENGTH(SRAM) — _ stack_size;

_stack__bottom = __heap_top;
_stack__top = ORIGIN(SRAM) + LENGTH(SRAM) ;

code/asv_ap_mcu/src/startup.c

*

Copyright (c¢) 2012, Mauro Scomparin
All rights reserved.

Redistribution and wuse in source and binary forms, with or without

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of Mauro Scomparin nor the
names of its contributors may be used to endorse or promote products

THIS SOFTWARE IS PROVIDED BY Mauro Scomparin ‘‘AS IS’ AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Mauro Scomparin BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

File: LM4F _startup. c.

Author: Mauro Scomparin <http://scompoprojects. worpress.com>.

Version: 1.0.0.
Description: LM4F120H5QR startup code.

K X K K K X X K K X K K KX KK KKK KX KK KX KKK XN

*
N

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_nvic.h"
#include "inc/hw_types.h"

modification, are permitted provided that the following conditions are met:

derived from this software without specific prior written permission.

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

#include "inc/hw_memmap.h"

#include "driverlib/rom.h"

#include "driverlib/gpio.h"

// Functions declarations
//

’

// Main should be defined on your main file so it’s exztern.
extern int main(void);

// rst_handler contains the code to run on reset.

void rst__handler (void);

// mnmi_handler it’s the code for an non maskerable interrupt.
void nmi_handler(void);

// this is just the default handler.

void empty_ def handler(void);

// this 1is the code for an hard fault.

void hardfault_handler (void);

202

MCU code for ASV autopilot

// Ezternal
extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern void

declaration for the
lwIPEthernetIntHandler (void) ;
xPortPendSVHandler (void) ;
vPortSVCHandler (void) ;
xPortSysTickHandler (void) ;
UART2_int__handler (void) ;
UART4_int__handler (void) ;
UARTS5_int__handler (void) ;
UART7_int_handler(void);

interrupt handler wused by the application.

Variables declarations

/,
//
/

// defined by the linker it’s the
extern unsigned long _ stack_top;
//extern wint32_t _ stack_top; // Defined in the
// defined by the liker , this are
// .text (code)

extern unsigned long
extern unsigned long

stack top wariable (End of ram)

linker script

_start__text;
_end__text;

// .data (data to be copied on ram)
extern unsigned long _ start_data;

extern unsigned long _ end_data;

// .bss (uninitialized data to set to 0);
extern unsigned long _ start__bss;

extern unsigned long _ end_ bss;

// NVIC ISR table

// the funny looking wvoid(x myvectors[]) (void) basically it’s

an array of function pointers.

just start and end marker for each section.

a way to make cc accept

// The wvector table.
// ensure that
__attribute_ ((section(".
void (¥ myvectors[]) (void)

// This are the fized priority

at R13 (SP).

Note that the proper
it ends up at physical
isr_vector")))

constructs must be to

address 0x0000.0000.

placed on this

{

interrupts and the stack pointer loaded at startup

VECTOR N (Check Datasheet)

//

// here the compiler it’s boring.. have to figure that out
//(void (*)(void)) ((uwint32_t) € stack_top),

(void (%) (void)) ((unsigned long) &_ stack_ top),

//(void (%)) & __stack_top,

rst__handler ,
nmi_ handler,
hardfault__handler
empty__def__handler
empty__def_ handler
empty__def handler

0,
vPortSVCHandler ,
empty_def_ handler,

xPortPendSVHandler
xPortSysTickHandler ,
empty_def handler,

empty_ def handler,
empty__def handler,
empty__def_ handler,
empty_def handler,
empty_def handler,
empty_def_ handler,

empty__def__handler
empty__def_handler
empty_def handler
empty_def_ handler
empty_def_ handler
empty__def__handler
empty__def_handler

// stack pointer should be
// placed here at startup. 0
// The reset handler

// The NMI handler

// The hard fault handler

The MPU fawult handler
The bus fawult handler
The usage fault handler
Reserved
Reserved
Reserved
Reserved
SVCall handler
Debug monitor
Reserved
The PendSV handler
The SysTick handler
GPIO Port A
GPIO Port B
GPIO Port C
GPIO Port D
GPIO Port E
UARTO Rz and Tz
UART1 Rz and Tz
SSI0 Rz and Tx
/ 12C0 Master and Slave
// PAWM Fault
// PWM Generator 0
// PWM Generator 1
// PWM Generator 2
// Quadrature Encoder 0

handler

203

empty__def_ handler
empty__def handler
empty__def handler
empty__def handler
empty__def_ handler
empty__def_ handler
empty__def handler
empty__def handler
empty__def handler
empty__def_ handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
UART2_int__handler
empty__def handler
empty__def handler
empty__def handler
empty__def_ handler
empty__def_ handler
empty__def handler

lwlIPEthernetIntHandler ,

empty_def handler
empty__def_ handler
empty__def_ handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty__def handler
empty_def handler
empty__def handler
empty__def_ handler
empty__def handler

3
5
)
)
3
3
)
)
)
)
3
)
)
3
i
)
)
)
3
s
)
)
)
3
3
)

)
3

i

// ADC Sequence
// ADC Sequence
// ADC Sequence
// ADC Sequence

LW~

// Watchdog timer

// Timer
// Timer
// Timer
// Timer
// Timer
// Timer

0

0
1
1
2
2

subtimer
subtimer
subtimer
subtimer
subtimer
subtimer

[selisSve v

// Analog Comparator 0
// Analog Comparator 1
// Analog Comparator 2

// System Control

// FLASH Control

// GPIO Port F

// GPIO Port G

// GPIO Port H

// UART2 Rz and Tz

// SSI1 Rz and Tz

// Timer 8 subtimer A
// Timer 3 subtimer B
// I2C1 Master and Slave

// CANO
// CAN1

// Ethernet

// Hibernate

// USBO

// PWM Generator
Software

// uDMA
// uDMA
// ADC1
// ADC1
/) ADC1
/) ADC1

N e

ransfer

Error

Sequence
Sequence
Sequence
Sequence

LW~

// Exzternal Bus Interface 0
// GPIO Port J
// GPIO Port K
// GPIO Port L

(PLL, OSC, BO)

empty__def handler,
empty__def handler,
empty__def handler,
UART4_ int__handler,
UART5_int__handler,
empty_def handler,
UARTT7_int__handler,
empty__def handler,
empty__def handler,
empty__def handler,
empty__def handler,
empty__def handler,
empty__def handler,
empty__def handler,
0,

empty__def handler
empty__def handler
empty__def handler
empty__def handler
0,

empty__def handler,
empty__def handler,
empty__def handler,
empty__def handler,
empty__def handler,
empty__def handler,

empty__def_ handler
empty__def handler
empty__def handler
empty__def handler
empty__def_ handler
empty__def_ handler

// SSI2 Rx and Tz
// SSI8 Rx and Tz

'// UARTS Rz
// UARTS4 Rz
'// UART5 Rz
'/) UART6 Rz
'/ UART? Rz

and
and
and
and
and

Tz
Tx
Tx
Tx
Tx

// I12C2 Master and Slave
// 12C8 Master and Slave

// Timer 4
// Timer 4
// Timer &
// Timer &5
// FPU

// Reserved
// Reserved

subtimer
subtimer
subtimer
subtimer

[l v

// 12C4 Master and Slave
// I2C5 Master and Slave
// GPIO Port M
// GPIO Port N

// Reserved
// Tamper

// GPIO Port

// GPIO Port P1
// GPIO Port P2
// GPIO Port P3
// GPIO Port P4
// GPIO Port P5
// GPIO Port P6
// GPIO Port P7

