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I., Introductiono 

It has been clear for some time now that the Loeb-measure 

of nonstandard analysis [~~] may be useful in the construction 

of different kinds of limit measuresa Indeed, Anderson's nonstan­

dard construction of a Brownian motion [~], may be regarded as a 

direct construction of a weak limit measure (compare Billingsley 

[ 4]).. Work on 1.·reak convergence from a nonstandard point of view 

have been carried on by Anderson and Rashid [3], and Loeb [~2]. 

In another direction, Helms and Loeb [7], Hurd [9], and Helms [6] 

have used the Loeb-measure to obtain limit equilibrium measures 

in statistlcal mechanics o 

In this paper we shall work with other - but related -

concepts of limit measures, and we hope to show the efficiency 

of the Loeb-measure approach by giving simple proofs of tlLree 

classical theoremso 

The first of these theorems is due to Prohorov [~4]: Given 

a projective system (X. ,T. ,n .. ). 'EI of Hausdorff spaces en-l l lJ l,J 
dowed with a cylindrical measure (~i}iEI of Radon measures on 

the xi, it gives a characterization of when there is a limit 

Radon measure on the projective limito The idea of the proof is 
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to construct the limit measure from the Loeb-measure of 1-l· for 
]_ 

* an infinite i E I, using a standard part map e. : x. -> x. 
]_ ]_ . 

The second theorem is due to Sazonov [16]; it characterizes 

the fu..nctions that are Fourier-transforms of probability measures 

on Hilbert spaces. The idea of the proof is that even when the 

measure does not exist on the Hilbert space H, measures exist on 

the hyperfinite dimensional subspaces of *H and we can perform 

the necessary calculations on these spaces. 

The last theorem is by Gross [5] and is concerned with the 

extension of cylindrical measures on Hilbert spaces to measures 

on Banach spaces where the Hilbert space is densely embedded. 

Again the idea is the same; we use the Loeb-measures on hyper­

finite dimensional subspaces and the standard part map. 

Throughout this paper we shall work with polysaturated 

models for nonstandard analysis (see Stroyan and Luxemburg, [18])o 

For an introduction to the theory of the Loeb-measure and some 

of its applications, the reader should consult Loeb [13]. 

I would like to thank Jens Erik Fenstad and Bent Birkeland 

for helpful discussions and encouragement during the work on 

this paper. 

IIQ Measures on inductive limits: Prohorov's theorem. 

Let (X. ,'f . , n. . ) . . EI 
]_ ]_ lJ ]_' J . 

be a 12...roj_ecti ve system of Hausdorff 

spaces; ioe. I is a directed set; for each i E I, (X. , 'T. ) 
]_ J. 

is 

a Hausdorff space; and for all i, j ,k E I, J.·<·<k X X J ' n .. : . -> . ' - - lJ J ]_ 

n jk : Xk -> Xj, and nik : Xk --> Xi are continuous, surjective 

maps satisfying n.l = n .. on.ko 
LC lJ J By the £rojective l~it of such 
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a system, we shall mean the Hausdorff space (X, T), 'lr!here X con-

sists of .all elements x E II X. such that for all i, j E I, i ..::_ j , 
iEI l 

x. == n .. (x.); and where 
l lJ J 

T is the weakest topology making all 

the maps n. :X~ X. -defined by 
l l 

Obvi-

ously rr. = n .. on. for i 2 j 0 The set X may be empty even 
l lJ J 

when all the X. are non-empty; and the n. need not be sur-
l l 

jective. 

* We shall denote the *-version {(X.,,-. ,n .. ). "EI} 
l l lJ l,J 

by 

"' "' (X.,,.. ,n .. ) . "E*I" Let st: *x -> X be the standard part map 
l l lJ l,J 

in the limit topolog;}r, and for each i E I let st. be the 
l 

,..., 
standard part map st.: X.-> X ... It is easy to see that if 

l l l 

st (x) is defined, then sti (ni (x)) is defined for all i E I, 

and st(x) = {st.(n.(x))}.EIO On the other hand, if st.(n.(x)) 
l l l l l 

is defined for all i E I, then st. (n. (x)) = n .. ( st . (n. (x))) 
l l lJ J J 

for j ~ i, and st (x) is rJ.efined and equal to [sti (r.T i (x))} iEI• 

Let us recall a few simple facts of nonstandard topology: 

