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I, Introduction.

It has been clear for some time now that the Loeb-measure
of nonstandard analysis [11] may be useful in the construction
of different kinds of limit measures. Indeed, Anderson's nonstan-
dard construction of a Brownian motion [1], may be regarded as a
direct construction of a weak limit measure (compare Billingsley
[4]). Work on weak convergence from a nonstandard point of view
have been carried on by Anderson and Rashid [3], and Loeb [12].
In another direction, Helms and Loeb [7], Hurd [9], and Helms [6]
have used the Loeb-measure to obtain limit equilibrium measures
in statistical mechanics°

In this paper we shall work with other - but related -
concepts of limit measures, and we hope to show the efficilency
of the Loeb-measure approach by giving simple proofs of three
classical theorems.,

The first of these theorems is due to Prohorov [14]: Given
a projective system <Xi;Ti’”ij>i,j€I, of Hausdorff spaces en-
dowed with a cylindrical measure {“i}iéi of Radon measures on
the Xi, it gives a cﬁaracterization of when there is a limit

Radon measure on the projective limit. The idea of the proof is
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to construct the limit measure from the Loeb-measure of My for
an infinite i.E*I, using a standard part map 6, : Xi -> X,

The second theorem is due to Sazonov [16]; it characterizes
the functions that are Fourier-transforms of probability measures
on Hilbert spaces. The idea of the proof is that even when the
measure does not exist on the Hilbert space H, measures exist on
the hyperfinite dimensional subspaces of *H and we can perform
the necessary calculations on these spaces.

The last theorem is by Gross [5] and is concerned with the
extension of cylindrical measures on Hilbert spaces to measures
on Banach spaces where the Hilbert space is densely embedded.
Again the idea is the same; we use the Loeb-measures on hyper-
finite dimensional subspaces and the standard part map.

Throughout this paper we shall wérk with polysaturated
models for nonstandard analysis (see Stroyan and ILuxemburg, [18]).
For an introduction to the theory of the Loeb-measure and some
of its applications, the reader shduld consult Loeb [13].

I would like To thank Jens Erik Fenstad and Bent Birkeland
for helpful discussions and encouragement during the work on

this paper.

ITI. Measures on inductive limits: Prohorov's theorem.

Let <Xi’7i’ﬂij>i,jEI be a projective system of Hausdorff
spaces; i.e., I 1is a directed set; for each i€T1I, <Xi’Ti> is

a Hausdorff spacej and for all i,j,k€I, 1i=<j<k, %J:ij>Xr

ﬂjk: Xk - Xj’ and T Xk -—> Xi are continuous, surjective

maps satisfying 1. T, .°T By the projective limit of such

ik T i gke
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a system, we shall mean the Hausdorff space <(X,T), where X con-

sists of all elements =x€ I X. such that for all 1i,j€TI, i<3J,
: ier *

X; = n..(x.); and where 1T is the weakest topology making all

the maps T, : X —> X.-defined by ni(x) = Xi—continuous. Obvi-

ously T, = m;.°m. for i<j. The set X may be empty even

iJ d
when all the Xi are non-empty; and the s need not be sur-

jective.

We shall denote the *-version {(X I} by

i’ 1’”13 i,je
Let st: *X — X be the standard part map

~

<X1 1’”13>1,jE*I°
in the 1imit topology, and for each 1€I 1let st; be the
standard part map st; s ii —> X;. It is easy to see that if
st(x) is defined, then sti(ﬁi(x)) is defined for all i€TI,
and st(x) = {sti(ni(x))}iEI, On the other hand, if sti(ni(x))
is defined for all i €I, then sti(ni(x)) = nij(stj(ﬂj(x)))
for j>i, and st(x) is Adefined and equal to {sti(ﬁi(x))}iq.

Let us recall a few simple facts of nonstandard topology:
If X is a Hausdorff space and st: X —> X the standard part

* -1 * -1 rrr

map, then G>st” (G) for all open sets G, and Kcst™ (K)
for all compact sets K. We are working with polysaturated
models; and if A is an internal subset of *X in such a model,
then st(A) is closed (see e.g. Stroyan and Luxemburg [18],
page 201).