// GPIO Port

// GPIO Port Q1
// GPIO Port Q2

P (Summary or PO)

Q (Summary or QO0)

204 MCU code for ASV autopilot

200 empty def handler, // GPIO Port Q3

201 empty_ def handler, // GPIO Port Q4

202 empty_def handler, // GPIO Port Q5

203 empty_def_ handler, // GPIO Port Q6

204 empty__def_handler , // GPIO Port Q7

205 empty def handler, // GPIO Port R

206 empty_def handler, // GPIO Port S

207 empty__def_ handler, // SHA/MD5 0

208 empty_def handler, // AES 0

209 empty_def handler, // DESSDES 0

210 empty def handler, // LCD Controller 0

211 empty_def_ handler, // Timer 6 subtimer A
212 empty_def_ handler, // Timer 6 subtimer B
213 empty_def handler, // Timer 7 subtimer A
214 empty_def handler, // Timer 7 subtimer B
215 empty def handler, // I2C6 Master and Slave
216 empty def handler, // I12C7 Master and Slave
217 empty_def_ handler, // HIM Scan Matriz Keyboard 0
218 empty_def handler, // One Wire 0

219 empty_def_ handler, // HIM PS/2 0

220 empty_ def handler, // HIM LED Sequencer 0
221 empty def handler, // HIM Consumer IR 0

222 empty_def_ handler, // I2C8 Master and Slave
223 empty_ def handler, // I12C9 Master and Slave
224 empty_def_handler // GPIO Port T

225 };

226

227 /

228 // Function implementations.

229 /

230

231 /x

232 x System on reset code. NVIC 1

233 % Here I prepare the memory for the c¢ compiler.

234 % The stack pointer should be set at the beginning with the NVIC table already.
235 % Copy the .data segment from flash into ram.

236 * 0 to the .bss segment

237 */

238

239 void rst__handler (void) {

240 // Copy the .data section pointers to ram from flash.

241 // Look at LD manual (Optional Section Attributes).

242

243 // source and destination pointers

244 unsigned long xsrc;

245 unsigned long xdest;

246

247 //this should be good!

248 src = &_end__text;

249 dest = &__start__data;

250

251 //this too

252 while (dest < &_end_data)

253

254 sdest++ = *xsrc+-+;

255 }

256

257 // now set the .bss segment to 0!

258 dest = &__start__bss;

259 while (dest < &_end_bss){

260 xdest++ = 0;

261 }

262

263 // after setting copying .data to ram and "zero—ing' .bss we are good
264 // to start the main() method!

265 // There you go!

266 main () ;

267 }

268

269 // NMI Exzception handler code NVIC 2

270 void nmi_handler (void){

271 ROM__GPIOPinWrite (GPIO_ PORTA_ BASE, GPIO_PIN_0, 0); // Red

272 // Just loop forever, so if you want to debug the processor it’s running.

© 00~ Uk WN -

205

while (1) {
}
}

// Hard fault handler code NVIC 3

void hardfault_handler (void){
ROM__ GPIOPinWrite (GPIO_ PORTA_BASE, GPIO_PIN_0, 0); // Red
// Just loop forever, so if you want to debug the processor it’s running.
while (1) {

}

// Empty handler used as default.
void empty_ def handler(void){

ROM__GPIOPinWrite (GPIO_ PORTA_ BASE, GPIO_PIN_0, 0); // Red
//ROM__GPIOPinWrite (GPIO_PORTH BASE, GPIO_PIN 2, 0);

// Just loop forever, so if you want to debug the processor it’s running.
while (1) {

}

code/asv__ap_mcu/src/syscalls.c

#include <sys/types.h> //Needed for caddr_t

#include <stdint .h>

#include "inc/hw_memmap.h" //Needed for GPIO Pins/UART base
#include "inc/hw_types.h" //Needed for SysTick Types

#include "driverlib/rom.h"
#include "driverlib /rom_map.h"

char xheap_end = 0;
caddr_t _ sbrk(unsigned int incr) {
extern unsigned long _ heap_ bottom;
extern unsigned long _ heap_top;
static char xprev_heap_end;
if (heap_end == 0)
heap_end = (caddr_t)& heap_bottom;
prev__heap_end = heap_end;

if (heap_end 4+ incr > (caddr_t)& heap_top) {

return (caddr_t)O0;
¥
heap_end 4= incr;
return (caddr_t) prev_heap_end;
}
int _close(int file) {
return —1;
}
int _ fstat(int file) {
return —1;
}
int _isatty (int file) {
return —1;
}
int _lseek (int file , int ptr, int dir) {
return —1;
}
int _open(const char xname, int flags, int mode) {
return —1;

© 00O Uk WN -

206 MCU code for ASV autopilot

}
int _read(int file , char xptr, int len) {

unsigned int i;

for(i = 0; i < len; i++){

ptr[i] = (char)ROM_UARTCharGet (UART5_BASE) ;

return len;
}
int _write(int file , char xptr, unsigned int len) {

unsigned int i;

for(i = 0; i < len; i++){

ROM__UARTCharPut (UART5 BASE, ptr[i]);

}

return i;
}

code/asv__ap_mcu/src/Makefile

Copyright (c¢) 2012, Mauro Scomparin
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Mauro Scomparin nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#

THIS SOFTWARE IS PROVIDED BY Mauro Scomparin ‘‘AS IS’’ AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL Mauro Scomparin BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#

File: Makefile .

Author: Mauro Scomparin <http://scompoprojects.worpress.com>.

Version: 1.0.1.

Description: Sample makefile, modified version inspired by Wollw @ github
#

Modified by: Joakim Myrland

website : www.LDA . as

email: joakim . myrland@LDA . as

project: https://github.com/Lindem—Data—Acquisition—AS/iot__tiva__template/
#

#global names
LIB_ PORT_ NAME

tm4cl29
PROJECT NAME i

ot__template_$ (LIB_PORT_ NAME)

#path names relative to makefile:

ROOT = .

#path names relative to ROOT

SRC_PATH src

BIN_PATH bin

TIVAWARE_PATH iot_mcu_lib/TivaWare_C_ Series —2.1.0.12573

FreeRTOS_PATH iot_mcu_lib/FreeRTOSVS8.2.0
IwIP__ PATH iot_mcu_lib/lwip —1.4.1
jsmn_PATH iot_mcu_lib/jsmn

#compiler setup

COMPILER = gcc
TOOLCHAIN = arm—none—eabi
PART = TM4C1294NCPDT
#TM4C1294/KCPDT
#TM4C1294NCPDT
#TM4LC129ENCPDT
CPU = cortex—m4
FPU = fpvd—sp—dl6
FABI = softfp
${LIB_ PORT NAME}.ld

LINKER_FILE =
STARTUP_FILE =

main

CC = ${TOOLCHAIN}—gcc

LD = ${TOOLCHAIN}—1d

CP = ${TOOLCHAIN}—objcopy

OD = ${TOOLCHAIN}—objdump

CFLAGS = —mthumb —mcpu=$ (CPU) —mfpu=$(FPU) —mfloat—abi=$(FABI)
CFLAGS += —0Os —ffunction—sections —fdata—sections