If X is a Hausdorff space and st : * X-> X the standard part 

map, then * G ~ st-'1 (G) for all open sets G, and *K c st-'1 (K) 

for all conpact sets K.. We are working with polysaturated 

models; and if A is an internal subset of *x in such a model, 

then st(A) is closed (see eog .. Stroyan and Luxemburg ['18], 

page 20'1) o 

Having novl completed our survey of the topological prerequi-

sites, we turn to measure theory: By a Radon measure ~ on a 

topological space (Y,cr), we shall mean a Borel probability 

measure on Y such that for all Borel sets B and all e: > 0, 

there is a compact set K c B and an open set G ~ B such that 

1-l (G) - e: < 1-L (B) < 1-L (K) + e: .. 
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By a cylindrical ~easure [~i}iEI on a projective system 

(X.,T.,n .. ). 'EI of Hausdorff-spaces, we mean a net (~l· }l.EI of l l lJ l,J 
Radon measures on the X. such that n .. (~.) = ~·o We write l lJ J l 

* [~i}iE*I for the *-version ([~i}iEI)o A cylinder set in X 

is a set of the form where 

i E Ia 

B is a Borel set in X.' 1. 

The problem we consider in this section is the following: 

A cylindrical measure obviously induces a finitely additive 

measure on the cylinder sets, and using the Kolmogorov Extension 

Theorem this may be extended to a a-additive measurea But can 

it be extended to a Radon measure on X? This is far from ob-

vious since the a-algebra generated by the cylinder sets is 

much smaller in general than the Borel algebra on Xo However, 

Prohorov's theorem gives a simple characterization of when such 

an extension existso 

Before we turn to the proof of the theorem, we must know 

how Radon measures arise from Loeb-measures; the study of such 

problems was initiated by Anderson [2], and has since been studied 

by Henson [3] and Loeb [12]. We shall only need the simple 

Lemma 1 ~ Let (X, C& ,~) be a Borel probability space on a 

Hausdorff space o Assume that for each e > 0 there is a compact 

K8 with 1-L (Ke) > 4-~e:o Let ( Z ,L( G) ,L(P)) be the Loeb-space of 

a nonstandard probability space (Z, G,P), and let e : Z -> X be 

a partial mapping such that e-1 (B) E L(G) and L(P)(e-1 (B)) = 

~(B) for all B E (B ,. Assume further that 8 (A) is closed 

for all AEG • Then is a Radon measureo 

Proof: Let BE CE be given; then e-1 (B)EL(G) and for 

each e:>O tnere is an AEG 
' 

such that 
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L(P)(e-1 (B))- L(P)(A) < ~ .. But 8(A) c ee-1 (B) = B is closed, 

and !J.(8(A)) = L(P)(e-1 (e(A))) _::L(P)(A). Hence 8(A) n K8 ; 2 is 

a compact set contained in B with 

!J.(B) -!J.(8(A) n K8 ; 2 ) < e .. 

The outer regularity follows by applying this result to X- B, 

and hence the lemma is proved. 

We may now prove Prohorov's theorem: 

Theorem 2 (Prohorov): Let t!J.i}iEI be a cylindrical measure 

on a projective system (X. , r . , rr . . ) 
l l lJ 

of Hausdorff spacesa The 

following is a necessary and sufficient condition that there exists 

a Radon measure 1J. on X such that rr.(IJ.) = 1-l· for all 
l l 

( *) For all e > 0, there is a compact K8 c X such that 

1J. • ( rr . ( K ) ) > 1--e for all i E I .. 
1 1 e -

i E I : 

Proof: That ( *) is necessary is almost obvious: Let e > 0 

be given; since 1J. is Radon there exists a compact KcX such 

that !J.(K) .::_ 1-e.. Since K is compact, so is rri (K), and hence 

rri(K) is IJ..-measurableo 
l 

But then 

1-L· (rr. (K)) = !J.(rr-:-1 rr(K)) > !J.(K) = 1-e 
l l l -

which proves the necessity of (*) .. 

We now turn to the sufficiency, and divide the proof into 

four steps .. 