Having now completed our survey of the topological prereQui~

sites, we turn to measure theory: By a Radon measure 4 on a

topological space (Y,0), we shall mean a Borel probability
measure on Y such that for all Borel sets B and all ¢>0C,

there is a compact set KCB and an open set G>B such that

p(G) = e < uB) < p(X) +e¢.
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By a cylindrical measure {“i}iEI on a projective system

X of Hausdorff-spaces, we mean a net {pi}ieI of

1071071574, jeT
Radon measures on the Xi such that nij(uj) = M. We write

{ﬁi}iE*I for the *-version *({ui}iel), A cylinder set in X
is a set of the form n{q(B) where B is 2 Borel set in Xi’
iel,

The problem we consider in this section is the following:
A  cylindrical measure obviously induces a finitely additive
measure on the cylinder sets, and using the Kolmogorov Extension
Theorem this may be extended to a o0J-additive measure. But can
it be extended to a Radon measure on X? This is far from ob-
vious since the o-algebra generated by the cylinder sets is
much smaller in general than the Borel algebra on X. However,
Prohorov's theorem gives a simple characterization of when such
an extension exists,

Before we turn to the proof of the theorem, we must know
how Radon measures arise from Loeb-measures; the study of such
problems was initiated by Anderson [2], and has since been studied

by Henson [3] and Loeb [12]. We shall only need the simple

Lemma 1: Tet (X,(B,u) be a Borel probability space on a
Hausdorff space. Assume that for each €>0 there ié a compact
K, with w(K,) > 4--e. Let <2,L(G),L(P)) be the Loeb-space of
a nonstandard probability space (Z,G,P?, and let 6 :2Z2 —> X be
a partial mapping such that e'q(B)GEL(G) and L(P)(e'q(B)) =
u(B) for a1l Be{H . Assume‘further that 06(A) is closed

for all A€ G . Then W« 1s a Radon measure,

Proof: Let B€ B be given; then 6~ (B)€L(G) and for
each €>0 there is an A€G, AA:e'q(B) such that
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L(P)(6™'(B)) -L(P)(A) <§ . But 0(A)ce8”'(B) =B is closed,
and w(8(4)) = T(R)(67 (8(A))) 2 L(P)(A). Hence B(AINEK, , is

a compact set conteined in B with
(B - (B NEK, o) <e .

The outer regularity follows by applying this result to X-B,

and hence the lemma is proved.

We may now prove Prohorov's theorem:

-

Theorem 2 (Prohorov): Let {“i}iEI be a cylindrical measure

on a projective system (X, % of Hausdorff spaceg. The

1’Ti’TT

13
following is a necessary and sufficient condition that there exists

a Radon measure u on X such that ni(p) = Wy for all i€I:

(*) TFor all €>0, there is a compact K.cX such that

pi(ni(Ke))z_’Ine for all 1i€TI.

Proof: That (*) is necessary is almost obvious: Let €>0
be given; since p 1is Radon there exists a compact K<X such
that u(K)>1-e, Since K is compact, so is ﬂi(K), and hence

ﬂi(K) is ui—measurable° But then
=
py (m5 (K)) = w(nl " m(K)) > u(®) = 1-¢

which proves the necessity of (*).

We now turn to the sufficiency, and divide the proof into

four steps.

d. Construction of u: Let w€ I be larger than all the

elements in I - such an element exists by polysaturation - and

define ©6:X -> X by ﬁi(e(x)) = sti(ﬁiw(x)). Obviously
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e°ﬁw = st, and hence 6 maps internal sets on closed sets.

Let (X@,I&{Bw),L(ﬁ®)> be the Loeb-space of <Xw,25w,pw>,

~

where (3, 1is the *-Borel-algebra of Séw' Define
wo= 8(L(,)).

2. g is a Borel-measure: We first show that if K<cX is

compact, then o~ (K) EL(C’B’w) : The family {n"/lﬁ (K)} is de-
creasing, and so is pi(ni(K)) since (n (K)) Zu. (n;; Trl(K)) =
pi(ni(K)). Let

B = lim p,(m; (X)),

i€l
then

L(E)) (7, (*K)) =

since w is infinitely large.

Since K 1is compact,
-1 ~ ~ oy
(k) = 7 st™ (K)27 (*K),

and thus 6~ (K) contains a set of measure 8.
Let €20 be given, and choose i€I such that
€ . . .
pi(ni(K)) <Btwo, Since u; 1is Radon there is a G, €7, such
< T
that ni(K) CG; and ui(Gi) B+e. Hence
~._’| * _ o~ 1 " _ 0~ %
L(u ), (%630 = i, (g (%6500 = i ( G;) < B+e.
Since Gi is open, we also have
07 () = 7 567 (K) € st (n] ', (K)) € Fyst7 (] (@)D €71 (n7 16y =
~ ~ ~e %
T\'wTTi Gi = ﬂiw( G'i>o

This proves that for all €>0, 6 '(K) 1s contained in a
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set of measure less than B4+ €. Since (i@,L(O}w),L(ﬁ@)) is com-
plete, it follows that 8 (K) ¢L(# ), and that L(5,) (67 (X)) =
lim¢4.(niK).

ier *
If now FcX dis closed, Frqu/n is compact, and hence

e‘“(u(FnK,l/n)) EL(%U)). The set 8~ '(F - LEJN(FD K, ) is a
n

subset of the null-set %;-9"1(UK1/H), and is consequently in
L(@w)a Hence e"/l(F) EL((Bw) for all closed F, and it follows

that u is a Borel-measure.