CFLAGS 4= —MD —std=gnu99 —Wall

CFLAGS += —DPART_$(PART) —c —DTARGET_IS_TM4C129_ RAO

CFLAGS += —c —g

#CFLAGS += —DDEBUG
CFLAGS += —DRTOS_FREERTOS

#include header directories
CFLAGS += —I ${ROOT}
CFLAGS += —1 ${ROOT}/${SRC_PATH}

CFLAGS += —I ${ROOT}/${SRC_PATH}/config
CFLAGS += —I ${ROOT}/${SRC_PATH}/tasks

CFLAGS 4= —1 ${ROOT}/${TIVAWARE_PATH}

#include FreeRTOS

CFLAGS += —1 ${ROOT}/${FreeRTOS_PATH}/FreeRTOS/Source/portable /GCC/ARM _CM4F
CFLAGS += —1I ${ROOT}/${FreeRTOS_PATH}/FreeRTOS/Source/include

#include lwIP

CFLAGS += —1 ${ROOT}/${lwIP_PATH}/ports/${LIB_PORT NAME}/include

CFLAGS += —1 ${ROOT}/${lwIP_PATH}/src/include
CFLAGS += —1 ${ROOT}/${lwIP_PATH}/src/include/ipv4
CFLAGS += —I ${ROOT}/${lwIP_PATH}/src/include/netif
#include lwIP apps

CFLAGS += —1 ${ROOT}/${IlwIP_PATH}/apps

#include jsmn

CFLAGS += —I ${ROOT}/${jsmn_PATH}

#include source directories/files

SRC += $(wildcard
SRC += $(wildcard
SRC += $(wildcard
#include FreeRTOS
SRC += $(wildcard

${ROOT}/${SRC_PATH} /*.c)
${ROOT}/${SRC_PATH}/asv_ap/*.c)
${ROOT}/${SRC_PATH}/tasks /*.c)

${ROOT?} /$ {FreeRTOS_PATH} /FreeRTOS/Source/portable /GCC/ARM_CM4F/ x.c)

SRC += $(wildcard ${ROOT}/${FreeRTOS_PATH}/FreeRTOS/Source/portable/MemMang/heap_2.c)
SRC += $(wildcard ${ROOT}/${FreeRTOS_PATH}/FreeRTOS/Source /*.c)

#include lwIP

SRC += $(wildcard ${ROOT}/${lwIP_ PATH}/ports/${LIB_PORT NAME}/x.c)

SRC += $(wildcard ${ROOT}/${lwIP_PATH}/ports/${LIB_ PORT NAME}/netif /*.c)

SRC += $(wildcard ${ROOT}/${lwIP_PATH}/src/core/*.c)

SRC += $(wildcard ${ROOT}/${lwlP_PATH}/src/core/ipvd /*.c)

#SRC += $(wildcard ${ROOT}/${lwIP_PATH}/src/core/ipv6 /.c)

SRC += $(wildcard ${ROOT}/${lwIP_PATH}/src/core/snmp/*.c)

SRC += $(wildcard ${ROOT}/${lwIP_ PATH}/src/netif /x.c)

SRC += $(wildcard ${ROOT}/${lwIP_PATH}/src/netif/ppp/*.c)
SRC += $(wildcard ${ROOT}/${IlwIP_PATH}/src/api/*.c)

#include lwIP apps

SRC += $(wildcard ${ROOT}/${lwIP_PATH}/apps/httpserver_ raw/httpd.c)
SRC += $(wildcard ${ROOT}/${lwIP_PATH}/apps/httpserver_raw/httpd_post.c)
SRC += $(wildcard ${ROOT}/${lwIP_ PATH}/apps/httpserver_ raw/fs.

#include jsmn

SRC += $(wildcard ${ROOT}/${jsmn_PATH}/jsmn.c)

c)

124
125
126
127
128
129

150

154

156
157

159
160

161

187
188
189
190
191
192

208

MCU code for ASV autopilot

LIB_GCC_PATH
LIBC PATH
LIBM_PATH

LFLAGS
CPFLAGS
ODFLAGS

${shell ${CC} ${CFLAGS} —print—libgcc—file —name}
${shell ${CC} ${CFLAGS} —print—file —name=libc.a}
${shell ${CC} ${CFLAGS} —print—file —name=libm.a}
—gc—sections

—Obinary

-S

OBJS = $(SRC:.c=.0)

D_FILES

= $(SRC:.

C

=.d)

#this ECHO functions prints compile progress [nn%] to stdout

ifndef ECHO
T := $(shell $(MAKE) $(MAKECMDGOALS) ——no—print—directory \
—nrRf $(firstword $(MAKEFILE_LIST)) \
ECHO="COUNTTHIS" | grep —c "COUNTTHIS")
N := x
C = $(words $N)$(eval N := x $N)
ECHO = echo " ‘expr." \‘expr $C %’ 100 / $T\“":u 7 x\(....\)$$" %"
endif
#rules

all: $(OBJS) ${PROJECT NAME}.axf ${PROJECT NAME}
size ${ROOT}/${BIN_PATH}/${PROJECT NAME}. axf
@echo make complete

%.0: %.
#Q@Qecho

C

@mkdir —p ${ROOT}/${BIN_PATH}

@$(CC) —c $(CFLAGS) $< —o $@
@$ (ECHO)

${PROJECT_NAME}. axf: $(OBJS)

@$(LD) —T $(LINKER FILE) $(LFLAGS) —o ${ROOT}/${BIN PATH}/${PROJECT NAME}.axf $(
OBJS) $(LIBM_PATH) $(LIBC_PATH) $(LIB_GCC_PATH) ${ROOT}/${TIVAWARE PATH}/
driverlib /${COMPILER}/libdriver .a

${PROJECT_NAME} :

a$(CP)

make
clean:

$

{PROJECT_NAME} . axf

$ (CPFLAGS) ${ROOT}/${BIN_PATH}/${PROJECT_NAME}.axf ${ROOT}/${BIN_PATH}/${

PROJECT_NAME} . bin
@$(0OD) $(ODFLAGS) ${ROOT}/${BIN PATH}/${PROJECT NAME}.axf > ${ROOT}/${BIN_PATH}/${
PROJECT NAME}. Ist

clean rule

@rm —fr ${ROOT}/${BIN_PATH}
@rm —f ${OBJS}
@rm —f ${D_FILES}

@echo clean complete

Rule to flash the project to the board

flash :

all

openocd \
"source,[find interface/ftdi/olimex—arm—usb—ocd—h.cfg]" \
"set WORKAREASIZE ,0x40000" \

" set CHIPNAME_TM4C1294NCPDT" \

"source,[find_ target/stellaris.cfg]" \

—C
—C
—cC
—C
—C
—C

debug:

"init" \
"targets"

\

"reset halt" \

"flash,info 0" \

"flash_banks" \

"flash write_image erase $(ROOT)/$ (BIN_PATH) /$ (PROJECT_NAME) . axf" \
"verify_image,$ (ROOT)/$ (BIN_PATH) /$ (PROJECT NAME) . axf' \

reset " \
"shutdown"'

flash

arm—none—eabi—gdb —ex \

"target extended—remote | openocd \

"sourcey[find interface/ftdi/olimex—arm—usb—ocd—h.cfg]" \
"set ZWORKAREASIZE 0x40000" \