* ,1 .. Construction of u: Let w E I be larger than all the 

elements in I - such an element exists by polysaturation - and 

define e : xw -> x by rr1. (8(x)) = st. (n. (x))o 
l l(J) 

Obviously 
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rv 

eonw = st, and hence e maps internal sets on closed setso 
rv roJ roJ 

Let be the Loeb-space of <X /~ ) 
w ' .;.; w ' 1-lw ' 

"' where 03 w is the * -Borel-algebra of Xw o Define 

2o 1-1 is a Borel-measure: 

compact, then e-1 (K) E L( 28 w) : 

We first show that if K eX is 

The family [rr71 TT. (K)} is de­
l l 

creasing, and so is 1-1· ( n . (K) ) 
l l 

since ~J..(rr.(K)) <~J..(TT7:rr.(K)) == 
J J - J lJ l 

13 = lim 1-1· ( TT. (K)) , 
iEI l l . 

then 

since w is infinitely largeo 

Since K is compact, 

and thus e-1 (K) contains a set of measure 13o 

Let € > 0 be given, and choose i E I such that 

1-l· ( TT. (K)) < 13 + ~ ~ Since 1-1· is Radon there is a G. E '1'. such 
l l ~ l l l 

that rr.(K)eG. and l-l·(G.)<I3+€o Hence 
l l l l 

Since G. 
l 

is open, we also have 

e-1 (K) = TI st-1 (K) err st-1 (rr71rr. (K)) crr,.,st-1 (rr71 (G. )) err *(n71G.) == w -w ll -w l l -w ll 

TI 1T-:-1 *G. = n71 (*G.)o 
W l l lW l 

This proves that for all €>0 
' 

8-'l(K) lS contained in a 
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set of measure less than S + e: o Since (Xw ,L( ~ ll) ,L(Ci'w)) is com­

plete, it follows that e-'l(K) E L(LBw), and that L(0:w)(e-'1(K)) = 

lim ll· ( 11. K) o 

iEI l l 

If now F c X is closed, F n K'l/n is compact, and hence 
"" 

e-'l(U(FnK-1; )) EL(c13 ). The set e-'l(F- u (FnK"~/ )) is a 
1 n w nEN 1 n 

...... '1 
subset of the null-set Xw- e- (UK'l/n), and is conseg_uently in 

L((i w), Hence e-1 (F) E L(cB w) for all closed F, and it follows 

that 1-1 is a Borel-measure, 

3. 1-1 is a Radon measure: Since 9 maps internal sets on 

closed sets, this follows from Lemma 1, and 2 above" 

4. Consistency conditions: It remains to show that if 

then 1-1C 11:"1 (A)) = ll· (A): Let e: > 0 be given, and choose a 
l l 

neighbourhood G of A in T. suchthat 1-l·(G)<Il.(A)+e:. 
l l - l 

Since 11:"1 (G) is open: 1-1(11:"1 (A)) = L(~ )(e-1 (11:" 1 (A)~) ~ 
l l (JJ l 

AE03., 
l 

L(Ci' )(rr st-1(n~1 (J~)) CL(iJ' )(Tf st-'\11:-'l(G))) cL(~ )(rr n:-'\*G)) = . w (JJ l - w w l - w (JJ l 

...... ...... 1 * 
L(I.J.w) ( 11fw ( G)) = lli (G)_:: lli (A) + e: o 

This implies that 1-1(11:"1 (A)) <1-1. (A), but since the same must 
l - l 

apply to the complement of A, we have 1-1(11:"1 (A)) = ll·(A). This 
l l 

provn.s the theorem" 

The above proof gives a straightforward construction of the 

limit measure as the 11 standard partn of the Loeb-measure of an 

infinitely large element in [~i)iE*I~ For applications of 

Prohorov's theorem, the reader should consult Schwartz [17]; we 

shall only give one which will be useful in the next sectiono 

We shall need the following version of the theorem: 
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Corollary 3: Let (~i}iEI be a cylindrical measure on 

(X. , ,. . , n . . ) • Let 
J. J. lJ 

P. is a mapping 
J. 

Y be a set, and assume that for each i E I, 

of y on X. 
J. 

such that P . = n . . o P . , when 
J. lJ J 

. <. 
J. J· Let (J be the weakest topology on Y making all the P. 

continuous. Then there is a Radon measure v on Y such that 
. -i for all iEI and AE(J};. if and only if: v(P. (A))== 1-l·(A) 

J. J. J. 

(**) For all e:>O there is a compact set K cy e such that 

\.1-(P.(K ))>1-e 
J. J. e for all i E Ia 

Proof: The necessity of (**) is proved as in the proof of 

the theorem. 