2. 4 _is a Radon measure: Since 6 maps internal sets on

closed sets, this follows from Lemma 1, and 2 above.

4. Consistency conditions: It remains to show that if A€ B,

then p(ﬂgq(A)) = pi(A): Let €>0 be given, and choose a
neighbourhood G of A in T; such that ui(G):LﬁﬁA)+-e.
Since mw'(G) is open: u(my (A)) = L(E )7 (ny (A)) -

~ ~ — - A ~ ~ _.’I _../l . ~ ~ o~
L(E,) (7 st (n3" @) Sn(@) (Fpst™ (n] (@) e L@ F R @) =

~ N_" X
L) (m7, (CT6)) = u; (G) Spy(B) +e.

This implies that p(n{q(A))jLﬁﬁA), but since the same must

apply to the complement of A, we have u(n{q(A)) = pi(A). This

provas the theorem.

The above proof gives a straightforward construction of the
1limit measure as the "standard part" of the Loeb-measure of an
infinitely large element in {ai}iE*I’ For applications of
Prohorov's theorem, the reader should consult Schwartz [17]; we
shall only give one which will be useful in the next section.

We shall need the following versivn of the thcorem:
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Corollary 3: Let {“i}iEI be a cylindrical measure on

X, ,7 >. Let Y be a set, and assume that for each 1i€1I,

RNE R
Pi is a mapping of Y on Xi such that Pi = nijon’ when
i<j. Let o be the weakest topology on Y making all the P;
continuous. Then tThere is a Radon measure v on Y such that

v(B1(4)) = p;(A) for all i€I and A€, if and only if:

(**)  PFor all €>0 there is a compact set K_cY such that

uiCPi(Ke))>’l-e for all ie€lI.

Proof: The necessity of (**) is proved as in the proof of
the theorem.

To prove the sufficiency, define S:Y —= X by S(y) =
{Pi(y)}iEI. S is continuous, and by construction P, = m, °S.
Thus S(Ke) is compact and pi(ni(S(Ke))) = ui(Pi(Ke))3>1—e
for all i €I. TUsing the theorem, we have a Radon measure u on
X such that p,(n] (A)) = u;(A). Defining v(S™ (4)) = u(4),

we prove the corollary.

We turn to our application: Let H be a real separable
Hilbert-space, and let I be the set of all finite dimensional
subspaces ordered by inclusion. If E,Fe€I, ECF, let PptH—>E
and PE,F : P —> E be the projections. (E,TE,PE’F> is obviously
a projective system of Hausdorff spaces, when TR is the norm
topology.

Corollary 3% should now tell us when a cylindrical measure
{“E}EEI on <E’Te’PE,F> can be extended to a measure on H.

We introduce the following notation:
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Ep = {x€H: ||x|| <r}

is the closed ball of radius r around the origin. It is eaéy
to check that these balls are in the 0-algebra generated by the

cylinder-sets. Define
of = ug(Pg(B,)) for EE€L,
For fixed r, the set [ag}EEI is decreasing, and we let
0, = iIElf CLE .
The function r —> o is increasing, and we may define

a = limaro
=X

Corollary 4: A cylindrical measure {uE} on H has a

o-additive extension v if and only if o = 1. The extension is

a Radon measure.

Proof: Assume the extension v exists. Then BrCP‘}'{] PE(Br)
for all E€I, and hence v(B_ )<a.. Since v(H) =v( U B ) =1,
o= 1, and hence a = 1.

Assume now that a = 1. The weakest topology on H making
all the finite dimensional projections continuous, is the weak
topology. But on H the weak topology and the weak-* topology
coincide, and hence by the Banach-Alaoglu Theorem (see e.g. Reed

and Simon [15], page 115) all the balls B, are compact in this

topology. Given ¢€>0, choose r. such that o, >1-e, Then
€

uE(PE(Bre)) >1-e for all E€I. Applying Corollary 3 with

K, = Br , we see that an extension v exists, and is a Radon
€
measure with respect to the weak topology. But since the balls
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are v-measurable, Vv 1s also a Radon measure with respect to

the norm topology.