" set CHIPNAME_TM4C1294NCPDT" \

—C
—C
—C

193
194
195
196

209

—c "transport_select jtag" \

—c "source, [find target/stellaris.cfg]"
"gdb__port, pipe; log_output openocd.log";
$ (ROOT) /$ (BIN_PATH) /$ (PROJECT_NAME) . axf

\

monitor

reset halt ’\

© 0O Uk WN -

Appendix N

Code for ASV control panel

Server and client-side JavaScript code for the ASV control panel, as described in section 3.3.9.
The code is licensed under the MIT license (listing D.1).

code/ASV__control panel/server.js

/x Setup logging =*/
var winston = require(’winston’);
winston.add(winston.transports.File, { filename: ’nodejs.log’ });
winston.info (’Starting server.’);
/% Setting up webserver x/
var node_static = require(’node—static’);
var files = new node_static.Server(’./public’);
function http_handler(request, response) {
request.on(’end’, function() {
files .serve(request, response);
}) .resume () ;
}
var http = require(http’);
var app = http.createServer (http_ handler);
app.listen (80, ’0.0.0.07);
/x Setting up socket.io */
var io = require(’socket.io’).listen (app);
io.sockets.on(’connection’, function(socket) {
socket .on(message’, function (data) {
//console.log ("sending:" + data);
winston.info ("sending:" + data);
var client = new net.Socket();
var message = new Buffer (data);
client .connect (30470, "192.168.1.21", function () {
client . write (message) ;
client .destroy () ;
IOk
P
P
/x Setting up TCP client */
var net = require(’net’);

210

© o000 Uk WN -

211

/* Setting up UDP server x/
var dgram = require (’dgram’);

var udp_server = dgram.createSocket ("udp4");

udp_server.on("listening", function () {

var address = udp_server.address();
//console.log("Server listening on " + address.address + ":" + address.port);
winston.info ("Server listening_on," + address.address + ":" + address.port);

P

udp_server.on("message", function(msg, rinfo) {
//console.log ("Server got: " + msg + " from " + rinfo.address + ":" + rinfo.port);
winston.info ("Server got:. " + msg + " from." + rinfo.address + ":" 4+ rinfo.port);
io.sockets.emit(message’, "" + msg);

P

udp_server.on(’error’, function(err) {
console.error (err);
process.exit (0);

P

udp_server.bind (8000) ;

code/ASV__control_panel/public/js/application.js

$(document).ready(function () {

var ready_ for_new_wp = false;
var draw_wanted = false;
var got_message = false;

var asv__planned__route =
[59.95990811, 10.79299452],
[569.95978586, 10.79244960],
[69.95966608, 10.79192318],
[69.95951144, 10.79206993]

I;
var heading_ canvas = $(’div#heading canvas’)[0];

if (heading canvas.getContext(’2d’)) {

heading ctx = heading canvas.getContext(’2d’);
} else {

alert ("Canvas_not_supported!");

¥
var checkpoint__radius = 4;
var asv_nr_of msg = 0;

/x Connect to socket x/
var socket = io.connect("/");

socket .on(message’, function (data) {
//console.log(data);
if (data.substring (0,6) == "STATUS") {

$(’div#status_bar’).text (data);

var data_array = data.split(",");
asv__date = data_array [1];

asv_time = data_array [2];
asv__latitude = data_array [3];
asv__longitude = data_array [4];
asv_gps_ok = data_array [5];
asv__current__heading = data_array [6];

asv__wanted_heading = data_array [7];

212 Code for ASV control panel
asv__distance_from__wp = data_array [8];
asv_nr_of wp = data_array[9];
asv__mag_accuracy = data_array [10];
asv_run_motors = data_array [11];
asv_ first _waypoint_latitude = data_array[12];
asv_ first_waypoint_longitude = data_array[13];
asv_next__waypoint_latitude = data_array[14];
asv_next__waypoint_longitude = data_array[15];
asv__port_motor_thrust = data_array [16];
asv_stbd_motor_thrust = data_array [17];
$("spanf#tasv_nr_of wp").text (asv_nr_of wp + " WP");
$("span#asv__port_motor_thrust").text (asv_port_motor_thrust);
$("span#asv_stbd_motor_thrust").text (asv_stbd_motor_thrust);
$("span#asv_motor_running").siblings(’i’).removeClass("fa—spin");
if (asv_run_ motors == "1")
3 ("span#asv_motor_running").siblings(’i’).addClass("fa—spin");
$ ("span#asv_motor_running").text ("Running")
} else {
$ ("span#asv_motor_running").text ("Not_ running")
if (asv_gps_ok = "1")
$("span#asv_gps_ok").text ("OK").css(’color’, ’green’);
$("span#tasv_date").text ("20" + asv_date.substring(4,6) + "—"' 4+ asv_date
.substring (2,4) + "—" 4 asv_date.substring(0,2));
$("span#asv_time").text (parselnt (asv_time.substring (0,2))+2 + ":" +
asv__time.substring (2,4) + ":" 4+ asv_time.substring(4,6));
} else {
$("span#asv_gps_ok").text ("Not OK").css(’color’, ’red’);
$("span#tasv_date") . text ("N/A");
$ ("span#asv_time").text ("N/A");
}
if (parselnt (asv_mag_ accuracy) >= 3)
3 ("span#asv_compass_ok").text ("OK").css(’color’, ’green’);
} else {
$ ("span#tasv__compass_ok").text ("Not OK").css(’color’, ’red’);
if (asv_gps_ok = "1" && parselnt (asv_first_waypoint_latitude) != 0 &&
parselnt (asv_first_waypoint_longitude) != 0) {
$("span#asv__distance_from_wp").text (asv_distance from_wp + ".m_ to WP");
draw__wanted = true;
} else {
$ ("span#tasv__distance_from_wp").text ("N/A");
draw__ wanted = false;
}
$("span#asv_nr_of msg").text(++asv_nr_of msg);
$("span#asv_nr_of msg").siblings(’i’).addClass("fa—spin");
if (asv_nr_of msg >= 99) {
asv_nr_of msg = 0
}
got__message = true;
draw__indicator (heading_ctx, asv_wanted heading, asv_current_heading,
draw__wanted) ;
asv__marker.options.angle = asv_current__heading; //direction * (180 / Math.
PI);
asv__marker.update () ;
if (asv_latitude != 0 && asv_longitude != 0) {
var asv_ position = new L.LatLng(asv_latitude, asv_longitude);
asv__marker.setLatLng(asv__position);
asv__history .addLatLng(asv_ position);
}
first_waypoint.setLatLng (new L.LatLng(asv_first_ waypoint_latitude,

asv_ first_waypoint_longitude));

113

114
115
116
117

118

213

next__waypoint.setLatLng (new L.LatLng(asv_next_waypoint_latitude,
asv_next_waypoint_longitude));

if (parselnt(asv_nr_of wp) < 2 && ready_for_new_wp == true) {
//planned__checkpoints. getLayers () [0]. spliceLatLngs (0,1)[0];

//var last__cleared__checkpoint = planned__checkpoints.getLayers()[0].

getLatLngs () [0];

//console.log ("checkpoint at

"

and longitude

"

latitude
+ last__cleared__checkpoint.lng +

"

//cleared__checkpoints.addLatLng(last_cleared__checkpoint);
//next__checkpoint.setLatLng (last_cleared__checkpoint);
//socket.emit(message

last__cleared__checkpoint.lon);