To prove the sufficiency, define S : Y -> X by S(y) = 

{Pi(y)}iEI• 

Thus S(Ke) 

S is continuous, and by construction P. = n.oS. 
J. J. 

is compact and 1-li (ni (S(Ke))) == 1-li (Pi (Ke)) > 1-e 

J. 

for all i E Io Using the theorem, we have a Radon measure ~ on 

X such that l-l·(n71 (A)) ==~.(A). Defining v(s-1 (A)) = 1-!(A), 
l J. J. 

we prove the corollaryc 

We turn to· our application: Let II be a real separable 

Hilbert-space, and let I be the set of all ~inite dimensional 

subspaces ordered by inclusiono If E,F E I, E...:F, let PE: H-> E 

and PE F : F -> E be the projections. (E, TE,PE F) is obviously 
' ' a projective system of Hausdorff spaces, when ,.E is the norm 

topology. 

Corollary 3 should now tell us when a cylindrical measure 

(E,Te,PE F) can be extended to a measure on H~ 

' We introduce the following notation: 
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Er = {x E H : 11 xll _:: r} 

is the closed ball of radius r around the origin. It is easy 

to check that these balls are in the a-algebra generated by the 

cylinder-sets. Define 

E 
ar = 1-lE(PE(Br)) for E E I. 

For fixed r, the set E {ar}EEI is decreasing, and we let 

. f E = ~n a • 
E r 

The function r->a r is increasing, and we may define 

Corollary 4: A cylindrical measuce {~JE} on H has a 

a-additive extension v if and only if a = 1. The extension is 

a Radon measure. 

Proof: Assume the extension v exists. 
1 . 

Then Br c PE PE(Br) 

for all E E I, and hence v(Br) _:: ar. 

a ...:> 1 , and hence a -- 1 • r 

Since v(H) ·= v( U B ) = 1, 
nEE n 

Assume now that a = 1. The weakest topology on H making 

all the finite dimensional projections continuous, is the weak 

topology. But on H the weak topology and the weak-* topology 

coincide, and hence by the Ban~ch-Alaoglu Theorem (see e.g. Reed 

and Simon [15], page 115) all the balls Br are compact in this 

topology. Given e: > 0, choose 

for all E E I. 

such that a > 1-e:. Then 
re: 

Applying Corollary 3 with 

Ke = Br , we see that an extension v exists, and is a Radon 
€ 

measure with respect to the weak topology. But since the balls 
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are v-measurable, v is also a Radon measure with respect to 

the norm topology~ 

From the nonstandard point of view, Corollary 4 has the fol­

lowing interpretation: Let [en} be an orthonormal basis for H, 

and let {en}nE*E be its *-versiono Let E be the hyperfinite 

"' dimensional subspace of *H generated by e1 , ••• ,e~ for some 

* o E 
~ E JN' N., It is then easy to see that a. < a <a. for s E JR , s- r- r 

s < r, and thus 
o E 

a. .....Y. a. as r ->CXJ o Hence ~L has a a-additive r 

eTcension if and only if L(~E) has support on the elements of 

finite norm in E; ioe. the near-standard elements in the weak 

topology. We may perhaps say that a limit measure L(~E) always 

exists; the problem is whether it has near-standard support so 

that we can push it down to H. In the following two sections 

we shall try to elucidate this theme. 

III. Characteristic functionals on Hilbert spaces; 
Sazonov's theorem. 

A famous theorem by s. Bochr1er characterizes the class of 

Fourier-transforms of probability measures on JRn as those 

functions ~ :JRn -> C that take the value one in the origin, 

are positive definite and continuous. It is natural to guess 

that this theorem has a generalization to Hilbert spaces, ~nd 

since most Hilbert space topologies coincide on finite dimen­

sional spaces, one might conjecture that the task is "only" to 

find the right notion of continuity. That norm-continuity is 

not the right notion is easy to see; but in 1958 V.V. Sazonov 

[16] proved that the right topology is the one generated by the 
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Hilbert-Schmidt operators. 

We shall now give a nonstandard proof of this theorem: 

Let 

operator 

H be a real separable Hilbert space; a Hilbert-Schmidt 

A: H -> H is a linear operator such that Y 1\Ae 11 2 <ro 
n='1 n 

for any orthonormal basis [en} in H.. It is easy to see that 

the sum I:\\Aenl! 2 is independent of which orthonormal basis we 

choose .. 