From the nonstandard point of view, Corollary 4 has the fol-
lowing interpretation: Let {en] be an orthonormal basis for H,
and let {'é'n}ne*]:q be its *-version. Let E be the hyperfinite

dimensional subspace of *H generated by 31,...,gn for some

E

rf_oc for s€R,

ne "W N, It is then easy to see that asi°a -

s <r, and thus oai ~> o as r —>X, Hence W has a o0-additive
extension if and only if L(ﬁﬁ) has support on the elements of
finite norm in E; i.e., the near-standard elements in the weak
topology. We may perhaps say that a limit measure L(aﬁ) always
exists; the problem is whether it has near-standard support so
that we can push it down to H., In the following two sections

we shall try to elucidate this theme.

III. Characteristic functionals on Hilbert spaces:
Sazonov's theorem.

A famous theorem by S. Bochner characterizes the class of
Fourier-transforms of probability measures on R® as those
functions @ :R™ —> C that take the value one in the origin,
are positive definite and continuous. It is natural to guess
that this theorem has a generalization to Hilbert spaces, and
since most Hilbert space topologies coincide on finite dimen-
sional spaces, one might conjecture that the fask is "only" to
find the right notion of continuity. That norm-continuity is
not the right notion is easy to seej; but in 1958 V.V, Sazonov

[16] proved that the right topology is the one generated by the
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Hilbert-Schmidt operators.
We shall now give a nonstandard proof of this theorem:

Let H be a real separable Hilbert spacej; a Hilbert~Schmidt

@©
operator A :H -> H is a linear operator such that anHAenH2'<OO
for any orthonormal basis {e,} in H. It is easy to see that
‘2

the sum ZHAenl is independent of which orthonormal basis we

choose.,
The sets of the form {x€H: [|[Ax] < 6,,...,/4 x| <8}
where A1’°°°,Am are Hilbert-Schmidt operators, and 6,,¢..,0)

are positive real numbers, form a basis for the Hilbert-Schmidt

topology. By polar decomposition, any Hilbert-Schmidt operator A
can be written as the product UT of an partial isometry U,
and a symmetric, positive Hilbert-Schmidt operator T. Hence
We may assume that Aq,.ao,Am above are symmetric. Moreover,

if A,,A, are Hilbert-Schmidt operators, then there exists a

1982
Hilbert-Schmidt operator B=,[AZA,+A3A, such that |[|Bx| <8

implies [[A x| <6 and |Asx|| <8. Thus we may replace the
sequence A1’°‘°’Am above with a single, symmetric H.-S. opera-
tor A and still have a basis for the topology.

et @9:H —=>C with @(0) = 1. Then ¢ is continuous in O
if and only if for all e € R, €>0, there exists a Symmetric
Hilbert-Schmidt operator A and a §€R, 6>0, such that if
lAx|| <& then |e@(x)-1|<e. Taking the *-transfer of this,
we get

vx € "H(||*Ax]| <8 —|*p(x) - 1] <¢).

By the internal definition principle this is equivalent to that
for all e€R, €>0, there is a symmetric H.-S. operator A

such that
vz € "H(||*Ax]|~ 0 = | To(x) - 1] <e).
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To prove that ¢ dis discontinuous in O, it is thus enough
to find a positive € € R, such that for all symmetric H.-S.-
operators A there is an x € H with ||"Ax||~0 and |*@(x)-1|>ce.
To prove the theorem, we shall need the following notiohs:
Let n€ N\N, and define Q = {-1,1}", and let P be the uni-
form *-probability measure on Q; P{w} =3@)". By a symmetric

binary martingale ¥ : O —> *R we shall mean a *.stochastiec vari-

n
able ¥ defined by y(w) = i>=3,|wiyi, where {yi}if_ﬂ is an in-
ternal sequence of hyperreal numbers, The gquadratic variation
of x is defined Tto be [x] = /‘ye, (This should look familiar

to readers acquainted with Anderson s Brownian motion [1]).

Lemma 5: Let X be a symmetric binary martingale, and put
= [x]. If vy is finite, X is finite a.e. in the Loeb-
measure. If Yy 1is infinite there is a set of measure >7

where |x| EJVG

Proof: Assume that vy dis finite. Using that the w; are

independent with mean zero and variance one, we get

.
B(x?) = E«zquyn oy BGgu) - D2 - R

73'-'/] i=1

Consequently X is finite IL(P)-a.e.