)
s

'NWE, *+

last__cleared__checkpoint.lat +

var next = asv_planned_route.shift ();
socket .emit ("message’, 'NWP, '+ next[0] 4+ "," + next[1]);
ready_ for_new__wp = false;
} else if (data.substring(0,6) == "ACKRWP") {
ready_ for_new_wp = true;
}
1)
socket .emit (’message’, 'ASV, ,Control_ Panel_started’);
/x Init map */
var map = L.map(’map’, {zoomControl: false}).setView ([59.95974031,
19);

L.tileLayer (’img/tiles /{z}/{x}/{y}.png’, {

zoom: 21,
maxZoom: 21,
detectRetina:
}) .addTo (map) ;

true

map. dragging . disable () ;

map . touchZoom . disable () ;

map. doubleClickZoom . disable () ;
map. scrollWheelZoom . disable () ;
map . boxZoom . disable () ;

map . keyboard . disable () ;

asv__marker =

icon: L.icon ({
iconUrl:
iconRetinaUrl:
iconSize: [26, 50],
iconAnchor: [13, 25],

var

})
1)

asv_marker.addTo (map) ;
/*
L.casyButton(’fa—send’,

ready_for__new__wp =
}, "Send WP", map);

Init buttons */

true;

L.easyButton(’'fa—trash’,
socket .emit ('message’,
}, "Delete /WP", map) ;

"DEL ")

function ()

L.rotatedMarker (new L.LatLng(59.959707,

’img/asv__marker.png’,
’img/asv__marker@2x.png’,

{

function () {

10.792272), {

L.easyButton(’fa—play’, function () {
socket .emit ("message’, 'RUN’);
}, "Start the ASV", map);
L.easyButton(’'fa—stop’, function () {
socket .emit (*message’, 'HLT’)
}, "Stoputhe ASV", map);
/% Init planned checkpoints x/
var planned_checkpoints = new L.FeatureGroup();

map.addLayer (planned__checkpoints) ;

"
)

"

+

10.79310980],

" + last__cleared__checkpoint.lat +
cleared ") ;

214 Code for ASV control panel
var draw_control = new L. Control.Draw({
draw: {
circle: false ,
rectangle: false ,
polygon: false ,
marker: false
b
edit: {
edit: true,
featureGroup: planned__checkpoints
1)
map.addControl (draw__control) ;
map.on(draw: created’, function(e) {
console.log(e.layer.getLatLngs());
planned_ checkpoints.addLayer(e.layer);
s
map.on(’draw: edited’, function(e) {
e.layers.eachLayer (function (layer) {
console.log(layer.getLatLngs());
1)
1)
/* Init asv history =/
var asv__history_points = [[59.95974031, 10.79310980]];
var asv__history__options = {
smoothFactor: 1,
color: ’"#000’
s
var asv__history = L. polyline (asv__history points, asv_history options).addTo(map);
/x Init cleared checkpoints x/
var cleared__checkpoints_points = [];
var cleared_checkpoints_option = {
smoothFactor: O,
color: ’#00f’
s
var cleared_checkpoints = L. polyline(cleared_ checkpoints_points,
cleared _checkpoints_option).addTo(map) ;
/% Init future waypoint markers */
var waypoint_options = {
color: ’'#f00’,
opacity: 1,
weight: 10,
fillColor: ’#f00’,
fillOpacity: 0.5
s
var first waypoint = L.circle ([0, 0], checkpoint_radius, waypoint_options).addTo(
map) ;
var next__waypoint = L. circle ([0, 0], checkpoint_radius/2, waypoint_options).addTo(
map) ;
var circle_options = {
color: ’#ff0’,
opacity: 1,
weight: 3
}s
L.circle ([59.95974031, 10.79310980], 1, circle options).addTo(map);
L.circle ([59.95990811, 10.79299452], 1, circle_options).addTo(map) ;
L.circle ([59.95978586, 10.79244960], 1, circle_options).addTo(map);
L.circle ([59.95966608, 10.79192318], , circle_options).addTo(map) ;
L.circle ([59.95951144, 10.79206993], 1, circle_options).addTo(map);
window. setInterval (function () {

215

I

if (!map.getBounds().contains (asv_marker.getLatLng())) {
//map.panTo (asv_marker.getLatLng());

if (got_message == false) {
$("span#asv_nr_of msg").siblings (

5

i’).removeClass("fa—spin");

got__message = false;

1000) ;

function clear_canvas(ctx) {

}

ctx.clearRect (0, 0, 200, 200);

function draw(degrees) {

}

clear__canvas () ;

// Draw the compass onto the canvas
ctx.drawlmage (compass, 0, 0);

// Save the current drawing state
ctx.save () ;

// Now move across and down half the
ctx.translate (100, 100);

// Rotate around this point
ctx.rotate (degrees x (Math.PI / 180));

// Draw the image back and up
ctx.drawlmage (needle, —100, —100);

// Restore the previous drawing state
ctx.restore () ;

function draw_indicator(ctx, degrees_wanted, degrees_current, draw_wanted)

ctx.clearRect (0, 0, 200, 200);

var center_x = 100;
var center_y = 100;

// Draw outer circle

ctx.beginPath () ;

ctx.arc(center_x, center_y, 100, 0, 2«xMath.PI, false);
ctx.lineWidth = 1;

ctx.strokeStyle = ’#000’;
ctx. fillStyle = "rgba(0,0,0,0.1)";
ctx. fill ();

// Draw N, S, E, W

ctx.save () ;

ctx.translate (center_x, center_y);
ctx. fillStyle = "black";

ctx.font = "1.3em open_sansregular";
ctx.textBaseline = "middle";
ctx.textAlign = "center";
ctx.save () ;

ctx.translate (0, —60);

ctx. fillText ("N", 0, 0);
ctx.restore () ;

ctx.save();

ctx.translate (60, 0);

ctx. fillText ("E", 0, 0);
ctx.restore () ;

ctx.save();

ctx.translate (0, 60);

ctx. fillText ("S", 0, 0);
ctx.restore () ;

ctx.save();

216

Code for ASV control panel

ctx.translate(—60, 0);
ctx. fillText ("W', 0, 0);
ctx.restore () ;
ctx.restore () ;

if (draw_wanted == true) {
// Draw wanted heading
ctx.lineWidth = 2;
ctx.setLineDash ([2]) ;
ctx.strokeStyle = ’#f007;
draw_needle (90, degrees_wanted);
ctx.setLineDash ([]) ;

}

// Draw needle mounting

ctx.beginPath () ;

ctx.arc(center_x, center_y, 5, 0, 2 x Math.PI,
ctx. fillStyle = ’#O00F’;

ctx. fill ();

ctx.closePath () ;

draw__tics () ;

// Draw current heading
ctx.lineWidth = 2;
ctx.strokeStyle = ’#00F’;
draw__needle (90, degrees_current);

function draw_ tics() {
ctx.strokeStyle = "black";
ctx.lineWidth = 1;

// 860/72 = 5 degrees
var nr_ of_tics = 72;

for (var i = 0;
ctx.save();
ctx.beginPath () ;
ctx.translate (center_x, center_y)

i < nr_of_ tics; i++) {

false);

var angle = (i % (360/nr_of_ tics)) * Math.PI/180;

ctx.rotate (angle);
ctx.translate (0, —180/2);

ctx.moveTo (0, 0);
ctx.lineTo (0, 10);
ctx.stroke ();
ctx.closePath () ;
ctx.restore () ;