The sets of the form [x E H : 11A'1xll < 5'1, ... o, 1\Amxl\ < 5m} 

~rhere A'1, ... o ,Am are Hilbert-Schmidt operators, and 5'1, ••• , om 

are positive real numbers, form a basis for the Hilbert-Schmtdt 

topology. By polar decomposition, any Hilbert-Schmidt operator A 

can be written as the product UT of an partial isometry u, 

and a symmetric, positive Hilbert-Schmidt operator T. Hence 

we may assume that A'1, .... ,Am above are symmetric. Moreover, 

if A'1,A2 are Hilbert-Schlliidt operators, then there exists a 

Hilbert-Schmidt operator B ~ jA~A'1 + A;A2 such that \IBx\1 < 6 

implies IIA'1x\l < 6 and IIA2xll < 6. Thus we may replace the 

sequence A'1, ••• ,Am above with a single, symmetric H.-S. opera­

tor A and still have a basis for the topology. 

Let cp ~ H -> G "<vi th cp( 0) = '1. Then cp is continuous in 0 

if and only if for all E: E JR, e: > 0, there exists a symmetric 

Hilbert-Schmidt operator A and a 6 E JR, 6 > 0, such that if 

\\Axil < 6 then I cp(x)-11 < e:. Taking the *-transfer of this, 

we get 

Vx E *H(\1 *Axil< 6 ->I *cp(x)- '11 < e:) o 

By the internal definition principle this is equivalent to that 

for all e: E JR , e: > 0, there is a symmetric H .. -S. operator A 

such that 
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To prove that ~ is discontinuous in 0, it is thus enough 

to find a positive e E JR, such that for all symmetric H .. -S.­

o:perators A there is an x E *rr with ll *Axil~ 0 and I *cp(x)-11 > e ~ 

To prove the theorem, we shall need the following notions: 

Let nE*JN"JN, ru'ld define 0 = [-1,1]n, and let P be the uni­

form *-probability measure on 0; P{w} =(i)n .. By a ~etric 

binarJ: J.!larti:qz.ale X : 0 --> *:B. we shall mean a *-stochastic vari-
T\ 

able X defined by x(w) = .~1 w.y., where (y.}.< is an in-
l= l l l l_T\ 

ternal sequence of hyperreal numbers.. The quadratic variation 
11 2 

of X is defined to be [xJ = iE1yi.. (This should look familiar 

to readers acquainted with Anderson's Brownian motion [1]). 

Lemma 5: Let x be a symmetric binary martingale, and :put 

y2 = [x].. If y is finite, X is finite a .. e .. in the Loeb-

measure. If y is infinite there is a set of measure 

where I X I ~ J"Y o 

Proof: Assume that y is finite. Using that the 

independent with mean zero and variance one, we get 

'tl T\ 2 
L: y. y. J(w. w.) = ~ J. = 

i' j =1 l J l J i=1 l 

Consequently x is finite L(P)-a .. e. 

>..1. _2 

w. 
l 

are 

Assume so that y is infinite.. We first consider the case 

where there is a j E {1 ,2, .... o ,n} with IYj I ::._JY', say yj ::._J'Y • 
Then either ~ w . y. > 0 

T'\ i;ij l l-

that ~ w . y. < ly there 
'1J_J_ 'VI 
l= 

such that E w~y. > ly. . 1 l l-V 
l::: 

or ~ ( -w. )y. > 0, so for each w 
i,;ij l l-

is a W1 = (-w1 ,-w2, ...... ,wj, ..... ,-w~) 

such 

Hence x~JY with probability _::i o 

A similar argument applies for < J-y .. - y • 
"J-
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Assume so that y is infinite, but IYj l<fY for all j. 

Then [A.] = 1' and by the first part of the proof x/y y 

finite a.e •• Moreover y. /y Rj 0 
l 

for all i., We calculate 

characteristic function of the randcm variable 0 (x/y) 

'll w.y.z 
0 i ~ J J J ei ( x/y) z dL(P) = 0 J ei ( x/y) z dP = 0 J e j =1 Y dP 

w.y.z 
T1 i ,] J 

y.z y.z 
w.y.z i~ -i~ 

0 r I Y 
= jTie dP= 

o 'll - i .J J o 'll e Y + e Y CIT j e y dP) = TT ..;.__ _ _;,..;;. __ 
j=1 j=1 j::::1 2 

y.z 
'll ln(cos~) 

• 2::..., y 
o J:::: I = e 

where we have used the independence of 

and the Taylor-ex-_pnnsion of ln( cos x). 

w. 
l 

and for 

is 

the 

i -J. j, 

This tells us that o(x/y) is gaussian distributed with 

variance 1 o Hence the probability that I~~ _:: fy is larger than +, 
and so is the probability that 1 X I ?:...[Y. This proves the lemma .. 