Assume so that Yy is infinite. We first consider the case

where there is a je€ {1,2,...,n} with ly.lZJf, say y5Z/Y -

Then either T w. iYs 20 or I (-—w )y O, so for each w such
ity * i#3
that i%qwiyi<ﬁ there is a w' = (—w,l,—wz,“.,,wj,..o’,-—wﬂ)
such that - Q Wiy ‘N/m Hence ¥x>,/y with probability >+
i="1

A similar argument applies for yjf_ _JV .
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Assume so that y is infinite, but lyjl<ﬁ for all j.
Then [%] = 1, and by the first part of the proof x/y is
finite a.,e.. Moreover yi/ywo for all i. We calculate the
characteristic function of the randcm variable o()(/Y) :

‘r] wW.y.z

V.2 V.2
W.Y.Z W.Y.2 ok .93
‘_ n l_J._J__ o n ; i__J_.J__ °n el Y +e 1 Y
JTe 7 e~ qrfe 7 -
=1 =1 =1 2
"rl _,J_ 2
1n(cos——) .‘] _EL 2
gl Y . (-—- ( ) +0(=4)7) -
ﬂ' -e-— = eJ“/I - e 951 =e 2

where we have used the independence of Wy and wj for i £ j,
and the Taylor-expansion of 1n(cosx).

This tells us that (x/y) is gaussian distributed with
variance 1. Hence the probability that lll -f-» is larger than

and so is the probability that IX‘ >’\/-a This proves the lemma.

The proof of part (b) of the following proposition contains

the heart of the argument:

Proposition 6: Let {uE} be a cylindrical measure on a

real, separable Hilbert space H. Then (recall the o of

Corollary 4):

(a) If a = 1, then for each positive ¢ € R there is a
symmetric Hilbert-Schmidt operator T on H, and a r. €R such
that (B, )>1-e, and for x¢€ *H: ||*rxl|~0 => (x,y>~0 for

€
L(*v)-almost all N ékBr
€
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(b) If o<1, there is for each symmetric Hilbert-Schmidt
operator T on H a set B with p(B)>-—¢—, a y€ N\N,
and an x € "H such that

1
|*Tx||~0 and |{x,y)|>Y%? for ye€B.

Proof: (a) This is the standard argument, adapted from
Kuo [10]: ILet r_. be so large that v(Br ) > 1-¢, and consider

€ e
the bilinear form f (x,z){y,2z>dv(z)s It is_ continuous since
Bre
IJ” (x,2)(y,20av(z)| < nxnnynj |2av(z2) < [l=llylz )12,
I‘€ re

Consequently there is a symmetric, continuous, positive operator S

such that
(Bx,y) = J‘ (x,z){y,z7dv(z)
B
T

Now €
cc oo

{ 2 2
nEq€Se ,e > = T, | (x,e 0’ dv(x) _j n21<x e >2dv(x) = J“X” dv(x) < rg ,

Bre Bre Br€

showing that S is a trace-class operator. Hence S = ToT for

some symmetric Hilbert-Schmidt operator T, and we get

l7=|® = | ¢x,2)% av(a) .

o

r
€

(a) now follows from the *~version of this.

(b) Let £en}n€1V be an orthonormal basis of eigenvectors

for T, and let ({& }Il<ﬂ be a hyperfinite initial segment of
oo

~ ~ 2
*({e }ne]N) Assume *Ten = B,€,, then ¥, g <, Let Ej be
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the hyperfinite dimensional subspace of *H generated by {e}n<n

Choose Yy € *W\N such that
~ i
g, tremy ol 2 vy 218

such a y exists by definition of a and the internal definition

principle.
: : 'ﬂ
Our element x shall be of the form x -_-2 _,1—-7—6 y Where
B
w, = *1 for all n. Obviously | Tx||2 nZ ,|—-,- ~ 0. We now use
Y?

Lemma 5 to choose the sequence {wn} such that (x,y} is infi-

nite on a set of y's of large enough measure:

. 2 n .2 2 q Wndn.2
If y is such that !IyHET = 24752 Y5/ , then né/l(;—’lﬁ) >y°.
w_y. 1
By Lemma 5 is then [2 %ﬁl _>_Y2 for all w in a set of measure

Y
> %. Let mnow

n w.y 1
- o) s 8 R 2 v,

and apply Fubini's Theorem to the characteristic function Ky

JUE mdaly ()1apte) = LR, (0,7)ap)laly (7) 2

-3

2 #iy ey ol 2 v 2 32

Hence there is a m€Q such that HET{y lnz’l WZY }3_/17; .
Y

n
n ~
Choose x = né’lmen" Then

~

. . 1 ~ no Yy T, . 1=
u{y € "H: [{x,7»|>v*} = “ET{yEET: lngqmyniin}Z“T—,

which proves (b).