}

function draw_needle(length, angle) {
ctx.save();
ctx.beginPath () ;
ctx.translate (center_ x, center_y);

// Correct for top left origin
ctx.rotate(—180 * Math.PI/180);

ctx.rotate (angle * Math.PI/180);
ctx .moveTo (0, 0);

ctx.lineTo (0, length);
ctx.stroke () ;

ctx.closePath () ;

ctx.restore ();

Appendix O

Autopilot schematics

TP2 s1
1oy 1

+33v
VIN vee |2
PSU
TP1
PGND
S5 S2 S3
mC_Tx |1 1 Imc_Tx enss_Tx |2 1 GNSS_TX
MC_RX | 2 2 IMc_Rx MCU gnss_rx |4 2 | Gnss_rx GNSS
AHRS_TX 5
AHRS_RX |-
s4
1 | AHRS_TX
2| arrs_Rx AHRS
TITLE REV.
. 1.0.0
ASV Autopilot
2015-02-18
FILE _ DRAWNBY: PAGE:
asv_autopilot.sch B. Sgvegjarto 1 of 6

217

218 Autopilot schematics

P8 Tb4
VIN {i'—ilf\ vee
GFLK-ES/6TA TEN 3-2410WIN
u2 14
R5
> 22| +vin +Vout > <)
g e E 3 g §
T s < D6
2 |c8 2 | vin 3 S
S 3 3 X
3 | N
] PeND < 3] vin vout Ei S
16
TP7
PGND
TITLE: REV.:
ASV Autopilot
FILE: 5 DRAWN BY: . PAGE:
power_supply_unit.sch B. Sgvegjarto 2 of 6

219

9re ouelbanss ‘g S 13]10U0D0IIL
EE A8 N EalT] - - = - - =)
o -
jojidoiny ASY
. sHORE g sHORE EREEEEEE
= T 28912 | 2X zHWSZ | TX o 2 Bogogs
§ 555555
IS “TSTT 158
) z[12 Ty |1 (15 T {n
T T © (HENISAdONT) Ord (578
D an
- | (4STONES0143) £Hd (it
2 fd (@000 2S0143) 2Ha e
& (s100mT503) T | oem
= (S140N1080143) 0He [-ooe
g RCIE] &
FAsy FXEONT T s | N (SIMOANOSTOZIOTSOIG3) Tod [-oom
REE] R (MGONOTITITISOG o) 094 | O
OSI TS T T TRIONT o2 oxion:
s57-{70d (tposND) (€QHLZIVOXEISSIOLINVAONTOTIONS) vd |-5om
e a o for o
5 8 3 8 o e0a (r1vaxeiss/EzsOl ONOULAOEISSIENMAON) E4d [-orm
auvoas B © 5 51| 20d (oLvaxeissizsoiaa) (0GHLISSHEISSIZNMAON) Z4d (-~ m
TS]I B B B 75| 10 (Ssae1SS12S0163) (IGULIOLYOXEISSITAMAONZOITOND) THd [m
asomw 8 © 8 {00 (H0EISS 0Z50103) (ZQULITLYOXEISSIONMAONIO0TTONS) 03d [m
an = s
v
557596 GavasnIsL9ENTOSZ0Z) Guvaxuissreny) s3a o
TSORaS T T)la awo 5 v4a Gavasnis uensaon) (sTnvoLvaXTSSION) v3d g
Ao 201 Eaa (4008SNISLOTNIAOAONPIOD L2085 0143) (a1atroNm) £34 [o
T 2 £1va/a0 Eot24a (xnossnRLLaONGZSDIA3) (@oarnnm) z3a S
= - £ vaa (uonervaxeissizo) (45QTVENIV) T3 | oim
—om zwva g $15{oua (rs9n7z1v0XEISSIZ0) (SLATIVENIY) 03d [-Tom
2 L= 4
5M& = sr{sna (ssoenmnoszonsesoisa) (LT308SIVS L0TNTA00P VXSS LG
s e o £2onvd (SeerLaTINGSZORIbESOIG) (N30BSIVS LEZNI0S00V LE IVOXCISSISNIY) 90 |28
878 2 e (Suoznvasatnoesoies) e
3 - T SSND
P = £ (oot =]
g
F g - 5 fona (st (0001
e e e for
e “ e 3 2 2 o (F4000L0LYOXEISSVASLOZITOITNIV) 10 -0
@ 3 »{ v (onowdLTa005 D 4020UT
5 Rl ~- o asoonmaan04095.)
= 2o (1srs03/09) L0 Sou
o= z - ~EL i (S100N/EHANLI0400wL) Tag
= +2ewa (raooeLTS03) cwznpr T,
= »24 e (0d0oe LTS0E3) T
2 € 7| W (13002071501 T
3 (ap
Aot 7 o T
AHOWIN (SWioIamS) 1o i
T =e5-{ 170 aoasnTanon) (OIS 03 22 SoT
o =28 {014 (da0asnod0o1)
et =2 {51 (sa08SNITdO00LEES0I) -
) +22 114 (ra08SI04000L2ZS0I2) (S100N554TISSNOSSIZIOTI) 7ed |8
= +22 161 (ca08SNI0XQUBTS030T)
oge_ou +22 1214 (2008SNI0BUARTSOII31000)
- e e B 114 ravesniowidnoszoz TS0 (SNBATBSAXLTTEO0P LVASSOZINLTNY) Tad [om
+2 014 avasnervONvaSZOZUOTSOIEE) (@I0BSRTNI0SIOPLTOSEIRNRITNYD) 05 [-om
e an v L FovAmEast _
oge sy s o T
SN AIS a3 T ToN3)
0N3)
oA TovHIT AT ons)
TN Caapniaoor.
a5 =ie-{ ot (SLEvZSOERTNIY) < (aivni0d001.
HSEAY 2 %
TRV Z
N — X6ZTOVINL n
SZTTTZ66YL
B — L) =
- - B — e 0=
9 a
8 8 o o uT———————xmNT
g T Lo
1.
s B
2
HOLOINNOD 13NY3HLI UITIOULNODOUIIN
7 ano
arane -
- :
rane = -
Trane S5
Zrano zsaufgr i x5 XgoET
arane omsioaL (57 oar ax xR
Tane a5 Tar P e
g
ano oamsisL
g T L £ T
e 2 nomspoL s ST
8 9
o 5
A e ovic Lavn =

220

Autopilot schematics

NEO-M8N
ublox_neo & UL

o a1
<}
8 |RESET_N > RF_N| 11 1
GNSS_TX 20 | Txp VCC_RF| 9 w
A 27nH
GNSS_RX 21 |RxD TIMEPULSE 34&%“ 32 10 =
10 sct vop_uss | 7 220 py L vee 47pF c1
2
18 |spa ussomfs o —— D
3 ps =
»2|D_SEL ussopl 6 /]
=—y ID
4 22 5
SAjExTNT o voecke GND
z z z z 6
5 5 &5 & =8 sHiELD
IEEE e
TITLE: REV.:
ASV Autopilot
FILE: DRAWN BY: . PAGE:
gnss.sch B. Sevegjarto 4 of 6
J1
1
2
3
-)2
I+
a2 lcTs#> J1
AHRS_RX - -
= 4 |TxD
3 4
AHRS_TX 5 | rxo =]
] MC_TX 5 6
» 6 |RTS# [
o MC_RX ; s
E S
1
J3
1 1
2l
TITLE: REV.: TITLE REV.:
. .
ASV Autopilot ASV Autopilot
FILE DRAWNBY: PAGE: FILE: DRAWNBY: PAGE:
ahrs.sch B. Sgvegjarto 5o 6 mc.sch B. Sgvegjarto 6 of 6

Bibliography

[1]

European Parliament, Council of the European Union, “Directive 2000/60/EC of the
European Parliament and of the Council of 23 October 2000 establishing a framework for Com-
munity action in the field of water policy.” http://eur-lex.europa.eu/legal-content/
EN/TXT/7uri=CELEX:32000L0060, Accessed: 2014-10-14.