The proof of part (b) of the following proposition contains 

the heart of the argument: 

Proposition 6: Let [~E} be a cylindrical measure on a 

real, separable Hilbert space Ho Then (recall the a of 

Corollary L~) : 

(a) If a = 1, then for each positive e E JR. there is a 

symmetric Hilbert-Schmidt operator 

that v(B. ~ ) > 1-e:, and for 
.Le 

L( * v )-almost all y E"B r .. 
e 

* X E H: 

T on H, and a r, E JR such 
t:; 

II *Txl\ ~ 0 => (x,y) ~ 0 for 
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(b) If a < ~, there is for each symmetric Hilbert-Schmidt 

operator T on H a set B with \;.(B) >.1zr'-, a y E *JN\.::N, 

and an x E * H such that 

1 

I (x,y) I > Y2 for y E B .. 

Proof: (a) This is the standard argument, adapted from 

Kuo [~0]: Let r 8 

the bilinear form 

be so large that v(B ) > ~-€, and consider 
re: 

J (x,z)(y,z)dv(z). It is .. continuous since 
B 

re: 

I J (x, z) (y, z)dv ( z) I _:: 1\xiii!Yll J I z 12dv ( z) _:: llxllllYIIII r 8 \1 2 • 

Bre Bre 

Consequently there is a symmetric, continuous, positive operator S 

such that 

Now 

(Sx,y) = J (x,z)(y,z)dv(z) 
B 

re: 

showing that S is a trace-class operatoro Hence S = TaT for 

some symmetric Hilbert-Schmidt operator T, and we get 

(a) now follows from the *-version of this .. 

(b) Let [e } EJN be an orthonormal basis of eigenvectors n n 

for T, and let [e } < be a hyperfinite initial segment of 
n ll_il u::.. 

* ({en }nEJN). Assume *Ten = Snen, then n~~ S~ <coo Let ET be 
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the hyperfinite dimensional subspace of *H generated by {~}n<no 

* Choose y E N \ JN such that 

such a y exists by definition of a and the internal definition 

principle. 
n wn ,...., 

Our element X shall be of the form x ~ n~1'7i7'4 en, where 

:!:1 for all Obviously 
* 2 n sn y 

We now use w = no \1 Txll = n~1 ~ ~ 0 • n ·y2 

Lemma 5 to choose the sequence {wn} such that (x,y) is infi-

nite on a set of y's of large enough measure: 

2 i 2 > y5/2, 11 wnyn 2 2 
If y is such that \lyi!E = n=1 Yn- then n~1 ( 7174) _::: Y 0 

T y w y 1 

By Lemma 5 is then I I: ==l7~ L~ Y 2 for all w in a set of measure 
y 

~ i.. Let now 

and apply Fubini's Theorem to the characteristic function KA: 

Hence there is a rn E 0 such that 

Choose Then 

which proves (b) .. 
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It is now easy to prove 

Theorem 7 (Sazonov): Let cp: H -> C be a complex-valued 

function on a real, separable Hilbert space. Then cp is the 

Fourier-transform of a Borel probability measure on H if and 

only if: cp(O) = 1, cp is positive definite and continuous in 

the Hilbert-Schmidt topology. 

Proof: Assume cp(x) == J ei(x,y) d~-t(y) , where 1-1 is a proba­

bility measure on ti; then cp(O) = 1 and cp is positive definiteo 

Let e: > 0 be giveno Since a. = 1, we may apply Proposition 6(a) 

to get a symmetric Hilbert-Schmidt operator T and a set B 
re/3 

with ~-t(Br ) > 1-e:/3 such that II *Txll ~ 0 ==> (x,y) ~ 0 for 
e/3 

almost all y E *B o Consequently ei(x,y) ~ 1 on a set of 
re/3 

measure > 1-e/3, and hence I *cp(x)- 11 <e. By our nonstandard 

characterization of H.-S. continuity, it follows that cp is con­

tinuous in 0. Since cp is positive definite this implies that 

cp is H.-So-continuous everywhere. 