- 16 -
It is now easy to prove

Theorem 7 (Sazonov): Let ¢:H —> C be a complex-valued

function on a real, separable Hilbert space. Then ¢ is the
Fourier-transform of a Borel probability measure on H if and
only if ¢ (0) = 1, o is positive definite and continuous in

the Hilbert-Schmidt topology.

Proof: Assume o(x) =jiei<x’y>du(y), where u 1is a proba-
bility measure on Hj then @(0) =1 and ¢ is positive definite.
Let €>0 be given., Since o = 1, we may apply Proposition 6(a)
to get a symmetric Hilbert-Schmidt operator T and a set Bre/5
with u(Bre/§)3>1—e/3 such that ||*Tx||~0 => (x,y)~0 for
almost all y%E*Br . Consequently ei(X,y)qu on a set of
measure > 1-¢/3, €//and hence |*p(x)-1|<e. By our nonstandard
characterization of H.-S. continuity, it follows that ¢ is con-
tinuous in 0. Since ¢ is positive definite this implies that
o is H.-S.-continuous everywhere.

Assume now that ¢ 1is a positive definite, H.-S.-continuous
function with ¢(0) = 1. Using Bochner's Theorem on the finite
dimensional subspaces of H, we see that ¢ is the Fourier-trans-
form of a cylindrical measure f{up} on H. We shall show that
a =1 by proving that if o<1, then ¢ can not be H.-S.-con-
tinuous.

So assume a <1: Given a symmetric H.-S.-operator T,

there exist by Proposition 6(b) a set B with *u(B)>’1dm,
a YE'N-N, and an x€ *H such that

L
|"Tx||~0 and |<x,y)|>y? for y€B,
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Let X Dbe the Lebesgue measure on R, It is easy to see
that for infinite =z

* * . * m Jn ~ ;l-
rae'[1,2] .azeklél*z{ [2kn+é-,2kn+-§-]}} E >z

Define

A = {(a,y):alx,y) € k\é*z{*[a«rﬁ +% , 2kn+%11]}}.
By Fubini's Theorem

2 2
[t amaruiania) = [l (e (@18 23 @) 2 5 .
B 1

1B

Hence there exist am a such that

11—,

*uiy : alx,y> € U{*lckn +% , 2km +%T-]}J._>_ -5 -

For such an a, Re(el(ax’y>) = cos({ax,y?) <0 for all y in a

set of measure >:|4:2a—, and consequently

}Jei(a}c,y) duly) - 1| i% .

Since |*T(ax)|~0, this implies that ¢ is not H.-S.-continuous

in O, and the theorem is proved.

What I would like to point out about the proof above, is the
following: In this case the hard thing is to find out what happens
when the limit measure does nct exist. But in the nonstandard
universe we do have a kind of limit measure L(ﬁET),which lives
on a space ET with all the algebraic and topological structure
of a linear space, We can thus perform all the necessary calcula-
tions of Proposition © and Theorem 7 on this space. The argument
could probably be carried through in a standard way working on

the finite dimensional subspace of H, by picking suitable se-
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quences of elements and the right notion of convergence of measures,
but the clarity of the argument would then most likely be lost in

a haze of convergence results.

IV, Cylindrical measures extended to Banach spaces:
Gross' theorem,

In the first section we inquired when a cylindrical measure
{up} on a Hilbert space can be extended to a countably additive
measure g on Hj and we saw - indirectly - how such a measure
could be obtained from L(ﬁﬁ) on a hyperfinite dimensional sub-
space E of *H wusing a standard part map. We may ask our-
selves in cases where such an extension is not possible, whether
we may find some other reasonable limit measure, perhaps living
on a larger space. One way of doing this in a nonstandard setting
would be to use a standard part map connected with a weaker topo-
logy; this would maeke more points near-standard. We shall now
apply this strategy to prove a theorem of Gross [5] on the exten-
sion of cylindrical measures to Banach spaces.