FFI, “Hugin Autonomous Underwater vehichle (AUV)” http://www.ffi.no/en/
research-projects/Hugin/Sider/default.aspx, Accessed: 2014-10-14.

M. Neal, “A Hardware Proof of Concept of a Sailing Robot for Ocean Observation,” Oceanic
Engineering, IEEE Journal of, vol. 31, pp. 462-469, April 2006.

P. Liu, W. Farias, S. Gibson, and D. Ross, “Remote control of a robotic boat via the Internet,”
in Information Acquisition, 2005 IEEFE International Conference on, pp. 6 pp.—, June 2005.

“er9x — Custom firmware for the Eurgle/FlySky/Imax/Turnigy 9x r/c Transmitter.” http:
//code.google.com/p/er9x/, Accessed: 2014-10-28.

“th9x — Alternative Firmware for 9-ch FlySky RC-Controler.” http://code.google.com/p/
th9x/, Accessed: 2015-01-07.

A. Tantos, “H-Bridges — the Basics,” http://modularcircuits.tantosonline.com/blog/
articles/h-bridge-secrets/h-bridges-the-basics/7?format=pdf, Accessed: 2015-03-
06.

Y. Xiong, S. Sun, H. Jia, P. Shea, and Z. Shen, “New Physical Insights on Power MOSFET
Switching Losses,” Power FElectronics, IEEE Transactions on, vol. 24, pp. 525-531, Feb 2009.

“IPC-2221A Generic Standard on Printed Board Design,” May 2003.

D. C. Giancoli, Physics for Scientists & Engineers with Modern Physics (4th Edition).
Addison-Wesley, 2009.

B. Blick, “Servo pulse to PWM converter.” http://www.bobblick.com/techref/projects/
sv2pwm/sv2pwm.html, Accessed: 2014-10-28.

S. Lloyd, M. McFadden, D. Jennings, R. L. Doerr, and C. Baron, “Supporting documen-
tation for the OSMC project.” http://www.robotpower.com/downloads/0SMC_project_
documentation_V4_25.pdf, Accessed: 2015-01-11.

“LFPAK — The Toughest Power-SO8” http://www.nxp.com/documents/leaflet/
939775016838_LR.pdf, Accessed: 2015-04-02.

221

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
http://www.ffi.no/en/research-projects/Hugin/Sider/default.aspx
http://www.ffi.no/en/research-projects/Hugin/Sider/default.aspx
http://code.google.com/p/er9x/
http://code.google.com/p/er9x/
http://code.google.com/p/th9x/
http://code.google.com/p/th9x/
http://modularcircuits.tantosonline.com/blog/articles/h-bridge-secrets/h-bridges-the-basics/?format=pdf
http://modularcircuits.tantosonline.com/blog/articles/h-bridge-secrets/h-bridges-the-basics/?format=pdf
 http://www.bobblick.com/techref/projects/sv2pwm/sv2pwm.html
 http://www.bobblick.com/techref/projects/sv2pwm/sv2pwm.html
http://www.robotpower.com/downloads/OSMC_project_documentation_V4_25.pdf
http://www.robotpower.com/downloads/OSMC_project_documentation_V4_25.pdf
http://www.nxp.com/documents/leaflet/939775016838_LR.pdf
http://www.nxp.com/documents/leaflet/939775016838_LR.pdf

222

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[26]

[27]

[28]

[29]

[30]

[31]

“LFPAK MOSFET thermal design guide (AN10874).” http://www.nxp.com/documents/
application_note/AN10874.pdf, Accessed: 2015-04-02.

J. K. Jensen, “Attitude Estimation for Motion Stabilization in Sonar Systems,” Master’s
thesis, University of Oslo, 2013. http://urn.nb.no/URN:NBN:no-38644.

D. Titterton and J. Weston, Strapdown Inertial Navigation Technology (IEE Radar, Sonar,
Navigation and Avionics Series). The Institution of Engineering and Technology, 2005.

“MPU-9150 Product Specification.” http://www.invensense.com/mems/gyro/documents/
PS-MPU-9150A-00v4_3.pdf, Accessed: 2015-05-03.

J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,”
Matriz, vol. 58, pp. 15-16, 2006.

“Atmel AVR1916: USB DFU Boot Loader for XMEGA.” http://www.atmel.com/images/
doc8429.pdf, Accessed: 2015-02-06.

“USB Frequently Asked Questions.” http://www.usb.org/developers/usbfaq, Accessed:
2015-04-07.

“The Evolution of Copper Cabling Systems from Catb to Catbe to Cat6.” http://www.
gocsc.com/UserFiles/File/Panduit/Panduit098765.pdf, Accessed: 2015-04-19.

R. Koprowski, Z. Wrobel, A. Kleszcz, S. Wilczynski, A. Woznica, B. Lozowski, M. Pilarczyk,
J. Karczewski, and P. Migula, “Mobile sailing robot for automatic estimation of fish density
and monitoring water quality,” BioMedical Engineering OnLine, vol. 12, no. 1, p. 60, 2013.

C. A. Goudey, T. Consi, J. Manley, M. Graham, B. Donovan, and L. Kiley, “A robotic boat
for autonomous fish tracking,” Marine Technology Society, vol. 32, no. 1, pp. 47-53, 1998.

M. Chaumet-Lagrange, “Nautical apparatus to conduct reconnaissance missions of a site,
particularly bathymetric surveys,” Nov. 18 1997. US Patent 5,689,475.

A. Dhariwal, A. A. de Menezes Pereira, C. Oberg, B. Stauffer, S. Moorthi, D. A. Caron,
G. Sukhatme, et al., “NAMOS: Networked aquatic microbial observing system,” Center for
Embedded Network Sensing, 2006.

B. G. Liptak, Instrument Engineers’ Handbook, Third Edition: Process Control. CRC Press,
1995.

S. Bennett, “Nicholas minorsky and the automatic steering of ships,” Control Systems
Magazine, IEEE, vol. 4, pp. 10-15, November 1984.

“Atmel AVR221: Discrete PID controller.” http://wuw.atmel.com/images/doc2558.pdf,
Accessed: 2015-04-19.

“RFC6455 — The WebSocket Protocol.” http://tools.ietf.org/html/rfc6455, Accessed:
2015-04-06.

“Radionavigasjon (DGPS). http://www.kystverket.no/Maritime-tjenester/
Meldings--og-informasjonstjenester/Radionavigasjon-DGPS/, Accessed: 2015-05-05.