Assume now that cp is a positive definite, H.-B.-continuous 

function with cp(O) = 1. Using Bochner's Theorem on the finite 

dj~ensional subspaces of H, we see that cp is the Fourier-trans­

form of a cylindrical measure (~} on H. We shall show that 

a. = 1 by proving that if a.< 1, then cp can not be H.-8.-con-

tinuouso 

So assume a.< 1 : Given a symmetric H.-B .. -operator T, 

there exist by Proposition 6(b) a set B with *~-t(B) > ¥, 
* * a y E 1\f'-.:N, and an x E H such that 

ll *Tx\1 ~ 0 and 
1 

I <x,y) I ~ y2 for y E B .. 



- 17 -

Let A be the Lebesgue measure on JRo 

that for infinite z 

It is easy to see 

* A [a E * ( 1 , 2] : a z E U ( * [ 2kn + ~ , 2kn + ~] }} ~ t > 13 o 

kE*Z c::. c::. 

Define 

A = ( (a,y) : a(x,y) E U [* [2kTT + ~ , 2kn + ~]} L 
kE*Z 

By Fubini's Theorem 
2 2 

JCJKA(a,y)d*~(y)]d*A.(a) = 
1 B 

J [ JKA (a,y)d * A(a)]d *~(y) ~~*~(B).?:_ ~ 
B 1 

Hence there exist an a such that 

For such an a, Re(ei(ax,y)) = cos((ax,y)) <o for all y in a 

set of measure > 1-a. 12, and consequently 

, r i(ax,y) d* ( ) ., I > 1-a 
1 Je ~l y - , -12 . 

Since II *T(ax) II~ 0, this implies that cp is not H. -So -continuous 

in 0, and the theorem is provedo 

What I would like to point out about the proof above, is the 

following: In ·this case the hard thing is to find out what happens 

l'llhen the limit measure does not exist.. But in the nonstandard 

universe we do have a kind of limit measure L(-;:lL'_),which lives 
.c..r.r 

on a space ET with all the algebraic and topological structure 

of a linear spaceo We can thus perform all the necessary calcula­

tions of Proposition 6 and Theorem 7 on this space.. The argument 

could probably be carried through in a standard way working on 

the finite dimensional subspace of H, by picking suitable se-
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quences of elements and the right notion of convergence of measures, 

but the clarity of the argument would then most likely be lost in 

a haze of convergence results. 

IV. Cylindrical measures extended to Banach spaces: 
Gross' theorem .. 

In the first section we inquired when a cylindrical measure 

[~E} on a Hilbert space can be extended to a countably additive 

measure ~ on H; and we saw - indirectly - how such a measure 

could be obtained from L(~E) on a hyperfinite dimensional sub­

space E of *H using a standard part map. We may ask our-

selves in cases where such an extension is not possible, whether 

we may find some other reasonable limit measure, perhaps living 

on a larger s~ace. One w~y of doing this in a nonstandard setting 

would be to use a standard part map connected with a weaker topo­

logy; this would make more points near-standard. We shall now 

apply this strategy to prove a theorem of Gross [5] on the exten-

sion of cylindrical measures to Banach spaces. 

Let H be a real, separable Hilbert space with an inner 

product ( o, •) generating a norm II,. II, and let I .. I · be another 

norm on H., An element y E *H is called I .. !-near-standard if 

for all e: E E. , e > 0, there is an x E H with lx-yl <e. If E 

is a hyperfinite dimensional subspace of *H, define an equiva­

lence relation '""'E on E by x "'E y <=> I x-yl Ri 0. Let Ns t 1 (E) 

denote the ! .. [-near-standard elements of E, and let 
0 

oE = Ns (E)/~E. Let 
\ \ 

be the norm defined on E by 

a lxl = stl~l, when 
,..... 
x is the equivalence class of X a 
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Lemma 8: Let E E *I be such that He E. Then (E, o 1·1) 
is the completion of H in l·i-norm. 

Proof: If x E H, identify it with its equivalence class 

under By definition of 1·1-near-standard, H is dense 

0 0 I . I in E, and it only remains to prove that is complete: 
0 

"' X 

Let (~ }nEJN be a Cauchy-sequence in E, and let for each n E JN 

:xn E xn. Then (xn }nE:N can be extended to an internal sequence 

(xn }nE*JJ of elements from E such that I x -x I ~ 0 for all n m 
n,m E *:N,E. Let * "' yE ]L\f,JN, and let xy be the equivalence class 

of Since all xn are 1·1-near-standard, so is xy, and 

the sequence converges to The lemma is proved. 

0 I I 0 I I . From now on we write B for E and o for 1 , and we 

have hence shown the existence of a standard part map 

st I I :N, 1(E) -> B~ 

Let + L.. be the set of finite dimensional projections in H. 