Let H Dbe a real, separable'Hilbert space with an inner
product (o,?} generating a norm ||<||, and let || be another

norm on H. An element y€*H is called |-|-near-standard if

for all e€R, €>0, there is an x€H with |x-y|<e. If E
is a hyperfinite dimensional subspace of *H, define an equiva-
lence relation ~p on E by x"py <=> |x-y| ~0. Let NS!I (E)
denote the |o|-near-standard elements of E, and let

°E = Ns, ‘(E)/~E. TLet °|-| be the norm defined on E by

“|x| = st|X|, when ¥ is the equivalence class of x.
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Lemma 8: Let E€'I be such that HcE., Then ('E, {-{)
is the completion of H in |-|-norm.

Proof: If x¢€H, identify it with its equivalence class X
under ~p. By definition of | - | -near-standard, H is dense
in °E, and it only remains to prove that él°l is complete:
Let {§tn}nejN be a Cauchy-sequence in E, and let for each né N
Xileggf Then {Xn}nEII can be extended to an internal sequence
{x ) sy of elements from E such that |x -x |~0 for all
n,m€*N\N, Let y€ N~N, and let §Y be the equivalence class
of x_ . Since all =x_ are |-|-near-standard, so is x,, and

n

» The lemma is proved.

the sequence {in} converges to iY

From now on we write B for E and || for | |; and we
have hence shown the existence of a standard part map
st |, ﬁNﬁ,(E) —> B.

Let & be the set of finite dimensional projections in H.
If u = {uplper 1is a cylindrical measure on H, the norm ||

is called w-measurable if for all 662R+ there is a Poesjt such

that
p{|Px|>e}<e for a1l PeF , PP .

Gross' theorem says that if | | is up-measurable, then u

has an extension to Borel-measure on B. The key observation is

the following:

Lemma 9: If || is p-measurable, then 1,(11E)(Ns'l (E)) =1

(E is as in Lemma 8,)

Proof: Tet -

A = {x€E: 3veH(|vx] <%)} .
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*

L .
If Pc¢ r;{: y, let EJ:; be the orthogonal projection to P in

For n>m, find a P€4 such that
~ o 14 <
HE“PE(X>| >H} <-l:l- 9
by w-measurability of |-|. Then the set
L 1
{x€E:P(x) € Ns) (B)}N {x: |PRGO| 27)

%
is contained in A , and has Loeb-measure 2> ’I—-;-Il-. )Since this
holds for all n>m, L(EE)(A ) = 1. But Ns,,K (E) =NA_, and hence

L(HE) (l\Isl ,(E)) = 1, which proves the lemma.

To prove the theorem, it only remains to push L(EE) down
to B using the.sta:adard part map. However, we must first agree
on what it means for a measure on B to extend a cylindrical
measure on H: Let B* be the dual of B. If ¥y, ,e0.,7,€B"
and A is a Borel-set in JRn, then the set

{xeB: (y,‘(x),..o,yn(x)) €A} is called a cylinder set in B. We

define a finitely additive measure ﬁ on the cylinder sets by

H{xEB 1 (71(x),e0e,7,(x)) €A} = pixeH: ({2,747 5000 ,8x,57,7) €A}

where we have identified H and H* and embedded B* in H*.

Theorem 10 (Gross): Let | | be u-measurable. Then ﬁ

has an extension to a o0-additive Borel-measure on B,

Proof: Let E be as in Lemmas 8 and 9. Define a measure Vv
on B by v = st”(L(ﬁ'E)); this is well-defined probability
measure since L(ﬁE(l\Ts’ { (B)) =1 by Lemma 9. To prove that v

is a Borel-measure, it is enough to prove that all balls

B(a,r) = {x€B: |x-a| <r}, a€H,

*) L(CIE){XGE:P(X)E Ns,, (E)} = 0 since Pe % (and not only *?)
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are v-measurable, since B 1is separable. But

st"/" (B(a,r)) = U{x€E: |x-a <r-%}ﬂ N8, (E)
n |

which is L(HE)—measurable, and hence v is a Borel-measure,
It remains to prove that v and ﬁ agree on the cylinder

sets: Since

s-t_’"," {x€B: (yq(x),w.,yh(X))E A= {x€E: (71(x), we,y,(x) € st (A)],

we have

VIXEB 1 (71(%), e, 7, (x) €A} = LR (X €E 1 (§1(%), me,7, (%) € st (a)l.