“CPOS” http://kartverket.no/Posisjonstjenester/CP0S/, Accessed: 2015-05-05.

http://www.nxp.com/documents/application_note/AN10874.pdf
http://www.nxp.com/documents/application_note/AN10874.pdf
http://urn.nb.no/URN:NBN:no-38644
http://www.invensense.com/mems/gyro/documents/PS-MPU-9150A-00v4_3.pdf
http://www.invensense.com/mems/gyro/documents/PS-MPU-9150A-00v4_3.pdf
http://www.atmel.com/images/doc8429.pdf
http://www.atmel.com/images/doc8429.pdf
http://www.usb.org/developers/usbfaq
http://www.gocsc.com/UserFiles/File/Panduit/Panduit098765.pdf
http://www.gocsc.com/UserFiles/File/Panduit/Panduit098765.pdf
http://www.atmel.com/images/doc2558.pdf
http://tools.ietf.org/html/rfc6455
http://www.kystverket.no/Maritime-tjenester/Meldings--og-informasjonstjenester/Radionavigasjon-DGPS/
http://www.kystverket.no/Maritime-tjenester/Meldings--og-informasjonstjenester/Radionavigasjon-DGPS/
http://kartverket.no/Posisjonstjenester/CPOS/

Bibliography 223

32]

33]
34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

T. Takasu and A. Yasuda, “Development of the low-cost RTK-GPS receiver with an open
source program package RTKLIB,”

F. van Diggelen, A-GPS: Assisted GPS, GNSS, and SBAS. Artech House, 2009.
R. W. Sinnott, “Virtues of the Haversine,” Sky and Telescope, vol. 68, p. 158, Dec. 1984.

Ed Williams, “Aviation Formulary V1.46.” http://williams.best.vwh.net/avform.htm#
Crs, Accessed: 2015-05-05.

T. Takasu and A. Yasuda, “Evaluation of RTK-GPS Performance with Low-cost Single-
frequency GPS Receivers,”

“Standard Group MAC Addresses: A Tutorial Guide.” http://standards.ieee.org/
develop/regauth/tut/macgrp.pdf, Accessed: 2015-04-12.

“RFC2365 — Administratively Scoped IP Multicast.” http://tools.ietf.org/html/
rfc2365, Accessed: 2015-04-12.

“Magnetic Declination Estimated Value.” http://www.ngdc.noaa.gov/geomag-web/,
Accessed: 2015-05-03.

“Magnetic declination calculator.” http://geomag.nrcan.gc.ca/calc/mdcal-eng.php,
Accessed: 2015-05-03.

B. Gati, “Open source autopilot for academic research - The Paparazzi system,” in American
Control Conference (ACC), 2013, pp. 1478-1481, June 2013.

http://williams.best.vwh.net/avform.htm#Crs
http://williams.best.vwh.net/avform.htm#Crs
http://standards.ieee.org/develop/regauth/tut/macgrp.pdf
http://standards.ieee.org/develop/regauth/tut/macgrp.pdf
http://tools.ietf.org/html/rfc2365
http://tools.ietf.org/html/rfc2365
http://www.ngdc.noaa.gov/geomag-web/
http://geomag.nrcan.gc.ca/calc/mdcal-eng.php

	Abstract
	Acknowledgements
	Preface
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Thesis outline

	Construction of a remote controlled work platform for hydroacoustic work
	Introduction
	Motor placement
	Motor type
	H-bridge
	Communication

	Theory
	H-bridge operation
	Calculated heat dissipation in MOSFETs
	Calculated copper track width

	Material and methods
	First attempt on H-bridge construction
	Analog steering controller
	Digital steering controller – proof of concept
	Digital steering controller – dual channel
	First H-bridge controller and drive-stage
	First selection of power transistors
	Heatsink
	Protection circuitry
	Design and production of first H-bridge
	Testing and abandonment of first H-bridge

	Second attempt on H-bridge construction
	Motor control system stack
	Second steering- and H-bridge controller
	Second H-bridge drive modes
	Second H-bridge drive-stage
	Voltage multiplier
	Second H-bridge driver prototype
	Second selection of power transistors
	Second H-bridge design and production
	Second H-bridge driver design and production

	Light version of the final H-bridge construction

	Testing and results
	Test at Lysaker
	Test on Rímov
	Temperature test

	Discussion
	Motor control system reliability
	Motor switching noise
	Discussion of temperature test results
	Stress test
	Power dissipation
	Cable connections and -thickness
	Power source
	Abandonment of HIP4081
	Jump start problems
	TVS diode
	Drive-stage pull-up resistors
	Number of power transistors
	PCB heat and current distribution enhancements
	Firmware reorganization
	UART communication

	Summary

	Construction of an Attitude and Heading Reference System (AHRS)
	Introduction
	Theory
	Angle representation

	Material and methods
	First software attempt – Complimentary filter
	Second software attempt – DMP
	Third software attempt – MPL and DMP
	Hardware for HydroAHRS prototype
	Hardware for HydroAHRS mk.I
	Hardware for HydroAHRS mk.II
	HydroAHRS mk.II – PCB
	HydroAHRS mk.II – First casing revision
	HydroAHRS mk.II – Second casing revision

	Hardware for HydroAHRS mk.III
	Calibration
	Magnetometer calibration
	Accelerometer calibration
	Gyroscope calibration
	Tilt offset calibration
	Tilt slope calibration

	Front-end software
	Serial terminal emulator
	Windows application
	Python- and web-based front-end
	InvenSense cube

	Testing and results
	Fieldwork in Czech Republic 2013
	HydroAHRS mk.II repeatability test
	HydroAHRS mk.II RTC drift test
	HydroAHRS mk.II indoor test and calibration
	HydroAHRS mk.II offset calibration
	HydroAHRS mk.II slope calibration

	Fieldwork in Czech Republic 2014
	Dynamic test
	HydroAHRS mk.III indoor test and calibration

	Discussion
	HydroAHRS mk.II tilt test results
	Comparison test
	Mounting orientation
	Timestamp drift
	DMP and MPL documentation
	Future work

	Summary

	Construction of a primitive autopilot for hydroacoustic work
	Introduction
	Theory
	PID-regulator
	WebSockets
	High accuracy positioning
	Haversine
	Bearing

	Material and methods
	Selection of GNSS
	Selection of compass
	Selection of MCU
	Firmware and autopilot algorithm
	Hardware and PCB
	Sub-system communication
	Operator communication
	ASV Land
	ASV control panel

	Testing and results
	Moving GNSS-receiver test
	Long-term indoor stationary GNSS test
	Outdoor stationary GNSS test
	Autopilot test

	Discussion
	Long-term indoor GNSS test
	Outdoor GNSS test
	Autopilot test
	Communication enhancements
	Implement WebSocket in the MCU
	PID-regulator
	Approximations
	Autopilot and motor driver communication bug
	ARM toolchain
	True north
	GNSS ready flag
	Alternative software
	Future work

	Summary

	Summary
	Closing
	Appendix Installation of ASV control panel
	Appendix PCB production
	Appendix Analog steering controller schematics
	Appendix MCU code for servo to PWM signal converter
	Appendix MCU code for first digital steering controller
	Appendix First H-bridge schematics
	Appendix MCU code for ASV H-bridge controller
	Appendix Second H-bridge schematics
	Appendix H-bridge driver schematics
	Appendix HydroAHRS mk.I MCU code
	Appendix HydroAHRS mk.II MCU code
	Appendix HydroAHRS mk.III schematics
	Appendix MCU code for ASV autopilot
	Appendix Code for ASV control panel
	Appendix Autopilot schematics
	Bibliography