If ll = {llF }FEI is a cylindrical measure on H, the norm I I 
is called 1-1-measurable if for all e: E JR there is a P E g: such 

+ 0 

that 

~-tUPxl > e:} < e: for all P E !f , P 1 P o 
0 

Gross' theorem says that if I I is I-t-measurable, then 1-1 

has an extension to Borel-measure on B. The key observation is 

the following: 

Lemma 9: If 1·1 is 1-1-measurable, then L(~E)(Ns 1 I (E))= '1 

(E is as in Lemma 8.) 

Proof: Let 

Am = (x E E : 3v E H ( I v -xI < ~) } • 
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r;- J.. * If P E f- , let FB be the orthogonal projection to P in E. 

For n > m, find a P E j: such that 

~ I L I 1} 1 !l [ p (x) >- <-
E E n n' 

by !.!-measurability of lola Then the set 

is contained in A , and has Loeb-measure > 1-.1. *)Since this . m - n 

holds for all n > m, L(~) (Am) = 1. But Ns 1 1 (E) = ~Am, and hence 

L(~E)(Ns1 1(E)) = 1, which proves the lemma. 

To prove the theorem, it only remains to push L(~E) down 

to B using the struLdard part map. However, we must first agree 

on what it means for a measure on B to extend a cylindrical 

measure on H: Let B* be the dual of B. If 

and A is a Borel-set in JRn, then the set 

[x E B : (y1 (x), ••• ,yn (x)) E A} is called a cylinder set in B. We 

" define a finitely additive measure !l on the cylinder sets by 

where we have identified H and H* and embedded B* in H*o 

" Theorem 10 (Gross): Let I I be !l-measurableo Then !l 

has an extension to a a-additive Borel-measure on B. 

Proof: Let E be as in Lemmas 8 and 9. Define a measure v 

on B by v = st!~(L(~E)); this is well-defined probability 

measure since L(~E(Nsi 1 (E)) = 1 by Lemma 9. To prove that v 

is a Borel-measure, it is enough to prove that all balls 

B (a, r) = [x E B : I x-a I < r} , a E H , 

*) L(i}'E) [x E E : P(x) E Ns11 (E) J = 0 since P E 7 (and not only *7 ) 
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are v-measurable, since B is separable. But 

st I~ (B (a' r) ) = ~ (x E E : I x-a I < r - ~} n N•l I (E) 

which is L(~E)-measurable, and hence v is a Borel-measure. 

"' It remains to prove that v and ~ agree on the cylinder 

sets: Since 

we have 

"' But Ec H, and hence yj(x) = (x,yj) and so 

On the other hand 

~ {x E B : (y1 (x), ..... ,yn (x)) E A} = L(0'E) {x E E: (y1 (x), ••• ,yn (x)) E *A} 

= L(~E){xEE :((x,y1 ), .... ,(x,yn))E *A}. 

Keoping y1 ,~ •• ,yn fixed and letting A run through the Borel sets, 

(where F is the subspace of H generated by y~,A •• ,y) de!inBs.a , n 
n Radon measure on JR • Given an e: > 0, there is thus an open set 

G :::::>A, and a compact set C c A, such that 

1-lE {x E E : ( (x, y 1 ) , -· , (x, y n)) E * C} + e:,::. 1-lE (x E E : ( ( x, y 1 ), __ , (x, y n)) E *A} 

.2';. 1-lE {x E E : ( (x, y 1 ) , o .. o , ( x, y n)) E * G} - e: .. 

Now * C c st-'1 (C) enc1 * G :::> st-'1 (G), and hence 
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Since e is arbitrary, this implies that v and ~ agree on the 

cylinder sets, and the theorem is proved~ 

The theorem above is more general than the versions in e.go 

Gross [5], or Kuo [10] as they treat only the case where ~ is 

normally distributed. I have found no references to the actual 

theorem in the literature, but it certainly ought to be wellknown. 

For applications the reader should consult Kuo [10]. 

The pattern of the proof is again the same; a limit measure 

exists naturally on an infinite element E, and using a suitable 

standard part map it is pushed down to a standard space. That we 

have been able to prove three central theorems in the theory of 

limit measures using this simple idea, should indicate .that the 

Loeb-measure approach is both natural and promising; and I cer­

tainly hope that some original research may be carried on along 

these lineso Promising subjects should include stochastic inte­

gration in Hilbert spaces, and partial stochastic differential 

equations. 
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