But EC"H, and hence ya.(x) (X,yj) and so

VX €B 2 (74(%), me , 7, (X)) €A} = L(UE) {X €E :({H, 747y ma » {X, 7, NE st~ (ANl

il

On the other hand

MEEEB : (74(x) 00,7, (¥)) €A} = LR {x €B 1 (34(x),...,7,(x)) € "A]

= L(EE) {x€E :((x,sr,]),... ,(x,yn>)€ *Al.
Keoping Tqsweosdy fixed and letting A run through the Borel sets,
~ *
HE{XGE: ((X,y/|>,ooo’<xayn>) e A} = HF{XEF:(<X’y/]>,°°0’<X,yn>) GA}

(where F is the subspace of H generated by y,],...,yn) defines a
Radon measure on IR™., Given an € >0, there is thus an open set

GDA, and a compact set CCcA, such that

HE{XEE : ((Xay/]>,°-' s<X,yn>) € *C} + €_>_|..LE{X€E : ((Xay'q)am )<X,yn>)€ *A}

> uplx €B s ({2,705 000,(x,5,2) € "Gl - e,

Now *CCS'L'—/](C) and *GDst"q(G), and hence
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XEE: ({x,79), =, {x,7,0) € *Clc{x€E: KX, 74Dy e $x, 7)) € st'/‘(A)}E
S (XEE: ({X,74),..4,$x,7,)) € 6.

Since e is arbitrary, this implies that v and {I agree on the

cylinder sets, and the theorem is proved.

The theorem above is more general than the versions in e.g.
Gross [5], or Kuo [10] as they treat only the case where p is
normally distributed, I have found no references to the actual
theorem in the literature, but it certainly ought to be wellknown.
For applications the reader should consult Kuo [10].

The pattern of the proof is again the samej a limit measure
exists naturally on an infinite element E, and usiﬁg a suitable
standard part map it is pushed down to a standard space. That we
have been able to prove three central theorems in the theory of
limit measures using this simple idea, should indicate that the
Loeb-measure approach is both natural and promising; and I cer-
tainly hope that some original research may be carried on along
these lines. Promising subjécts should include stochastic inte-
gration in Hilbert spaces, and partial stochastic differential

equations.



10,

1Ma

R.M. Anderson:

R.M. Anderson:

R.M. Anderson and

P, Billingsley:

L. Gross:

L.L. Helms:

- 23 -

References

A Non-standard Representation of Brownian
Motion and Itd Integration, Israel J. Math.
25(1976) pp. 15-46.

Star-finite Probability Theory, Ph.D.-thesis,
Yale University, 1977.

5. Rashid: A Nonstandard Characterization
of Weak Convergence, Proc. Amer, Math. Soc.
69 (1978) pp. 327-332.

Convergence of Probability Meaéures,
John Wiley and Sons, 1968,

Abstract Wiener Spaces, Proc. 5th. Berkeley
Sym.Math. Stat. Prob. 2 (1965), pp. 31-42.

A Nonstandard Approach to the Martingale
Problem for Spin Models, Preprint,
University of Illinois, 1979.

L.L, Helms and P.,A., Loeb: Applications of Nonstandard Analysis

C.W. Henson:

A.E, Hurd:

H.-H. Kuo:

P.A. Loeb:

to Spin Models, J. Math. Anal. Appl.
&9 (1979) pp. 341-352.

Analytic Sets, Baire Sets and the Standard
Part Map, Can. J. Math. XXXI (1979)

Nonstandard Analysis and Lattice Statistical
Mechanics: A Variational Principle.
Preprint, University of Victoria, 1977.

Gaussian Measures in Banach Spaces,
INM 463, Springer-Verlag 1975.

Conversion from Non-standard to Standard
Measure Spaces and Applications in Proba-

bility Theory, Trans. Amer. Math. Soc.,
211 (1975), pp. 113-122.



- 24 _

12. P.A. Loeb: Weak Iimits of Measures and the Standard
Part Map, Proc. Amer. Math. Soc., 77 (1979),
pp. 128-135,

13, P.A, Loeb: An Introduction to Non-standard Analysis
and Hyperfinite Probability Theory,
in Bharucha~Reid (ed): Probabilistic Analysis
and Related Topics 2, Academic Press 1979,
pp. 105-142,

14, 7Yu.V. Prohorov: Convergence for Random Processes and Limit
Theorems in Probability Theory,
‘Teor. Veroj. i Prim. 1 (1956) pp. 177-238.

15. M. Reed and B. Simon: Methods of Modern Mathematical Physics I,
Academic Press, 1972,

16. V.V, Sazonov: A Remark on Characteristic Functionals,
Teor. Vercj. i Prim. 3 (1958), pp. 201-205,

17. L. Schwartz: Radon Measures on Arbitrary Topological
Spaces and Cylindrical Measures, Oxford
University Press, 1973%.

- 18. K.D, Stroyan and W.A.J. Luxemburg: Introduction to the Theory
of Infinitesimals. Academic Press, 1976.



